Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 enum { UDF_MAX_LINKS = 0xffff };
79
80 /* These are the "meat" - everything else is stuffing */
81 static int udf_fill_super(struct super_block *, void *, int);
82 static void udf_put_super(struct super_block *);
83 static int udf_sync_fs(struct super_block *, int);
84 static int udf_remount_fs(struct super_block *, int *, char *);
85 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
86 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
87 struct kernel_lb_addr *);
88 static void udf_load_fileset(struct super_block *, struct buffer_head *,
89 struct kernel_lb_addr *);
90 static void udf_open_lvid(struct super_block *);
91 static void udf_close_lvid(struct super_block *);
92 static unsigned int udf_count_free(struct super_block *);
93 static int udf_statfs(struct dentry *, struct kstatfs *);
94 static int udf_show_options(struct seq_file *, struct dentry *);
95
96 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
97 {
98 struct logicalVolIntegrityDesc *lvid =
99 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
100 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
101 __u32 offset = number_of_partitions * 2 *
102 sizeof(uint32_t)/sizeof(uint8_t);
103 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
104 }
105
106 /* UDF filesystem type */
107 static struct dentry *udf_mount(struct file_system_type *fs_type,
108 int flags, const char *dev_name, void *data)
109 {
110 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
111 }
112
113 static struct file_system_type udf_fstype = {
114 .owner = THIS_MODULE,
115 .name = "udf",
116 .mount = udf_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119 };
120
121 static struct kmem_cache *udf_inode_cachep;
122
123 static struct inode *udf_alloc_inode(struct super_block *sb)
124 {
125 struct udf_inode_info *ei;
126 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
127 if (!ei)
128 return NULL;
129
130 ei->i_unique = 0;
131 ei->i_lenExtents = 0;
132 ei->i_next_alloc_block = 0;
133 ei->i_next_alloc_goal = 0;
134 ei->i_strat4096 = 0;
135 init_rwsem(&ei->i_data_sem);
136
137 return &ei->vfs_inode;
138 }
139
140 static void udf_i_callback(struct rcu_head *head)
141 {
142 struct inode *inode = container_of(head, struct inode, i_rcu);
143 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
144 }
145
146 static void udf_destroy_inode(struct inode *inode)
147 {
148 call_rcu(&inode->i_rcu, udf_i_callback);
149 }
150
151 static void init_once(void *foo)
152 {
153 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
154
155 ei->i_ext.i_data = NULL;
156 inode_init_once(&ei->vfs_inode);
157 }
158
159 static int init_inodecache(void)
160 {
161 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
162 sizeof(struct udf_inode_info),
163 0, (SLAB_RECLAIM_ACCOUNT |
164 SLAB_MEM_SPREAD),
165 init_once);
166 if (!udf_inode_cachep)
167 return -ENOMEM;
168 return 0;
169 }
170
171 static void destroy_inodecache(void)
172 {
173 kmem_cache_destroy(udf_inode_cachep);
174 }
175
176 /* Superblock operations */
177 static const struct super_operations udf_sb_ops = {
178 .alloc_inode = udf_alloc_inode,
179 .destroy_inode = udf_destroy_inode,
180 .write_inode = udf_write_inode,
181 .evict_inode = udf_evict_inode,
182 .put_super = udf_put_super,
183 .sync_fs = udf_sync_fs,
184 .statfs = udf_statfs,
185 .remount_fs = udf_remount_fs,
186 .show_options = udf_show_options,
187 };
188
189 struct udf_options {
190 unsigned char novrs;
191 unsigned int blocksize;
192 unsigned int session;
193 unsigned int lastblock;
194 unsigned int anchor;
195 unsigned int volume;
196 unsigned short partition;
197 unsigned int fileset;
198 unsigned int rootdir;
199 unsigned int flags;
200 umode_t umask;
201 gid_t gid;
202 uid_t uid;
203 umode_t fmode;
204 umode_t dmode;
205 struct nls_table *nls_map;
206 };
207
208 static int __init init_udf_fs(void)
209 {
210 int err;
211
212 err = init_inodecache();
213 if (err)
214 goto out1;
215 err = register_filesystem(&udf_fstype);
216 if (err)
217 goto out;
218
219 return 0;
220
221 out:
222 destroy_inodecache();
223
224 out1:
225 return err;
226 }
227
228 static void __exit exit_udf_fs(void)
229 {
230 unregister_filesystem(&udf_fstype);
231 destroy_inodecache();
232 }
233
234 module_init(init_udf_fs)
235 module_exit(exit_udf_fs)
236
237 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
238 {
239 struct udf_sb_info *sbi = UDF_SB(sb);
240
241 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
242 GFP_KERNEL);
243 if (!sbi->s_partmaps) {
244 udf_err(sb, "Unable to allocate space for %d partition maps\n",
245 count);
246 sbi->s_partitions = 0;
247 return -ENOMEM;
248 }
249
250 sbi->s_partitions = count;
251 return 0;
252 }
253
254 static int udf_show_options(struct seq_file *seq, struct dentry *root)
255 {
256 struct super_block *sb = root->d_sb;
257 struct udf_sb_info *sbi = UDF_SB(sb);
258
259 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
260 seq_puts(seq, ",nostrict");
261 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
262 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
263 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
264 seq_puts(seq, ",unhide");
265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
266 seq_puts(seq, ",undelete");
267 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
268 seq_puts(seq, ",noadinicb");
269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
270 seq_puts(seq, ",shortad");
271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
272 seq_puts(seq, ",uid=forget");
273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
274 seq_puts(seq, ",uid=ignore");
275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
276 seq_puts(seq, ",gid=forget");
277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
278 seq_puts(seq, ",gid=ignore");
279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
280 seq_printf(seq, ",uid=%u", sbi->s_uid);
281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
282 seq_printf(seq, ",gid=%u", sbi->s_gid);
283 if (sbi->s_umask != 0)
284 seq_printf(seq, ",umask=%ho", sbi->s_umask);
285 if (sbi->s_fmode != UDF_INVALID_MODE)
286 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
287 if (sbi->s_dmode != UDF_INVALID_MODE)
288 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
289 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
290 seq_printf(seq, ",session=%u", sbi->s_session);
291 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
292 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
293 if (sbi->s_anchor != 0)
294 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
295 /*
296 * volume, partition, fileset and rootdir seem to be ignored
297 * currently
298 */
299 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
300 seq_puts(seq, ",utf8");
301 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
302 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
303
304 return 0;
305 }
306
307 /*
308 * udf_parse_options
309 *
310 * PURPOSE
311 * Parse mount options.
312 *
313 * DESCRIPTION
314 * The following mount options are supported:
315 *
316 * gid= Set the default group.
317 * umask= Set the default umask.
318 * mode= Set the default file permissions.
319 * dmode= Set the default directory permissions.
320 * uid= Set the default user.
321 * bs= Set the block size.
322 * unhide Show otherwise hidden files.
323 * undelete Show deleted files in lists.
324 * adinicb Embed data in the inode (default)
325 * noadinicb Don't embed data in the inode
326 * shortad Use short ad's
327 * longad Use long ad's (default)
328 * nostrict Unset strict conformance
329 * iocharset= Set the NLS character set
330 *
331 * The remaining are for debugging and disaster recovery:
332 *
333 * novrs Skip volume sequence recognition
334 *
335 * The following expect a offset from 0.
336 *
337 * session= Set the CDROM session (default= last session)
338 * anchor= Override standard anchor location. (default= 256)
339 * volume= Override the VolumeDesc location. (unused)
340 * partition= Override the PartitionDesc location. (unused)
341 * lastblock= Set the last block of the filesystem/
342 *
343 * The following expect a offset from the partition root.
344 *
345 * fileset= Override the fileset block location. (unused)
346 * rootdir= Override the root directory location. (unused)
347 * WARNING: overriding the rootdir to a non-directory may
348 * yield highly unpredictable results.
349 *
350 * PRE-CONDITIONS
351 * options Pointer to mount options string.
352 * uopts Pointer to mount options variable.
353 *
354 * POST-CONDITIONS
355 * <return> 1 Mount options parsed okay.
356 * <return> 0 Error parsing mount options.
357 *
358 * HISTORY
359 * July 1, 1997 - Andrew E. Mileski
360 * Written, tested, and released.
361 */
362
363 enum {
364 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
365 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
366 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
367 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
368 Opt_rootdir, Opt_utf8, Opt_iocharset,
369 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
370 Opt_fmode, Opt_dmode
371 };
372
373 static const match_table_t tokens = {
374 {Opt_novrs, "novrs"},
375 {Opt_nostrict, "nostrict"},
376 {Opt_bs, "bs=%u"},
377 {Opt_unhide, "unhide"},
378 {Opt_undelete, "undelete"},
379 {Opt_noadinicb, "noadinicb"},
380 {Opt_adinicb, "adinicb"},
381 {Opt_shortad, "shortad"},
382 {Opt_longad, "longad"},
383 {Opt_uforget, "uid=forget"},
384 {Opt_uignore, "uid=ignore"},
385 {Opt_gforget, "gid=forget"},
386 {Opt_gignore, "gid=ignore"},
387 {Opt_gid, "gid=%u"},
388 {Opt_uid, "uid=%u"},
389 {Opt_umask, "umask=%o"},
390 {Opt_session, "session=%u"},
391 {Opt_lastblock, "lastblock=%u"},
392 {Opt_anchor, "anchor=%u"},
393 {Opt_volume, "volume=%u"},
394 {Opt_partition, "partition=%u"},
395 {Opt_fileset, "fileset=%u"},
396 {Opt_rootdir, "rootdir=%u"},
397 {Opt_utf8, "utf8"},
398 {Opt_iocharset, "iocharset=%s"},
399 {Opt_fmode, "mode=%o"},
400 {Opt_dmode, "dmode=%o"},
401 {Opt_err, NULL}
402 };
403
404 static int udf_parse_options(char *options, struct udf_options *uopt,
405 bool remount)
406 {
407 char *p;
408 int option;
409
410 uopt->novrs = 0;
411 uopt->partition = 0xFFFF;
412 uopt->session = 0xFFFFFFFF;
413 uopt->lastblock = 0;
414 uopt->anchor = 0;
415 uopt->volume = 0xFFFFFFFF;
416 uopt->rootdir = 0xFFFFFFFF;
417 uopt->fileset = 0xFFFFFFFF;
418 uopt->nls_map = NULL;
419
420 if (!options)
421 return 1;
422
423 while ((p = strsep(&options, ",")) != NULL) {
424 substring_t args[MAX_OPT_ARGS];
425 int token;
426 if (!*p)
427 continue;
428
429 token = match_token(p, tokens, args);
430 switch (token) {
431 case Opt_novrs:
432 uopt->novrs = 1;
433 break;
434 case Opt_bs:
435 if (match_int(&args[0], &option))
436 return 0;
437 uopt->blocksize = option;
438 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
439 break;
440 case Opt_unhide:
441 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
442 break;
443 case Opt_undelete:
444 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
445 break;
446 case Opt_noadinicb:
447 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
448 break;
449 case Opt_adinicb:
450 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
451 break;
452 case Opt_shortad:
453 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
454 break;
455 case Opt_longad:
456 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
457 break;
458 case Opt_gid:
459 if (match_int(args, &option))
460 return 0;
461 uopt->gid = option;
462 uopt->flags |= (1 << UDF_FLAG_GID_SET);
463 break;
464 case Opt_uid:
465 if (match_int(args, &option))
466 return 0;
467 uopt->uid = option;
468 uopt->flags |= (1 << UDF_FLAG_UID_SET);
469 break;
470 case Opt_umask:
471 if (match_octal(args, &option))
472 return 0;
473 uopt->umask = option;
474 break;
475 case Opt_nostrict:
476 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
477 break;
478 case Opt_session:
479 if (match_int(args, &option))
480 return 0;
481 uopt->session = option;
482 if (!remount)
483 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
484 break;
485 case Opt_lastblock:
486 if (match_int(args, &option))
487 return 0;
488 uopt->lastblock = option;
489 if (!remount)
490 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
491 break;
492 case Opt_anchor:
493 if (match_int(args, &option))
494 return 0;
495 uopt->anchor = option;
496 break;
497 case Opt_volume:
498 if (match_int(args, &option))
499 return 0;
500 uopt->volume = option;
501 break;
502 case Opt_partition:
503 if (match_int(args, &option))
504 return 0;
505 uopt->partition = option;
506 break;
507 case Opt_fileset:
508 if (match_int(args, &option))
509 return 0;
510 uopt->fileset = option;
511 break;
512 case Opt_rootdir:
513 if (match_int(args, &option))
514 return 0;
515 uopt->rootdir = option;
516 break;
517 case Opt_utf8:
518 uopt->flags |= (1 << UDF_FLAG_UTF8);
519 break;
520 #ifdef CONFIG_UDF_NLS
521 case Opt_iocharset:
522 uopt->nls_map = load_nls(args[0].from);
523 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
524 break;
525 #endif
526 case Opt_uignore:
527 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
528 break;
529 case Opt_uforget:
530 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
531 break;
532 case Opt_gignore:
533 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
534 break;
535 case Opt_gforget:
536 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
537 break;
538 case Opt_fmode:
539 if (match_octal(args, &option))
540 return 0;
541 uopt->fmode = option & 0777;
542 break;
543 case Opt_dmode:
544 if (match_octal(args, &option))
545 return 0;
546 uopt->dmode = option & 0777;
547 break;
548 default:
549 pr_err("bad mount option \"%s\" or missing value\n", p);
550 return 0;
551 }
552 }
553 return 1;
554 }
555
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558 struct udf_options uopt;
559 struct udf_sb_info *sbi = UDF_SB(sb);
560 int error = 0;
561
562 uopt.flags = sbi->s_flags;
563 uopt.uid = sbi->s_uid;
564 uopt.gid = sbi->s_gid;
565 uopt.umask = sbi->s_umask;
566 uopt.fmode = sbi->s_fmode;
567 uopt.dmode = sbi->s_dmode;
568
569 if (!udf_parse_options(options, &uopt, true))
570 return -EINVAL;
571
572 write_lock(&sbi->s_cred_lock);
573 sbi->s_flags = uopt.flags;
574 sbi->s_uid = uopt.uid;
575 sbi->s_gid = uopt.gid;
576 sbi->s_umask = uopt.umask;
577 sbi->s_fmode = uopt.fmode;
578 sbi->s_dmode = uopt.dmode;
579 write_unlock(&sbi->s_cred_lock);
580
581 if (sbi->s_lvid_bh) {
582 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
583 if (write_rev > UDF_MAX_WRITE_VERSION)
584 *flags |= MS_RDONLY;
585 }
586
587 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
588 goto out_unlock;
589
590 if (*flags & MS_RDONLY)
591 udf_close_lvid(sb);
592 else
593 udf_open_lvid(sb);
594
595 out_unlock:
596 return error;
597 }
598
599 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
600 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
601 static loff_t udf_check_vsd(struct super_block *sb)
602 {
603 struct volStructDesc *vsd = NULL;
604 loff_t sector = 32768;
605 int sectorsize;
606 struct buffer_head *bh = NULL;
607 int nsr02 = 0;
608 int nsr03 = 0;
609 struct udf_sb_info *sbi;
610
611 sbi = UDF_SB(sb);
612 if (sb->s_blocksize < sizeof(struct volStructDesc))
613 sectorsize = sizeof(struct volStructDesc);
614 else
615 sectorsize = sb->s_blocksize;
616
617 sector += (sbi->s_session << sb->s_blocksize_bits);
618
619 udf_debug("Starting at sector %u (%ld byte sectors)\n",
620 (unsigned int)(sector >> sb->s_blocksize_bits),
621 sb->s_blocksize);
622 /* Process the sequence (if applicable) */
623 for (; !nsr02 && !nsr03; sector += sectorsize) {
624 /* Read a block */
625 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
626 if (!bh)
627 break;
628
629 /* Look for ISO descriptors */
630 vsd = (struct volStructDesc *)(bh->b_data +
631 (sector & (sb->s_blocksize - 1)));
632
633 if (vsd->stdIdent[0] == 0) {
634 brelse(bh);
635 break;
636 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
637 VSD_STD_ID_LEN)) {
638 switch (vsd->structType) {
639 case 0:
640 udf_debug("ISO9660 Boot Record found\n");
641 break;
642 case 1:
643 udf_debug("ISO9660 Primary Volume Descriptor found\n");
644 break;
645 case 2:
646 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
647 break;
648 case 3:
649 udf_debug("ISO9660 Volume Partition Descriptor found\n");
650 break;
651 case 255:
652 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
653 break;
654 default:
655 udf_debug("ISO9660 VRS (%u) found\n",
656 vsd->structType);
657 break;
658 }
659 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
660 VSD_STD_ID_LEN))
661 ; /* nothing */
662 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
663 VSD_STD_ID_LEN)) {
664 brelse(bh);
665 break;
666 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
667 VSD_STD_ID_LEN))
668 nsr02 = sector;
669 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
670 VSD_STD_ID_LEN))
671 nsr03 = sector;
672 brelse(bh);
673 }
674
675 if (nsr03)
676 return nsr03;
677 else if (nsr02)
678 return nsr02;
679 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
680 return -1;
681 else
682 return 0;
683 }
684
685 static int udf_find_fileset(struct super_block *sb,
686 struct kernel_lb_addr *fileset,
687 struct kernel_lb_addr *root)
688 {
689 struct buffer_head *bh = NULL;
690 long lastblock;
691 uint16_t ident;
692 struct udf_sb_info *sbi;
693
694 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
695 fileset->partitionReferenceNum != 0xFFFF) {
696 bh = udf_read_ptagged(sb, fileset, 0, &ident);
697
698 if (!bh) {
699 return 1;
700 } else if (ident != TAG_IDENT_FSD) {
701 brelse(bh);
702 return 1;
703 }
704
705 }
706
707 sbi = UDF_SB(sb);
708 if (!bh) {
709 /* Search backwards through the partitions */
710 struct kernel_lb_addr newfileset;
711
712 /* --> cvg: FIXME - is it reasonable? */
713 return 1;
714
715 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
716 (newfileset.partitionReferenceNum != 0xFFFF &&
717 fileset->logicalBlockNum == 0xFFFFFFFF &&
718 fileset->partitionReferenceNum == 0xFFFF);
719 newfileset.partitionReferenceNum--) {
720 lastblock = sbi->s_partmaps
721 [newfileset.partitionReferenceNum]
722 .s_partition_len;
723 newfileset.logicalBlockNum = 0;
724
725 do {
726 bh = udf_read_ptagged(sb, &newfileset, 0,
727 &ident);
728 if (!bh) {
729 newfileset.logicalBlockNum++;
730 continue;
731 }
732
733 switch (ident) {
734 case TAG_IDENT_SBD:
735 {
736 struct spaceBitmapDesc *sp;
737 sp = (struct spaceBitmapDesc *)
738 bh->b_data;
739 newfileset.logicalBlockNum += 1 +
740 ((le32_to_cpu(sp->numOfBytes) +
741 sizeof(struct spaceBitmapDesc)
742 - 1) >> sb->s_blocksize_bits);
743 brelse(bh);
744 break;
745 }
746 case TAG_IDENT_FSD:
747 *fileset = newfileset;
748 break;
749 default:
750 newfileset.logicalBlockNum++;
751 brelse(bh);
752 bh = NULL;
753 break;
754 }
755 } while (newfileset.logicalBlockNum < lastblock &&
756 fileset->logicalBlockNum == 0xFFFFFFFF &&
757 fileset->partitionReferenceNum == 0xFFFF);
758 }
759 }
760
761 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
762 fileset->partitionReferenceNum != 0xFFFF) && bh) {
763 udf_debug("Fileset at block=%d, partition=%d\n",
764 fileset->logicalBlockNum,
765 fileset->partitionReferenceNum);
766
767 sbi->s_partition = fileset->partitionReferenceNum;
768 udf_load_fileset(sb, bh, root);
769 brelse(bh);
770 return 0;
771 }
772 return 1;
773 }
774
775 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
776 {
777 struct primaryVolDesc *pvoldesc;
778 struct ustr *instr, *outstr;
779 struct buffer_head *bh;
780 uint16_t ident;
781 int ret = 1;
782
783 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
784 if (!instr)
785 return 1;
786
787 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
788 if (!outstr)
789 goto out1;
790
791 bh = udf_read_tagged(sb, block, block, &ident);
792 if (!bh)
793 goto out2;
794
795 BUG_ON(ident != TAG_IDENT_PVD);
796
797 pvoldesc = (struct primaryVolDesc *)bh->b_data;
798
799 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
800 pvoldesc->recordingDateAndTime)) {
801 #ifdef UDFFS_DEBUG
802 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
803 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
804 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
805 ts->minute, le16_to_cpu(ts->typeAndTimezone));
806 #endif
807 }
808
809 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
810 if (udf_CS0toUTF8(outstr, instr)) {
811 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
812 outstr->u_len > 31 ? 31 : outstr->u_len);
813 udf_debug("volIdent[] = '%s'\n",
814 UDF_SB(sb)->s_volume_ident);
815 }
816
817 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
818 if (udf_CS0toUTF8(outstr, instr))
819 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
820
821 brelse(bh);
822 ret = 0;
823 out2:
824 kfree(outstr);
825 out1:
826 kfree(instr);
827 return ret;
828 }
829
830 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
831 u32 meta_file_loc, u32 partition_num)
832 {
833 struct kernel_lb_addr addr;
834 struct inode *metadata_fe;
835
836 addr.logicalBlockNum = meta_file_loc;
837 addr.partitionReferenceNum = partition_num;
838
839 metadata_fe = udf_iget(sb, &addr);
840
841 if (metadata_fe == NULL)
842 udf_warn(sb, "metadata inode efe not found\n");
843 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
844 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
845 iput(metadata_fe);
846 metadata_fe = NULL;
847 }
848
849 return metadata_fe;
850 }
851
852 static int udf_load_metadata_files(struct super_block *sb, int partition)
853 {
854 struct udf_sb_info *sbi = UDF_SB(sb);
855 struct udf_part_map *map;
856 struct udf_meta_data *mdata;
857 struct kernel_lb_addr addr;
858
859 map = &sbi->s_partmaps[partition];
860 mdata = &map->s_type_specific.s_metadata;
861
862 /* metadata address */
863 udf_debug("Metadata file location: block = %d part = %d\n",
864 mdata->s_meta_file_loc, map->s_partition_num);
865
866 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
867 mdata->s_meta_file_loc, map->s_partition_num);
868
869 if (mdata->s_metadata_fe == NULL) {
870 /* mirror file entry */
871 udf_debug("Mirror metadata file location: block = %d part = %d\n",
872 mdata->s_mirror_file_loc, map->s_partition_num);
873
874 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
875 mdata->s_mirror_file_loc, map->s_partition_num);
876
877 if (mdata->s_mirror_fe == NULL) {
878 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
879 goto error_exit;
880 }
881 }
882
883 /*
884 * bitmap file entry
885 * Note:
886 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
887 */
888 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
889 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
890 addr.partitionReferenceNum = map->s_partition_num;
891
892 udf_debug("Bitmap file location: block = %d part = %d\n",
893 addr.logicalBlockNum, addr.partitionReferenceNum);
894
895 mdata->s_bitmap_fe = udf_iget(sb, &addr);
896
897 if (mdata->s_bitmap_fe == NULL) {
898 if (sb->s_flags & MS_RDONLY)
899 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
900 else {
901 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
902 goto error_exit;
903 }
904 }
905 }
906
907 udf_debug("udf_load_metadata_files Ok\n");
908
909 return 0;
910
911 error_exit:
912 return 1;
913 }
914
915 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
916 struct kernel_lb_addr *root)
917 {
918 struct fileSetDesc *fset;
919
920 fset = (struct fileSetDesc *)bh->b_data;
921
922 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
923
924 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
925
926 udf_debug("Rootdir at block=%d, partition=%d\n",
927 root->logicalBlockNum, root->partitionReferenceNum);
928 }
929
930 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
931 {
932 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
933 return DIV_ROUND_UP(map->s_partition_len +
934 (sizeof(struct spaceBitmapDesc) << 3),
935 sb->s_blocksize * 8);
936 }
937
938 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
939 {
940 struct udf_bitmap *bitmap;
941 int nr_groups;
942 int size;
943
944 nr_groups = udf_compute_nr_groups(sb, index);
945 size = sizeof(struct udf_bitmap) +
946 (sizeof(struct buffer_head *) * nr_groups);
947
948 if (size <= PAGE_SIZE)
949 bitmap = kzalloc(size, GFP_KERNEL);
950 else
951 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
952
953 if (bitmap == NULL)
954 return NULL;
955
956 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
957 bitmap->s_nr_groups = nr_groups;
958 return bitmap;
959 }
960
961 static int udf_fill_partdesc_info(struct super_block *sb,
962 struct partitionDesc *p, int p_index)
963 {
964 struct udf_part_map *map;
965 struct udf_sb_info *sbi = UDF_SB(sb);
966 struct partitionHeaderDesc *phd;
967
968 map = &sbi->s_partmaps[p_index];
969
970 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
971 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
972
973 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
974 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
975 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
976 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
977 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
978 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
979 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
980 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
981
982 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
983 p_index, map->s_partition_type,
984 map->s_partition_root, map->s_partition_len);
985
986 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
987 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
988 return 0;
989
990 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
991 if (phd->unallocSpaceTable.extLength) {
992 struct kernel_lb_addr loc = {
993 .logicalBlockNum = le32_to_cpu(
994 phd->unallocSpaceTable.extPosition),
995 .partitionReferenceNum = p_index,
996 };
997
998 map->s_uspace.s_table = udf_iget(sb, &loc);
999 if (!map->s_uspace.s_table) {
1000 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1001 p_index);
1002 return 1;
1003 }
1004 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1005 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1006 p_index, map->s_uspace.s_table->i_ino);
1007 }
1008
1009 if (phd->unallocSpaceBitmap.extLength) {
1010 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1011 if (!bitmap)
1012 return 1;
1013 map->s_uspace.s_bitmap = bitmap;
1014 bitmap->s_extLength = le32_to_cpu(
1015 phd->unallocSpaceBitmap.extLength);
1016 bitmap->s_extPosition = le32_to_cpu(
1017 phd->unallocSpaceBitmap.extPosition);
1018 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1019 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1020 p_index, bitmap->s_extPosition);
1021 }
1022
1023 if (phd->partitionIntegrityTable.extLength)
1024 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1025
1026 if (phd->freedSpaceTable.extLength) {
1027 struct kernel_lb_addr loc = {
1028 .logicalBlockNum = le32_to_cpu(
1029 phd->freedSpaceTable.extPosition),
1030 .partitionReferenceNum = p_index,
1031 };
1032
1033 map->s_fspace.s_table = udf_iget(sb, &loc);
1034 if (!map->s_fspace.s_table) {
1035 udf_debug("cannot load freedSpaceTable (part %d)\n",
1036 p_index);
1037 return 1;
1038 }
1039
1040 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1041 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1042 p_index, map->s_fspace.s_table->i_ino);
1043 }
1044
1045 if (phd->freedSpaceBitmap.extLength) {
1046 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1047 if (!bitmap)
1048 return 1;
1049 map->s_fspace.s_bitmap = bitmap;
1050 bitmap->s_extLength = le32_to_cpu(
1051 phd->freedSpaceBitmap.extLength);
1052 bitmap->s_extPosition = le32_to_cpu(
1053 phd->freedSpaceBitmap.extPosition);
1054 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1055 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1056 p_index, bitmap->s_extPosition);
1057 }
1058 return 0;
1059 }
1060
1061 static void udf_find_vat_block(struct super_block *sb, int p_index,
1062 int type1_index, sector_t start_block)
1063 {
1064 struct udf_sb_info *sbi = UDF_SB(sb);
1065 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1066 sector_t vat_block;
1067 struct kernel_lb_addr ino;
1068
1069 /*
1070 * VAT file entry is in the last recorded block. Some broken disks have
1071 * it a few blocks before so try a bit harder...
1072 */
1073 ino.partitionReferenceNum = type1_index;
1074 for (vat_block = start_block;
1075 vat_block >= map->s_partition_root &&
1076 vat_block >= start_block - 3 &&
1077 !sbi->s_vat_inode; vat_block--) {
1078 ino.logicalBlockNum = vat_block - map->s_partition_root;
1079 sbi->s_vat_inode = udf_iget(sb, &ino);
1080 }
1081 }
1082
1083 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1084 {
1085 struct udf_sb_info *sbi = UDF_SB(sb);
1086 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1087 struct buffer_head *bh = NULL;
1088 struct udf_inode_info *vati;
1089 uint32_t pos;
1090 struct virtualAllocationTable20 *vat20;
1091 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1092
1093 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1094 if (!sbi->s_vat_inode &&
1095 sbi->s_last_block != blocks - 1) {
1096 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1097 (unsigned long)sbi->s_last_block,
1098 (unsigned long)blocks - 1);
1099 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1100 }
1101 if (!sbi->s_vat_inode)
1102 return 1;
1103
1104 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1105 map->s_type_specific.s_virtual.s_start_offset = 0;
1106 map->s_type_specific.s_virtual.s_num_entries =
1107 (sbi->s_vat_inode->i_size - 36) >> 2;
1108 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1109 vati = UDF_I(sbi->s_vat_inode);
1110 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1111 pos = udf_block_map(sbi->s_vat_inode, 0);
1112 bh = sb_bread(sb, pos);
1113 if (!bh)
1114 return 1;
1115 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1116 } else {
1117 vat20 = (struct virtualAllocationTable20 *)
1118 vati->i_ext.i_data;
1119 }
1120
1121 map->s_type_specific.s_virtual.s_start_offset =
1122 le16_to_cpu(vat20->lengthHeader);
1123 map->s_type_specific.s_virtual.s_num_entries =
1124 (sbi->s_vat_inode->i_size -
1125 map->s_type_specific.s_virtual.
1126 s_start_offset) >> 2;
1127 brelse(bh);
1128 }
1129 return 0;
1130 }
1131
1132 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1133 {
1134 struct buffer_head *bh;
1135 struct partitionDesc *p;
1136 struct udf_part_map *map;
1137 struct udf_sb_info *sbi = UDF_SB(sb);
1138 int i, type1_idx;
1139 uint16_t partitionNumber;
1140 uint16_t ident;
1141 int ret = 0;
1142
1143 bh = udf_read_tagged(sb, block, block, &ident);
1144 if (!bh)
1145 return 1;
1146 if (ident != TAG_IDENT_PD)
1147 goto out_bh;
1148
1149 p = (struct partitionDesc *)bh->b_data;
1150 partitionNumber = le16_to_cpu(p->partitionNumber);
1151
1152 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1153 for (i = 0; i < sbi->s_partitions; i++) {
1154 map = &sbi->s_partmaps[i];
1155 udf_debug("Searching map: (%d == %d)\n",
1156 map->s_partition_num, partitionNumber);
1157 if (map->s_partition_num == partitionNumber &&
1158 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1159 map->s_partition_type == UDF_SPARABLE_MAP15))
1160 break;
1161 }
1162
1163 if (i >= sbi->s_partitions) {
1164 udf_debug("Partition (%d) not found in partition map\n",
1165 partitionNumber);
1166 goto out_bh;
1167 }
1168
1169 ret = udf_fill_partdesc_info(sb, p, i);
1170
1171 /*
1172 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1173 * PHYSICAL partitions are already set up
1174 */
1175 type1_idx = i;
1176 for (i = 0; i < sbi->s_partitions; i++) {
1177 map = &sbi->s_partmaps[i];
1178
1179 if (map->s_partition_num == partitionNumber &&
1180 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1181 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1182 map->s_partition_type == UDF_METADATA_MAP25))
1183 break;
1184 }
1185
1186 if (i >= sbi->s_partitions)
1187 goto out_bh;
1188
1189 ret = udf_fill_partdesc_info(sb, p, i);
1190 if (ret)
1191 goto out_bh;
1192
1193 if (map->s_partition_type == UDF_METADATA_MAP25) {
1194 ret = udf_load_metadata_files(sb, i);
1195 if (ret) {
1196 udf_err(sb, "error loading MetaData partition map %d\n",
1197 i);
1198 goto out_bh;
1199 }
1200 } else {
1201 ret = udf_load_vat(sb, i, type1_idx);
1202 if (ret)
1203 goto out_bh;
1204 /*
1205 * Mark filesystem read-only if we have a partition with
1206 * virtual map since we don't handle writing to it (we
1207 * overwrite blocks instead of relocating them).
1208 */
1209 sb->s_flags |= MS_RDONLY;
1210 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1211 }
1212 out_bh:
1213 /* In case loading failed, we handle cleanup in udf_fill_super */
1214 brelse(bh);
1215 return ret;
1216 }
1217
1218 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1219 struct kernel_lb_addr *fileset)
1220 {
1221 struct logicalVolDesc *lvd;
1222 int i, j, offset;
1223 uint8_t type;
1224 struct udf_sb_info *sbi = UDF_SB(sb);
1225 struct genericPartitionMap *gpm;
1226 uint16_t ident;
1227 struct buffer_head *bh;
1228 int ret = 0;
1229
1230 bh = udf_read_tagged(sb, block, block, &ident);
1231 if (!bh)
1232 return 1;
1233 BUG_ON(ident != TAG_IDENT_LVD);
1234 lvd = (struct logicalVolDesc *)bh->b_data;
1235
1236 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1237 if (i != 0) {
1238 ret = i;
1239 goto out_bh;
1240 }
1241
1242 for (i = 0, offset = 0;
1243 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1244 i++, offset += gpm->partitionMapLength) {
1245 struct udf_part_map *map = &sbi->s_partmaps[i];
1246 gpm = (struct genericPartitionMap *)
1247 &(lvd->partitionMaps[offset]);
1248 type = gpm->partitionMapType;
1249 if (type == 1) {
1250 struct genericPartitionMap1 *gpm1 =
1251 (struct genericPartitionMap1 *)gpm;
1252 map->s_partition_type = UDF_TYPE1_MAP15;
1253 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1254 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1255 map->s_partition_func = NULL;
1256 } else if (type == 2) {
1257 struct udfPartitionMap2 *upm2 =
1258 (struct udfPartitionMap2 *)gpm;
1259 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1260 strlen(UDF_ID_VIRTUAL))) {
1261 u16 suf =
1262 le16_to_cpu(((__le16 *)upm2->partIdent.
1263 identSuffix)[0]);
1264 if (suf < 0x0200) {
1265 map->s_partition_type =
1266 UDF_VIRTUAL_MAP15;
1267 map->s_partition_func =
1268 udf_get_pblock_virt15;
1269 } else {
1270 map->s_partition_type =
1271 UDF_VIRTUAL_MAP20;
1272 map->s_partition_func =
1273 udf_get_pblock_virt20;
1274 }
1275 } else if (!strncmp(upm2->partIdent.ident,
1276 UDF_ID_SPARABLE,
1277 strlen(UDF_ID_SPARABLE))) {
1278 uint32_t loc;
1279 struct sparingTable *st;
1280 struct sparablePartitionMap *spm =
1281 (struct sparablePartitionMap *)gpm;
1282
1283 map->s_partition_type = UDF_SPARABLE_MAP15;
1284 map->s_type_specific.s_sparing.s_packet_len =
1285 le16_to_cpu(spm->packetLength);
1286 for (j = 0; j < spm->numSparingTables; j++) {
1287 struct buffer_head *bh2;
1288
1289 loc = le32_to_cpu(
1290 spm->locSparingTable[j]);
1291 bh2 = udf_read_tagged(sb, loc, loc,
1292 &ident);
1293 map->s_type_specific.s_sparing.
1294 s_spar_map[j] = bh2;
1295
1296 if (bh2 == NULL)
1297 continue;
1298
1299 st = (struct sparingTable *)bh2->b_data;
1300 if (ident != 0 || strncmp(
1301 st->sparingIdent.ident,
1302 UDF_ID_SPARING,
1303 strlen(UDF_ID_SPARING))) {
1304 brelse(bh2);
1305 map->s_type_specific.s_sparing.
1306 s_spar_map[j] = NULL;
1307 }
1308 }
1309 map->s_partition_func = udf_get_pblock_spar15;
1310 } else if (!strncmp(upm2->partIdent.ident,
1311 UDF_ID_METADATA,
1312 strlen(UDF_ID_METADATA))) {
1313 struct udf_meta_data *mdata =
1314 &map->s_type_specific.s_metadata;
1315 struct metadataPartitionMap *mdm =
1316 (struct metadataPartitionMap *)
1317 &(lvd->partitionMaps[offset]);
1318 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1319 i, type, UDF_ID_METADATA);
1320
1321 map->s_partition_type = UDF_METADATA_MAP25;
1322 map->s_partition_func = udf_get_pblock_meta25;
1323
1324 mdata->s_meta_file_loc =
1325 le32_to_cpu(mdm->metadataFileLoc);
1326 mdata->s_mirror_file_loc =
1327 le32_to_cpu(mdm->metadataMirrorFileLoc);
1328 mdata->s_bitmap_file_loc =
1329 le32_to_cpu(mdm->metadataBitmapFileLoc);
1330 mdata->s_alloc_unit_size =
1331 le32_to_cpu(mdm->allocUnitSize);
1332 mdata->s_align_unit_size =
1333 le16_to_cpu(mdm->alignUnitSize);
1334 if (mdm->flags & 0x01)
1335 mdata->s_flags |= MF_DUPLICATE_MD;
1336
1337 udf_debug("Metadata Ident suffix=0x%x\n",
1338 le16_to_cpu(*(__le16 *)
1339 mdm->partIdent.identSuffix));
1340 udf_debug("Metadata part num=%d\n",
1341 le16_to_cpu(mdm->partitionNum));
1342 udf_debug("Metadata part alloc unit size=%d\n",
1343 le32_to_cpu(mdm->allocUnitSize));
1344 udf_debug("Metadata file loc=%d\n",
1345 le32_to_cpu(mdm->metadataFileLoc));
1346 udf_debug("Mirror file loc=%d\n",
1347 le32_to_cpu(mdm->metadataMirrorFileLoc));
1348 udf_debug("Bitmap file loc=%d\n",
1349 le32_to_cpu(mdm->metadataBitmapFileLoc));
1350 udf_debug("Flags: %d %d\n",
1351 mdata->s_flags, mdm->flags);
1352 } else {
1353 udf_debug("Unknown ident: %s\n",
1354 upm2->partIdent.ident);
1355 continue;
1356 }
1357 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1358 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1359 }
1360 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1361 i, map->s_partition_num, type, map->s_volumeseqnum);
1362 }
1363
1364 if (fileset) {
1365 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1366
1367 *fileset = lelb_to_cpu(la->extLocation);
1368 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1369 fileset->logicalBlockNum,
1370 fileset->partitionReferenceNum);
1371 }
1372 if (lvd->integritySeqExt.extLength)
1373 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1374
1375 out_bh:
1376 brelse(bh);
1377 return ret;
1378 }
1379
1380 /*
1381 * udf_load_logicalvolint
1382 *
1383 */
1384 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1385 {
1386 struct buffer_head *bh = NULL;
1387 uint16_t ident;
1388 struct udf_sb_info *sbi = UDF_SB(sb);
1389 struct logicalVolIntegrityDesc *lvid;
1390
1391 while (loc.extLength > 0 &&
1392 (bh = udf_read_tagged(sb, loc.extLocation,
1393 loc.extLocation, &ident)) &&
1394 ident == TAG_IDENT_LVID) {
1395 sbi->s_lvid_bh = bh;
1396 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1397
1398 if (lvid->nextIntegrityExt.extLength)
1399 udf_load_logicalvolint(sb,
1400 leea_to_cpu(lvid->nextIntegrityExt));
1401
1402 if (sbi->s_lvid_bh != bh)
1403 brelse(bh);
1404 loc.extLength -= sb->s_blocksize;
1405 loc.extLocation++;
1406 }
1407 if (sbi->s_lvid_bh != bh)
1408 brelse(bh);
1409 }
1410
1411 /*
1412 * udf_process_sequence
1413 *
1414 * PURPOSE
1415 * Process a main/reserve volume descriptor sequence.
1416 *
1417 * PRE-CONDITIONS
1418 * sb Pointer to _locked_ superblock.
1419 * block First block of first extent of the sequence.
1420 * lastblock Lastblock of first extent of the sequence.
1421 *
1422 * HISTORY
1423 * July 1, 1997 - Andrew E. Mileski
1424 * Written, tested, and released.
1425 */
1426 static noinline int udf_process_sequence(struct super_block *sb, long block,
1427 long lastblock, struct kernel_lb_addr *fileset)
1428 {
1429 struct buffer_head *bh = NULL;
1430 struct udf_vds_record vds[VDS_POS_LENGTH];
1431 struct udf_vds_record *curr;
1432 struct generic_desc *gd;
1433 struct volDescPtr *vdp;
1434 int done = 0;
1435 uint32_t vdsn;
1436 uint16_t ident;
1437 long next_s = 0, next_e = 0;
1438
1439 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1440
1441 /*
1442 * Read the main descriptor sequence and find which descriptors
1443 * are in it.
1444 */
1445 for (; (!done && block <= lastblock); block++) {
1446
1447 bh = udf_read_tagged(sb, block, block, &ident);
1448 if (!bh) {
1449 udf_err(sb,
1450 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1451 (unsigned long long)block);
1452 return 1;
1453 }
1454
1455 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1456 gd = (struct generic_desc *)bh->b_data;
1457 vdsn = le32_to_cpu(gd->volDescSeqNum);
1458 switch (ident) {
1459 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1460 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1461 if (vdsn >= curr->volDescSeqNum) {
1462 curr->volDescSeqNum = vdsn;
1463 curr->block = block;
1464 }
1465 break;
1466 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1467 curr = &vds[VDS_POS_VOL_DESC_PTR];
1468 if (vdsn >= curr->volDescSeqNum) {
1469 curr->volDescSeqNum = vdsn;
1470 curr->block = block;
1471
1472 vdp = (struct volDescPtr *)bh->b_data;
1473 next_s = le32_to_cpu(
1474 vdp->nextVolDescSeqExt.extLocation);
1475 next_e = le32_to_cpu(
1476 vdp->nextVolDescSeqExt.extLength);
1477 next_e = next_e >> sb->s_blocksize_bits;
1478 next_e += next_s;
1479 }
1480 break;
1481 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1482 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1483 if (vdsn >= curr->volDescSeqNum) {
1484 curr->volDescSeqNum = vdsn;
1485 curr->block = block;
1486 }
1487 break;
1488 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1489 curr = &vds[VDS_POS_PARTITION_DESC];
1490 if (!curr->block)
1491 curr->block = block;
1492 break;
1493 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1494 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1495 if (vdsn >= curr->volDescSeqNum) {
1496 curr->volDescSeqNum = vdsn;
1497 curr->block = block;
1498 }
1499 break;
1500 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1501 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1502 if (vdsn >= curr->volDescSeqNum) {
1503 curr->volDescSeqNum = vdsn;
1504 curr->block = block;
1505 }
1506 break;
1507 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1508 vds[VDS_POS_TERMINATING_DESC].block = block;
1509 if (next_e) {
1510 block = next_s;
1511 lastblock = next_e;
1512 next_s = next_e = 0;
1513 } else
1514 done = 1;
1515 break;
1516 }
1517 brelse(bh);
1518 }
1519 /*
1520 * Now read interesting descriptors again and process them
1521 * in a suitable order
1522 */
1523 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1524 udf_err(sb, "Primary Volume Descriptor not found!\n");
1525 return 1;
1526 }
1527 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1528 return 1;
1529
1530 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1531 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1532 return 1;
1533
1534 if (vds[VDS_POS_PARTITION_DESC].block) {
1535 /*
1536 * We rescan the whole descriptor sequence to find
1537 * partition descriptor blocks and process them.
1538 */
1539 for (block = vds[VDS_POS_PARTITION_DESC].block;
1540 block < vds[VDS_POS_TERMINATING_DESC].block;
1541 block++)
1542 if (udf_load_partdesc(sb, block))
1543 return 1;
1544 }
1545
1546 return 0;
1547 }
1548
1549 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1550 struct kernel_lb_addr *fileset)
1551 {
1552 struct anchorVolDescPtr *anchor;
1553 long main_s, main_e, reserve_s, reserve_e;
1554
1555 anchor = (struct anchorVolDescPtr *)bh->b_data;
1556
1557 /* Locate the main sequence */
1558 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1559 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1560 main_e = main_e >> sb->s_blocksize_bits;
1561 main_e += main_s;
1562
1563 /* Locate the reserve sequence */
1564 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1565 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1566 reserve_e = reserve_e >> sb->s_blocksize_bits;
1567 reserve_e += reserve_s;
1568
1569 /* Process the main & reserve sequences */
1570 /* responsible for finding the PartitionDesc(s) */
1571 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1572 return 1;
1573 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1574 }
1575
1576 /*
1577 * Check whether there is an anchor block in the given block and
1578 * load Volume Descriptor Sequence if so.
1579 */
1580 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1581 struct kernel_lb_addr *fileset)
1582 {
1583 struct buffer_head *bh;
1584 uint16_t ident;
1585 int ret;
1586
1587 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1588 udf_fixed_to_variable(block) >=
1589 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1590 return 0;
1591
1592 bh = udf_read_tagged(sb, block, block, &ident);
1593 if (!bh)
1594 return 0;
1595 if (ident != TAG_IDENT_AVDP) {
1596 brelse(bh);
1597 return 0;
1598 }
1599 ret = udf_load_sequence(sb, bh, fileset);
1600 brelse(bh);
1601 return ret;
1602 }
1603
1604 /* Search for an anchor volume descriptor pointer */
1605 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1606 struct kernel_lb_addr *fileset)
1607 {
1608 sector_t last[6];
1609 int i;
1610 struct udf_sb_info *sbi = UDF_SB(sb);
1611 int last_count = 0;
1612
1613 /* First try user provided anchor */
1614 if (sbi->s_anchor) {
1615 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1616 return lastblock;
1617 }
1618 /*
1619 * according to spec, anchor is in either:
1620 * block 256
1621 * lastblock-256
1622 * lastblock
1623 * however, if the disc isn't closed, it could be 512.
1624 */
1625 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1626 return lastblock;
1627 /*
1628 * The trouble is which block is the last one. Drives often misreport
1629 * this so we try various possibilities.
1630 */
1631 last[last_count++] = lastblock;
1632 if (lastblock >= 1)
1633 last[last_count++] = lastblock - 1;
1634 last[last_count++] = lastblock + 1;
1635 if (lastblock >= 2)
1636 last[last_count++] = lastblock - 2;
1637 if (lastblock >= 150)
1638 last[last_count++] = lastblock - 150;
1639 if (lastblock >= 152)
1640 last[last_count++] = lastblock - 152;
1641
1642 for (i = 0; i < last_count; i++) {
1643 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1644 sb->s_blocksize_bits)
1645 continue;
1646 if (udf_check_anchor_block(sb, last[i], fileset))
1647 return last[i];
1648 if (last[i] < 256)
1649 continue;
1650 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1651 return last[i];
1652 }
1653
1654 /* Finally try block 512 in case media is open */
1655 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1656 return last[0];
1657 return 0;
1658 }
1659
1660 /*
1661 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1662 * area specified by it. The function expects sbi->s_lastblock to be the last
1663 * block on the media.
1664 *
1665 * Return 1 if ok, 0 if not found.
1666 *
1667 */
1668 static int udf_find_anchor(struct super_block *sb,
1669 struct kernel_lb_addr *fileset)
1670 {
1671 sector_t lastblock;
1672 struct udf_sb_info *sbi = UDF_SB(sb);
1673
1674 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1675 if (lastblock)
1676 goto out;
1677
1678 /* No anchor found? Try VARCONV conversion of block numbers */
1679 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1680 /* Firstly, we try to not convert number of the last block */
1681 lastblock = udf_scan_anchors(sb,
1682 udf_variable_to_fixed(sbi->s_last_block),
1683 fileset);
1684 if (lastblock)
1685 goto out;
1686
1687 /* Secondly, we try with converted number of the last block */
1688 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1689 if (!lastblock) {
1690 /* VARCONV didn't help. Clear it. */
1691 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1692 return 0;
1693 }
1694 out:
1695 sbi->s_last_block = lastblock;
1696 return 1;
1697 }
1698
1699 /*
1700 * Check Volume Structure Descriptor, find Anchor block and load Volume
1701 * Descriptor Sequence
1702 */
1703 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1704 int silent, struct kernel_lb_addr *fileset)
1705 {
1706 struct udf_sb_info *sbi = UDF_SB(sb);
1707 loff_t nsr_off;
1708
1709 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1710 if (!silent)
1711 udf_warn(sb, "Bad block size\n");
1712 return 0;
1713 }
1714 sbi->s_last_block = uopt->lastblock;
1715 if (!uopt->novrs) {
1716 /* Check that it is NSR02 compliant */
1717 nsr_off = udf_check_vsd(sb);
1718 if (!nsr_off) {
1719 if (!silent)
1720 udf_warn(sb, "No VRS found\n");
1721 return 0;
1722 }
1723 if (nsr_off == -1)
1724 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1725 if (!sbi->s_last_block)
1726 sbi->s_last_block = udf_get_last_block(sb);
1727 } else {
1728 udf_debug("Validity check skipped because of novrs option\n");
1729 }
1730
1731 /* Look for anchor block and load Volume Descriptor Sequence */
1732 sbi->s_anchor = uopt->anchor;
1733 if (!udf_find_anchor(sb, fileset)) {
1734 if (!silent)
1735 udf_warn(sb, "No anchor found\n");
1736 return 0;
1737 }
1738 return 1;
1739 }
1740
1741 static void udf_open_lvid(struct super_block *sb)
1742 {
1743 struct udf_sb_info *sbi = UDF_SB(sb);
1744 struct buffer_head *bh = sbi->s_lvid_bh;
1745 struct logicalVolIntegrityDesc *lvid;
1746 struct logicalVolIntegrityDescImpUse *lvidiu;
1747
1748 if (!bh)
1749 return;
1750
1751 mutex_lock(&sbi->s_alloc_mutex);
1752 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1753 lvidiu = udf_sb_lvidiu(sbi);
1754
1755 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1756 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1757 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1758 CURRENT_TIME);
1759 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1760
1761 lvid->descTag.descCRC = cpu_to_le16(
1762 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1763 le16_to_cpu(lvid->descTag.descCRCLength)));
1764
1765 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1766 mark_buffer_dirty(bh);
1767 sbi->s_lvid_dirty = 0;
1768 mutex_unlock(&sbi->s_alloc_mutex);
1769 }
1770
1771 static void udf_close_lvid(struct super_block *sb)
1772 {
1773 struct udf_sb_info *sbi = UDF_SB(sb);
1774 struct buffer_head *bh = sbi->s_lvid_bh;
1775 struct logicalVolIntegrityDesc *lvid;
1776 struct logicalVolIntegrityDescImpUse *lvidiu;
1777
1778 if (!bh)
1779 return;
1780
1781 mutex_lock(&sbi->s_alloc_mutex);
1782 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1783 lvidiu = udf_sb_lvidiu(sbi);
1784 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1787 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1788 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1789 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1790 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1791 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1792 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1793 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1794
1795 lvid->descTag.descCRC = cpu_to_le16(
1796 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1797 le16_to_cpu(lvid->descTag.descCRCLength)));
1798
1799 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1800 /*
1801 * We set buffer uptodate unconditionally here to avoid spurious
1802 * warnings from mark_buffer_dirty() when previous EIO has marked
1803 * the buffer as !uptodate
1804 */
1805 set_buffer_uptodate(bh);
1806 mark_buffer_dirty(bh);
1807 sbi->s_lvid_dirty = 0;
1808 mutex_unlock(&sbi->s_alloc_mutex);
1809 }
1810
1811 u64 lvid_get_unique_id(struct super_block *sb)
1812 {
1813 struct buffer_head *bh;
1814 struct udf_sb_info *sbi = UDF_SB(sb);
1815 struct logicalVolIntegrityDesc *lvid;
1816 struct logicalVolHeaderDesc *lvhd;
1817 u64 uniqueID;
1818 u64 ret;
1819
1820 bh = sbi->s_lvid_bh;
1821 if (!bh)
1822 return 0;
1823
1824 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1825 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1826
1827 mutex_lock(&sbi->s_alloc_mutex);
1828 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1829 if (!(++uniqueID & 0xFFFFFFFF))
1830 uniqueID += 16;
1831 lvhd->uniqueID = cpu_to_le64(uniqueID);
1832 mutex_unlock(&sbi->s_alloc_mutex);
1833 mark_buffer_dirty(bh);
1834
1835 return ret;
1836 }
1837
1838 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1839 {
1840 int i;
1841 int nr_groups = bitmap->s_nr_groups;
1842 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1843 nr_groups);
1844
1845 for (i = 0; i < nr_groups; i++)
1846 if (bitmap->s_block_bitmap[i])
1847 brelse(bitmap->s_block_bitmap[i]);
1848
1849 if (size <= PAGE_SIZE)
1850 kfree(bitmap);
1851 else
1852 vfree(bitmap);
1853 }
1854
1855 static void udf_free_partition(struct udf_part_map *map)
1856 {
1857 int i;
1858 struct udf_meta_data *mdata;
1859
1860 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1861 iput(map->s_uspace.s_table);
1862 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1863 iput(map->s_fspace.s_table);
1864 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1865 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1866 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1867 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1868 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1869 for (i = 0; i < 4; i++)
1870 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1871 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1872 mdata = &map->s_type_specific.s_metadata;
1873 iput(mdata->s_metadata_fe);
1874 mdata->s_metadata_fe = NULL;
1875
1876 iput(mdata->s_mirror_fe);
1877 mdata->s_mirror_fe = NULL;
1878
1879 iput(mdata->s_bitmap_fe);
1880 mdata->s_bitmap_fe = NULL;
1881 }
1882 }
1883
1884 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1885 {
1886 int i;
1887 int ret;
1888 struct inode *inode = NULL;
1889 struct udf_options uopt;
1890 struct kernel_lb_addr rootdir, fileset;
1891 struct udf_sb_info *sbi;
1892
1893 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1894 uopt.uid = -1;
1895 uopt.gid = -1;
1896 uopt.umask = 0;
1897 uopt.fmode = UDF_INVALID_MODE;
1898 uopt.dmode = UDF_INVALID_MODE;
1899
1900 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1901 if (!sbi)
1902 return -ENOMEM;
1903
1904 sb->s_fs_info = sbi;
1905
1906 mutex_init(&sbi->s_alloc_mutex);
1907
1908 if (!udf_parse_options((char *)options, &uopt, false))
1909 goto error_out;
1910
1911 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1912 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1913 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1914 goto error_out;
1915 }
1916 #ifdef CONFIG_UDF_NLS
1917 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1918 uopt.nls_map = load_nls_default();
1919 if (!uopt.nls_map)
1920 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1921 else
1922 udf_debug("Using default NLS map\n");
1923 }
1924 #endif
1925 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1926 uopt.flags |= (1 << UDF_FLAG_UTF8);
1927
1928 fileset.logicalBlockNum = 0xFFFFFFFF;
1929 fileset.partitionReferenceNum = 0xFFFF;
1930
1931 sbi->s_flags = uopt.flags;
1932 sbi->s_uid = uopt.uid;
1933 sbi->s_gid = uopt.gid;
1934 sbi->s_umask = uopt.umask;
1935 sbi->s_fmode = uopt.fmode;
1936 sbi->s_dmode = uopt.dmode;
1937 sbi->s_nls_map = uopt.nls_map;
1938 rwlock_init(&sbi->s_cred_lock);
1939
1940 if (uopt.session == 0xFFFFFFFF)
1941 sbi->s_session = udf_get_last_session(sb);
1942 else
1943 sbi->s_session = uopt.session;
1944
1945 udf_debug("Multi-session=%d\n", sbi->s_session);
1946
1947 /* Fill in the rest of the superblock */
1948 sb->s_op = &udf_sb_ops;
1949 sb->s_export_op = &udf_export_ops;
1950
1951 sb->s_dirt = 0;
1952 sb->s_magic = UDF_SUPER_MAGIC;
1953 sb->s_time_gran = 1000;
1954
1955 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1956 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1957 } else {
1958 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1959 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1960 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1961 if (!silent)
1962 pr_notice("Rescanning with blocksize %d\n",
1963 UDF_DEFAULT_BLOCKSIZE);
1964 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1965 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1966 }
1967 }
1968 if (!ret) {
1969 udf_warn(sb, "No partition found (1)\n");
1970 goto error_out;
1971 }
1972
1973 udf_debug("Lastblock=%d\n", sbi->s_last_block);
1974
1975 if (sbi->s_lvid_bh) {
1976 struct logicalVolIntegrityDescImpUse *lvidiu =
1977 udf_sb_lvidiu(sbi);
1978 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1979 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1980 /* uint16_t maxUDFWriteRev =
1981 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1982
1983 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1984 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
1985 le16_to_cpu(lvidiu->minUDFReadRev),
1986 UDF_MAX_READ_VERSION);
1987 goto error_out;
1988 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1989 sb->s_flags |= MS_RDONLY;
1990
1991 sbi->s_udfrev = minUDFWriteRev;
1992
1993 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1994 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1995 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1996 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1997 }
1998
1999 if (!sbi->s_partitions) {
2000 udf_warn(sb, "No partition found (2)\n");
2001 goto error_out;
2002 }
2003
2004 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2005 UDF_PART_FLAG_READ_ONLY) {
2006 pr_notice("Partition marked readonly; forcing readonly mount\n");
2007 sb->s_flags |= MS_RDONLY;
2008 }
2009
2010 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2011 udf_warn(sb, "No fileset found\n");
2012 goto error_out;
2013 }
2014
2015 if (!silent) {
2016 struct timestamp ts;
2017 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2018 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2019 sbi->s_volume_ident,
2020 le16_to_cpu(ts.year), ts.month, ts.day,
2021 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2022 }
2023 if (!(sb->s_flags & MS_RDONLY))
2024 udf_open_lvid(sb);
2025
2026 /* Assign the root inode */
2027 /* assign inodes by physical block number */
2028 /* perhaps it's not extensible enough, but for now ... */
2029 inode = udf_iget(sb, &rootdir);
2030 if (!inode) {
2031 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2032 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2033 goto error_out;
2034 }
2035
2036 /* Allocate a dentry for the root inode */
2037 sb->s_root = d_make_root(inode);
2038 if (!sb->s_root) {
2039 udf_err(sb, "Couldn't allocate root dentry\n");
2040 goto error_out;
2041 }
2042 sb->s_maxbytes = MAX_LFS_FILESIZE;
2043 sb->s_max_links = UDF_MAX_LINKS;
2044 return 0;
2045
2046 error_out:
2047 if (sbi->s_vat_inode)
2048 iput(sbi->s_vat_inode);
2049 if (sbi->s_partitions)
2050 for (i = 0; i < sbi->s_partitions; i++)
2051 udf_free_partition(&sbi->s_partmaps[i]);
2052 #ifdef CONFIG_UDF_NLS
2053 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2054 unload_nls(sbi->s_nls_map);
2055 #endif
2056 if (!(sb->s_flags & MS_RDONLY))
2057 udf_close_lvid(sb);
2058 brelse(sbi->s_lvid_bh);
2059
2060 kfree(sbi->s_partmaps);
2061 kfree(sbi);
2062 sb->s_fs_info = NULL;
2063
2064 return -EINVAL;
2065 }
2066
2067 void _udf_err(struct super_block *sb, const char *function,
2068 const char *fmt, ...)
2069 {
2070 struct va_format vaf;
2071 va_list args;
2072
2073 /* mark sb error */
2074 if (!(sb->s_flags & MS_RDONLY))
2075 sb->s_dirt = 1;
2076
2077 va_start(args, fmt);
2078
2079 vaf.fmt = fmt;
2080 vaf.va = &args;
2081
2082 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2083
2084 va_end(args);
2085 }
2086
2087 void _udf_warn(struct super_block *sb, const char *function,
2088 const char *fmt, ...)
2089 {
2090 struct va_format vaf;
2091 va_list args;
2092
2093 va_start(args, fmt);
2094
2095 vaf.fmt = fmt;
2096 vaf.va = &args;
2097
2098 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2099
2100 va_end(args);
2101 }
2102
2103 static void udf_put_super(struct super_block *sb)
2104 {
2105 int i;
2106 struct udf_sb_info *sbi;
2107
2108 sbi = UDF_SB(sb);
2109
2110 if (sbi->s_vat_inode)
2111 iput(sbi->s_vat_inode);
2112 if (sbi->s_partitions)
2113 for (i = 0; i < sbi->s_partitions; i++)
2114 udf_free_partition(&sbi->s_partmaps[i]);
2115 #ifdef CONFIG_UDF_NLS
2116 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2117 unload_nls(sbi->s_nls_map);
2118 #endif
2119 if (!(sb->s_flags & MS_RDONLY))
2120 udf_close_lvid(sb);
2121 brelse(sbi->s_lvid_bh);
2122 kfree(sbi->s_partmaps);
2123 kfree(sb->s_fs_info);
2124 sb->s_fs_info = NULL;
2125 }
2126
2127 static int udf_sync_fs(struct super_block *sb, int wait)
2128 {
2129 struct udf_sb_info *sbi = UDF_SB(sb);
2130
2131 mutex_lock(&sbi->s_alloc_mutex);
2132 if (sbi->s_lvid_dirty) {
2133 /*
2134 * Blockdevice will be synced later so we don't have to submit
2135 * the buffer for IO
2136 */
2137 mark_buffer_dirty(sbi->s_lvid_bh);
2138 sb->s_dirt = 0;
2139 sbi->s_lvid_dirty = 0;
2140 }
2141 mutex_unlock(&sbi->s_alloc_mutex);
2142
2143 return 0;
2144 }
2145
2146 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2147 {
2148 struct super_block *sb = dentry->d_sb;
2149 struct udf_sb_info *sbi = UDF_SB(sb);
2150 struct logicalVolIntegrityDescImpUse *lvidiu;
2151 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2152
2153 if (sbi->s_lvid_bh != NULL)
2154 lvidiu = udf_sb_lvidiu(sbi);
2155 else
2156 lvidiu = NULL;
2157
2158 buf->f_type = UDF_SUPER_MAGIC;
2159 buf->f_bsize = sb->s_blocksize;
2160 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2161 buf->f_bfree = udf_count_free(sb);
2162 buf->f_bavail = buf->f_bfree;
2163 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2164 le32_to_cpu(lvidiu->numDirs)) : 0)
2165 + buf->f_bfree;
2166 buf->f_ffree = buf->f_bfree;
2167 buf->f_namelen = UDF_NAME_LEN - 2;
2168 buf->f_fsid.val[0] = (u32)id;
2169 buf->f_fsid.val[1] = (u32)(id >> 32);
2170
2171 return 0;
2172 }
2173
2174 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2175 struct udf_bitmap *bitmap)
2176 {
2177 struct buffer_head *bh = NULL;
2178 unsigned int accum = 0;
2179 int index;
2180 int block = 0, newblock;
2181 struct kernel_lb_addr loc;
2182 uint32_t bytes;
2183 uint8_t *ptr;
2184 uint16_t ident;
2185 struct spaceBitmapDesc *bm;
2186
2187 loc.logicalBlockNum = bitmap->s_extPosition;
2188 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2189 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2190
2191 if (!bh) {
2192 udf_err(sb, "udf_count_free failed\n");
2193 goto out;
2194 } else if (ident != TAG_IDENT_SBD) {
2195 brelse(bh);
2196 udf_err(sb, "udf_count_free failed\n");
2197 goto out;
2198 }
2199
2200 bm = (struct spaceBitmapDesc *)bh->b_data;
2201 bytes = le32_to_cpu(bm->numOfBytes);
2202 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2203 ptr = (uint8_t *)bh->b_data;
2204
2205 while (bytes > 0) {
2206 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2207 accum += bitmap_weight((const unsigned long *)(ptr + index),
2208 cur_bytes * 8);
2209 bytes -= cur_bytes;
2210 if (bytes) {
2211 brelse(bh);
2212 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2213 bh = udf_tread(sb, newblock);
2214 if (!bh) {
2215 udf_debug("read failed\n");
2216 goto out;
2217 }
2218 index = 0;
2219 ptr = (uint8_t *)bh->b_data;
2220 }
2221 }
2222 brelse(bh);
2223 out:
2224 return accum;
2225 }
2226
2227 static unsigned int udf_count_free_table(struct super_block *sb,
2228 struct inode *table)
2229 {
2230 unsigned int accum = 0;
2231 uint32_t elen;
2232 struct kernel_lb_addr eloc;
2233 int8_t etype;
2234 struct extent_position epos;
2235
2236 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2237 epos.block = UDF_I(table)->i_location;
2238 epos.offset = sizeof(struct unallocSpaceEntry);
2239 epos.bh = NULL;
2240
2241 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2242 accum += (elen >> table->i_sb->s_blocksize_bits);
2243
2244 brelse(epos.bh);
2245 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2246
2247 return accum;
2248 }
2249
2250 static unsigned int udf_count_free(struct super_block *sb)
2251 {
2252 unsigned int accum = 0;
2253 struct udf_sb_info *sbi;
2254 struct udf_part_map *map;
2255
2256 sbi = UDF_SB(sb);
2257 if (sbi->s_lvid_bh) {
2258 struct logicalVolIntegrityDesc *lvid =
2259 (struct logicalVolIntegrityDesc *)
2260 sbi->s_lvid_bh->b_data;
2261 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2262 accum = le32_to_cpu(
2263 lvid->freeSpaceTable[sbi->s_partition]);
2264 if (accum == 0xFFFFFFFF)
2265 accum = 0;
2266 }
2267 }
2268
2269 if (accum)
2270 return accum;
2271
2272 map = &sbi->s_partmaps[sbi->s_partition];
2273 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2274 accum += udf_count_free_bitmap(sb,
2275 map->s_uspace.s_bitmap);
2276 }
2277 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2278 accum += udf_count_free_bitmap(sb,
2279 map->s_fspace.s_bitmap);
2280 }
2281 if (accum)
2282 return accum;
2283
2284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2285 accum += udf_count_free_table(sb,
2286 map->s_uspace.s_table);
2287 }
2288 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2289 accum += udf_count_free_table(sb,
2290 map->s_fspace.s_table);
2291 }
2292
2293 return accum;
2294 }