Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir.h"
25 #include "xfs_dir2.h"
26 #include "xfs_trans.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dir_sf.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_alloc.h"
38 #include "xfs_btree.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_iomap.h"
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44
45 STATIC void xfs_count_page_state(struct page *, int *, int *, int *);
46 STATIC void xfs_convert_page(struct inode *, struct page *, xfs_iomap_t *,
47 struct writeback_control *wbc, void *, int, int);
48
49 #if defined(XFS_RW_TRACE)
50 void
51 xfs_page_trace(
52 int tag,
53 struct inode *inode,
54 struct page *page,
55 int mask)
56 {
57 xfs_inode_t *ip;
58 bhv_desc_t *bdp;
59 vnode_t *vp = LINVFS_GET_VP(inode);
60 loff_t isize = i_size_read(inode);
61 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
62 int delalloc = -1, unmapped = -1, unwritten = -1;
63
64 if (page_has_buffers(page))
65 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
66
67 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
68 ip = XFS_BHVTOI(bdp);
69 if (!ip->i_rwtrace)
70 return;
71
72 ktrace_enter(ip->i_rwtrace,
73 (void *)((unsigned long)tag),
74 (void *)ip,
75 (void *)inode,
76 (void *)page,
77 (void *)((unsigned long)mask),
78 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
79 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
80 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
81 (void *)((unsigned long)(isize & 0xffffffff)),
82 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
83 (void *)((unsigned long)(offset & 0xffffffff)),
84 (void *)((unsigned long)delalloc),
85 (void *)((unsigned long)unmapped),
86 (void *)((unsigned long)unwritten),
87 (void *)NULL,
88 (void *)NULL);
89 }
90 #else
91 #define xfs_page_trace(tag, inode, page, mask)
92 #endif
93
94 /*
95 * Schedule IO completion handling on a xfsdatad if this was
96 * the final hold on this ioend.
97 */
98 STATIC void
99 xfs_finish_ioend(
100 xfs_ioend_t *ioend)
101 {
102 if (atomic_dec_and_test(&ioend->io_remaining))
103 queue_work(xfsdatad_workqueue, &ioend->io_work);
104 }
105
106 STATIC void
107 xfs_destroy_ioend(
108 xfs_ioend_t *ioend)
109 {
110 vn_iowake(ioend->io_vnode);
111 mempool_free(ioend, xfs_ioend_pool);
112 }
113
114 /*
115 * Issue transactions to convert a buffer range from unwritten
116 * to written extents.
117 */
118 STATIC void
119 xfs_end_bio_unwritten(
120 void *data)
121 {
122 xfs_ioend_t *ioend = data;
123 vnode_t *vp = ioend->io_vnode;
124 xfs_off_t offset = ioend->io_offset;
125 size_t size = ioend->io_size;
126 struct buffer_head *bh, *next;
127 int error;
128
129 if (ioend->io_uptodate)
130 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
131
132 /* ioend->io_buffer_head is only non-NULL for buffered I/O */
133 for (bh = ioend->io_buffer_head; bh; bh = next) {
134 next = bh->b_private;
135
136 bh->b_end_io = NULL;
137 clear_buffer_unwritten(bh);
138 end_buffer_async_write(bh, ioend->io_uptodate);
139 }
140
141 xfs_destroy_ioend(ioend);
142 }
143
144 /*
145 * Allocate and initialise an IO completion structure.
146 * We need to track unwritten extent write completion here initially.
147 * We'll need to extend this for updating the ondisk inode size later
148 * (vs. incore size).
149 */
150 STATIC xfs_ioend_t *
151 xfs_alloc_ioend(
152 struct inode *inode)
153 {
154 xfs_ioend_t *ioend;
155
156 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
157
158 /*
159 * Set the count to 1 initially, which will prevent an I/O
160 * completion callback from happening before we have started
161 * all the I/O from calling the completion routine too early.
162 */
163 atomic_set(&ioend->io_remaining, 1);
164 ioend->io_uptodate = 1; /* cleared if any I/O fails */
165 ioend->io_vnode = LINVFS_GET_VP(inode);
166 ioend->io_buffer_head = NULL;
167 atomic_inc(&ioend->io_vnode->v_iocount);
168 ioend->io_offset = 0;
169 ioend->io_size = 0;
170
171 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend);
172
173 return ioend;
174 }
175
176 void
177 linvfs_unwritten_done(
178 struct buffer_head *bh,
179 int uptodate)
180 {
181 xfs_ioend_t *ioend = bh->b_private;
182 static spinlock_t unwritten_done_lock = SPIN_LOCK_UNLOCKED;
183 unsigned long flags;
184
185 ASSERT(buffer_unwritten(bh));
186 bh->b_end_io = NULL;
187
188 if (!uptodate)
189 ioend->io_uptodate = 0;
190
191 /*
192 * Deep magic here. We reuse b_private in the buffer_heads to build
193 * a chain for completing the I/O from user context after we've issued
194 * a transaction to convert the unwritten extent.
195 */
196 spin_lock_irqsave(&unwritten_done_lock, flags);
197 bh->b_private = ioend->io_buffer_head;
198 ioend->io_buffer_head = bh;
199 spin_unlock_irqrestore(&unwritten_done_lock, flags);
200
201 xfs_finish_ioend(ioend);
202 }
203
204 STATIC int
205 xfs_map_blocks(
206 struct inode *inode,
207 loff_t offset,
208 ssize_t count,
209 xfs_iomap_t *mapp,
210 int flags)
211 {
212 vnode_t *vp = LINVFS_GET_VP(inode);
213 int error, nmaps = 1;
214
215 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
216 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
217 VMODIFY(vp);
218 return -error;
219 }
220
221 /*
222 * Finds the corresponding mapping in block @map array of the
223 * given @offset within a @page.
224 */
225 STATIC xfs_iomap_t *
226 xfs_offset_to_map(
227 struct page *page,
228 xfs_iomap_t *iomapp,
229 unsigned long offset)
230 {
231 loff_t full_offset; /* offset from start of file */
232
233 ASSERT(offset < PAGE_CACHE_SIZE);
234
235 full_offset = page->index; /* NB: using 64bit number */
236 full_offset <<= PAGE_CACHE_SHIFT; /* offset from file start */
237 full_offset += offset; /* offset from page start */
238
239 if (full_offset < iomapp->iomap_offset)
240 return NULL;
241 if (iomapp->iomap_offset + (iomapp->iomap_bsize -1) >= full_offset)
242 return iomapp;
243 return NULL;
244 }
245
246 STATIC void
247 xfs_map_at_offset(
248 struct page *page,
249 struct buffer_head *bh,
250 unsigned long offset,
251 int block_bits,
252 xfs_iomap_t *iomapp)
253 {
254 xfs_daddr_t bn;
255 loff_t delta;
256 int sector_shift;
257
258 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
259 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
260 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
261
262 delta = page->index;
263 delta <<= PAGE_CACHE_SHIFT;
264 delta += offset;
265 delta -= iomapp->iomap_offset;
266 delta >>= block_bits;
267
268 sector_shift = block_bits - BBSHIFT;
269 bn = iomapp->iomap_bn >> sector_shift;
270 bn += delta;
271 BUG_ON(!bn && !(iomapp->iomap_flags & IOMAP_REALTIME));
272 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
273
274 lock_buffer(bh);
275 bh->b_blocknr = bn;
276 bh->b_bdev = iomapp->iomap_target->pbr_bdev;
277 set_buffer_mapped(bh);
278 clear_buffer_delay(bh);
279 }
280
281 /*
282 * Look for a page at index which is unlocked and contains our
283 * unwritten extent flagged buffers at its head. Returns page
284 * locked and with an extra reference count, and length of the
285 * unwritten extent component on this page that we can write,
286 * in units of filesystem blocks.
287 */
288 STATIC struct page *
289 xfs_probe_unwritten_page(
290 struct address_space *mapping,
291 pgoff_t index,
292 xfs_iomap_t *iomapp,
293 xfs_ioend_t *ioend,
294 unsigned long max_offset,
295 unsigned long *fsbs,
296 unsigned int bbits)
297 {
298 struct page *page;
299
300 page = find_trylock_page(mapping, index);
301 if (!page)
302 return NULL;
303 if (PageWriteback(page))
304 goto out;
305
306 if (page->mapping && page_has_buffers(page)) {
307 struct buffer_head *bh, *head;
308 unsigned long p_offset = 0;
309
310 *fsbs = 0;
311 bh = head = page_buffers(page);
312 do {
313 if (!buffer_unwritten(bh) || !buffer_uptodate(bh))
314 break;
315 if (!xfs_offset_to_map(page, iomapp, p_offset))
316 break;
317 if (p_offset >= max_offset)
318 break;
319 xfs_map_at_offset(page, bh, p_offset, bbits, iomapp);
320 set_buffer_unwritten_io(bh);
321 bh->b_private = ioend;
322 p_offset += bh->b_size;
323 (*fsbs)++;
324 } while ((bh = bh->b_this_page) != head);
325
326 if (p_offset)
327 return page;
328 }
329
330 out:
331 unlock_page(page);
332 return NULL;
333 }
334
335 /*
336 * Look for a page at index which is unlocked and not mapped
337 * yet - clustering for mmap write case.
338 */
339 STATIC unsigned int
340 xfs_probe_unmapped_page(
341 struct address_space *mapping,
342 pgoff_t index,
343 unsigned int pg_offset)
344 {
345 struct page *page;
346 int ret = 0;
347
348 page = find_trylock_page(mapping, index);
349 if (!page)
350 return 0;
351 if (PageWriteback(page))
352 goto out;
353
354 if (page->mapping && PageDirty(page)) {
355 if (page_has_buffers(page)) {
356 struct buffer_head *bh, *head;
357
358 bh = head = page_buffers(page);
359 do {
360 if (buffer_mapped(bh) || !buffer_uptodate(bh))
361 break;
362 ret += bh->b_size;
363 if (ret >= pg_offset)
364 break;
365 } while ((bh = bh->b_this_page) != head);
366 } else
367 ret = PAGE_CACHE_SIZE;
368 }
369
370 out:
371 unlock_page(page);
372 return ret;
373 }
374
375 STATIC unsigned int
376 xfs_probe_unmapped_cluster(
377 struct inode *inode,
378 struct page *startpage,
379 struct buffer_head *bh,
380 struct buffer_head *head)
381 {
382 pgoff_t tindex, tlast, tloff;
383 unsigned int pg_offset, len, total = 0;
384 struct address_space *mapping = inode->i_mapping;
385
386 /* First sum forwards in this page */
387 do {
388 if (buffer_mapped(bh))
389 break;
390 total += bh->b_size;
391 } while ((bh = bh->b_this_page) != head);
392
393 /* If we reached the end of the page, sum forwards in
394 * following pages.
395 */
396 if (bh == head) {
397 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
398 /* Prune this back to avoid pathological behavior */
399 tloff = min(tlast, startpage->index + 64);
400 for (tindex = startpage->index + 1; tindex < tloff; tindex++) {
401 len = xfs_probe_unmapped_page(mapping, tindex,
402 PAGE_CACHE_SIZE);
403 if (!len)
404 return total;
405 total += len;
406 }
407 if (tindex == tlast &&
408 (pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
409 total += xfs_probe_unmapped_page(mapping,
410 tindex, pg_offset);
411 }
412 }
413 return total;
414 }
415
416 /*
417 * Probe for a given page (index) in the inode and test if it is delayed
418 * and without unwritten buffers. Returns page locked and with an extra
419 * reference count.
420 */
421 STATIC struct page *
422 xfs_probe_delalloc_page(
423 struct inode *inode,
424 pgoff_t index)
425 {
426 struct page *page;
427
428 page = find_trylock_page(inode->i_mapping, index);
429 if (!page)
430 return NULL;
431 if (PageWriteback(page))
432 goto out;
433
434 if (page->mapping && page_has_buffers(page)) {
435 struct buffer_head *bh, *head;
436 int acceptable = 0;
437
438 bh = head = page_buffers(page);
439 do {
440 if (buffer_unwritten(bh)) {
441 acceptable = 0;
442 break;
443 } else if (buffer_delay(bh)) {
444 acceptable = 1;
445 }
446 } while ((bh = bh->b_this_page) != head);
447
448 if (acceptable)
449 return page;
450 }
451
452 out:
453 unlock_page(page);
454 return NULL;
455 }
456
457 STATIC int
458 xfs_map_unwritten(
459 struct inode *inode,
460 struct page *start_page,
461 struct buffer_head *head,
462 struct buffer_head *curr,
463 unsigned long p_offset,
464 int block_bits,
465 xfs_iomap_t *iomapp,
466 struct writeback_control *wbc,
467 int startio,
468 int all_bh)
469 {
470 struct buffer_head *bh = curr;
471 xfs_iomap_t *tmp;
472 xfs_ioend_t *ioend;
473 loff_t offset;
474 unsigned long nblocks = 0;
475
476 offset = start_page->index;
477 offset <<= PAGE_CACHE_SHIFT;
478 offset += p_offset;
479
480 ioend = xfs_alloc_ioend(inode);
481
482 /* First map forwards in the page consecutive buffers
483 * covering this unwritten extent
484 */
485 do {
486 if (!buffer_unwritten(bh))
487 break;
488 tmp = xfs_offset_to_map(start_page, iomapp, p_offset);
489 if (!tmp)
490 break;
491 xfs_map_at_offset(start_page, bh, p_offset, block_bits, iomapp);
492 set_buffer_unwritten_io(bh);
493 bh->b_private = ioend;
494 p_offset += bh->b_size;
495 nblocks++;
496 } while ((bh = bh->b_this_page) != head);
497
498 atomic_add(nblocks, &ioend->io_remaining);
499
500 /* If we reached the end of the page, map forwards in any
501 * following pages which are also covered by this extent.
502 */
503 if (bh == head) {
504 struct address_space *mapping = inode->i_mapping;
505 pgoff_t tindex, tloff, tlast;
506 unsigned long bs;
507 unsigned int pg_offset, bbits = inode->i_blkbits;
508 struct page *page;
509
510 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
511 tloff = (iomapp->iomap_offset + iomapp->iomap_bsize) >> PAGE_CACHE_SHIFT;
512 tloff = min(tlast, tloff);
513 for (tindex = start_page->index + 1; tindex < tloff; tindex++) {
514 page = xfs_probe_unwritten_page(mapping,
515 tindex, iomapp, ioend,
516 PAGE_CACHE_SIZE, &bs, bbits);
517 if (!page)
518 break;
519 nblocks += bs;
520 atomic_add(bs, &ioend->io_remaining);
521 xfs_convert_page(inode, page, iomapp, wbc, ioend,
522 startio, all_bh);
523 /* stop if converting the next page might add
524 * enough blocks that the corresponding byte
525 * count won't fit in our ulong page buf length */
526 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
527 goto enough;
528 }
529
530 if (tindex == tlast &&
531 (pg_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)))) {
532 page = xfs_probe_unwritten_page(mapping,
533 tindex, iomapp, ioend,
534 pg_offset, &bs, bbits);
535 if (page) {
536 nblocks += bs;
537 atomic_add(bs, &ioend->io_remaining);
538 xfs_convert_page(inode, page, iomapp, wbc, ioend,
539 startio, all_bh);
540 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
541 goto enough;
542 }
543 }
544 }
545
546 enough:
547 ioend->io_size = (xfs_off_t)nblocks << block_bits;
548 ioend->io_offset = offset;
549 xfs_finish_ioend(ioend);
550 return 0;
551 }
552
553 STATIC void
554 xfs_submit_page(
555 struct page *page,
556 struct writeback_control *wbc,
557 struct buffer_head *bh_arr[],
558 int bh_count,
559 int probed_page,
560 int clear_dirty)
561 {
562 struct buffer_head *bh;
563 int i;
564
565 BUG_ON(PageWriteback(page));
566 if (bh_count)
567 set_page_writeback(page);
568 if (clear_dirty)
569 clear_page_dirty(page);
570 unlock_page(page);
571
572 if (bh_count) {
573 for (i = 0; i < bh_count; i++) {
574 bh = bh_arr[i];
575 mark_buffer_async_write(bh);
576 if (buffer_unwritten(bh))
577 set_buffer_unwritten_io(bh);
578 set_buffer_uptodate(bh);
579 clear_buffer_dirty(bh);
580 }
581
582 for (i = 0; i < bh_count; i++)
583 submit_bh(WRITE, bh_arr[i]);
584
585 if (probed_page && clear_dirty)
586 wbc->nr_to_write--; /* Wrote an "extra" page */
587 }
588 }
589
590 /*
591 * Allocate & map buffers for page given the extent map. Write it out.
592 * except for the original page of a writepage, this is called on
593 * delalloc/unwritten pages only, for the original page it is possible
594 * that the page has no mapping at all.
595 */
596 STATIC void
597 xfs_convert_page(
598 struct inode *inode,
599 struct page *page,
600 xfs_iomap_t *iomapp,
601 struct writeback_control *wbc,
602 void *private,
603 int startio,
604 int all_bh)
605 {
606 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
607 xfs_iomap_t *mp = iomapp, *tmp;
608 unsigned long offset, end_offset;
609 int index = 0;
610 int bbits = inode->i_blkbits;
611 int len, page_dirty;
612
613 end_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1));
614
615 /*
616 * page_dirty is initially a count of buffers on the page before
617 * EOF and is decrememted as we move each into a cleanable state.
618 */
619 len = 1 << inode->i_blkbits;
620 end_offset = max(end_offset, PAGE_CACHE_SIZE);
621 end_offset = roundup(end_offset, len);
622 page_dirty = end_offset / len;
623
624 offset = 0;
625 bh = head = page_buffers(page);
626 do {
627 if (offset >= end_offset)
628 break;
629 if (!(PageUptodate(page) || buffer_uptodate(bh)))
630 continue;
631 if (buffer_mapped(bh) && all_bh &&
632 !(buffer_unwritten(bh) || buffer_delay(bh))) {
633 if (startio) {
634 lock_buffer(bh);
635 bh_arr[index++] = bh;
636 page_dirty--;
637 }
638 continue;
639 }
640 tmp = xfs_offset_to_map(page, mp, offset);
641 if (!tmp)
642 continue;
643 ASSERT(!(tmp->iomap_flags & IOMAP_HOLE));
644 ASSERT(!(tmp->iomap_flags & IOMAP_DELAY));
645
646 /* If this is a new unwritten extent buffer (i.e. one
647 * that we haven't passed in private data for, we must
648 * now map this buffer too.
649 */
650 if (buffer_unwritten(bh) && !bh->b_end_io) {
651 ASSERT(tmp->iomap_flags & IOMAP_UNWRITTEN);
652 xfs_map_unwritten(inode, page, head, bh, offset,
653 bbits, tmp, wbc, startio, all_bh);
654 } else if (! (buffer_unwritten(bh) && buffer_locked(bh))) {
655 xfs_map_at_offset(page, bh, offset, bbits, tmp);
656 if (buffer_unwritten(bh)) {
657 set_buffer_unwritten_io(bh);
658 bh->b_private = private;
659 ASSERT(private);
660 }
661 }
662 if (startio) {
663 bh_arr[index++] = bh;
664 } else {
665 set_buffer_dirty(bh);
666 unlock_buffer(bh);
667 mark_buffer_dirty(bh);
668 }
669 page_dirty--;
670 } while (offset += len, (bh = bh->b_this_page) != head);
671
672 if (startio && index) {
673 xfs_submit_page(page, wbc, bh_arr, index, 1, !page_dirty);
674 } else {
675 unlock_page(page);
676 }
677 }
678
679 /*
680 * Convert & write out a cluster of pages in the same extent as defined
681 * by mp and following the start page.
682 */
683 STATIC void
684 xfs_cluster_write(
685 struct inode *inode,
686 pgoff_t tindex,
687 xfs_iomap_t *iomapp,
688 struct writeback_control *wbc,
689 int startio,
690 int all_bh,
691 pgoff_t tlast)
692 {
693 struct page *page;
694
695 for (; tindex <= tlast; tindex++) {
696 page = xfs_probe_delalloc_page(inode, tindex);
697 if (!page)
698 break;
699 xfs_convert_page(inode, page, iomapp, wbc, NULL,
700 startio, all_bh);
701 }
702 }
703
704 /*
705 * Calling this without startio set means we are being asked to make a dirty
706 * page ready for freeing it's buffers. When called with startio set then
707 * we are coming from writepage.
708 *
709 * When called with startio set it is important that we write the WHOLE
710 * page if possible.
711 * The bh->b_state's cannot know if any of the blocks or which block for
712 * that matter are dirty due to mmap writes, and therefore bh uptodate is
713 * only vaild if the page itself isn't completely uptodate. Some layers
714 * may clear the page dirty flag prior to calling write page, under the
715 * assumption the entire page will be written out; by not writing out the
716 * whole page the page can be reused before all valid dirty data is
717 * written out. Note: in the case of a page that has been dirty'd by
718 * mapwrite and but partially setup by block_prepare_write the
719 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
720 * valid state, thus the whole page must be written out thing.
721 */
722
723 STATIC int
724 xfs_page_state_convert(
725 struct inode *inode,
726 struct page *page,
727 struct writeback_control *wbc,
728 int startio,
729 int unmapped) /* also implies page uptodate */
730 {
731 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
732 xfs_iomap_t *iomp, iomap;
733 loff_t offset;
734 unsigned long p_offset = 0;
735 __uint64_t end_offset;
736 pgoff_t end_index, last_index, tlast;
737 int len, err, i, cnt = 0, uptodate = 1;
738 int flags;
739 int page_dirty;
740
741 /* wait for other IO threads? */
742 flags = (startio && wbc->sync_mode != WB_SYNC_NONE) ? 0 : BMAPI_TRYLOCK;
743
744 /* Is this page beyond the end of the file? */
745 offset = i_size_read(inode);
746 end_index = offset >> PAGE_CACHE_SHIFT;
747 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
748 if (page->index >= end_index) {
749 if ((page->index >= end_index + 1) ||
750 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
751 if (startio)
752 unlock_page(page);
753 return 0;
754 }
755 }
756
757 end_offset = min_t(unsigned long long,
758 (loff_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
759 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
760
761 /*
762 * page_dirty is initially a count of buffers on the page before
763 * EOF and is decrememted as we move each into a cleanable state.
764 */
765 len = 1 << inode->i_blkbits;
766 p_offset = max(p_offset, PAGE_CACHE_SIZE);
767 p_offset = roundup(p_offset, len);
768 page_dirty = p_offset / len;
769
770 iomp = NULL;
771 p_offset = 0;
772 bh = head = page_buffers(page);
773
774 do {
775 if (offset >= end_offset)
776 break;
777 if (!buffer_uptodate(bh))
778 uptodate = 0;
779 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio)
780 continue;
781
782 if (iomp) {
783 iomp = xfs_offset_to_map(page, &iomap, p_offset);
784 }
785
786 /*
787 * First case, map an unwritten extent and prepare for
788 * extent state conversion transaction on completion.
789 */
790 if (buffer_unwritten(bh)) {
791 if (!startio)
792 continue;
793 if (!iomp) {
794 err = xfs_map_blocks(inode, offset, len, &iomap,
795 BMAPI_WRITE|BMAPI_IGNSTATE);
796 if (err) {
797 goto error;
798 }
799 iomp = xfs_offset_to_map(page, &iomap,
800 p_offset);
801 }
802 if (iomp) {
803 if (!bh->b_end_io) {
804 err = xfs_map_unwritten(inode, page,
805 head, bh, p_offset,
806 inode->i_blkbits, iomp,
807 wbc, startio, unmapped);
808 if (err) {
809 goto error;
810 }
811 } else {
812 set_bit(BH_Lock, &bh->b_state);
813 }
814 BUG_ON(!buffer_locked(bh));
815 bh_arr[cnt++] = bh;
816 page_dirty--;
817 }
818 /*
819 * Second case, allocate space for a delalloc buffer.
820 * We can return EAGAIN here in the release page case.
821 */
822 } else if (buffer_delay(bh)) {
823 if (!iomp) {
824 err = xfs_map_blocks(inode, offset, len, &iomap,
825 BMAPI_ALLOCATE | flags);
826 if (err) {
827 goto error;
828 }
829 iomp = xfs_offset_to_map(page, &iomap,
830 p_offset);
831 }
832 if (iomp) {
833 xfs_map_at_offset(page, bh, p_offset,
834 inode->i_blkbits, iomp);
835 if (startio) {
836 bh_arr[cnt++] = bh;
837 } else {
838 set_buffer_dirty(bh);
839 unlock_buffer(bh);
840 mark_buffer_dirty(bh);
841 }
842 page_dirty--;
843 }
844 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
845 (unmapped || startio)) {
846
847 if (!buffer_mapped(bh)) {
848 int size;
849
850 /*
851 * Getting here implies an unmapped buffer
852 * was found, and we are in a path where we
853 * need to write the whole page out.
854 */
855 if (!iomp) {
856 size = xfs_probe_unmapped_cluster(
857 inode, page, bh, head);
858 err = xfs_map_blocks(inode, offset,
859 size, &iomap,
860 BMAPI_WRITE|BMAPI_MMAP);
861 if (err) {
862 goto error;
863 }
864 iomp = xfs_offset_to_map(page, &iomap,
865 p_offset);
866 }
867 if (iomp) {
868 xfs_map_at_offset(page,
869 bh, p_offset,
870 inode->i_blkbits, iomp);
871 if (startio) {
872 bh_arr[cnt++] = bh;
873 } else {
874 set_buffer_dirty(bh);
875 unlock_buffer(bh);
876 mark_buffer_dirty(bh);
877 }
878 page_dirty--;
879 }
880 } else if (startio) {
881 if (buffer_uptodate(bh) &&
882 !test_and_set_bit(BH_Lock, &bh->b_state)) {
883 bh_arr[cnt++] = bh;
884 page_dirty--;
885 }
886 }
887 }
888 } while (offset += len, p_offset += len,
889 ((bh = bh->b_this_page) != head));
890
891 if (uptodate && bh == head)
892 SetPageUptodate(page);
893
894 if (startio) {
895 xfs_submit_page(page, wbc, bh_arr, cnt, 0, !page_dirty);
896 }
897
898 if (iomp) {
899 offset = (iomp->iomap_offset + iomp->iomap_bsize - 1) >>
900 PAGE_CACHE_SHIFT;
901 tlast = min_t(pgoff_t, offset, last_index);
902 xfs_cluster_write(inode, page->index + 1, iomp, wbc,
903 startio, unmapped, tlast);
904 }
905
906 return page_dirty;
907
908 error:
909 for (i = 0; i < cnt; i++) {
910 unlock_buffer(bh_arr[i]);
911 }
912
913 /*
914 * If it's delalloc and we have nowhere to put it,
915 * throw it away, unless the lower layers told
916 * us to try again.
917 */
918 if (err != -EAGAIN) {
919 if (!unmapped) {
920 block_invalidatepage(page, 0);
921 }
922 ClearPageUptodate(page);
923 }
924 return err;
925 }
926
927 STATIC int
928 __linvfs_get_block(
929 struct inode *inode,
930 sector_t iblock,
931 unsigned long blocks,
932 struct buffer_head *bh_result,
933 int create,
934 int direct,
935 bmapi_flags_t flags)
936 {
937 vnode_t *vp = LINVFS_GET_VP(inode);
938 xfs_iomap_t iomap;
939 xfs_off_t offset;
940 ssize_t size;
941 int retpbbm = 1;
942 int error;
943
944 if (blocks) {
945 offset = blocks << inode->i_blkbits; /* 64 bit goodness */
946 size = (ssize_t) min_t(xfs_off_t, offset, LONG_MAX);
947 } else {
948 size = 1 << inode->i_blkbits;
949 }
950 offset = (xfs_off_t)iblock << inode->i_blkbits;
951
952 VOP_BMAP(vp, offset, size,
953 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
954 if (error)
955 return -error;
956
957 if (retpbbm == 0)
958 return 0;
959
960 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
961 xfs_daddr_t bn;
962 xfs_off_t delta;
963
964 /* For unwritten extents do not report a disk address on
965 * the read case (treat as if we're reading into a hole).
966 */
967 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
968 delta = offset - iomap.iomap_offset;
969 delta >>= inode->i_blkbits;
970
971 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
972 bn += delta;
973 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
974 bh_result->b_blocknr = bn;
975 set_buffer_mapped(bh_result);
976 }
977 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
978 if (direct)
979 bh_result->b_private = inode;
980 set_buffer_unwritten(bh_result);
981 set_buffer_delay(bh_result);
982 }
983 }
984
985 /* If this is a realtime file, data might be on a new device */
986 bh_result->b_bdev = iomap.iomap_target->pbr_bdev;
987
988 /* If we previously allocated a block out beyond eof and
989 * we are now coming back to use it then we will need to
990 * flag it as new even if it has a disk address.
991 */
992 if (create &&
993 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
994 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW)))
995 set_buffer_new(bh_result);
996
997 if (iomap.iomap_flags & IOMAP_DELAY) {
998 BUG_ON(direct);
999 if (create) {
1000 set_buffer_uptodate(bh_result);
1001 set_buffer_mapped(bh_result);
1002 set_buffer_delay(bh_result);
1003 }
1004 }
1005
1006 if (blocks) {
1007 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1008 offset = min_t(xfs_off_t,
1009 iomap.iomap_bsize - iomap.iomap_delta,
1010 blocks << inode->i_blkbits);
1011 bh_result->b_size = (u32) min_t(xfs_off_t, UINT_MAX, offset);
1012 }
1013
1014 return 0;
1015 }
1016
1017 int
1018 linvfs_get_block(
1019 struct inode *inode,
1020 sector_t iblock,
1021 struct buffer_head *bh_result,
1022 int create)
1023 {
1024 return __linvfs_get_block(inode, iblock, 0, bh_result,
1025 create, 0, BMAPI_WRITE);
1026 }
1027
1028 STATIC int
1029 linvfs_get_blocks_direct(
1030 struct inode *inode,
1031 sector_t iblock,
1032 unsigned long max_blocks,
1033 struct buffer_head *bh_result,
1034 int create)
1035 {
1036 return __linvfs_get_block(inode, iblock, max_blocks, bh_result,
1037 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1038 }
1039
1040 STATIC void
1041 linvfs_end_io_direct(
1042 struct kiocb *iocb,
1043 loff_t offset,
1044 ssize_t size,
1045 void *private)
1046 {
1047 xfs_ioend_t *ioend = iocb->private;
1048
1049 /*
1050 * Non-NULL private data means we need to issue a transaction to
1051 * convert a range from unwritten to written extents. This needs
1052 * to happen from process contect but aio+dio I/O completion
1053 * happens from irq context so we need to defer it to a workqueue.
1054 * This is not nessecary for synchronous direct I/O, but we do
1055 * it anyway to keep the code uniform and simpler.
1056 *
1057 * The core direct I/O code might be changed to always call the
1058 * completion handler in the future, in which case all this can
1059 * go away.
1060 */
1061 if (private && size > 0) {
1062 ioend->io_offset = offset;
1063 ioend->io_size = size;
1064 xfs_finish_ioend(ioend);
1065 } else {
1066 ASSERT(size >= 0);
1067 xfs_destroy_ioend(ioend);
1068 }
1069
1070 /*
1071 * blockdev_direct_IO can return an error even afer the I/O
1072 * completion handler was called. Thus we need to protect
1073 * against double-freeing.
1074 */
1075 iocb->private = NULL;
1076 }
1077
1078 STATIC ssize_t
1079 linvfs_direct_IO(
1080 int rw,
1081 struct kiocb *iocb,
1082 const struct iovec *iov,
1083 loff_t offset,
1084 unsigned long nr_segs)
1085 {
1086 struct file *file = iocb->ki_filp;
1087 struct inode *inode = file->f_mapping->host;
1088 vnode_t *vp = LINVFS_GET_VP(inode);
1089 xfs_iomap_t iomap;
1090 int maps = 1;
1091 int error;
1092 ssize_t ret;
1093
1094 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1095 if (error)
1096 return -error;
1097
1098 iocb->private = xfs_alloc_ioend(inode);
1099
1100 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1101 iomap.iomap_target->pbr_bdev,
1102 iov, offset, nr_segs,
1103 linvfs_get_blocks_direct,
1104 linvfs_end_io_direct);
1105
1106 if (unlikely(ret <= 0 && iocb->private))
1107 xfs_destroy_ioend(iocb->private);
1108 return ret;
1109 }
1110
1111
1112 STATIC sector_t
1113 linvfs_bmap(
1114 struct address_space *mapping,
1115 sector_t block)
1116 {
1117 struct inode *inode = (struct inode *)mapping->host;
1118 vnode_t *vp = LINVFS_GET_VP(inode);
1119 int error;
1120
1121 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address);
1122
1123 VOP_RWLOCK(vp, VRWLOCK_READ);
1124 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1125 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1126 return generic_block_bmap(mapping, block, linvfs_get_block);
1127 }
1128
1129 STATIC int
1130 linvfs_readpage(
1131 struct file *unused,
1132 struct page *page)
1133 {
1134 return mpage_readpage(page, linvfs_get_block);
1135 }
1136
1137 STATIC int
1138 linvfs_readpages(
1139 struct file *unused,
1140 struct address_space *mapping,
1141 struct list_head *pages,
1142 unsigned nr_pages)
1143 {
1144 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block);
1145 }
1146
1147 STATIC void
1148 xfs_count_page_state(
1149 struct page *page,
1150 int *delalloc,
1151 int *unmapped,
1152 int *unwritten)
1153 {
1154 struct buffer_head *bh, *head;
1155
1156 *delalloc = *unmapped = *unwritten = 0;
1157
1158 bh = head = page_buffers(page);
1159 do {
1160 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1161 (*unmapped) = 1;
1162 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1163 clear_buffer_unwritten(bh);
1164 else if (buffer_unwritten(bh))
1165 (*unwritten) = 1;
1166 else if (buffer_delay(bh))
1167 (*delalloc) = 1;
1168 } while ((bh = bh->b_this_page) != head);
1169 }
1170
1171
1172 /*
1173 * writepage: Called from one of two places:
1174 *
1175 * 1. we are flushing a delalloc buffer head.
1176 *
1177 * 2. we are writing out a dirty page. Typically the page dirty
1178 * state is cleared before we get here. In this case is it
1179 * conceivable we have no buffer heads.
1180 *
1181 * For delalloc space on the page we need to allocate space and
1182 * flush it. For unmapped buffer heads on the page we should
1183 * allocate space if the page is uptodate. For any other dirty
1184 * buffer heads on the page we should flush them.
1185 *
1186 * If we detect that a transaction would be required to flush
1187 * the page, we have to check the process flags first, if we
1188 * are already in a transaction or disk I/O during allocations
1189 * is off, we need to fail the writepage and redirty the page.
1190 */
1191
1192 STATIC int
1193 linvfs_writepage(
1194 struct page *page,
1195 struct writeback_control *wbc)
1196 {
1197 int error;
1198 int need_trans;
1199 int delalloc, unmapped, unwritten;
1200 struct inode *inode = page->mapping->host;
1201
1202 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1203
1204 /*
1205 * We need a transaction if:
1206 * 1. There are delalloc buffers on the page
1207 * 2. The page is uptodate and we have unmapped buffers
1208 * 3. The page is uptodate and we have no buffers
1209 * 4. There are unwritten buffers on the page
1210 */
1211
1212 if (!page_has_buffers(page)) {
1213 unmapped = 1;
1214 need_trans = 1;
1215 } else {
1216 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1217 if (!PageUptodate(page))
1218 unmapped = 0;
1219 need_trans = delalloc + unmapped + unwritten;
1220 }
1221
1222 /*
1223 * If we need a transaction and the process flags say
1224 * we are already in a transaction, or no IO is allowed
1225 * then mark the page dirty again and leave the page
1226 * as is.
1227 */
1228 if (PFLAGS_TEST_FSTRANS() && need_trans)
1229 goto out_fail;
1230
1231 /*
1232 * Delay hooking up buffer heads until we have
1233 * made our go/no-go decision.
1234 */
1235 if (!page_has_buffers(page))
1236 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1237
1238 /*
1239 * Convert delayed allocate, unwritten or unmapped space
1240 * to real space and flush out to disk.
1241 */
1242 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1243 if (error == -EAGAIN)
1244 goto out_fail;
1245 if (unlikely(error < 0))
1246 goto out_unlock;
1247
1248 return 0;
1249
1250 out_fail:
1251 redirty_page_for_writepage(wbc, page);
1252 unlock_page(page);
1253 return 0;
1254 out_unlock:
1255 unlock_page(page);
1256 return error;
1257 }
1258
1259 STATIC int
1260 linvfs_invalidate_page(
1261 struct page *page,
1262 unsigned long offset)
1263 {
1264 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1265 page->mapping->host, page, offset);
1266 return block_invalidatepage(page, offset);
1267 }
1268
1269 /*
1270 * Called to move a page into cleanable state - and from there
1271 * to be released. Possibly the page is already clean. We always
1272 * have buffer heads in this call.
1273 *
1274 * Returns 0 if the page is ok to release, 1 otherwise.
1275 *
1276 * Possible scenarios are:
1277 *
1278 * 1. We are being called to release a page which has been written
1279 * to via regular I/O. buffer heads will be dirty and possibly
1280 * delalloc. If no delalloc buffer heads in this case then we
1281 * can just return zero.
1282 *
1283 * 2. We are called to release a page which has been written via
1284 * mmap, all we need to do is ensure there is no delalloc
1285 * state in the buffer heads, if not we can let the caller
1286 * free them and we should come back later via writepage.
1287 */
1288 STATIC int
1289 linvfs_release_page(
1290 struct page *page,
1291 gfp_t gfp_mask)
1292 {
1293 struct inode *inode = page->mapping->host;
1294 int dirty, delalloc, unmapped, unwritten;
1295 struct writeback_control wbc = {
1296 .sync_mode = WB_SYNC_ALL,
1297 .nr_to_write = 1,
1298 };
1299
1300 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1301
1302 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1303 if (!delalloc && !unwritten)
1304 goto free_buffers;
1305
1306 if (!(gfp_mask & __GFP_FS))
1307 return 0;
1308
1309 /* If we are already inside a transaction or the thread cannot
1310 * do I/O, we cannot release this page.
1311 */
1312 if (PFLAGS_TEST_FSTRANS())
1313 return 0;
1314
1315 /*
1316 * Convert delalloc space to real space, do not flush the
1317 * data out to disk, that will be done by the caller.
1318 * Never need to allocate space here - we will always
1319 * come back to writepage in that case.
1320 */
1321 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1322 if (dirty == 0 && !unwritten)
1323 goto free_buffers;
1324 return 0;
1325
1326 free_buffers:
1327 return try_to_free_buffers(page);
1328 }
1329
1330 STATIC int
1331 linvfs_prepare_write(
1332 struct file *file,
1333 struct page *page,
1334 unsigned int from,
1335 unsigned int to)
1336 {
1337 return block_prepare_write(page, from, to, linvfs_get_block);
1338 }
1339
1340 struct address_space_operations linvfs_aops = {
1341 .readpage = linvfs_readpage,
1342 .readpages = linvfs_readpages,
1343 .writepage = linvfs_writepage,
1344 .sync_page = block_sync_page,
1345 .releasepage = linvfs_release_page,
1346 .invalidatepage = linvfs_invalidate_page,
1347 .prepare_write = linvfs_prepare_write,
1348 .commit_write = generic_commit_write,
1349 .bmap = linvfs_bmap,
1350 .direct_IO = linvfs_direct_IO,
1351 };