Merge branches 'x86/cache', 'x86/debug' and 'x86/irq' into x86/urgent
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / xfs / libxfs / xfs_ialloc_btree.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_btree.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ialloc_btree.h"
30 #include "xfs_alloc.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 #include "xfs_cksum.h"
34 #include "xfs_trans.h"
35 #include "xfs_rmap.h"
36
37
38 STATIC int
39 xfs_inobt_get_minrecs(
40 struct xfs_btree_cur *cur,
41 int level)
42 {
43 return cur->bc_mp->m_inobt_mnr[level != 0];
44 }
45
46 STATIC struct xfs_btree_cur *
47 xfs_inobt_dup_cursor(
48 struct xfs_btree_cur *cur)
49 {
50 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
51 cur->bc_private.a.agbp, cur->bc_private.a.agno,
52 cur->bc_btnum);
53 }
54
55 STATIC void
56 xfs_inobt_set_root(
57 struct xfs_btree_cur *cur,
58 union xfs_btree_ptr *nptr,
59 int inc) /* level change */
60 {
61 struct xfs_buf *agbp = cur->bc_private.a.agbp;
62 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
63
64 agi->agi_root = nptr->s;
65 be32_add_cpu(&agi->agi_level, inc);
66 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
67 }
68
69 STATIC void
70 xfs_finobt_set_root(
71 struct xfs_btree_cur *cur,
72 union xfs_btree_ptr *nptr,
73 int inc) /* level change */
74 {
75 struct xfs_buf *agbp = cur->bc_private.a.agbp;
76 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
77
78 agi->agi_free_root = nptr->s;
79 be32_add_cpu(&agi->agi_free_level, inc);
80 xfs_ialloc_log_agi(cur->bc_tp, agbp,
81 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
82 }
83
84 STATIC int
85 __xfs_inobt_alloc_block(
86 struct xfs_btree_cur *cur,
87 union xfs_btree_ptr *start,
88 union xfs_btree_ptr *new,
89 int *stat,
90 enum xfs_ag_resv_type resv)
91 {
92 xfs_alloc_arg_t args; /* block allocation args */
93 int error; /* error return value */
94 xfs_agblock_t sbno = be32_to_cpu(start->s);
95
96 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
97
98 memset(&args, 0, sizeof(args));
99 args.tp = cur->bc_tp;
100 args.mp = cur->bc_mp;
101 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
102 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
103 args.minlen = 1;
104 args.maxlen = 1;
105 args.prod = 1;
106 args.type = XFS_ALLOCTYPE_NEAR_BNO;
107 args.resv = resv;
108
109 error = xfs_alloc_vextent(&args);
110 if (error) {
111 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
112 return error;
113 }
114 if (args.fsbno == NULLFSBLOCK) {
115 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
116 *stat = 0;
117 return 0;
118 }
119 ASSERT(args.len == 1);
120 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
121
122 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
123 *stat = 1;
124 return 0;
125 }
126
127 STATIC int
128 xfs_inobt_alloc_block(
129 struct xfs_btree_cur *cur,
130 union xfs_btree_ptr *start,
131 union xfs_btree_ptr *new,
132 int *stat)
133 {
134 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
135 }
136
137 STATIC int
138 xfs_finobt_alloc_block(
139 struct xfs_btree_cur *cur,
140 union xfs_btree_ptr *start,
141 union xfs_btree_ptr *new,
142 int *stat)
143 {
144 return __xfs_inobt_alloc_block(cur, start, new, stat,
145 XFS_AG_RESV_METADATA);
146 }
147
148 STATIC int
149 xfs_inobt_free_block(
150 struct xfs_btree_cur *cur,
151 struct xfs_buf *bp)
152 {
153 struct xfs_owner_info oinfo;
154
155 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
156 return xfs_free_extent(cur->bc_tp,
157 XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
158 &oinfo, XFS_AG_RESV_NONE);
159 }
160
161 STATIC int
162 xfs_inobt_get_maxrecs(
163 struct xfs_btree_cur *cur,
164 int level)
165 {
166 return cur->bc_mp->m_inobt_mxr[level != 0];
167 }
168
169 STATIC void
170 xfs_inobt_init_key_from_rec(
171 union xfs_btree_key *key,
172 union xfs_btree_rec *rec)
173 {
174 key->inobt.ir_startino = rec->inobt.ir_startino;
175 }
176
177 STATIC void
178 xfs_inobt_init_rec_from_cur(
179 struct xfs_btree_cur *cur,
180 union xfs_btree_rec *rec)
181 {
182 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
183 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
184 rec->inobt.ir_u.sp.ir_holemask =
185 cpu_to_be16(cur->bc_rec.i.ir_holemask);
186 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
187 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
188 } else {
189 /* ir_holemask/ir_count not supported on-disk */
190 rec->inobt.ir_u.f.ir_freecount =
191 cpu_to_be32(cur->bc_rec.i.ir_freecount);
192 }
193 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
194 }
195
196 /*
197 * initial value of ptr for lookup
198 */
199 STATIC void
200 xfs_inobt_init_ptr_from_cur(
201 struct xfs_btree_cur *cur,
202 union xfs_btree_ptr *ptr)
203 {
204 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
205
206 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
207
208 ptr->s = agi->agi_root;
209 }
210
211 STATIC void
212 xfs_finobt_init_ptr_from_cur(
213 struct xfs_btree_cur *cur,
214 union xfs_btree_ptr *ptr)
215 {
216 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
217
218 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
219 ptr->s = agi->agi_free_root;
220 }
221
222 STATIC __int64_t
223 xfs_inobt_key_diff(
224 struct xfs_btree_cur *cur,
225 union xfs_btree_key *key)
226 {
227 return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
228 cur->bc_rec.i.ir_startino;
229 }
230
231 static int
232 xfs_inobt_verify(
233 struct xfs_buf *bp)
234 {
235 struct xfs_mount *mp = bp->b_target->bt_mount;
236 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
237 unsigned int level;
238
239 /*
240 * During growfs operations, we can't verify the exact owner as the
241 * perag is not fully initialised and hence not attached to the buffer.
242 *
243 * Similarly, during log recovery we will have a perag structure
244 * attached, but the agi information will not yet have been initialised
245 * from the on disk AGI. We don't currently use any of this information,
246 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
247 * ever do.
248 */
249 switch (block->bb_magic) {
250 case cpu_to_be32(XFS_IBT_CRC_MAGIC):
251 case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
252 if (!xfs_btree_sblock_v5hdr_verify(bp))
253 return false;
254 /* fall through */
255 case cpu_to_be32(XFS_IBT_MAGIC):
256 case cpu_to_be32(XFS_FIBT_MAGIC):
257 break;
258 default:
259 return 0;
260 }
261
262 /* level verification */
263 level = be16_to_cpu(block->bb_level);
264 if (level >= mp->m_in_maxlevels)
265 return false;
266
267 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
268 }
269
270 static void
271 xfs_inobt_read_verify(
272 struct xfs_buf *bp)
273 {
274 if (!xfs_btree_sblock_verify_crc(bp))
275 xfs_buf_ioerror(bp, -EFSBADCRC);
276 else if (!xfs_inobt_verify(bp))
277 xfs_buf_ioerror(bp, -EFSCORRUPTED);
278
279 if (bp->b_error) {
280 trace_xfs_btree_corrupt(bp, _RET_IP_);
281 xfs_verifier_error(bp);
282 }
283 }
284
285 static void
286 xfs_inobt_write_verify(
287 struct xfs_buf *bp)
288 {
289 if (!xfs_inobt_verify(bp)) {
290 trace_xfs_btree_corrupt(bp, _RET_IP_);
291 xfs_buf_ioerror(bp, -EFSCORRUPTED);
292 xfs_verifier_error(bp);
293 return;
294 }
295 xfs_btree_sblock_calc_crc(bp);
296
297 }
298
299 const struct xfs_buf_ops xfs_inobt_buf_ops = {
300 .name = "xfs_inobt",
301 .verify_read = xfs_inobt_read_verify,
302 .verify_write = xfs_inobt_write_verify,
303 };
304
305 #if defined(DEBUG) || defined(XFS_WARN)
306 STATIC int
307 xfs_inobt_keys_inorder(
308 struct xfs_btree_cur *cur,
309 union xfs_btree_key *k1,
310 union xfs_btree_key *k2)
311 {
312 return be32_to_cpu(k1->inobt.ir_startino) <
313 be32_to_cpu(k2->inobt.ir_startino);
314 }
315
316 STATIC int
317 xfs_inobt_recs_inorder(
318 struct xfs_btree_cur *cur,
319 union xfs_btree_rec *r1,
320 union xfs_btree_rec *r2)
321 {
322 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
323 be32_to_cpu(r2->inobt.ir_startino);
324 }
325 #endif /* DEBUG */
326
327 static const struct xfs_btree_ops xfs_inobt_ops = {
328 .rec_len = sizeof(xfs_inobt_rec_t),
329 .key_len = sizeof(xfs_inobt_key_t),
330
331 .dup_cursor = xfs_inobt_dup_cursor,
332 .set_root = xfs_inobt_set_root,
333 .alloc_block = xfs_inobt_alloc_block,
334 .free_block = xfs_inobt_free_block,
335 .get_minrecs = xfs_inobt_get_minrecs,
336 .get_maxrecs = xfs_inobt_get_maxrecs,
337 .init_key_from_rec = xfs_inobt_init_key_from_rec,
338 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
339 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
340 .key_diff = xfs_inobt_key_diff,
341 .buf_ops = &xfs_inobt_buf_ops,
342 #if defined(DEBUG) || defined(XFS_WARN)
343 .keys_inorder = xfs_inobt_keys_inorder,
344 .recs_inorder = xfs_inobt_recs_inorder,
345 #endif
346 };
347
348 static const struct xfs_btree_ops xfs_finobt_ops = {
349 .rec_len = sizeof(xfs_inobt_rec_t),
350 .key_len = sizeof(xfs_inobt_key_t),
351
352 .dup_cursor = xfs_inobt_dup_cursor,
353 .set_root = xfs_finobt_set_root,
354 .alloc_block = xfs_finobt_alloc_block,
355 .free_block = xfs_inobt_free_block,
356 .get_minrecs = xfs_inobt_get_minrecs,
357 .get_maxrecs = xfs_inobt_get_maxrecs,
358 .init_key_from_rec = xfs_inobt_init_key_from_rec,
359 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
360 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
361 .key_diff = xfs_inobt_key_diff,
362 .buf_ops = &xfs_inobt_buf_ops,
363 #if defined(DEBUG) || defined(XFS_WARN)
364 .keys_inorder = xfs_inobt_keys_inorder,
365 .recs_inorder = xfs_inobt_recs_inorder,
366 #endif
367 };
368
369 /*
370 * Allocate a new inode btree cursor.
371 */
372 struct xfs_btree_cur * /* new inode btree cursor */
373 xfs_inobt_init_cursor(
374 struct xfs_mount *mp, /* file system mount point */
375 struct xfs_trans *tp, /* transaction pointer */
376 struct xfs_buf *agbp, /* buffer for agi structure */
377 xfs_agnumber_t agno, /* allocation group number */
378 xfs_btnum_t btnum) /* ialloc or free ino btree */
379 {
380 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
381 struct xfs_btree_cur *cur;
382
383 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
384
385 cur->bc_tp = tp;
386 cur->bc_mp = mp;
387 cur->bc_btnum = btnum;
388 if (btnum == XFS_BTNUM_INO) {
389 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
390 cur->bc_ops = &xfs_inobt_ops;
391 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
392 } else {
393 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
394 cur->bc_ops = &xfs_finobt_ops;
395 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
396 }
397
398 cur->bc_blocklog = mp->m_sb.sb_blocklog;
399
400 if (xfs_sb_version_hascrc(&mp->m_sb))
401 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
402
403 cur->bc_private.a.agbp = agbp;
404 cur->bc_private.a.agno = agno;
405
406 return cur;
407 }
408
409 /*
410 * Calculate number of records in an inobt btree block.
411 */
412 int
413 xfs_inobt_maxrecs(
414 struct xfs_mount *mp,
415 int blocklen,
416 int leaf)
417 {
418 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
419
420 if (leaf)
421 return blocklen / sizeof(xfs_inobt_rec_t);
422 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
423 }
424
425 /*
426 * Convert the inode record holemask to an inode allocation bitmap. The inode
427 * allocation bitmap is inode granularity and specifies whether an inode is
428 * physically allocated on disk (not whether the inode is considered allocated
429 * or free by the fs).
430 *
431 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
432 */
433 uint64_t
434 xfs_inobt_irec_to_allocmask(
435 struct xfs_inobt_rec_incore *rec)
436 {
437 uint64_t bitmap = 0;
438 uint64_t inodespbit;
439 int nextbit;
440 uint allocbitmap;
441
442 /*
443 * The holemask has 16-bits for a 64 inode record. Therefore each
444 * holemask bit represents multiple inodes. Create a mask of bits to set
445 * in the allocmask for each holemask bit.
446 */
447 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
448
449 /*
450 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
451 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
452 * anything beyond the 16 holemask bits since this casts to a larger
453 * type.
454 */
455 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
456
457 /*
458 * allocbitmap is the inverted holemask so every set bit represents
459 * allocated inodes. To expand from 16-bit holemask granularity to
460 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
461 * bitmap for every holemask bit.
462 */
463 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
464 while (nextbit != -1) {
465 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
466
467 bitmap |= (inodespbit <<
468 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
469
470 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
471 }
472
473 return bitmap;
474 }
475
476 #if defined(DEBUG) || defined(XFS_WARN)
477 /*
478 * Verify that an in-core inode record has a valid inode count.
479 */
480 int
481 xfs_inobt_rec_check_count(
482 struct xfs_mount *mp,
483 struct xfs_inobt_rec_incore *rec)
484 {
485 int inocount = 0;
486 int nextbit = 0;
487 uint64_t allocbmap;
488 int wordsz;
489
490 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
491 allocbmap = xfs_inobt_irec_to_allocmask(rec);
492
493 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
494 while (nextbit != -1) {
495 inocount++;
496 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
497 nextbit + 1);
498 }
499
500 if (inocount != rec->ir_count)
501 return -EFSCORRUPTED;
502
503 return 0;
504 }
505 #endif /* DEBUG */
506
507 static xfs_extlen_t
508 xfs_inobt_max_size(
509 struct xfs_mount *mp)
510 {
511 /* Bail out if we're uninitialized, which can happen in mkfs. */
512 if (mp->m_inobt_mxr[0] == 0)
513 return 0;
514
515 return xfs_btree_calc_size(mp, mp->m_inobt_mnr,
516 (uint64_t)mp->m_sb.sb_agblocks * mp->m_sb.sb_inopblock /
517 XFS_INODES_PER_CHUNK);
518 }
519
520 static int
521 xfs_inobt_count_blocks(
522 struct xfs_mount *mp,
523 xfs_agnumber_t agno,
524 xfs_btnum_t btnum,
525 xfs_extlen_t *tree_blocks)
526 {
527 struct xfs_buf *agbp;
528 struct xfs_btree_cur *cur;
529 int error;
530
531 error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp);
532 if (error)
533 return error;
534
535 cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, btnum);
536 error = xfs_btree_count_blocks(cur, tree_blocks);
537 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
538 xfs_buf_relse(agbp);
539
540 return error;
541 }
542
543 /*
544 * Figure out how many blocks to reserve and how many are used by this btree.
545 */
546 int
547 xfs_finobt_calc_reserves(
548 struct xfs_mount *mp,
549 xfs_agnumber_t agno,
550 xfs_extlen_t *ask,
551 xfs_extlen_t *used)
552 {
553 xfs_extlen_t tree_len = 0;
554 int error;
555
556 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
557 return 0;
558
559 error = xfs_inobt_count_blocks(mp, agno, XFS_BTNUM_FINO, &tree_len);
560 if (error)
561 return error;
562
563 *ask += xfs_inobt_max_size(mp);
564 *used += tree_len;
565 return 0;
566 }