Merge tag 'wireless-drivers-for-davem-2017-10-31' of git://git.kernel.org/pub/scm...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 if (!pte)
230 goto out;
231
232 ret = false;
233
234 /*
235 * Lockless access: we're in a wait_event so it's ok if it
236 * changes under us.
237 */
238 if (huge_pte_none(*pte))
239 ret = true;
240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 ret = true;
242 out:
243 return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 struct vm_area_struct *vma,
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251 {
252 return false; /* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255
256 /*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267 {
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd, _pmd;
273 pte_t *pte;
274 bool ret = true;
275
276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 pgd = pgd_offset(mm, address);
279 if (!pgd_present(*pgd))
280 goto out;
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 goto out;
284 pud = pud_offset(p4d, address);
285 if (!pud_present(*pud))
286 goto out;
287 pmd = pmd_offset(pud, address);
288 /*
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
292 *
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
295 */
296 _pmd = READ_ONCE(*pmd);
297 if (!pmd_present(_pmd))
298 goto out;
299
300 ret = false;
301 if (pmd_trans_huge(_pmd))
302 goto out;
303
304 /*
305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 * and use the standard pte_offset_map() instead of parsing _pmd.
307 */
308 pte = pte_offset_map(pmd, address);
309 /*
310 * Lockless access: we're in a wait_event so it's ok if it
311 * changes under us.
312 */
313 if (pte_none(*pte))
314 ret = true;
315 pte_unmap(pte);
316
317 out:
318 return ret;
319 }
320
321 /*
322 * The locking rules involved in returning VM_FAULT_RETRY depending on
323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325 * recommendation in __lock_page_or_retry is not an understatement.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329 * not set.
330 *
331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332 * set, VM_FAULT_RETRY can still be returned if and only if there are
333 * fatal_signal_pending()s, and the mmap_sem must be released before
334 * returning it.
335 */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 struct mm_struct *mm = vmf->vma->vm_mm;
339 struct userfaultfd_ctx *ctx;
340 struct userfaultfd_wait_queue uwq;
341 int ret;
342 bool must_wait, return_to_userland;
343 long blocking_state;
344
345 ret = VM_FAULT_SIGBUS;
346
347 /*
348 * We don't do userfault handling for the final child pid update.
349 *
350 * We also don't do userfault handling during
351 * coredumping. hugetlbfs has the special
352 * follow_hugetlb_page() to skip missing pages in the
353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 * the no_page_table() helper in follow_page_mask(), but the
355 * shmem_vm_ops->fault method is invoked even during
356 * coredumping without mmap_sem and it ends up here.
357 */
358 if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 goto out;
360
361 /*
362 * Coredumping runs without mmap_sem so we can only check that
363 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 */
365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366
367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 if (!ctx)
369 goto out;
370
371 BUG_ON(ctx->mm != mm);
372
373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375
376 if (ctx->features & UFFD_FEATURE_SIGBUS)
377 goto out;
378
379 /*
380 * If it's already released don't get it. This avoids to loop
381 * in __get_user_pages if userfaultfd_release waits on the
382 * caller of handle_userfault to release the mmap_sem.
383 */
384 if (unlikely(ACCESS_ONCE(ctx->released))) {
385 /*
386 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 * cooperative manager can close the uffd after the
388 * last UFFDIO_COPY, without risking to trigger an
389 * involuntary SIGBUS if the process was starting the
390 * userfaultfd while the userfaultfd was still armed
391 * (but after the last UFFDIO_COPY). If the uffd
392 * wasn't already closed when the userfault reached
393 * this point, that would normally be solved by
394 * userfaultfd_must_wait returning 'false'.
395 *
396 * If we were to return VM_FAULT_SIGBUS here, the non
397 * cooperative manager would be instead forced to
398 * always call UFFDIO_UNREGISTER before it can safely
399 * close the uffd.
400 */
401 ret = VM_FAULT_NOPAGE;
402 goto out;
403 }
404
405 /*
406 * Check that we can return VM_FAULT_RETRY.
407 *
408 * NOTE: it should become possible to return VM_FAULT_RETRY
409 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 * -EBUSY failures, if the userfaultfd is to be extended for
411 * VM_UFFD_WP tracking and we intend to arm the userfault
412 * without first stopping userland access to the memory. For
413 * VM_UFFD_MISSING userfaults this is enough for now.
414 */
415 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 /*
417 * Validate the invariant that nowait must allow retry
418 * to be sure not to return SIGBUS erroneously on
419 * nowait invocations.
420 */
421 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 #ifdef CONFIG_DEBUG_VM
423 if (printk_ratelimit()) {
424 printk(KERN_WARNING
425 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
426 vmf->flags);
427 dump_stack();
428 }
429 #endif
430 goto out;
431 }
432
433 /*
434 * Handle nowait, not much to do other than tell it to retry
435 * and wait.
436 */
437 ret = VM_FAULT_RETRY;
438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439 goto out;
440
441 /* take the reference before dropping the mmap_sem */
442 userfaultfd_ctx_get(ctx);
443
444 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
445 uwq.wq.private = current;
446 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
447 ctx->features);
448 uwq.ctx = ctx;
449 uwq.waken = false;
450
451 return_to_userland =
452 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
455 TASK_KILLABLE;
456
457 spin_lock(&ctx->fault_pending_wqh.lock);
458 /*
459 * After the __add_wait_queue the uwq is visible to userland
460 * through poll/read().
461 */
462 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
463 /*
464 * The smp_mb() after __set_current_state prevents the reads
465 * following the spin_unlock to happen before the list_add in
466 * __add_wait_queue.
467 */
468 set_current_state(blocking_state);
469 spin_unlock(&ctx->fault_pending_wqh.lock);
470
471 if (!is_vm_hugetlb_page(vmf->vma))
472 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
473 reason);
474 else
475 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
476 vmf->address,
477 vmf->flags, reason);
478 up_read(&mm->mmap_sem);
479
480 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
481 (return_to_userland ? !signal_pending(current) :
482 !fatal_signal_pending(current)))) {
483 wake_up_poll(&ctx->fd_wqh, POLLIN);
484 schedule();
485 ret |= VM_FAULT_MAJOR;
486
487 /*
488 * False wakeups can orginate even from rwsem before
489 * up_read() however userfaults will wait either for a
490 * targeted wakeup on the specific uwq waitqueue from
491 * wake_userfault() or for signals or for uffd
492 * release.
493 */
494 while (!READ_ONCE(uwq.waken)) {
495 /*
496 * This needs the full smp_store_mb()
497 * guarantee as the state write must be
498 * visible to other CPUs before reading
499 * uwq.waken from other CPUs.
500 */
501 set_current_state(blocking_state);
502 if (READ_ONCE(uwq.waken) ||
503 READ_ONCE(ctx->released) ||
504 (return_to_userland ? signal_pending(current) :
505 fatal_signal_pending(current)))
506 break;
507 schedule();
508 }
509 }
510
511 __set_current_state(TASK_RUNNING);
512
513 if (return_to_userland) {
514 if (signal_pending(current) &&
515 !fatal_signal_pending(current)) {
516 /*
517 * If we got a SIGSTOP or SIGCONT and this is
518 * a normal userland page fault, just let
519 * userland return so the signal will be
520 * handled and gdb debugging works. The page
521 * fault code immediately after we return from
522 * this function is going to release the
523 * mmap_sem and it's not depending on it
524 * (unlike gup would if we were not to return
525 * VM_FAULT_RETRY).
526 *
527 * If a fatal signal is pending we still take
528 * the streamlined VM_FAULT_RETRY failure path
529 * and there's no need to retake the mmap_sem
530 * in such case.
531 */
532 down_read(&mm->mmap_sem);
533 ret = VM_FAULT_NOPAGE;
534 }
535 }
536
537 /*
538 * Here we race with the list_del; list_add in
539 * userfaultfd_ctx_read(), however because we don't ever run
540 * list_del_init() to refile across the two lists, the prev
541 * and next pointers will never point to self. list_add also
542 * would never let any of the two pointers to point to
543 * self. So list_empty_careful won't risk to see both pointers
544 * pointing to self at any time during the list refile. The
545 * only case where list_del_init() is called is the full
546 * removal in the wake function and there we don't re-list_add
547 * and it's fine not to block on the spinlock. The uwq on this
548 * kernel stack can be released after the list_del_init.
549 */
550 if (!list_empty_careful(&uwq.wq.entry)) {
551 spin_lock(&ctx->fault_pending_wqh.lock);
552 /*
553 * No need of list_del_init(), the uwq on the stack
554 * will be freed shortly anyway.
555 */
556 list_del(&uwq.wq.entry);
557 spin_unlock(&ctx->fault_pending_wqh.lock);
558 }
559
560 /*
561 * ctx may go away after this if the userfault pseudo fd is
562 * already released.
563 */
564 userfaultfd_ctx_put(ctx);
565
566 out:
567 return ret;
568 }
569
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
571 struct userfaultfd_wait_queue *ewq)
572 {
573 if (WARN_ON_ONCE(current->flags & PF_EXITING))
574 goto out;
575
576 ewq->ctx = ctx;
577 init_waitqueue_entry(&ewq->wq, current);
578
579 spin_lock(&ctx->event_wqh.lock);
580 /*
581 * After the __add_wait_queue the uwq is visible to userland
582 * through poll/read().
583 */
584 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
585 for (;;) {
586 set_current_state(TASK_KILLABLE);
587 if (ewq->msg.event == 0)
588 break;
589 if (ACCESS_ONCE(ctx->released) ||
590 fatal_signal_pending(current)) {
591 /*
592 * &ewq->wq may be queued in fork_event, but
593 * __remove_wait_queue ignores the head
594 * parameter. It would be a problem if it
595 * didn't.
596 */
597 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
598 if (ewq->msg.event == UFFD_EVENT_FORK) {
599 struct userfaultfd_ctx *new;
600
601 new = (struct userfaultfd_ctx *)
602 (unsigned long)
603 ewq->msg.arg.reserved.reserved1;
604
605 userfaultfd_ctx_put(new);
606 }
607 break;
608 }
609
610 spin_unlock(&ctx->event_wqh.lock);
611
612 wake_up_poll(&ctx->fd_wqh, POLLIN);
613 schedule();
614
615 spin_lock(&ctx->event_wqh.lock);
616 }
617 __set_current_state(TASK_RUNNING);
618 spin_unlock(&ctx->event_wqh.lock);
619
620 /*
621 * ctx may go away after this if the userfault pseudo fd is
622 * already released.
623 */
624 out:
625 userfaultfd_ctx_put(ctx);
626 }
627
628 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
629 struct userfaultfd_wait_queue *ewq)
630 {
631 ewq->msg.event = 0;
632 wake_up_locked(&ctx->event_wqh);
633 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
634 }
635
636 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
637 {
638 struct userfaultfd_ctx *ctx = NULL, *octx;
639 struct userfaultfd_fork_ctx *fctx;
640
641 octx = vma->vm_userfaultfd_ctx.ctx;
642 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
643 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
644 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
645 return 0;
646 }
647
648 list_for_each_entry(fctx, fcs, list)
649 if (fctx->orig == octx) {
650 ctx = fctx->new;
651 break;
652 }
653
654 if (!ctx) {
655 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
656 if (!fctx)
657 return -ENOMEM;
658
659 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
660 if (!ctx) {
661 kfree(fctx);
662 return -ENOMEM;
663 }
664
665 atomic_set(&ctx->refcount, 1);
666 ctx->flags = octx->flags;
667 ctx->state = UFFD_STATE_RUNNING;
668 ctx->features = octx->features;
669 ctx->released = false;
670 ctx->mm = vma->vm_mm;
671 atomic_inc(&ctx->mm->mm_count);
672
673 userfaultfd_ctx_get(octx);
674 fctx->orig = octx;
675 fctx->new = ctx;
676 list_add_tail(&fctx->list, fcs);
677 }
678
679 vma->vm_userfaultfd_ctx.ctx = ctx;
680 return 0;
681 }
682
683 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
684 {
685 struct userfaultfd_ctx *ctx = fctx->orig;
686 struct userfaultfd_wait_queue ewq;
687
688 msg_init(&ewq.msg);
689
690 ewq.msg.event = UFFD_EVENT_FORK;
691 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
692
693 userfaultfd_event_wait_completion(ctx, &ewq);
694 }
695
696 void dup_userfaultfd_complete(struct list_head *fcs)
697 {
698 struct userfaultfd_fork_ctx *fctx, *n;
699
700 list_for_each_entry_safe(fctx, n, fcs, list) {
701 dup_fctx(fctx);
702 list_del(&fctx->list);
703 kfree(fctx);
704 }
705 }
706
707 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
708 struct vm_userfaultfd_ctx *vm_ctx)
709 {
710 struct userfaultfd_ctx *ctx;
711
712 ctx = vma->vm_userfaultfd_ctx.ctx;
713 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
714 vm_ctx->ctx = ctx;
715 userfaultfd_ctx_get(ctx);
716 }
717 }
718
719 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
720 unsigned long from, unsigned long to,
721 unsigned long len)
722 {
723 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
724 struct userfaultfd_wait_queue ewq;
725
726 if (!ctx)
727 return;
728
729 if (to & ~PAGE_MASK) {
730 userfaultfd_ctx_put(ctx);
731 return;
732 }
733
734 msg_init(&ewq.msg);
735
736 ewq.msg.event = UFFD_EVENT_REMAP;
737 ewq.msg.arg.remap.from = from;
738 ewq.msg.arg.remap.to = to;
739 ewq.msg.arg.remap.len = len;
740
741 userfaultfd_event_wait_completion(ctx, &ewq);
742 }
743
744 bool userfaultfd_remove(struct vm_area_struct *vma,
745 unsigned long start, unsigned long end)
746 {
747 struct mm_struct *mm = vma->vm_mm;
748 struct userfaultfd_ctx *ctx;
749 struct userfaultfd_wait_queue ewq;
750
751 ctx = vma->vm_userfaultfd_ctx.ctx;
752 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
753 return true;
754
755 userfaultfd_ctx_get(ctx);
756 up_read(&mm->mmap_sem);
757
758 msg_init(&ewq.msg);
759
760 ewq.msg.event = UFFD_EVENT_REMOVE;
761 ewq.msg.arg.remove.start = start;
762 ewq.msg.arg.remove.end = end;
763
764 userfaultfd_event_wait_completion(ctx, &ewq);
765
766 return false;
767 }
768
769 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
770 unsigned long start, unsigned long end)
771 {
772 struct userfaultfd_unmap_ctx *unmap_ctx;
773
774 list_for_each_entry(unmap_ctx, unmaps, list)
775 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
776 unmap_ctx->end == end)
777 return true;
778
779 return false;
780 }
781
782 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
783 unsigned long start, unsigned long end,
784 struct list_head *unmaps)
785 {
786 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
787 struct userfaultfd_unmap_ctx *unmap_ctx;
788 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
789
790 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
791 has_unmap_ctx(ctx, unmaps, start, end))
792 continue;
793
794 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
795 if (!unmap_ctx)
796 return -ENOMEM;
797
798 userfaultfd_ctx_get(ctx);
799 unmap_ctx->ctx = ctx;
800 unmap_ctx->start = start;
801 unmap_ctx->end = end;
802 list_add_tail(&unmap_ctx->list, unmaps);
803 }
804
805 return 0;
806 }
807
808 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
809 {
810 struct userfaultfd_unmap_ctx *ctx, *n;
811 struct userfaultfd_wait_queue ewq;
812
813 list_for_each_entry_safe(ctx, n, uf, list) {
814 msg_init(&ewq.msg);
815
816 ewq.msg.event = UFFD_EVENT_UNMAP;
817 ewq.msg.arg.remove.start = ctx->start;
818 ewq.msg.arg.remove.end = ctx->end;
819
820 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
821
822 list_del(&ctx->list);
823 kfree(ctx);
824 }
825 }
826
827 static int userfaultfd_release(struct inode *inode, struct file *file)
828 {
829 struct userfaultfd_ctx *ctx = file->private_data;
830 struct mm_struct *mm = ctx->mm;
831 struct vm_area_struct *vma, *prev;
832 /* len == 0 means wake all */
833 struct userfaultfd_wake_range range = { .len = 0, };
834 unsigned long new_flags;
835
836 ACCESS_ONCE(ctx->released) = true;
837
838 if (!mmget_not_zero(mm))
839 goto wakeup;
840
841 /*
842 * Flush page faults out of all CPUs. NOTE: all page faults
843 * must be retried without returning VM_FAULT_SIGBUS if
844 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
845 * changes while handle_userfault released the mmap_sem. So
846 * it's critical that released is set to true (above), before
847 * taking the mmap_sem for writing.
848 */
849 down_write(&mm->mmap_sem);
850 prev = NULL;
851 for (vma = mm->mmap; vma; vma = vma->vm_next) {
852 cond_resched();
853 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
854 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
855 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
856 prev = vma;
857 continue;
858 }
859 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
860 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
861 new_flags, vma->anon_vma,
862 vma->vm_file, vma->vm_pgoff,
863 vma_policy(vma),
864 NULL_VM_UFFD_CTX);
865 if (prev)
866 vma = prev;
867 else
868 prev = vma;
869 vma->vm_flags = new_flags;
870 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
871 }
872 up_write(&mm->mmap_sem);
873 mmput(mm);
874 wakeup:
875 /*
876 * After no new page faults can wait on this fault_*wqh, flush
877 * the last page faults that may have been already waiting on
878 * the fault_*wqh.
879 */
880 spin_lock(&ctx->fault_pending_wqh.lock);
881 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
882 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
883 spin_unlock(&ctx->fault_pending_wqh.lock);
884
885 /* Flush pending events that may still wait on event_wqh */
886 wake_up_all(&ctx->event_wqh);
887
888 wake_up_poll(&ctx->fd_wqh, POLLHUP);
889 userfaultfd_ctx_put(ctx);
890 return 0;
891 }
892
893 /* fault_pending_wqh.lock must be hold by the caller */
894 static inline struct userfaultfd_wait_queue *find_userfault_in(
895 wait_queue_head_t *wqh)
896 {
897 wait_queue_entry_t *wq;
898 struct userfaultfd_wait_queue *uwq;
899
900 VM_BUG_ON(!spin_is_locked(&wqh->lock));
901
902 uwq = NULL;
903 if (!waitqueue_active(wqh))
904 goto out;
905 /* walk in reverse to provide FIFO behavior to read userfaults */
906 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
907 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
908 out:
909 return uwq;
910 }
911
912 static inline struct userfaultfd_wait_queue *find_userfault(
913 struct userfaultfd_ctx *ctx)
914 {
915 return find_userfault_in(&ctx->fault_pending_wqh);
916 }
917
918 static inline struct userfaultfd_wait_queue *find_userfault_evt(
919 struct userfaultfd_ctx *ctx)
920 {
921 return find_userfault_in(&ctx->event_wqh);
922 }
923
924 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
925 {
926 struct userfaultfd_ctx *ctx = file->private_data;
927 unsigned int ret;
928
929 poll_wait(file, &ctx->fd_wqh, wait);
930
931 switch (ctx->state) {
932 case UFFD_STATE_WAIT_API:
933 return POLLERR;
934 case UFFD_STATE_RUNNING:
935 /*
936 * poll() never guarantees that read won't block.
937 * userfaults can be waken before they're read().
938 */
939 if (unlikely(!(file->f_flags & O_NONBLOCK)))
940 return POLLERR;
941 /*
942 * lockless access to see if there are pending faults
943 * __pollwait last action is the add_wait_queue but
944 * the spin_unlock would allow the waitqueue_active to
945 * pass above the actual list_add inside
946 * add_wait_queue critical section. So use a full
947 * memory barrier to serialize the list_add write of
948 * add_wait_queue() with the waitqueue_active read
949 * below.
950 */
951 ret = 0;
952 smp_mb();
953 if (waitqueue_active(&ctx->fault_pending_wqh))
954 ret = POLLIN;
955 else if (waitqueue_active(&ctx->event_wqh))
956 ret = POLLIN;
957
958 return ret;
959 default:
960 WARN_ON_ONCE(1);
961 return POLLERR;
962 }
963 }
964
965 static const struct file_operations userfaultfd_fops;
966
967 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
968 struct userfaultfd_ctx *new,
969 struct uffd_msg *msg)
970 {
971 int fd;
972 struct file *file;
973 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
974
975 fd = get_unused_fd_flags(flags);
976 if (fd < 0)
977 return fd;
978
979 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
980 O_RDWR | flags);
981 if (IS_ERR(file)) {
982 put_unused_fd(fd);
983 return PTR_ERR(file);
984 }
985
986 fd_install(fd, file);
987 msg->arg.reserved.reserved1 = 0;
988 msg->arg.fork.ufd = fd;
989
990 return 0;
991 }
992
993 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
994 struct uffd_msg *msg)
995 {
996 ssize_t ret;
997 DECLARE_WAITQUEUE(wait, current);
998 struct userfaultfd_wait_queue *uwq;
999 /*
1000 * Handling fork event requires sleeping operations, so
1001 * we drop the event_wqh lock, then do these ops, then
1002 * lock it back and wake up the waiter. While the lock is
1003 * dropped the ewq may go away so we keep track of it
1004 * carefully.
1005 */
1006 LIST_HEAD(fork_event);
1007 struct userfaultfd_ctx *fork_nctx = NULL;
1008
1009 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1010 spin_lock(&ctx->fd_wqh.lock);
1011 __add_wait_queue(&ctx->fd_wqh, &wait);
1012 for (;;) {
1013 set_current_state(TASK_INTERRUPTIBLE);
1014 spin_lock(&ctx->fault_pending_wqh.lock);
1015 uwq = find_userfault(ctx);
1016 if (uwq) {
1017 /*
1018 * Use a seqcount to repeat the lockless check
1019 * in wake_userfault() to avoid missing
1020 * wakeups because during the refile both
1021 * waitqueue could become empty if this is the
1022 * only userfault.
1023 */
1024 write_seqcount_begin(&ctx->refile_seq);
1025
1026 /*
1027 * The fault_pending_wqh.lock prevents the uwq
1028 * to disappear from under us.
1029 *
1030 * Refile this userfault from
1031 * fault_pending_wqh to fault_wqh, it's not
1032 * pending anymore after we read it.
1033 *
1034 * Use list_del() by hand (as
1035 * userfaultfd_wake_function also uses
1036 * list_del_init() by hand) to be sure nobody
1037 * changes __remove_wait_queue() to use
1038 * list_del_init() in turn breaking the
1039 * !list_empty_careful() check in
1040 * handle_userfault(). The uwq->wq.head list
1041 * must never be empty at any time during the
1042 * refile, or the waitqueue could disappear
1043 * from under us. The "wait_queue_head_t"
1044 * parameter of __remove_wait_queue() is unused
1045 * anyway.
1046 */
1047 list_del(&uwq->wq.entry);
1048 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1049
1050 write_seqcount_end(&ctx->refile_seq);
1051
1052 /* careful to always initialize msg if ret == 0 */
1053 *msg = uwq->msg;
1054 spin_unlock(&ctx->fault_pending_wqh.lock);
1055 ret = 0;
1056 break;
1057 }
1058 spin_unlock(&ctx->fault_pending_wqh.lock);
1059
1060 spin_lock(&ctx->event_wqh.lock);
1061 uwq = find_userfault_evt(ctx);
1062 if (uwq) {
1063 *msg = uwq->msg;
1064
1065 if (uwq->msg.event == UFFD_EVENT_FORK) {
1066 fork_nctx = (struct userfaultfd_ctx *)
1067 (unsigned long)
1068 uwq->msg.arg.reserved.reserved1;
1069 list_move(&uwq->wq.entry, &fork_event);
1070 /*
1071 * fork_nctx can be freed as soon as
1072 * we drop the lock, unless we take a
1073 * reference on it.
1074 */
1075 userfaultfd_ctx_get(fork_nctx);
1076 spin_unlock(&ctx->event_wqh.lock);
1077 ret = 0;
1078 break;
1079 }
1080
1081 userfaultfd_event_complete(ctx, uwq);
1082 spin_unlock(&ctx->event_wqh.lock);
1083 ret = 0;
1084 break;
1085 }
1086 spin_unlock(&ctx->event_wqh.lock);
1087
1088 if (signal_pending(current)) {
1089 ret = -ERESTARTSYS;
1090 break;
1091 }
1092 if (no_wait) {
1093 ret = -EAGAIN;
1094 break;
1095 }
1096 spin_unlock(&ctx->fd_wqh.lock);
1097 schedule();
1098 spin_lock(&ctx->fd_wqh.lock);
1099 }
1100 __remove_wait_queue(&ctx->fd_wqh, &wait);
1101 __set_current_state(TASK_RUNNING);
1102 spin_unlock(&ctx->fd_wqh.lock);
1103
1104 if (!ret && msg->event == UFFD_EVENT_FORK) {
1105 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1106 spin_lock(&ctx->event_wqh.lock);
1107 if (!list_empty(&fork_event)) {
1108 /*
1109 * The fork thread didn't abort, so we can
1110 * drop the temporary refcount.
1111 */
1112 userfaultfd_ctx_put(fork_nctx);
1113
1114 uwq = list_first_entry(&fork_event,
1115 typeof(*uwq),
1116 wq.entry);
1117 /*
1118 * If fork_event list wasn't empty and in turn
1119 * the event wasn't already released by fork
1120 * (the event is allocated on fork kernel
1121 * stack), put the event back to its place in
1122 * the event_wq. fork_event head will be freed
1123 * as soon as we return so the event cannot
1124 * stay queued there no matter the current
1125 * "ret" value.
1126 */
1127 list_del(&uwq->wq.entry);
1128 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1129
1130 /*
1131 * Leave the event in the waitqueue and report
1132 * error to userland if we failed to resolve
1133 * the userfault fork.
1134 */
1135 if (likely(!ret))
1136 userfaultfd_event_complete(ctx, uwq);
1137 } else {
1138 /*
1139 * Here the fork thread aborted and the
1140 * refcount from the fork thread on fork_nctx
1141 * has already been released. We still hold
1142 * the reference we took before releasing the
1143 * lock above. If resolve_userfault_fork
1144 * failed we've to drop it because the
1145 * fork_nctx has to be freed in such case. If
1146 * it succeeded we'll hold it because the new
1147 * uffd references it.
1148 */
1149 if (ret)
1150 userfaultfd_ctx_put(fork_nctx);
1151 }
1152 spin_unlock(&ctx->event_wqh.lock);
1153 }
1154
1155 return ret;
1156 }
1157
1158 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1159 size_t count, loff_t *ppos)
1160 {
1161 struct userfaultfd_ctx *ctx = file->private_data;
1162 ssize_t _ret, ret = 0;
1163 struct uffd_msg msg;
1164 int no_wait = file->f_flags & O_NONBLOCK;
1165
1166 if (ctx->state == UFFD_STATE_WAIT_API)
1167 return -EINVAL;
1168
1169 for (;;) {
1170 if (count < sizeof(msg))
1171 return ret ? ret : -EINVAL;
1172 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1173 if (_ret < 0)
1174 return ret ? ret : _ret;
1175 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1176 return ret ? ret : -EFAULT;
1177 ret += sizeof(msg);
1178 buf += sizeof(msg);
1179 count -= sizeof(msg);
1180 /*
1181 * Allow to read more than one fault at time but only
1182 * block if waiting for the very first one.
1183 */
1184 no_wait = O_NONBLOCK;
1185 }
1186 }
1187
1188 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1189 struct userfaultfd_wake_range *range)
1190 {
1191 spin_lock(&ctx->fault_pending_wqh.lock);
1192 /* wake all in the range and autoremove */
1193 if (waitqueue_active(&ctx->fault_pending_wqh))
1194 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1195 range);
1196 if (waitqueue_active(&ctx->fault_wqh))
1197 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1198 spin_unlock(&ctx->fault_pending_wqh.lock);
1199 }
1200
1201 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1202 struct userfaultfd_wake_range *range)
1203 {
1204 unsigned seq;
1205 bool need_wakeup;
1206
1207 /*
1208 * To be sure waitqueue_active() is not reordered by the CPU
1209 * before the pagetable update, use an explicit SMP memory
1210 * barrier here. PT lock release or up_read(mmap_sem) still
1211 * have release semantics that can allow the
1212 * waitqueue_active() to be reordered before the pte update.
1213 */
1214 smp_mb();
1215
1216 /*
1217 * Use waitqueue_active because it's very frequent to
1218 * change the address space atomically even if there are no
1219 * userfaults yet. So we take the spinlock only when we're
1220 * sure we've userfaults to wake.
1221 */
1222 do {
1223 seq = read_seqcount_begin(&ctx->refile_seq);
1224 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1225 waitqueue_active(&ctx->fault_wqh);
1226 cond_resched();
1227 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1228 if (need_wakeup)
1229 __wake_userfault(ctx, range);
1230 }
1231
1232 static __always_inline int validate_range(struct mm_struct *mm,
1233 __u64 start, __u64 len)
1234 {
1235 __u64 task_size = mm->task_size;
1236
1237 if (start & ~PAGE_MASK)
1238 return -EINVAL;
1239 if (len & ~PAGE_MASK)
1240 return -EINVAL;
1241 if (!len)
1242 return -EINVAL;
1243 if (start < mmap_min_addr)
1244 return -EINVAL;
1245 if (start >= task_size)
1246 return -EINVAL;
1247 if (len > task_size - start)
1248 return -EINVAL;
1249 return 0;
1250 }
1251
1252 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1253 {
1254 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1255 vma_is_shmem(vma);
1256 }
1257
1258 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1259 unsigned long arg)
1260 {
1261 struct mm_struct *mm = ctx->mm;
1262 struct vm_area_struct *vma, *prev, *cur;
1263 int ret;
1264 struct uffdio_register uffdio_register;
1265 struct uffdio_register __user *user_uffdio_register;
1266 unsigned long vm_flags, new_flags;
1267 bool found;
1268 bool basic_ioctls;
1269 unsigned long start, end, vma_end;
1270
1271 user_uffdio_register = (struct uffdio_register __user *) arg;
1272
1273 ret = -EFAULT;
1274 if (copy_from_user(&uffdio_register, user_uffdio_register,
1275 sizeof(uffdio_register)-sizeof(__u64)))
1276 goto out;
1277
1278 ret = -EINVAL;
1279 if (!uffdio_register.mode)
1280 goto out;
1281 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1282 UFFDIO_REGISTER_MODE_WP))
1283 goto out;
1284 vm_flags = 0;
1285 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1286 vm_flags |= VM_UFFD_MISSING;
1287 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1288 vm_flags |= VM_UFFD_WP;
1289 /*
1290 * FIXME: remove the below error constraint by
1291 * implementing the wprotect tracking mode.
1292 */
1293 ret = -EINVAL;
1294 goto out;
1295 }
1296
1297 ret = validate_range(mm, uffdio_register.range.start,
1298 uffdio_register.range.len);
1299 if (ret)
1300 goto out;
1301
1302 start = uffdio_register.range.start;
1303 end = start + uffdio_register.range.len;
1304
1305 ret = -ENOMEM;
1306 if (!mmget_not_zero(mm))
1307 goto out;
1308
1309 down_write(&mm->mmap_sem);
1310 vma = find_vma_prev(mm, start, &prev);
1311 if (!vma)
1312 goto out_unlock;
1313
1314 /* check that there's at least one vma in the range */
1315 ret = -EINVAL;
1316 if (vma->vm_start >= end)
1317 goto out_unlock;
1318
1319 /*
1320 * If the first vma contains huge pages, make sure start address
1321 * is aligned to huge page size.
1322 */
1323 if (is_vm_hugetlb_page(vma)) {
1324 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1325
1326 if (start & (vma_hpagesize - 1))
1327 goto out_unlock;
1328 }
1329
1330 /*
1331 * Search for not compatible vmas.
1332 */
1333 found = false;
1334 basic_ioctls = false;
1335 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1336 cond_resched();
1337
1338 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1339 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1340
1341 /* check not compatible vmas */
1342 ret = -EINVAL;
1343 if (!vma_can_userfault(cur))
1344 goto out_unlock;
1345 /*
1346 * If this vma contains ending address, and huge pages
1347 * check alignment.
1348 */
1349 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1350 end > cur->vm_start) {
1351 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1352
1353 ret = -EINVAL;
1354
1355 if (end & (vma_hpagesize - 1))
1356 goto out_unlock;
1357 }
1358
1359 /*
1360 * Check that this vma isn't already owned by a
1361 * different userfaultfd. We can't allow more than one
1362 * userfaultfd to own a single vma simultaneously or we
1363 * wouldn't know which one to deliver the userfaults to.
1364 */
1365 ret = -EBUSY;
1366 if (cur->vm_userfaultfd_ctx.ctx &&
1367 cur->vm_userfaultfd_ctx.ctx != ctx)
1368 goto out_unlock;
1369
1370 /*
1371 * Note vmas containing huge pages
1372 */
1373 if (is_vm_hugetlb_page(cur))
1374 basic_ioctls = true;
1375
1376 found = true;
1377 }
1378 BUG_ON(!found);
1379
1380 if (vma->vm_start < start)
1381 prev = vma;
1382
1383 ret = 0;
1384 do {
1385 cond_resched();
1386
1387 BUG_ON(!vma_can_userfault(vma));
1388 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1389 vma->vm_userfaultfd_ctx.ctx != ctx);
1390
1391 /*
1392 * Nothing to do: this vma is already registered into this
1393 * userfaultfd and with the right tracking mode too.
1394 */
1395 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1396 (vma->vm_flags & vm_flags) == vm_flags)
1397 goto skip;
1398
1399 if (vma->vm_start > start)
1400 start = vma->vm_start;
1401 vma_end = min(end, vma->vm_end);
1402
1403 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1404 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1405 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1406 vma_policy(vma),
1407 ((struct vm_userfaultfd_ctx){ ctx }));
1408 if (prev) {
1409 vma = prev;
1410 goto next;
1411 }
1412 if (vma->vm_start < start) {
1413 ret = split_vma(mm, vma, start, 1);
1414 if (ret)
1415 break;
1416 }
1417 if (vma->vm_end > end) {
1418 ret = split_vma(mm, vma, end, 0);
1419 if (ret)
1420 break;
1421 }
1422 next:
1423 /*
1424 * In the vma_merge() successful mprotect-like case 8:
1425 * the next vma was merged into the current one and
1426 * the current one has not been updated yet.
1427 */
1428 vma->vm_flags = new_flags;
1429 vma->vm_userfaultfd_ctx.ctx = ctx;
1430
1431 skip:
1432 prev = vma;
1433 start = vma->vm_end;
1434 vma = vma->vm_next;
1435 } while (vma && vma->vm_start < end);
1436 out_unlock:
1437 up_write(&mm->mmap_sem);
1438 mmput(mm);
1439 if (!ret) {
1440 /*
1441 * Now that we scanned all vmas we can already tell
1442 * userland which ioctls methods are guaranteed to
1443 * succeed on this range.
1444 */
1445 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1446 UFFD_API_RANGE_IOCTLS,
1447 &user_uffdio_register->ioctls))
1448 ret = -EFAULT;
1449 }
1450 out:
1451 return ret;
1452 }
1453
1454 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1455 unsigned long arg)
1456 {
1457 struct mm_struct *mm = ctx->mm;
1458 struct vm_area_struct *vma, *prev, *cur;
1459 int ret;
1460 struct uffdio_range uffdio_unregister;
1461 unsigned long new_flags;
1462 bool found;
1463 unsigned long start, end, vma_end;
1464 const void __user *buf = (void __user *)arg;
1465
1466 ret = -EFAULT;
1467 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1468 goto out;
1469
1470 ret = validate_range(mm, uffdio_unregister.start,
1471 uffdio_unregister.len);
1472 if (ret)
1473 goto out;
1474
1475 start = uffdio_unregister.start;
1476 end = start + uffdio_unregister.len;
1477
1478 ret = -ENOMEM;
1479 if (!mmget_not_zero(mm))
1480 goto out;
1481
1482 down_write(&mm->mmap_sem);
1483 vma = find_vma_prev(mm, start, &prev);
1484 if (!vma)
1485 goto out_unlock;
1486
1487 /* check that there's at least one vma in the range */
1488 ret = -EINVAL;
1489 if (vma->vm_start >= end)
1490 goto out_unlock;
1491
1492 /*
1493 * If the first vma contains huge pages, make sure start address
1494 * is aligned to huge page size.
1495 */
1496 if (is_vm_hugetlb_page(vma)) {
1497 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1498
1499 if (start & (vma_hpagesize - 1))
1500 goto out_unlock;
1501 }
1502
1503 /*
1504 * Search for not compatible vmas.
1505 */
1506 found = false;
1507 ret = -EINVAL;
1508 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1509 cond_resched();
1510
1511 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1512 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1513
1514 /*
1515 * Check not compatible vmas, not strictly required
1516 * here as not compatible vmas cannot have an
1517 * userfaultfd_ctx registered on them, but this
1518 * provides for more strict behavior to notice
1519 * unregistration errors.
1520 */
1521 if (!vma_can_userfault(cur))
1522 goto out_unlock;
1523
1524 found = true;
1525 }
1526 BUG_ON(!found);
1527
1528 if (vma->vm_start < start)
1529 prev = vma;
1530
1531 ret = 0;
1532 do {
1533 cond_resched();
1534
1535 BUG_ON(!vma_can_userfault(vma));
1536
1537 /*
1538 * Nothing to do: this vma is already registered into this
1539 * userfaultfd and with the right tracking mode too.
1540 */
1541 if (!vma->vm_userfaultfd_ctx.ctx)
1542 goto skip;
1543
1544 if (vma->vm_start > start)
1545 start = vma->vm_start;
1546 vma_end = min(end, vma->vm_end);
1547
1548 if (userfaultfd_missing(vma)) {
1549 /*
1550 * Wake any concurrent pending userfault while
1551 * we unregister, so they will not hang
1552 * permanently and it avoids userland to call
1553 * UFFDIO_WAKE explicitly.
1554 */
1555 struct userfaultfd_wake_range range;
1556 range.start = start;
1557 range.len = vma_end - start;
1558 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1559 }
1560
1561 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1562 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1563 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1564 vma_policy(vma),
1565 NULL_VM_UFFD_CTX);
1566 if (prev) {
1567 vma = prev;
1568 goto next;
1569 }
1570 if (vma->vm_start < start) {
1571 ret = split_vma(mm, vma, start, 1);
1572 if (ret)
1573 break;
1574 }
1575 if (vma->vm_end > end) {
1576 ret = split_vma(mm, vma, end, 0);
1577 if (ret)
1578 break;
1579 }
1580 next:
1581 /*
1582 * In the vma_merge() successful mprotect-like case 8:
1583 * the next vma was merged into the current one and
1584 * the current one has not been updated yet.
1585 */
1586 vma->vm_flags = new_flags;
1587 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1588
1589 skip:
1590 prev = vma;
1591 start = vma->vm_end;
1592 vma = vma->vm_next;
1593 } while (vma && vma->vm_start < end);
1594 out_unlock:
1595 up_write(&mm->mmap_sem);
1596 mmput(mm);
1597 out:
1598 return ret;
1599 }
1600
1601 /*
1602 * userfaultfd_wake may be used in combination with the
1603 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1604 */
1605 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1606 unsigned long arg)
1607 {
1608 int ret;
1609 struct uffdio_range uffdio_wake;
1610 struct userfaultfd_wake_range range;
1611 const void __user *buf = (void __user *)arg;
1612
1613 ret = -EFAULT;
1614 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1615 goto out;
1616
1617 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1618 if (ret)
1619 goto out;
1620
1621 range.start = uffdio_wake.start;
1622 range.len = uffdio_wake.len;
1623
1624 /*
1625 * len == 0 means wake all and we don't want to wake all here,
1626 * so check it again to be sure.
1627 */
1628 VM_BUG_ON(!range.len);
1629
1630 wake_userfault(ctx, &range);
1631 ret = 0;
1632
1633 out:
1634 return ret;
1635 }
1636
1637 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1638 unsigned long arg)
1639 {
1640 __s64 ret;
1641 struct uffdio_copy uffdio_copy;
1642 struct uffdio_copy __user *user_uffdio_copy;
1643 struct userfaultfd_wake_range range;
1644
1645 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1646
1647 ret = -EFAULT;
1648 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1649 /* don't copy "copy" last field */
1650 sizeof(uffdio_copy)-sizeof(__s64)))
1651 goto out;
1652
1653 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1654 if (ret)
1655 goto out;
1656 /*
1657 * double check for wraparound just in case. copy_from_user()
1658 * will later check uffdio_copy.src + uffdio_copy.len to fit
1659 * in the userland range.
1660 */
1661 ret = -EINVAL;
1662 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1663 goto out;
1664 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1665 goto out;
1666 if (mmget_not_zero(ctx->mm)) {
1667 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1668 uffdio_copy.len);
1669 mmput(ctx->mm);
1670 } else {
1671 return -ESRCH;
1672 }
1673 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1674 return -EFAULT;
1675 if (ret < 0)
1676 goto out;
1677 BUG_ON(!ret);
1678 /* len == 0 would wake all */
1679 range.len = ret;
1680 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1681 range.start = uffdio_copy.dst;
1682 wake_userfault(ctx, &range);
1683 }
1684 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1685 out:
1686 return ret;
1687 }
1688
1689 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1690 unsigned long arg)
1691 {
1692 __s64 ret;
1693 struct uffdio_zeropage uffdio_zeropage;
1694 struct uffdio_zeropage __user *user_uffdio_zeropage;
1695 struct userfaultfd_wake_range range;
1696
1697 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1698
1699 ret = -EFAULT;
1700 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1701 /* don't copy "zeropage" last field */
1702 sizeof(uffdio_zeropage)-sizeof(__s64)))
1703 goto out;
1704
1705 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1706 uffdio_zeropage.range.len);
1707 if (ret)
1708 goto out;
1709 ret = -EINVAL;
1710 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1711 goto out;
1712
1713 if (mmget_not_zero(ctx->mm)) {
1714 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1715 uffdio_zeropage.range.len);
1716 mmput(ctx->mm);
1717 } else {
1718 return -ESRCH;
1719 }
1720 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1721 return -EFAULT;
1722 if (ret < 0)
1723 goto out;
1724 /* len == 0 would wake all */
1725 BUG_ON(!ret);
1726 range.len = ret;
1727 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1728 range.start = uffdio_zeropage.range.start;
1729 wake_userfault(ctx, &range);
1730 }
1731 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1732 out:
1733 return ret;
1734 }
1735
1736 static inline unsigned int uffd_ctx_features(__u64 user_features)
1737 {
1738 /*
1739 * For the current set of features the bits just coincide
1740 */
1741 return (unsigned int)user_features;
1742 }
1743
1744 /*
1745 * userland asks for a certain API version and we return which bits
1746 * and ioctl commands are implemented in this kernel for such API
1747 * version or -EINVAL if unknown.
1748 */
1749 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1750 unsigned long arg)
1751 {
1752 struct uffdio_api uffdio_api;
1753 void __user *buf = (void __user *)arg;
1754 int ret;
1755 __u64 features;
1756
1757 ret = -EINVAL;
1758 if (ctx->state != UFFD_STATE_WAIT_API)
1759 goto out;
1760 ret = -EFAULT;
1761 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1762 goto out;
1763 features = uffdio_api.features;
1764 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1765 memset(&uffdio_api, 0, sizeof(uffdio_api));
1766 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1767 goto out;
1768 ret = -EINVAL;
1769 goto out;
1770 }
1771 /* report all available features and ioctls to userland */
1772 uffdio_api.features = UFFD_API_FEATURES;
1773 uffdio_api.ioctls = UFFD_API_IOCTLS;
1774 ret = -EFAULT;
1775 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1776 goto out;
1777 ctx->state = UFFD_STATE_RUNNING;
1778 /* only enable the requested features for this uffd context */
1779 ctx->features = uffd_ctx_features(features);
1780 ret = 0;
1781 out:
1782 return ret;
1783 }
1784
1785 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1786 unsigned long arg)
1787 {
1788 int ret = -EINVAL;
1789 struct userfaultfd_ctx *ctx = file->private_data;
1790
1791 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1792 return -EINVAL;
1793
1794 switch(cmd) {
1795 case UFFDIO_API:
1796 ret = userfaultfd_api(ctx, arg);
1797 break;
1798 case UFFDIO_REGISTER:
1799 ret = userfaultfd_register(ctx, arg);
1800 break;
1801 case UFFDIO_UNREGISTER:
1802 ret = userfaultfd_unregister(ctx, arg);
1803 break;
1804 case UFFDIO_WAKE:
1805 ret = userfaultfd_wake(ctx, arg);
1806 break;
1807 case UFFDIO_COPY:
1808 ret = userfaultfd_copy(ctx, arg);
1809 break;
1810 case UFFDIO_ZEROPAGE:
1811 ret = userfaultfd_zeropage(ctx, arg);
1812 break;
1813 }
1814 return ret;
1815 }
1816
1817 #ifdef CONFIG_PROC_FS
1818 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1819 {
1820 struct userfaultfd_ctx *ctx = f->private_data;
1821 wait_queue_entry_t *wq;
1822 struct userfaultfd_wait_queue *uwq;
1823 unsigned long pending = 0, total = 0;
1824
1825 spin_lock(&ctx->fault_pending_wqh.lock);
1826 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1827 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1828 pending++;
1829 total++;
1830 }
1831 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1832 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1833 total++;
1834 }
1835 spin_unlock(&ctx->fault_pending_wqh.lock);
1836
1837 /*
1838 * If more protocols will be added, there will be all shown
1839 * separated by a space. Like this:
1840 * protocols: aa:... bb:...
1841 */
1842 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1843 pending, total, UFFD_API, ctx->features,
1844 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1845 }
1846 #endif
1847
1848 static const struct file_operations userfaultfd_fops = {
1849 #ifdef CONFIG_PROC_FS
1850 .show_fdinfo = userfaultfd_show_fdinfo,
1851 #endif
1852 .release = userfaultfd_release,
1853 .poll = userfaultfd_poll,
1854 .read = userfaultfd_read,
1855 .unlocked_ioctl = userfaultfd_ioctl,
1856 .compat_ioctl = userfaultfd_ioctl,
1857 .llseek = noop_llseek,
1858 };
1859
1860 static void init_once_userfaultfd_ctx(void *mem)
1861 {
1862 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1863
1864 init_waitqueue_head(&ctx->fault_pending_wqh);
1865 init_waitqueue_head(&ctx->fault_wqh);
1866 init_waitqueue_head(&ctx->event_wqh);
1867 init_waitqueue_head(&ctx->fd_wqh);
1868 seqcount_init(&ctx->refile_seq);
1869 }
1870
1871 /**
1872 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1873 * @flags: Flags for the userfaultfd file.
1874 *
1875 * This function creates a userfaultfd file pointer, w/out installing
1876 * it into the fd table. This is useful when the userfaultfd file is
1877 * used during the initialization of data structures that require
1878 * extra setup after the userfaultfd creation. So the userfaultfd
1879 * creation is split into the file pointer creation phase, and the
1880 * file descriptor installation phase. In this way races with
1881 * userspace closing the newly installed file descriptor can be
1882 * avoided. Returns a userfaultfd file pointer, or a proper error
1883 * pointer.
1884 */
1885 static struct file *userfaultfd_file_create(int flags)
1886 {
1887 struct file *file;
1888 struct userfaultfd_ctx *ctx;
1889
1890 BUG_ON(!current->mm);
1891
1892 /* Check the UFFD_* constants for consistency. */
1893 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1894 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1895
1896 file = ERR_PTR(-EINVAL);
1897 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1898 goto out;
1899
1900 file = ERR_PTR(-ENOMEM);
1901 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1902 if (!ctx)
1903 goto out;
1904
1905 atomic_set(&ctx->refcount, 1);
1906 ctx->flags = flags;
1907 ctx->features = 0;
1908 ctx->state = UFFD_STATE_WAIT_API;
1909 ctx->released = false;
1910 ctx->mm = current->mm;
1911 /* prevent the mm struct to be freed */
1912 mmgrab(ctx->mm);
1913
1914 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1915 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1916 if (IS_ERR(file)) {
1917 mmdrop(ctx->mm);
1918 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1919 }
1920 out:
1921 return file;
1922 }
1923
1924 SYSCALL_DEFINE1(userfaultfd, int, flags)
1925 {
1926 int fd, error;
1927 struct file *file;
1928
1929 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1930 if (error < 0)
1931 return error;
1932 fd = error;
1933
1934 file = userfaultfd_file_create(flags);
1935 if (IS_ERR(file)) {
1936 error = PTR_ERR(file);
1937 goto err_put_unused_fd;
1938 }
1939 fd_install(fd, file);
1940
1941 return fd;
1942
1943 err_put_unused_fd:
1944 put_unused_fd(fd);
1945
1946 return error;
1947 }
1948
1949 static int __init userfaultfd_init(void)
1950 {
1951 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1952 sizeof(struct userfaultfd_ctx),
1953 0,
1954 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1955 init_once_userfaultfd_ctx);
1956 return 0;
1957 }
1958 __initcall(userfaultfd_init);