Pull bugzilla-7880 into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_version.h"
50
51 #include <linux/namei.h>
52 #include <linux/init.h>
53 #include <linux/mount.h>
54 #include <linux/mempool.h>
55 #include <linux/writeback.h>
56 #include <linux/kthread.h>
57 #include <linux/freezer.h>
58
59 static struct quotactl_ops xfs_quotactl_operations;
60 static struct super_operations xfs_super_operations;
61 static kmem_zone_t *xfs_vnode_zone;
62 static kmem_zone_t *xfs_ioend_zone;
63 mempool_t *xfs_ioend_pool;
64
65 STATIC struct xfs_mount_args *
66 xfs_args_allocate(
67 struct super_block *sb,
68 int silent)
69 {
70 struct xfs_mount_args *args;
71
72 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
73 args->logbufs = args->logbufsize = -1;
74 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
75
76 /* Copy the already-parsed mount(2) flags we're interested in */
77 if (sb->s_flags & MS_DIRSYNC)
78 args->flags |= XFSMNT_DIRSYNC;
79 if (sb->s_flags & MS_SYNCHRONOUS)
80 args->flags |= XFSMNT_WSYNC;
81 if (silent)
82 args->flags |= XFSMNT_QUIET;
83 args->flags |= XFSMNT_32BITINODES;
84
85 return args;
86 }
87
88 __uint64_t
89 xfs_max_file_offset(
90 unsigned int blockshift)
91 {
92 unsigned int pagefactor = 1;
93 unsigned int bitshift = BITS_PER_LONG - 1;
94
95 /* Figure out maximum filesize, on Linux this can depend on
96 * the filesystem blocksize (on 32 bit platforms).
97 * __block_prepare_write does this in an [unsigned] long...
98 * page->index << (PAGE_CACHE_SHIFT - bbits)
99 * So, for page sized blocks (4K on 32 bit platforms),
100 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
101 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
102 * but for smaller blocksizes it is less (bbits = log2 bsize).
103 * Note1: get_block_t takes a long (implicit cast from above)
104 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
105 * can optionally convert the [unsigned] long from above into
106 * an [unsigned] long long.
107 */
108
109 #if BITS_PER_LONG == 32
110 # if defined(CONFIG_LBD)
111 ASSERT(sizeof(sector_t) == 8);
112 pagefactor = PAGE_CACHE_SIZE;
113 bitshift = BITS_PER_LONG;
114 # else
115 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
116 # endif
117 #endif
118
119 return (((__uint64_t)pagefactor) << bitshift) - 1;
120 }
121
122 STATIC_INLINE void
123 xfs_set_inodeops(
124 struct inode *inode)
125 {
126 switch (inode->i_mode & S_IFMT) {
127 case S_IFREG:
128 inode->i_op = &xfs_inode_operations;
129 inode->i_fop = &xfs_file_operations;
130 inode->i_mapping->a_ops = &xfs_address_space_operations;
131 break;
132 case S_IFDIR:
133 inode->i_op = &xfs_dir_inode_operations;
134 inode->i_fop = &xfs_dir_file_operations;
135 break;
136 case S_IFLNK:
137 inode->i_op = &xfs_symlink_inode_operations;
138 if (inode->i_blocks)
139 inode->i_mapping->a_ops = &xfs_address_space_operations;
140 break;
141 default:
142 inode->i_op = &xfs_inode_operations;
143 init_special_inode(inode, inode->i_mode, inode->i_rdev);
144 break;
145 }
146 }
147
148 STATIC_INLINE void
149 xfs_revalidate_inode(
150 xfs_mount_t *mp,
151 bhv_vnode_t *vp,
152 xfs_inode_t *ip)
153 {
154 struct inode *inode = vn_to_inode(vp);
155
156 inode->i_mode = ip->i_d.di_mode;
157 inode->i_nlink = ip->i_d.di_nlink;
158 inode->i_uid = ip->i_d.di_uid;
159 inode->i_gid = ip->i_d.di_gid;
160
161 switch (inode->i_mode & S_IFMT) {
162 case S_IFBLK:
163 case S_IFCHR:
164 inode->i_rdev =
165 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
166 sysv_minor(ip->i_df.if_u2.if_rdev));
167 break;
168 default:
169 inode->i_rdev = 0;
170 break;
171 }
172
173 inode->i_generation = ip->i_d.di_gen;
174 i_size_write(inode, ip->i_d.di_size);
175 inode->i_blocks =
176 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
177 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
178 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
179 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
180 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
181 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
182 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
183 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
184 inode->i_flags |= S_IMMUTABLE;
185 else
186 inode->i_flags &= ~S_IMMUTABLE;
187 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
188 inode->i_flags |= S_APPEND;
189 else
190 inode->i_flags &= ~S_APPEND;
191 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
192 inode->i_flags |= S_SYNC;
193 else
194 inode->i_flags &= ~S_SYNC;
195 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
196 inode->i_flags |= S_NOATIME;
197 else
198 inode->i_flags &= ~S_NOATIME;
199 vp->v_flag &= ~VMODIFIED;
200 }
201
202 void
203 xfs_initialize_vnode(
204 bhv_desc_t *bdp,
205 bhv_vnode_t *vp,
206 bhv_desc_t *inode_bhv,
207 int unlock)
208 {
209 xfs_inode_t *ip = XFS_BHVTOI(inode_bhv);
210 struct inode *inode = vn_to_inode(vp);
211
212 if (!inode_bhv->bd_vobj) {
213 vp->v_vfsp = bhvtovfs(bdp);
214 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
215 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
216 }
217
218 /*
219 * We need to set the ops vectors, and unlock the inode, but if
220 * we have been called during the new inode create process, it is
221 * too early to fill in the Linux inode. We will get called a
222 * second time once the inode is properly set up, and then we can
223 * finish our work.
224 */
225 if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
226 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
227 xfs_set_inodeops(inode);
228
229 xfs_iflags_clear(ip, XFS_INEW);
230 barrier();
231
232 unlock_new_inode(inode);
233 }
234 }
235
236 int
237 xfs_blkdev_get(
238 xfs_mount_t *mp,
239 const char *name,
240 struct block_device **bdevp)
241 {
242 int error = 0;
243
244 *bdevp = open_bdev_excl(name, 0, mp);
245 if (IS_ERR(*bdevp)) {
246 error = PTR_ERR(*bdevp);
247 printk("XFS: Invalid device [%s], error=%d\n", name, error);
248 }
249
250 return -error;
251 }
252
253 void
254 xfs_blkdev_put(
255 struct block_device *bdev)
256 {
257 if (bdev)
258 close_bdev_excl(bdev);
259 }
260
261 /*
262 * Try to write out the superblock using barriers.
263 */
264 STATIC int
265 xfs_barrier_test(
266 xfs_mount_t *mp)
267 {
268 xfs_buf_t *sbp = xfs_getsb(mp, 0);
269 int error;
270
271 XFS_BUF_UNDONE(sbp);
272 XFS_BUF_UNREAD(sbp);
273 XFS_BUF_UNDELAYWRITE(sbp);
274 XFS_BUF_WRITE(sbp);
275 XFS_BUF_UNASYNC(sbp);
276 XFS_BUF_ORDERED(sbp);
277
278 xfsbdstrat(mp, sbp);
279 error = xfs_iowait(sbp);
280
281 /*
282 * Clear all the flags we set and possible error state in the
283 * buffer. We only did the write to try out whether barriers
284 * worked and shouldn't leave any traces in the superblock
285 * buffer.
286 */
287 XFS_BUF_DONE(sbp);
288 XFS_BUF_ERROR(sbp, 0);
289 XFS_BUF_UNORDERED(sbp);
290
291 xfs_buf_relse(sbp);
292 return error;
293 }
294
295 void
296 xfs_mountfs_check_barriers(xfs_mount_t *mp)
297 {
298 int error;
299
300 if (mp->m_logdev_targp != mp->m_ddev_targp) {
301 xfs_fs_cmn_err(CE_NOTE, mp,
302 "Disabling barriers, not supported with external log device");
303 mp->m_flags &= ~XFS_MOUNT_BARRIER;
304 return;
305 }
306
307 if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
308 QUEUE_ORDERED_NONE) {
309 xfs_fs_cmn_err(CE_NOTE, mp,
310 "Disabling barriers, not supported by the underlying device");
311 mp->m_flags &= ~XFS_MOUNT_BARRIER;
312 return;
313 }
314
315 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
316 xfs_fs_cmn_err(CE_NOTE, mp,
317 "Disabling barriers, underlying device is readonly");
318 mp->m_flags &= ~XFS_MOUNT_BARRIER;
319 return;
320 }
321
322 error = xfs_barrier_test(mp);
323 if (error) {
324 xfs_fs_cmn_err(CE_NOTE, mp,
325 "Disabling barriers, trial barrier write failed");
326 mp->m_flags &= ~XFS_MOUNT_BARRIER;
327 return;
328 }
329 }
330
331 void
332 xfs_blkdev_issue_flush(
333 xfs_buftarg_t *buftarg)
334 {
335 blkdev_issue_flush(buftarg->bt_bdev, NULL);
336 }
337
338 STATIC struct inode *
339 xfs_fs_alloc_inode(
340 struct super_block *sb)
341 {
342 bhv_vnode_t *vp;
343
344 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
345 if (unlikely(!vp))
346 return NULL;
347 return vn_to_inode(vp);
348 }
349
350 STATIC void
351 xfs_fs_destroy_inode(
352 struct inode *inode)
353 {
354 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
355 }
356
357 STATIC void
358 xfs_fs_inode_init_once(
359 void *vnode,
360 kmem_zone_t *zonep,
361 unsigned long flags)
362 {
363 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
364 }
365
366 STATIC int
367 xfs_init_zones(void)
368 {
369 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
370 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
371 KM_ZONE_SPREAD,
372 xfs_fs_inode_init_once);
373 if (!xfs_vnode_zone)
374 goto out;
375
376 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
377 if (!xfs_ioend_zone)
378 goto out_destroy_vnode_zone;
379
380 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
381 xfs_ioend_zone);
382 if (!xfs_ioend_pool)
383 goto out_free_ioend_zone;
384 return 0;
385
386 out_free_ioend_zone:
387 kmem_zone_destroy(xfs_ioend_zone);
388 out_destroy_vnode_zone:
389 kmem_zone_destroy(xfs_vnode_zone);
390 out:
391 return -ENOMEM;
392 }
393
394 STATIC void
395 xfs_destroy_zones(void)
396 {
397 mempool_destroy(xfs_ioend_pool);
398 kmem_zone_destroy(xfs_vnode_zone);
399 kmem_zone_destroy(xfs_ioend_zone);
400 }
401
402 /*
403 * Attempt to flush the inode, this will actually fail
404 * if the inode is pinned, but we dirty the inode again
405 * at the point when it is unpinned after a log write,
406 * since this is when the inode itself becomes flushable.
407 */
408 STATIC int
409 xfs_fs_write_inode(
410 struct inode *inode,
411 int sync)
412 {
413 bhv_vnode_t *vp = vn_from_inode(inode);
414 int error = 0, flags = FLUSH_INODE;
415
416 if (vp) {
417 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
418 if (sync)
419 flags |= FLUSH_SYNC;
420 error = bhv_vop_iflush(vp, flags);
421 if (error == EAGAIN)
422 error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
423 }
424 return -error;
425 }
426
427 STATIC void
428 xfs_fs_clear_inode(
429 struct inode *inode)
430 {
431 bhv_vnode_t *vp = vn_from_inode(inode);
432
433 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
434
435 XFS_STATS_INC(vn_rele);
436 XFS_STATS_INC(vn_remove);
437 XFS_STATS_INC(vn_reclaim);
438 XFS_STATS_DEC(vn_active);
439
440 /*
441 * This can happen because xfs_iget_core calls xfs_idestroy if we
442 * find an inode with di_mode == 0 but without IGET_CREATE set.
443 */
444 if (VNHEAD(vp))
445 bhv_vop_inactive(vp, NULL);
446
447 VN_LOCK(vp);
448 vp->v_flag &= ~VMODIFIED;
449 VN_UNLOCK(vp, 0);
450
451 if (VNHEAD(vp))
452 if (bhv_vop_reclaim(vp))
453 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
454
455 ASSERT(VNHEAD(vp) == NULL);
456
457 #ifdef XFS_VNODE_TRACE
458 ktrace_free(vp->v_trace);
459 #endif
460 }
461
462 /*
463 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
464 * Doing this has two advantages:
465 * - It saves on stack space, which is tight in certain situations
466 * - It can be used (with care) as a mechanism to avoid deadlocks.
467 * Flushing while allocating in a full filesystem requires both.
468 */
469 STATIC void
470 xfs_syncd_queue_work(
471 struct bhv_vfs *vfs,
472 void *data,
473 void (*syncer)(bhv_vfs_t *, void *))
474 {
475 struct bhv_vfs_sync_work *work;
476
477 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
478 INIT_LIST_HEAD(&work->w_list);
479 work->w_syncer = syncer;
480 work->w_data = data;
481 work->w_vfs = vfs;
482 spin_lock(&vfs->vfs_sync_lock);
483 list_add_tail(&work->w_list, &vfs->vfs_sync_list);
484 spin_unlock(&vfs->vfs_sync_lock);
485 wake_up_process(vfs->vfs_sync_task);
486 }
487
488 /*
489 * Flush delayed allocate data, attempting to free up reserved space
490 * from existing allocations. At this point a new allocation attempt
491 * has failed with ENOSPC and we are in the process of scratching our
492 * heads, looking about for more room...
493 */
494 STATIC void
495 xfs_flush_inode_work(
496 bhv_vfs_t *vfs,
497 void *inode)
498 {
499 filemap_flush(((struct inode *)inode)->i_mapping);
500 iput((struct inode *)inode);
501 }
502
503 void
504 xfs_flush_inode(
505 xfs_inode_t *ip)
506 {
507 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
508 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
509
510 igrab(inode);
511 xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
512 delay(msecs_to_jiffies(500));
513 }
514
515 /*
516 * This is the "bigger hammer" version of xfs_flush_inode_work...
517 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
518 */
519 STATIC void
520 xfs_flush_device_work(
521 bhv_vfs_t *vfs,
522 void *inode)
523 {
524 sync_blockdev(vfs->vfs_super->s_bdev);
525 iput((struct inode *)inode);
526 }
527
528 void
529 xfs_flush_device(
530 xfs_inode_t *ip)
531 {
532 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
533 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
534
535 igrab(inode);
536 xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
537 delay(msecs_to_jiffies(500));
538 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
539 }
540
541 STATIC void
542 vfs_sync_worker(
543 bhv_vfs_t *vfsp,
544 void *unused)
545 {
546 int error;
547
548 if (!(vfsp->vfs_flag & VFS_RDONLY))
549 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
550 SYNC_ATTR | SYNC_REFCACHE | SYNC_SUPER,
551 NULL);
552 vfsp->vfs_sync_seq++;
553 wake_up(&vfsp->vfs_wait_single_sync_task);
554 }
555
556 STATIC int
557 xfssyncd(
558 void *arg)
559 {
560 long timeleft;
561 bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
562 bhv_vfs_sync_work_t *work, *n;
563 LIST_HEAD (tmp);
564
565 set_freezable();
566 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
567 for (;;) {
568 timeleft = schedule_timeout_interruptible(timeleft);
569 /* swsusp */
570 try_to_freeze();
571 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
572 break;
573
574 spin_lock(&vfsp->vfs_sync_lock);
575 /*
576 * We can get woken by laptop mode, to do a sync -
577 * that's the (only!) case where the list would be
578 * empty with time remaining.
579 */
580 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
581 if (!timeleft)
582 timeleft = xfs_syncd_centisecs *
583 msecs_to_jiffies(10);
584 INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
585 list_add_tail(&vfsp->vfs_sync_work.w_list,
586 &vfsp->vfs_sync_list);
587 }
588 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
589 list_move(&work->w_list, &tmp);
590 spin_unlock(&vfsp->vfs_sync_lock);
591
592 list_for_each_entry_safe(work, n, &tmp, w_list) {
593 (*work->w_syncer)(vfsp, work->w_data);
594 list_del(&work->w_list);
595 if (work == &vfsp->vfs_sync_work)
596 continue;
597 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
598 }
599 }
600
601 return 0;
602 }
603
604 STATIC int
605 xfs_fs_start_syncd(
606 bhv_vfs_t *vfsp)
607 {
608 vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
609 vfsp->vfs_sync_work.w_vfs = vfsp;
610 vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
611 if (IS_ERR(vfsp->vfs_sync_task))
612 return -PTR_ERR(vfsp->vfs_sync_task);
613 return 0;
614 }
615
616 STATIC void
617 xfs_fs_stop_syncd(
618 bhv_vfs_t *vfsp)
619 {
620 kthread_stop(vfsp->vfs_sync_task);
621 }
622
623 STATIC void
624 xfs_fs_put_super(
625 struct super_block *sb)
626 {
627 bhv_vfs_t *vfsp = vfs_from_sb(sb);
628 int error;
629
630 xfs_fs_stop_syncd(vfsp);
631 bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
632 error = bhv_vfs_unmount(vfsp, 0, NULL);
633 if (error) {
634 printk("XFS: unmount got error=%d\n", error);
635 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
636 } else {
637 vfs_deallocate(vfsp);
638 }
639 }
640
641 STATIC void
642 xfs_fs_write_super(
643 struct super_block *sb)
644 {
645 if (!(sb->s_flags & MS_RDONLY))
646 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
647 sb->s_dirt = 0;
648 }
649
650 STATIC int
651 xfs_fs_sync_super(
652 struct super_block *sb,
653 int wait)
654 {
655 bhv_vfs_t *vfsp = vfs_from_sb(sb);
656 int error;
657 int flags;
658
659 if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
660 /*
661 * First stage of freeze - no more writers will make progress
662 * now we are here, so we flush delwri and delalloc buffers
663 * here, then wait for all I/O to complete. Data is frozen at
664 * that point. Metadata is not frozen, transactions can still
665 * occur here so don't bother flushing the buftarg (i.e
666 * SYNC_QUIESCE) because it'll just get dirty again.
667 */
668 flags = SYNC_DATA_QUIESCE;
669 } else
670 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
671
672 error = bhv_vfs_sync(vfsp, flags, NULL);
673 sb->s_dirt = 0;
674
675 if (unlikely(laptop_mode)) {
676 int prev_sync_seq = vfsp->vfs_sync_seq;
677
678 /*
679 * The disk must be active because we're syncing.
680 * We schedule xfssyncd now (now that the disk is
681 * active) instead of later (when it might not be).
682 */
683 wake_up_process(vfsp->vfs_sync_task);
684 /*
685 * We have to wait for the sync iteration to complete.
686 * If we don't, the disk activity caused by the sync
687 * will come after the sync is completed, and that
688 * triggers another sync from laptop mode.
689 */
690 wait_event(vfsp->vfs_wait_single_sync_task,
691 vfsp->vfs_sync_seq != prev_sync_seq);
692 }
693
694 return -error;
695 }
696
697 STATIC int
698 xfs_fs_statfs(
699 struct dentry *dentry,
700 struct kstatfs *statp)
701 {
702 return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
703 vn_from_inode(dentry->d_inode));
704 }
705
706 STATIC int
707 xfs_fs_remount(
708 struct super_block *sb,
709 int *flags,
710 char *options)
711 {
712 bhv_vfs_t *vfsp = vfs_from_sb(sb);
713 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
714 int error;
715
716 error = bhv_vfs_parseargs(vfsp, options, args, 1);
717 if (!error)
718 error = bhv_vfs_mntupdate(vfsp, flags, args);
719 kmem_free(args, sizeof(*args));
720 return -error;
721 }
722
723 STATIC void
724 xfs_fs_lockfs(
725 struct super_block *sb)
726 {
727 bhv_vfs_freeze(vfs_from_sb(sb));
728 }
729
730 STATIC int
731 xfs_fs_show_options(
732 struct seq_file *m,
733 struct vfsmount *mnt)
734 {
735 return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
736 }
737
738 STATIC int
739 xfs_fs_quotasync(
740 struct super_block *sb,
741 int type)
742 {
743 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
744 }
745
746 STATIC int
747 xfs_fs_getxstate(
748 struct super_block *sb,
749 struct fs_quota_stat *fqs)
750 {
751 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
752 }
753
754 STATIC int
755 xfs_fs_setxstate(
756 struct super_block *sb,
757 unsigned int flags,
758 int op)
759 {
760 return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
761 }
762
763 STATIC int
764 xfs_fs_getxquota(
765 struct super_block *sb,
766 int type,
767 qid_t id,
768 struct fs_disk_quota *fdq)
769 {
770 return -bhv_vfs_quotactl(vfs_from_sb(sb),
771 (type == USRQUOTA) ? Q_XGETQUOTA :
772 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
773 Q_XGETPQUOTA), id, (caddr_t)fdq);
774 }
775
776 STATIC int
777 xfs_fs_setxquota(
778 struct super_block *sb,
779 int type,
780 qid_t id,
781 struct fs_disk_quota *fdq)
782 {
783 return -bhv_vfs_quotactl(vfs_from_sb(sb),
784 (type == USRQUOTA) ? Q_XSETQLIM :
785 ((type == GRPQUOTA) ? Q_XSETGQLIM :
786 Q_XSETPQLIM), id, (caddr_t)fdq);
787 }
788
789 STATIC int
790 xfs_fs_fill_super(
791 struct super_block *sb,
792 void *data,
793 int silent)
794 {
795 struct bhv_vnode *rootvp;
796 struct bhv_vfs *vfsp = vfs_allocate(sb);
797 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
798 struct kstatfs statvfs;
799 int error;
800
801 bhv_insert_all_vfsops(vfsp);
802
803 error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
804 if (error) {
805 bhv_remove_all_vfsops(vfsp, 1);
806 goto fail_vfsop;
807 }
808
809 sb_min_blocksize(sb, BBSIZE);
810 sb->s_export_op = &xfs_export_operations;
811 sb->s_qcop = &xfs_quotactl_operations;
812 sb->s_op = &xfs_super_operations;
813
814 error = bhv_vfs_mount(vfsp, args, NULL);
815 if (error) {
816 bhv_remove_all_vfsops(vfsp, 1);
817 goto fail_vfsop;
818 }
819
820 error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
821 if (error)
822 goto fail_unmount;
823
824 sb->s_dirt = 1;
825 sb->s_magic = statvfs.f_type;
826 sb->s_blocksize = statvfs.f_bsize;
827 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
828 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
829 sb->s_time_gran = 1;
830 set_posix_acl_flag(sb);
831
832 error = bhv_vfs_root(vfsp, &rootvp);
833 if (error)
834 goto fail_unmount;
835
836 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
837 if (!sb->s_root) {
838 error = ENOMEM;
839 goto fail_vnrele;
840 }
841 if (is_bad_inode(sb->s_root->d_inode)) {
842 error = EINVAL;
843 goto fail_vnrele;
844 }
845 if ((error = xfs_fs_start_syncd(vfsp)))
846 goto fail_vnrele;
847 vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
848
849 kmem_free(args, sizeof(*args));
850 return 0;
851
852 fail_vnrele:
853 if (sb->s_root) {
854 dput(sb->s_root);
855 sb->s_root = NULL;
856 } else {
857 VN_RELE(rootvp);
858 }
859
860 fail_unmount:
861 bhv_vfs_unmount(vfsp, 0, NULL);
862
863 fail_vfsop:
864 vfs_deallocate(vfsp);
865 kmem_free(args, sizeof(*args));
866 return -error;
867 }
868
869 STATIC int
870 xfs_fs_get_sb(
871 struct file_system_type *fs_type,
872 int flags,
873 const char *dev_name,
874 void *data,
875 struct vfsmount *mnt)
876 {
877 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
878 mnt);
879 }
880
881 static struct super_operations xfs_super_operations = {
882 .alloc_inode = xfs_fs_alloc_inode,
883 .destroy_inode = xfs_fs_destroy_inode,
884 .write_inode = xfs_fs_write_inode,
885 .clear_inode = xfs_fs_clear_inode,
886 .put_super = xfs_fs_put_super,
887 .write_super = xfs_fs_write_super,
888 .sync_fs = xfs_fs_sync_super,
889 .write_super_lockfs = xfs_fs_lockfs,
890 .statfs = xfs_fs_statfs,
891 .remount_fs = xfs_fs_remount,
892 .show_options = xfs_fs_show_options,
893 };
894
895 static struct quotactl_ops xfs_quotactl_operations = {
896 .quota_sync = xfs_fs_quotasync,
897 .get_xstate = xfs_fs_getxstate,
898 .set_xstate = xfs_fs_setxstate,
899 .get_xquota = xfs_fs_getxquota,
900 .set_xquota = xfs_fs_setxquota,
901 };
902
903 static struct file_system_type xfs_fs_type = {
904 .owner = THIS_MODULE,
905 .name = "xfs",
906 .get_sb = xfs_fs_get_sb,
907 .kill_sb = kill_block_super,
908 .fs_flags = FS_REQUIRES_DEV,
909 };
910
911
912 STATIC int __init
913 init_xfs_fs( void )
914 {
915 int error;
916 struct sysinfo si;
917 static char message[] __initdata = KERN_INFO \
918 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
919
920 printk(message);
921
922 si_meminfo(&si);
923 xfs_physmem = si.totalram;
924
925 ktrace_init(64);
926
927 error = xfs_init_zones();
928 if (error < 0)
929 goto undo_zones;
930
931 error = xfs_buf_init();
932 if (error < 0)
933 goto undo_buffers;
934
935 vn_init();
936 xfs_init();
937 uuid_init();
938 vfs_initquota();
939
940 error = register_filesystem(&xfs_fs_type);
941 if (error)
942 goto undo_register;
943 return 0;
944
945 undo_register:
946 xfs_buf_terminate();
947
948 undo_buffers:
949 xfs_destroy_zones();
950
951 undo_zones:
952 return error;
953 }
954
955 STATIC void __exit
956 exit_xfs_fs( void )
957 {
958 vfs_exitquota();
959 unregister_filesystem(&xfs_fs_type);
960 xfs_cleanup();
961 xfs_buf_terminate();
962 xfs_destroy_zones();
963 ktrace_uninit();
964 }
965
966 module_init(init_xfs_fs);
967 module_exit(exit_xfs_fs);
968
969 MODULE_AUTHOR("Silicon Graphics, Inc.");
970 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
971 MODULE_LICENSE("GPL");