Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / ubifs / super.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40
41 /*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45 #define UBIFS_KMALLOC_OK (128*1024)
46
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .shrink = ubifs_shrinker,
53 .seeks = DEFAULT_SEEKS,
54 };
55
56 /**
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
60 *
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
65 */
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68 int err;
69 const struct ubifs_inode *ui = ubifs_inode(inode);
70
71 if (inode->i_size > c->max_inode_sz) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode->i_size);
74 return 1;
75 }
76
77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 ubifs_err("unknown compression type %d", ui->compr_type);
79 return 2;
80 }
81
82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 return 3;
84
85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 return 4;
87
88 if (ui->xattr && !S_ISREG(inode->i_mode))
89 return 5;
90
91 if (!ubifs_compr_present(ui->compr_type)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
93 inode->i_ino, ubifs_compr_name(ui->compr_type));
94 }
95
96 err = dbg_check_dir(c, inode);
97 return err;
98 }
99
100 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
101 {
102 int err;
103 union ubifs_key key;
104 struct ubifs_ino_node *ino;
105 struct ubifs_info *c = sb->s_fs_info;
106 struct inode *inode;
107 struct ubifs_inode *ui;
108
109 dbg_gen("inode %lu", inum);
110
111 inode = iget_locked(sb, inum);
112 if (!inode)
113 return ERR_PTR(-ENOMEM);
114 if (!(inode->i_state & I_NEW))
115 return inode;
116 ui = ubifs_inode(inode);
117
118 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
119 if (!ino) {
120 err = -ENOMEM;
121 goto out;
122 }
123
124 ino_key_init(c, &key, inode->i_ino);
125
126 err = ubifs_tnc_lookup(c, &key, ino);
127 if (err)
128 goto out_ino;
129
130 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
131 set_nlink(inode, le32_to_cpu(ino->nlink));
132 i_uid_write(inode, le32_to_cpu(ino->uid));
133 i_gid_write(inode, le32_to_cpu(ino->gid));
134 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
135 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
136 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
137 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
138 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
139 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
140 inode->i_mode = le32_to_cpu(ino->mode);
141 inode->i_size = le64_to_cpu(ino->size);
142
143 ui->data_len = le32_to_cpu(ino->data_len);
144 ui->flags = le32_to_cpu(ino->flags);
145 ui->compr_type = le16_to_cpu(ino->compr_type);
146 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
147 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
148 ui->xattr_size = le32_to_cpu(ino->xattr_size);
149 ui->xattr_names = le32_to_cpu(ino->xattr_names);
150 ui->synced_i_size = ui->ui_size = inode->i_size;
151
152 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
153
154 err = validate_inode(c, inode);
155 if (err)
156 goto out_invalid;
157
158 /* Disable read-ahead */
159 inode->i_mapping->backing_dev_info = &c->bdi;
160
161 switch (inode->i_mode & S_IFMT) {
162 case S_IFREG:
163 inode->i_mapping->a_ops = &ubifs_file_address_operations;
164 inode->i_op = &ubifs_file_inode_operations;
165 inode->i_fop = &ubifs_file_operations;
166 if (ui->xattr) {
167 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
168 if (!ui->data) {
169 err = -ENOMEM;
170 goto out_ino;
171 }
172 memcpy(ui->data, ino->data, ui->data_len);
173 ((char *)ui->data)[ui->data_len] = '\0';
174 } else if (ui->data_len != 0) {
175 err = 10;
176 goto out_invalid;
177 }
178 break;
179 case S_IFDIR:
180 inode->i_op = &ubifs_dir_inode_operations;
181 inode->i_fop = &ubifs_dir_operations;
182 if (ui->data_len != 0) {
183 err = 11;
184 goto out_invalid;
185 }
186 break;
187 case S_IFLNK:
188 inode->i_op = &ubifs_symlink_inode_operations;
189 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
190 err = 12;
191 goto out_invalid;
192 }
193 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
194 if (!ui->data) {
195 err = -ENOMEM;
196 goto out_ino;
197 }
198 memcpy(ui->data, ino->data, ui->data_len);
199 ((char *)ui->data)[ui->data_len] = '\0';
200 break;
201 case S_IFBLK:
202 case S_IFCHR:
203 {
204 dev_t rdev;
205 union ubifs_dev_desc *dev;
206
207 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
208 if (!ui->data) {
209 err = -ENOMEM;
210 goto out_ino;
211 }
212
213 dev = (union ubifs_dev_desc *)ino->data;
214 if (ui->data_len == sizeof(dev->new))
215 rdev = new_decode_dev(le32_to_cpu(dev->new));
216 else if (ui->data_len == sizeof(dev->huge))
217 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
218 else {
219 err = 13;
220 goto out_invalid;
221 }
222 memcpy(ui->data, ino->data, ui->data_len);
223 inode->i_op = &ubifs_file_inode_operations;
224 init_special_inode(inode, inode->i_mode, rdev);
225 break;
226 }
227 case S_IFSOCK:
228 case S_IFIFO:
229 inode->i_op = &ubifs_file_inode_operations;
230 init_special_inode(inode, inode->i_mode, 0);
231 if (ui->data_len != 0) {
232 err = 14;
233 goto out_invalid;
234 }
235 break;
236 default:
237 err = 15;
238 goto out_invalid;
239 }
240
241 kfree(ino);
242 ubifs_set_inode_flags(inode);
243 unlock_new_inode(inode);
244 return inode;
245
246 out_invalid:
247 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
248 ubifs_dump_node(c, ino);
249 ubifs_dump_inode(c, inode);
250 err = -EINVAL;
251 out_ino:
252 kfree(ino);
253 out:
254 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
255 iget_failed(inode);
256 return ERR_PTR(err);
257 }
258
259 static struct inode *ubifs_alloc_inode(struct super_block *sb)
260 {
261 struct ubifs_inode *ui;
262
263 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
264 if (!ui)
265 return NULL;
266
267 memset((void *)ui + sizeof(struct inode), 0,
268 sizeof(struct ubifs_inode) - sizeof(struct inode));
269 mutex_init(&ui->ui_mutex);
270 spin_lock_init(&ui->ui_lock);
271 return &ui->vfs_inode;
272 };
273
274 static void ubifs_i_callback(struct rcu_head *head)
275 {
276 struct inode *inode = container_of(head, struct inode, i_rcu);
277 struct ubifs_inode *ui = ubifs_inode(inode);
278 kmem_cache_free(ubifs_inode_slab, ui);
279 }
280
281 static void ubifs_destroy_inode(struct inode *inode)
282 {
283 struct ubifs_inode *ui = ubifs_inode(inode);
284
285 kfree(ui->data);
286 call_rcu(&inode->i_rcu, ubifs_i_callback);
287 }
288
289 /*
290 * Note, Linux write-back code calls this without 'i_mutex'.
291 */
292 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293 {
294 int err = 0;
295 struct ubifs_info *c = inode->i_sb->s_fs_info;
296 struct ubifs_inode *ui = ubifs_inode(inode);
297
298 ubifs_assert(!ui->xattr);
299 if (is_bad_inode(inode))
300 return 0;
301
302 mutex_lock(&ui->ui_mutex);
303 /*
304 * Due to races between write-back forced by budgeting
305 * (see 'sync_some_inodes()') and background write-back, the inode may
306 * have already been synchronized, do not do this again. This might
307 * also happen if it was synchronized in an VFS operation, e.g.
308 * 'ubifs_link()'.
309 */
310 if (!ui->dirty) {
311 mutex_unlock(&ui->ui_mutex);
312 return 0;
313 }
314
315 /*
316 * As an optimization, do not write orphan inodes to the media just
317 * because this is not needed.
318 */
319 dbg_gen("inode %lu, mode %#x, nlink %u",
320 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321 if (inode->i_nlink) {
322 err = ubifs_jnl_write_inode(c, inode);
323 if (err)
324 ubifs_err("can't write inode %lu, error %d",
325 inode->i_ino, err);
326 else
327 err = dbg_check_inode_size(c, inode, ui->ui_size);
328 }
329
330 ui->dirty = 0;
331 mutex_unlock(&ui->ui_mutex);
332 ubifs_release_dirty_inode_budget(c, ui);
333 return err;
334 }
335
336 static void ubifs_evict_inode(struct inode *inode)
337 {
338 int err;
339 struct ubifs_info *c = inode->i_sb->s_fs_info;
340 struct ubifs_inode *ui = ubifs_inode(inode);
341
342 if (ui->xattr)
343 /*
344 * Extended attribute inode deletions are fully handled in
345 * 'ubifs_removexattr()'. These inodes are special and have
346 * limited usage, so there is nothing to do here.
347 */
348 goto out;
349
350 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
351 ubifs_assert(!atomic_read(&inode->i_count));
352
353 truncate_inode_pages(&inode->i_data, 0);
354
355 if (inode->i_nlink)
356 goto done;
357
358 if (is_bad_inode(inode))
359 goto out;
360
361 ui->ui_size = inode->i_size = 0;
362 err = ubifs_jnl_delete_inode(c, inode);
363 if (err)
364 /*
365 * Worst case we have a lost orphan inode wasting space, so a
366 * simple error message is OK here.
367 */
368 ubifs_err("can't delete inode %lu, error %d",
369 inode->i_ino, err);
370
371 out:
372 if (ui->dirty)
373 ubifs_release_dirty_inode_budget(c, ui);
374 else {
375 /* We've deleted something - clean the "no space" flags */
376 c->bi.nospace = c->bi.nospace_rp = 0;
377 smp_wmb();
378 }
379 done:
380 clear_inode(inode);
381 }
382
383 static void ubifs_dirty_inode(struct inode *inode, int flags)
384 {
385 struct ubifs_inode *ui = ubifs_inode(inode);
386
387 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
388 if (!ui->dirty) {
389 ui->dirty = 1;
390 dbg_gen("inode %lu", inode->i_ino);
391 }
392 }
393
394 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
395 {
396 struct ubifs_info *c = dentry->d_sb->s_fs_info;
397 unsigned long long free;
398 __le32 *uuid = (__le32 *)c->uuid;
399
400 free = ubifs_get_free_space(c);
401 dbg_gen("free space %lld bytes (%lld blocks)",
402 free, free >> UBIFS_BLOCK_SHIFT);
403
404 buf->f_type = UBIFS_SUPER_MAGIC;
405 buf->f_bsize = UBIFS_BLOCK_SIZE;
406 buf->f_blocks = c->block_cnt;
407 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
408 if (free > c->report_rp_size)
409 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
410 else
411 buf->f_bavail = 0;
412 buf->f_files = 0;
413 buf->f_ffree = 0;
414 buf->f_namelen = UBIFS_MAX_NLEN;
415 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
416 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
417 ubifs_assert(buf->f_bfree <= c->block_cnt);
418 return 0;
419 }
420
421 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
422 {
423 struct ubifs_info *c = root->d_sb->s_fs_info;
424
425 if (c->mount_opts.unmount_mode == 2)
426 seq_printf(s, ",fast_unmount");
427 else if (c->mount_opts.unmount_mode == 1)
428 seq_printf(s, ",norm_unmount");
429
430 if (c->mount_opts.bulk_read == 2)
431 seq_printf(s, ",bulk_read");
432 else if (c->mount_opts.bulk_read == 1)
433 seq_printf(s, ",no_bulk_read");
434
435 if (c->mount_opts.chk_data_crc == 2)
436 seq_printf(s, ",chk_data_crc");
437 else if (c->mount_opts.chk_data_crc == 1)
438 seq_printf(s, ",no_chk_data_crc");
439
440 if (c->mount_opts.override_compr) {
441 seq_printf(s, ",compr=%s",
442 ubifs_compr_name(c->mount_opts.compr_type));
443 }
444
445 return 0;
446 }
447
448 static int ubifs_sync_fs(struct super_block *sb, int wait)
449 {
450 int i, err;
451 struct ubifs_info *c = sb->s_fs_info;
452
453 /*
454 * Zero @wait is just an advisory thing to help the file system shove
455 * lots of data into the queues, and there will be the second
456 * '->sync_fs()' call, with non-zero @wait.
457 */
458 if (!wait)
459 return 0;
460
461 /*
462 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 * do this if it waits for an already running commit.
464 */
465 for (i = 0; i < c->jhead_cnt; i++) {
466 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
467 if (err)
468 return err;
469 }
470
471 /*
472 * Strictly speaking, it is not necessary to commit the journal here,
473 * synchronizing write-buffers would be enough. But committing makes
474 * UBIFS free space predictions much more accurate, so we want to let
475 * the user be able to get more accurate results of 'statfs()' after
476 * they synchronize the file system.
477 */
478 err = ubifs_run_commit(c);
479 if (err)
480 return err;
481
482 return ubi_sync(c->vi.ubi_num);
483 }
484
485 /**
486 * init_constants_early - initialize UBIFS constants.
487 * @c: UBIFS file-system description object
488 *
489 * This function initialize UBIFS constants which do not need the superblock to
490 * be read. It also checks that the UBI volume satisfies basic UBIFS
491 * requirements. Returns zero in case of success and a negative error code in
492 * case of failure.
493 */
494 static int init_constants_early(struct ubifs_info *c)
495 {
496 if (c->vi.corrupted) {
497 ubifs_warn("UBI volume is corrupted - read-only mode");
498 c->ro_media = 1;
499 }
500
501 if (c->di.ro_mode) {
502 ubifs_msg("read-only UBI device");
503 c->ro_media = 1;
504 }
505
506 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
507 ubifs_msg("static UBI volume - read-only mode");
508 c->ro_media = 1;
509 }
510
511 c->leb_cnt = c->vi.size;
512 c->leb_size = c->vi.usable_leb_size;
513 c->leb_start = c->di.leb_start;
514 c->half_leb_size = c->leb_size / 2;
515 c->min_io_size = c->di.min_io_size;
516 c->min_io_shift = fls(c->min_io_size) - 1;
517 c->max_write_size = c->di.max_write_size;
518 c->max_write_shift = fls(c->max_write_size) - 1;
519
520 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
521 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
522 c->leb_size, UBIFS_MIN_LEB_SZ);
523 return -EINVAL;
524 }
525
526 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
527 ubifs_err("too few LEBs (%d), min. is %d",
528 c->leb_cnt, UBIFS_MIN_LEB_CNT);
529 return -EINVAL;
530 }
531
532 if (!is_power_of_2(c->min_io_size)) {
533 ubifs_err("bad min. I/O size %d", c->min_io_size);
534 return -EINVAL;
535 }
536
537 /*
538 * Maximum write size has to be greater or equivalent to min. I/O
539 * size, and be multiple of min. I/O size.
540 */
541 if (c->max_write_size < c->min_io_size ||
542 c->max_write_size % c->min_io_size ||
543 !is_power_of_2(c->max_write_size)) {
544 ubifs_err("bad write buffer size %d for %d min. I/O unit",
545 c->max_write_size, c->min_io_size);
546 return -EINVAL;
547 }
548
549 /*
550 * UBIFS aligns all node to 8-byte boundary, so to make function in
551 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
552 * less than 8.
553 */
554 if (c->min_io_size < 8) {
555 c->min_io_size = 8;
556 c->min_io_shift = 3;
557 if (c->max_write_size < c->min_io_size) {
558 c->max_write_size = c->min_io_size;
559 c->max_write_shift = c->min_io_shift;
560 }
561 }
562
563 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
564 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
565
566 /*
567 * Initialize node length ranges which are mostly needed for node
568 * length validation.
569 */
570 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
571 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
572 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
573 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
574 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
575 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
576
577 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
578 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
579 c->ranges[UBIFS_ORPH_NODE].min_len =
580 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
581 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
582 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
583 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
584 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
585 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
586 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
587 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
588 /*
589 * Minimum indexing node size is amended later when superblock is
590 * read and the key length is known.
591 */
592 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
593 /*
594 * Maximum indexing node size is amended later when superblock is
595 * read and the fanout is known.
596 */
597 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
598
599 /*
600 * Initialize dead and dark LEB space watermarks. See gc.c for comments
601 * about these values.
602 */
603 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
604 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
605
606 /*
607 * Calculate how many bytes would be wasted at the end of LEB if it was
608 * fully filled with data nodes of maximum size. This is used in
609 * calculations when reporting free space.
610 */
611 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
612
613 /* Buffer size for bulk-reads */
614 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
615 if (c->max_bu_buf_len > c->leb_size)
616 c->max_bu_buf_len = c->leb_size;
617 return 0;
618 }
619
620 /**
621 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
622 * @c: UBIFS file-system description object
623 * @lnum: LEB the write-buffer was synchronized to
624 * @free: how many free bytes left in this LEB
625 * @pad: how many bytes were padded
626 *
627 * This is a callback function which is called by the I/O unit when the
628 * write-buffer is synchronized. We need this to correctly maintain space
629 * accounting in bud logical eraseblocks. This function returns zero in case of
630 * success and a negative error code in case of failure.
631 *
632 * This function actually belongs to the journal, but we keep it here because
633 * we want to keep it static.
634 */
635 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
636 {
637 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
638 }
639
640 /*
641 * init_constants_sb - initialize UBIFS constants.
642 * @c: UBIFS file-system description object
643 *
644 * This is a helper function which initializes various UBIFS constants after
645 * the superblock has been read. It also checks various UBIFS parameters and
646 * makes sure they are all right. Returns zero in case of success and a
647 * negative error code in case of failure.
648 */
649 static int init_constants_sb(struct ubifs_info *c)
650 {
651 int tmp, err;
652 long long tmp64;
653
654 c->main_bytes = (long long)c->main_lebs * c->leb_size;
655 c->max_znode_sz = sizeof(struct ubifs_znode) +
656 c->fanout * sizeof(struct ubifs_zbranch);
657
658 tmp = ubifs_idx_node_sz(c, 1);
659 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
660 c->min_idx_node_sz = ALIGN(tmp, 8);
661
662 tmp = ubifs_idx_node_sz(c, c->fanout);
663 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
664 c->max_idx_node_sz = ALIGN(tmp, 8);
665
666 /* Make sure LEB size is large enough to fit full commit */
667 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
668 tmp = ALIGN(tmp, c->min_io_size);
669 if (tmp > c->leb_size) {
670 ubifs_err("too small LEB size %d, at least %d needed",
671 c->leb_size, tmp);
672 return -EINVAL;
673 }
674
675 /*
676 * Make sure that the log is large enough to fit reference nodes for
677 * all buds plus one reserved LEB.
678 */
679 tmp64 = c->max_bud_bytes + c->leb_size - 1;
680 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
681 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
682 tmp /= c->leb_size;
683 tmp += 1;
684 if (c->log_lebs < tmp) {
685 ubifs_err("too small log %d LEBs, required min. %d LEBs",
686 c->log_lebs, tmp);
687 return -EINVAL;
688 }
689
690 /*
691 * When budgeting we assume worst-case scenarios when the pages are not
692 * be compressed and direntries are of the maximum size.
693 *
694 * Note, data, which may be stored in inodes is budgeted separately, so
695 * it is not included into 'c->bi.inode_budget'.
696 */
697 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
698 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
699 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
700
701 /*
702 * When the amount of flash space used by buds becomes
703 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
704 * The writers are unblocked when the commit is finished. To avoid
705 * writers to be blocked UBIFS initiates background commit in advance,
706 * when number of bud bytes becomes above the limit defined below.
707 */
708 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
709
710 /*
711 * Ensure minimum journal size. All the bytes in the journal heads are
712 * considered to be used, when calculating the current journal usage.
713 * Consequently, if the journal is too small, UBIFS will treat it as
714 * always full.
715 */
716 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
717 if (c->bg_bud_bytes < tmp64)
718 c->bg_bud_bytes = tmp64;
719 if (c->max_bud_bytes < tmp64 + c->leb_size)
720 c->max_bud_bytes = tmp64 + c->leb_size;
721
722 err = ubifs_calc_lpt_geom(c);
723 if (err)
724 return err;
725
726 /* Initialize effective LEB size used in budgeting calculations */
727 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
728 return 0;
729 }
730
731 /*
732 * init_constants_master - initialize UBIFS constants.
733 * @c: UBIFS file-system description object
734 *
735 * This is a helper function which initializes various UBIFS constants after
736 * the master node has been read. It also checks various UBIFS parameters and
737 * makes sure they are all right.
738 */
739 static void init_constants_master(struct ubifs_info *c)
740 {
741 long long tmp64;
742
743 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
744 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
745
746 /*
747 * Calculate total amount of FS blocks. This number is not used
748 * internally because it does not make much sense for UBIFS, but it is
749 * necessary to report something for the 'statfs()' call.
750 *
751 * Subtract the LEB reserved for GC, the LEB which is reserved for
752 * deletions, minimum LEBs for the index, and assume only one journal
753 * head is available.
754 */
755 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
756 tmp64 *= (long long)c->leb_size - c->leb_overhead;
757 tmp64 = ubifs_reported_space(c, tmp64);
758 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
759 }
760
761 /**
762 * take_gc_lnum - reserve GC LEB.
763 * @c: UBIFS file-system description object
764 *
765 * This function ensures that the LEB reserved for garbage collection is marked
766 * as "taken" in lprops. We also have to set free space to LEB size and dirty
767 * space to zero, because lprops may contain out-of-date information if the
768 * file-system was un-mounted before it has been committed. This function
769 * returns zero in case of success and a negative error code in case of
770 * failure.
771 */
772 static int take_gc_lnum(struct ubifs_info *c)
773 {
774 int err;
775
776 if (c->gc_lnum == -1) {
777 ubifs_err("no LEB for GC");
778 return -EINVAL;
779 }
780
781 /* And we have to tell lprops that this LEB is taken */
782 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
783 LPROPS_TAKEN, 0, 0);
784 return err;
785 }
786
787 /**
788 * alloc_wbufs - allocate write-buffers.
789 * @c: UBIFS file-system description object
790 *
791 * This helper function allocates and initializes UBIFS write-buffers. Returns
792 * zero in case of success and %-ENOMEM in case of failure.
793 */
794 static int alloc_wbufs(struct ubifs_info *c)
795 {
796 int i, err;
797
798 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
799 GFP_KERNEL);
800 if (!c->jheads)
801 return -ENOMEM;
802
803 /* Initialize journal heads */
804 for (i = 0; i < c->jhead_cnt; i++) {
805 INIT_LIST_HEAD(&c->jheads[i].buds_list);
806 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
807 if (err)
808 return err;
809
810 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
811 c->jheads[i].wbuf.jhead = i;
812 c->jheads[i].grouped = 1;
813 }
814
815 /*
816 * Garbage Collector head does not need to be synchronized by timer.
817 * Also GC head nodes are not grouped.
818 */
819 c->jheads[GCHD].wbuf.no_timer = 1;
820 c->jheads[GCHD].grouped = 0;
821
822 return 0;
823 }
824
825 /**
826 * free_wbufs - free write-buffers.
827 * @c: UBIFS file-system description object
828 */
829 static void free_wbufs(struct ubifs_info *c)
830 {
831 int i;
832
833 if (c->jheads) {
834 for (i = 0; i < c->jhead_cnt; i++) {
835 kfree(c->jheads[i].wbuf.buf);
836 kfree(c->jheads[i].wbuf.inodes);
837 }
838 kfree(c->jheads);
839 c->jheads = NULL;
840 }
841 }
842
843 /**
844 * free_orphans - free orphans.
845 * @c: UBIFS file-system description object
846 */
847 static void free_orphans(struct ubifs_info *c)
848 {
849 struct ubifs_orphan *orph;
850
851 while (c->orph_dnext) {
852 orph = c->orph_dnext;
853 c->orph_dnext = orph->dnext;
854 list_del(&orph->list);
855 kfree(orph);
856 }
857
858 while (!list_empty(&c->orph_list)) {
859 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
860 list_del(&orph->list);
861 kfree(orph);
862 ubifs_err("orphan list not empty at unmount");
863 }
864
865 vfree(c->orph_buf);
866 c->orph_buf = NULL;
867 }
868
869 /**
870 * free_buds - free per-bud objects.
871 * @c: UBIFS file-system description object
872 */
873 static void free_buds(struct ubifs_info *c)
874 {
875 struct rb_node *this = c->buds.rb_node;
876 struct ubifs_bud *bud;
877
878 while (this) {
879 if (this->rb_left)
880 this = this->rb_left;
881 else if (this->rb_right)
882 this = this->rb_right;
883 else {
884 bud = rb_entry(this, struct ubifs_bud, rb);
885 this = rb_parent(this);
886 if (this) {
887 if (this->rb_left == &bud->rb)
888 this->rb_left = NULL;
889 else
890 this->rb_right = NULL;
891 }
892 kfree(bud);
893 }
894 }
895 }
896
897 /**
898 * check_volume_empty - check if the UBI volume is empty.
899 * @c: UBIFS file-system description object
900 *
901 * This function checks if the UBIFS volume is empty by looking if its LEBs are
902 * mapped or not. The result of checking is stored in the @c->empty variable.
903 * Returns zero in case of success and a negative error code in case of
904 * failure.
905 */
906 static int check_volume_empty(struct ubifs_info *c)
907 {
908 int lnum, err;
909
910 c->empty = 1;
911 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
912 err = ubifs_is_mapped(c, lnum);
913 if (unlikely(err < 0))
914 return err;
915 if (err == 1) {
916 c->empty = 0;
917 break;
918 }
919
920 cond_resched();
921 }
922
923 return 0;
924 }
925
926 /*
927 * UBIFS mount options.
928 *
929 * Opt_fast_unmount: do not run a journal commit before un-mounting
930 * Opt_norm_unmount: run a journal commit before un-mounting
931 * Opt_bulk_read: enable bulk-reads
932 * Opt_no_bulk_read: disable bulk-reads
933 * Opt_chk_data_crc: check CRCs when reading data nodes
934 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
935 * Opt_override_compr: override default compressor
936 * Opt_err: just end of array marker
937 */
938 enum {
939 Opt_fast_unmount,
940 Opt_norm_unmount,
941 Opt_bulk_read,
942 Opt_no_bulk_read,
943 Opt_chk_data_crc,
944 Opt_no_chk_data_crc,
945 Opt_override_compr,
946 Opt_err,
947 };
948
949 static const match_table_t tokens = {
950 {Opt_fast_unmount, "fast_unmount"},
951 {Opt_norm_unmount, "norm_unmount"},
952 {Opt_bulk_read, "bulk_read"},
953 {Opt_no_bulk_read, "no_bulk_read"},
954 {Opt_chk_data_crc, "chk_data_crc"},
955 {Opt_no_chk_data_crc, "no_chk_data_crc"},
956 {Opt_override_compr, "compr=%s"},
957 {Opt_err, NULL},
958 };
959
960 /**
961 * parse_standard_option - parse a standard mount option.
962 * @option: the option to parse
963 *
964 * Normally, standard mount options like "sync" are passed to file-systems as
965 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
966 * be present in the options string. This function tries to deal with this
967 * situation and parse standard options. Returns 0 if the option was not
968 * recognized, and the corresponding integer flag if it was.
969 *
970 * UBIFS is only interested in the "sync" option, so do not check for anything
971 * else.
972 */
973 static int parse_standard_option(const char *option)
974 {
975 ubifs_msg("parse %s", option);
976 if (!strcmp(option, "sync"))
977 return MS_SYNCHRONOUS;
978 return 0;
979 }
980
981 /**
982 * ubifs_parse_options - parse mount parameters.
983 * @c: UBIFS file-system description object
984 * @options: parameters to parse
985 * @is_remount: non-zero if this is FS re-mount
986 *
987 * This function parses UBIFS mount options and returns zero in case success
988 * and a negative error code in case of failure.
989 */
990 static int ubifs_parse_options(struct ubifs_info *c, char *options,
991 int is_remount)
992 {
993 char *p;
994 substring_t args[MAX_OPT_ARGS];
995
996 if (!options)
997 return 0;
998
999 while ((p = strsep(&options, ","))) {
1000 int token;
1001
1002 if (!*p)
1003 continue;
1004
1005 token = match_token(p, tokens, args);
1006 switch (token) {
1007 /*
1008 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1009 * We accept them in order to be backward-compatible. But this
1010 * should be removed at some point.
1011 */
1012 case Opt_fast_unmount:
1013 c->mount_opts.unmount_mode = 2;
1014 break;
1015 case Opt_norm_unmount:
1016 c->mount_opts.unmount_mode = 1;
1017 break;
1018 case Opt_bulk_read:
1019 c->mount_opts.bulk_read = 2;
1020 c->bulk_read = 1;
1021 break;
1022 case Opt_no_bulk_read:
1023 c->mount_opts.bulk_read = 1;
1024 c->bulk_read = 0;
1025 break;
1026 case Opt_chk_data_crc:
1027 c->mount_opts.chk_data_crc = 2;
1028 c->no_chk_data_crc = 0;
1029 break;
1030 case Opt_no_chk_data_crc:
1031 c->mount_opts.chk_data_crc = 1;
1032 c->no_chk_data_crc = 1;
1033 break;
1034 case Opt_override_compr:
1035 {
1036 char *name = match_strdup(&args[0]);
1037
1038 if (!name)
1039 return -ENOMEM;
1040 if (!strcmp(name, "none"))
1041 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1042 else if (!strcmp(name, "lzo"))
1043 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1044 else if (!strcmp(name, "zlib"))
1045 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1046 else {
1047 ubifs_err("unknown compressor \"%s\"", name);
1048 kfree(name);
1049 return -EINVAL;
1050 }
1051 kfree(name);
1052 c->mount_opts.override_compr = 1;
1053 c->default_compr = c->mount_opts.compr_type;
1054 break;
1055 }
1056 default:
1057 {
1058 unsigned long flag;
1059 struct super_block *sb = c->vfs_sb;
1060
1061 flag = parse_standard_option(p);
1062 if (!flag) {
1063 ubifs_err("unrecognized mount option \"%s\" or missing value",
1064 p);
1065 return -EINVAL;
1066 }
1067 sb->s_flags |= flag;
1068 break;
1069 }
1070 }
1071 }
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * destroy_journal - destroy journal data structures.
1078 * @c: UBIFS file-system description object
1079 *
1080 * This function destroys journal data structures including those that may have
1081 * been created by recovery functions.
1082 */
1083 static void destroy_journal(struct ubifs_info *c)
1084 {
1085 while (!list_empty(&c->unclean_leb_list)) {
1086 struct ubifs_unclean_leb *ucleb;
1087
1088 ucleb = list_entry(c->unclean_leb_list.next,
1089 struct ubifs_unclean_leb, list);
1090 list_del(&ucleb->list);
1091 kfree(ucleb);
1092 }
1093 while (!list_empty(&c->old_buds)) {
1094 struct ubifs_bud *bud;
1095
1096 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1097 list_del(&bud->list);
1098 kfree(bud);
1099 }
1100 ubifs_destroy_idx_gc(c);
1101 ubifs_destroy_size_tree(c);
1102 ubifs_tnc_close(c);
1103 free_buds(c);
1104 }
1105
1106 /**
1107 * bu_init - initialize bulk-read information.
1108 * @c: UBIFS file-system description object
1109 */
1110 static void bu_init(struct ubifs_info *c)
1111 {
1112 ubifs_assert(c->bulk_read == 1);
1113
1114 if (c->bu.buf)
1115 return; /* Already initialized */
1116
1117 again:
1118 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1119 if (!c->bu.buf) {
1120 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1121 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1122 goto again;
1123 }
1124
1125 /* Just disable bulk-read */
1126 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1127 c->max_bu_buf_len);
1128 c->mount_opts.bulk_read = 1;
1129 c->bulk_read = 0;
1130 return;
1131 }
1132 }
1133
1134 /**
1135 * check_free_space - check if there is enough free space to mount.
1136 * @c: UBIFS file-system description object
1137 *
1138 * This function makes sure UBIFS has enough free space to be mounted in
1139 * read/write mode. UBIFS must always have some free space to allow deletions.
1140 */
1141 static int check_free_space(struct ubifs_info *c)
1142 {
1143 ubifs_assert(c->dark_wm > 0);
1144 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1145 ubifs_err("insufficient free space to mount in R/W mode");
1146 ubifs_dump_budg(c, &c->bi);
1147 ubifs_dump_lprops(c);
1148 return -ENOSPC;
1149 }
1150 return 0;
1151 }
1152
1153 /**
1154 * mount_ubifs - mount UBIFS file-system.
1155 * @c: UBIFS file-system description object
1156 *
1157 * This function mounts UBIFS file system. Returns zero in case of success and
1158 * a negative error code in case of failure.
1159 */
1160 static int mount_ubifs(struct ubifs_info *c)
1161 {
1162 int err;
1163 long long x, y;
1164 size_t sz;
1165
1166 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1167 err = init_constants_early(c);
1168 if (err)
1169 return err;
1170
1171 err = ubifs_debugging_init(c);
1172 if (err)
1173 return err;
1174
1175 err = check_volume_empty(c);
1176 if (err)
1177 goto out_free;
1178
1179 if (c->empty && (c->ro_mount || c->ro_media)) {
1180 /*
1181 * This UBI volume is empty, and read-only, or the file system
1182 * is mounted read-only - we cannot format it.
1183 */
1184 ubifs_err("can't format empty UBI volume: read-only %s",
1185 c->ro_media ? "UBI volume" : "mount");
1186 err = -EROFS;
1187 goto out_free;
1188 }
1189
1190 if (c->ro_media && !c->ro_mount) {
1191 ubifs_err("cannot mount read-write - read-only media");
1192 err = -EROFS;
1193 goto out_free;
1194 }
1195
1196 /*
1197 * The requirement for the buffer is that it should fit indexing B-tree
1198 * height amount of integers. We assume the height if the TNC tree will
1199 * never exceed 64.
1200 */
1201 err = -ENOMEM;
1202 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1203 if (!c->bottom_up_buf)
1204 goto out_free;
1205
1206 c->sbuf = vmalloc(c->leb_size);
1207 if (!c->sbuf)
1208 goto out_free;
1209
1210 if (!c->ro_mount) {
1211 c->ileb_buf = vmalloc(c->leb_size);
1212 if (!c->ileb_buf)
1213 goto out_free;
1214 }
1215
1216 if (c->bulk_read == 1)
1217 bu_init(c);
1218
1219 if (!c->ro_mount) {
1220 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1221 GFP_KERNEL);
1222 if (!c->write_reserve_buf)
1223 goto out_free;
1224 }
1225
1226 c->mounting = 1;
1227
1228 err = ubifs_read_superblock(c);
1229 if (err)
1230 goto out_free;
1231
1232 /*
1233 * Make sure the compressor which is set as default in the superblock
1234 * or overridden by mount options is actually compiled in.
1235 */
1236 if (!ubifs_compr_present(c->default_compr)) {
1237 ubifs_err("'compressor \"%s\" is not compiled in",
1238 ubifs_compr_name(c->default_compr));
1239 err = -ENOTSUPP;
1240 goto out_free;
1241 }
1242
1243 err = init_constants_sb(c);
1244 if (err)
1245 goto out_free;
1246
1247 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1248 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1249 c->cbuf = kmalloc(sz, GFP_NOFS);
1250 if (!c->cbuf) {
1251 err = -ENOMEM;
1252 goto out_free;
1253 }
1254
1255 err = alloc_wbufs(c);
1256 if (err)
1257 goto out_cbuf;
1258
1259 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1260 if (!c->ro_mount) {
1261 /* Create background thread */
1262 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1263 if (IS_ERR(c->bgt)) {
1264 err = PTR_ERR(c->bgt);
1265 c->bgt = NULL;
1266 ubifs_err("cannot spawn \"%s\", error %d",
1267 c->bgt_name, err);
1268 goto out_wbufs;
1269 }
1270 wake_up_process(c->bgt);
1271 }
1272
1273 err = ubifs_read_master(c);
1274 if (err)
1275 goto out_master;
1276
1277 init_constants_master(c);
1278
1279 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1280 ubifs_msg("recovery needed");
1281 c->need_recovery = 1;
1282 }
1283
1284 if (c->need_recovery && !c->ro_mount) {
1285 err = ubifs_recover_inl_heads(c, c->sbuf);
1286 if (err)
1287 goto out_master;
1288 }
1289
1290 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1291 if (err)
1292 goto out_master;
1293
1294 if (!c->ro_mount && c->space_fixup) {
1295 err = ubifs_fixup_free_space(c);
1296 if (err)
1297 goto out_lpt;
1298 }
1299
1300 if (!c->ro_mount) {
1301 /*
1302 * Set the "dirty" flag so that if we reboot uncleanly we
1303 * will notice this immediately on the next mount.
1304 */
1305 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1306 err = ubifs_write_master(c);
1307 if (err)
1308 goto out_lpt;
1309 }
1310
1311 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1312 if (err)
1313 goto out_lpt;
1314
1315 err = ubifs_replay_journal(c);
1316 if (err)
1317 goto out_journal;
1318
1319 /* Calculate 'min_idx_lebs' after journal replay */
1320 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1321
1322 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1323 if (err)
1324 goto out_orphans;
1325
1326 if (!c->ro_mount) {
1327 int lnum;
1328
1329 err = check_free_space(c);
1330 if (err)
1331 goto out_orphans;
1332
1333 /* Check for enough log space */
1334 lnum = c->lhead_lnum + 1;
1335 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1336 lnum = UBIFS_LOG_LNUM;
1337 if (lnum == c->ltail_lnum) {
1338 err = ubifs_consolidate_log(c);
1339 if (err)
1340 goto out_orphans;
1341 }
1342
1343 if (c->need_recovery) {
1344 err = ubifs_recover_size(c);
1345 if (err)
1346 goto out_orphans;
1347 err = ubifs_rcvry_gc_commit(c);
1348 if (err)
1349 goto out_orphans;
1350 } else {
1351 err = take_gc_lnum(c);
1352 if (err)
1353 goto out_orphans;
1354
1355 /*
1356 * GC LEB may contain garbage if there was an unclean
1357 * reboot, and it should be un-mapped.
1358 */
1359 err = ubifs_leb_unmap(c, c->gc_lnum);
1360 if (err)
1361 goto out_orphans;
1362 }
1363
1364 err = dbg_check_lprops(c);
1365 if (err)
1366 goto out_orphans;
1367 } else if (c->need_recovery) {
1368 err = ubifs_recover_size(c);
1369 if (err)
1370 goto out_orphans;
1371 } else {
1372 /*
1373 * Even if we mount read-only, we have to set space in GC LEB
1374 * to proper value because this affects UBIFS free space
1375 * reporting. We do not want to have a situation when
1376 * re-mounting from R/O to R/W changes amount of free space.
1377 */
1378 err = take_gc_lnum(c);
1379 if (err)
1380 goto out_orphans;
1381 }
1382
1383 spin_lock(&ubifs_infos_lock);
1384 list_add_tail(&c->infos_list, &ubifs_infos);
1385 spin_unlock(&ubifs_infos_lock);
1386
1387 if (c->need_recovery) {
1388 if (c->ro_mount)
1389 ubifs_msg("recovery deferred");
1390 else {
1391 c->need_recovery = 0;
1392 ubifs_msg("recovery completed");
1393 /*
1394 * GC LEB has to be empty and taken at this point. But
1395 * the journal head LEBs may also be accounted as
1396 * "empty taken" if they are empty.
1397 */
1398 ubifs_assert(c->lst.taken_empty_lebs > 0);
1399 }
1400 } else
1401 ubifs_assert(c->lst.taken_empty_lebs > 0);
1402
1403 err = dbg_check_filesystem(c);
1404 if (err)
1405 goto out_infos;
1406
1407 err = dbg_debugfs_init_fs(c);
1408 if (err)
1409 goto out_infos;
1410
1411 c->mounting = 0;
1412
1413 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1414 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1415 c->ro_mount ? ", R/O mode" : NULL);
1416 x = (long long)c->main_lebs * c->leb_size;
1417 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1418 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1419 c->leb_size, c->leb_size >> 10, c->min_io_size,
1420 c->max_write_size);
1421 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1422 x, x >> 20, c->main_lebs,
1423 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1424 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1425 c->report_rp_size, c->report_rp_size >> 10);
1426 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1427 c->fmt_version, c->ro_compat_version,
1428 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1429 c->big_lpt ? ", big LPT model" : ", small LPT model");
1430
1431 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1432 dbg_gen("data journal heads: %d",
1433 c->jhead_cnt - NONDATA_JHEADS_CNT);
1434 dbg_gen("log LEBs: %d (%d - %d)",
1435 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1436 dbg_gen("LPT area LEBs: %d (%d - %d)",
1437 c->lpt_lebs, c->lpt_first, c->lpt_last);
1438 dbg_gen("orphan area LEBs: %d (%d - %d)",
1439 c->orph_lebs, c->orph_first, c->orph_last);
1440 dbg_gen("main area LEBs: %d (%d - %d)",
1441 c->main_lebs, c->main_first, c->leb_cnt - 1);
1442 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1443 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1444 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1445 c->bi.old_idx_sz >> 20);
1446 dbg_gen("key hash type: %d", c->key_hash_type);
1447 dbg_gen("tree fanout: %d", c->fanout);
1448 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1449 dbg_gen("max. znode size %d", c->max_znode_sz);
1450 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1451 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1452 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1453 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1454 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1455 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1456 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1457 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1458 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1459 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1460 dbg_gen("dead watermark: %d", c->dead_wm);
1461 dbg_gen("dark watermark: %d", c->dark_wm);
1462 dbg_gen("LEB overhead: %d", c->leb_overhead);
1463 x = (long long)c->main_lebs * c->dark_wm;
1464 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1465 x, x >> 10, x >> 20);
1466 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1467 c->max_bud_bytes, c->max_bud_bytes >> 10,
1468 c->max_bud_bytes >> 20);
1469 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1470 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1471 c->bg_bud_bytes >> 20);
1472 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1473 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1474 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1475 dbg_gen("commit number: %llu", c->cmt_no);
1476
1477 return 0;
1478
1479 out_infos:
1480 spin_lock(&ubifs_infos_lock);
1481 list_del(&c->infos_list);
1482 spin_unlock(&ubifs_infos_lock);
1483 out_orphans:
1484 free_orphans(c);
1485 out_journal:
1486 destroy_journal(c);
1487 out_lpt:
1488 ubifs_lpt_free(c, 0);
1489 out_master:
1490 kfree(c->mst_node);
1491 kfree(c->rcvrd_mst_node);
1492 if (c->bgt)
1493 kthread_stop(c->bgt);
1494 out_wbufs:
1495 free_wbufs(c);
1496 out_cbuf:
1497 kfree(c->cbuf);
1498 out_free:
1499 kfree(c->write_reserve_buf);
1500 kfree(c->bu.buf);
1501 vfree(c->ileb_buf);
1502 vfree(c->sbuf);
1503 kfree(c->bottom_up_buf);
1504 ubifs_debugging_exit(c);
1505 return err;
1506 }
1507
1508 /**
1509 * ubifs_umount - un-mount UBIFS file-system.
1510 * @c: UBIFS file-system description object
1511 *
1512 * Note, this function is called to free allocated resourced when un-mounting,
1513 * as well as free resources when an error occurred while we were half way
1514 * through mounting (error path cleanup function). So it has to make sure the
1515 * resource was actually allocated before freeing it.
1516 */
1517 static void ubifs_umount(struct ubifs_info *c)
1518 {
1519 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1520 c->vi.vol_id);
1521
1522 dbg_debugfs_exit_fs(c);
1523 spin_lock(&ubifs_infos_lock);
1524 list_del(&c->infos_list);
1525 spin_unlock(&ubifs_infos_lock);
1526
1527 if (c->bgt)
1528 kthread_stop(c->bgt);
1529
1530 destroy_journal(c);
1531 free_wbufs(c);
1532 free_orphans(c);
1533 ubifs_lpt_free(c, 0);
1534
1535 kfree(c->cbuf);
1536 kfree(c->rcvrd_mst_node);
1537 kfree(c->mst_node);
1538 kfree(c->write_reserve_buf);
1539 kfree(c->bu.buf);
1540 vfree(c->ileb_buf);
1541 vfree(c->sbuf);
1542 kfree(c->bottom_up_buf);
1543 ubifs_debugging_exit(c);
1544 }
1545
1546 /**
1547 * ubifs_remount_rw - re-mount in read-write mode.
1548 * @c: UBIFS file-system description object
1549 *
1550 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1551 * mode. This function allocates the needed resources and re-mounts UBIFS in
1552 * read-write mode.
1553 */
1554 static int ubifs_remount_rw(struct ubifs_info *c)
1555 {
1556 int err, lnum;
1557
1558 if (c->rw_incompat) {
1559 ubifs_err("the file-system is not R/W-compatible");
1560 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1561 c->fmt_version, c->ro_compat_version,
1562 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1563 return -EROFS;
1564 }
1565
1566 mutex_lock(&c->umount_mutex);
1567 dbg_save_space_info(c);
1568 c->remounting_rw = 1;
1569 c->ro_mount = 0;
1570
1571 if (c->space_fixup) {
1572 err = ubifs_fixup_free_space(c);
1573 if (err)
1574 return err;
1575 }
1576
1577 err = check_free_space(c);
1578 if (err)
1579 goto out;
1580
1581 if (c->old_leb_cnt != c->leb_cnt) {
1582 struct ubifs_sb_node *sup;
1583
1584 sup = ubifs_read_sb_node(c);
1585 if (IS_ERR(sup)) {
1586 err = PTR_ERR(sup);
1587 goto out;
1588 }
1589 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1590 err = ubifs_write_sb_node(c, sup);
1591 kfree(sup);
1592 if (err)
1593 goto out;
1594 }
1595
1596 if (c->need_recovery) {
1597 ubifs_msg("completing deferred recovery");
1598 err = ubifs_write_rcvrd_mst_node(c);
1599 if (err)
1600 goto out;
1601 err = ubifs_recover_size(c);
1602 if (err)
1603 goto out;
1604 err = ubifs_clean_lebs(c, c->sbuf);
1605 if (err)
1606 goto out;
1607 err = ubifs_recover_inl_heads(c, c->sbuf);
1608 if (err)
1609 goto out;
1610 } else {
1611 /* A readonly mount is not allowed to have orphans */
1612 ubifs_assert(c->tot_orphans == 0);
1613 err = ubifs_clear_orphans(c);
1614 if (err)
1615 goto out;
1616 }
1617
1618 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1619 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1620 err = ubifs_write_master(c);
1621 if (err)
1622 goto out;
1623 }
1624
1625 c->ileb_buf = vmalloc(c->leb_size);
1626 if (!c->ileb_buf) {
1627 err = -ENOMEM;
1628 goto out;
1629 }
1630
1631 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1632 if (!c->write_reserve_buf)
1633 goto out;
1634
1635 err = ubifs_lpt_init(c, 0, 1);
1636 if (err)
1637 goto out;
1638
1639 /* Create background thread */
1640 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1641 if (IS_ERR(c->bgt)) {
1642 err = PTR_ERR(c->bgt);
1643 c->bgt = NULL;
1644 ubifs_err("cannot spawn \"%s\", error %d",
1645 c->bgt_name, err);
1646 goto out;
1647 }
1648 wake_up_process(c->bgt);
1649
1650 c->orph_buf = vmalloc(c->leb_size);
1651 if (!c->orph_buf) {
1652 err = -ENOMEM;
1653 goto out;
1654 }
1655
1656 /* Check for enough log space */
1657 lnum = c->lhead_lnum + 1;
1658 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1659 lnum = UBIFS_LOG_LNUM;
1660 if (lnum == c->ltail_lnum) {
1661 err = ubifs_consolidate_log(c);
1662 if (err)
1663 goto out;
1664 }
1665
1666 if (c->need_recovery)
1667 err = ubifs_rcvry_gc_commit(c);
1668 else
1669 err = ubifs_leb_unmap(c, c->gc_lnum);
1670 if (err)
1671 goto out;
1672
1673 dbg_gen("re-mounted read-write");
1674 c->remounting_rw = 0;
1675
1676 if (c->need_recovery) {
1677 c->need_recovery = 0;
1678 ubifs_msg("deferred recovery completed");
1679 } else {
1680 /*
1681 * Do not run the debugging space check if the were doing
1682 * recovery, because when we saved the information we had the
1683 * file-system in a state where the TNC and lprops has been
1684 * modified in memory, but all the I/O operations (including a
1685 * commit) were deferred. So the file-system was in
1686 * "non-committed" state. Now the file-system is in committed
1687 * state, and of course the amount of free space will change
1688 * because, for example, the old index size was imprecise.
1689 */
1690 err = dbg_check_space_info(c);
1691 }
1692
1693 mutex_unlock(&c->umount_mutex);
1694 return err;
1695
1696 out:
1697 c->ro_mount = 1;
1698 vfree(c->orph_buf);
1699 c->orph_buf = NULL;
1700 if (c->bgt) {
1701 kthread_stop(c->bgt);
1702 c->bgt = NULL;
1703 }
1704 free_wbufs(c);
1705 kfree(c->write_reserve_buf);
1706 c->write_reserve_buf = NULL;
1707 vfree(c->ileb_buf);
1708 c->ileb_buf = NULL;
1709 ubifs_lpt_free(c, 1);
1710 c->remounting_rw = 0;
1711 mutex_unlock(&c->umount_mutex);
1712 return err;
1713 }
1714
1715 /**
1716 * ubifs_remount_ro - re-mount in read-only mode.
1717 * @c: UBIFS file-system description object
1718 *
1719 * We assume VFS has stopped writing. Possibly the background thread could be
1720 * running a commit, however kthread_stop will wait in that case.
1721 */
1722 static void ubifs_remount_ro(struct ubifs_info *c)
1723 {
1724 int i, err;
1725
1726 ubifs_assert(!c->need_recovery);
1727 ubifs_assert(!c->ro_mount);
1728
1729 mutex_lock(&c->umount_mutex);
1730 if (c->bgt) {
1731 kthread_stop(c->bgt);
1732 c->bgt = NULL;
1733 }
1734
1735 dbg_save_space_info(c);
1736
1737 for (i = 0; i < c->jhead_cnt; i++)
1738 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1739
1740 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1741 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1742 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1743 err = ubifs_write_master(c);
1744 if (err)
1745 ubifs_ro_mode(c, err);
1746
1747 vfree(c->orph_buf);
1748 c->orph_buf = NULL;
1749 kfree(c->write_reserve_buf);
1750 c->write_reserve_buf = NULL;
1751 vfree(c->ileb_buf);
1752 c->ileb_buf = NULL;
1753 ubifs_lpt_free(c, 1);
1754 c->ro_mount = 1;
1755 err = dbg_check_space_info(c);
1756 if (err)
1757 ubifs_ro_mode(c, err);
1758 mutex_unlock(&c->umount_mutex);
1759 }
1760
1761 static void ubifs_put_super(struct super_block *sb)
1762 {
1763 int i;
1764 struct ubifs_info *c = sb->s_fs_info;
1765
1766 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1767 c->vi.vol_id);
1768
1769 /*
1770 * The following asserts are only valid if there has not been a failure
1771 * of the media. For example, there will be dirty inodes if we failed
1772 * to write them back because of I/O errors.
1773 */
1774 if (!c->ro_error) {
1775 ubifs_assert(c->bi.idx_growth == 0);
1776 ubifs_assert(c->bi.dd_growth == 0);
1777 ubifs_assert(c->bi.data_growth == 0);
1778 }
1779
1780 /*
1781 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1782 * and file system un-mount. Namely, it prevents the shrinker from
1783 * picking this superblock for shrinking - it will be just skipped if
1784 * the mutex is locked.
1785 */
1786 mutex_lock(&c->umount_mutex);
1787 if (!c->ro_mount) {
1788 /*
1789 * First of all kill the background thread to make sure it does
1790 * not interfere with un-mounting and freeing resources.
1791 */
1792 if (c->bgt) {
1793 kthread_stop(c->bgt);
1794 c->bgt = NULL;
1795 }
1796
1797 /*
1798 * On fatal errors c->ro_error is set to 1, in which case we do
1799 * not write the master node.
1800 */
1801 if (!c->ro_error) {
1802 int err;
1803
1804 /* Synchronize write-buffers */
1805 for (i = 0; i < c->jhead_cnt; i++)
1806 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1807
1808 /*
1809 * We are being cleanly unmounted which means the
1810 * orphans were killed - indicate this in the master
1811 * node. Also save the reserved GC LEB number.
1812 */
1813 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1814 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1815 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1816 err = ubifs_write_master(c);
1817 if (err)
1818 /*
1819 * Recovery will attempt to fix the master area
1820 * next mount, so we just print a message and
1821 * continue to unmount normally.
1822 */
1823 ubifs_err("failed to write master node, error %d",
1824 err);
1825 } else {
1826 for (i = 0; i < c->jhead_cnt; i++)
1827 /* Make sure write-buffer timers are canceled */
1828 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1829 }
1830 }
1831
1832 ubifs_umount(c);
1833 bdi_destroy(&c->bdi);
1834 ubi_close_volume(c->ubi);
1835 mutex_unlock(&c->umount_mutex);
1836 }
1837
1838 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1839 {
1840 int err;
1841 struct ubifs_info *c = sb->s_fs_info;
1842
1843 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1844
1845 err = ubifs_parse_options(c, data, 1);
1846 if (err) {
1847 ubifs_err("invalid or unknown remount parameter");
1848 return err;
1849 }
1850
1851 if (c->ro_mount && !(*flags & MS_RDONLY)) {
1852 if (c->ro_error) {
1853 ubifs_msg("cannot re-mount R/W due to prior errors");
1854 return -EROFS;
1855 }
1856 if (c->ro_media) {
1857 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1858 return -EROFS;
1859 }
1860 err = ubifs_remount_rw(c);
1861 if (err)
1862 return err;
1863 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1864 if (c->ro_error) {
1865 ubifs_msg("cannot re-mount R/O due to prior errors");
1866 return -EROFS;
1867 }
1868 ubifs_remount_ro(c);
1869 }
1870
1871 if (c->bulk_read == 1)
1872 bu_init(c);
1873 else {
1874 dbg_gen("disable bulk-read");
1875 kfree(c->bu.buf);
1876 c->bu.buf = NULL;
1877 }
1878
1879 ubifs_assert(c->lst.taken_empty_lebs > 0);
1880 return 0;
1881 }
1882
1883 const struct super_operations ubifs_super_operations = {
1884 .alloc_inode = ubifs_alloc_inode,
1885 .destroy_inode = ubifs_destroy_inode,
1886 .put_super = ubifs_put_super,
1887 .write_inode = ubifs_write_inode,
1888 .evict_inode = ubifs_evict_inode,
1889 .statfs = ubifs_statfs,
1890 .dirty_inode = ubifs_dirty_inode,
1891 .remount_fs = ubifs_remount_fs,
1892 .show_options = ubifs_show_options,
1893 .sync_fs = ubifs_sync_fs,
1894 };
1895
1896 /**
1897 * open_ubi - parse UBI device name string and open the UBI device.
1898 * @name: UBI volume name
1899 * @mode: UBI volume open mode
1900 *
1901 * The primary method of mounting UBIFS is by specifying the UBI volume
1902 * character device node path. However, UBIFS may also be mounted withoug any
1903 * character device node using one of the following methods:
1904 *
1905 * o ubiX_Y - mount UBI device number X, volume Y;
1906 * o ubiY - mount UBI device number 0, volume Y;
1907 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1908 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1909 *
1910 * Alternative '!' separator may be used instead of ':' (because some shells
1911 * like busybox may interpret ':' as an NFS host name separator). This function
1912 * returns UBI volume description object in case of success and a negative
1913 * error code in case of failure.
1914 */
1915 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1916 {
1917 struct ubi_volume_desc *ubi;
1918 int dev, vol;
1919 char *endptr;
1920
1921 /* First, try to open using the device node path method */
1922 ubi = ubi_open_volume_path(name, mode);
1923 if (!IS_ERR(ubi))
1924 return ubi;
1925
1926 /* Try the "nodev" method */
1927 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1928 return ERR_PTR(-EINVAL);
1929
1930 /* ubi:NAME method */
1931 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1932 return ubi_open_volume_nm(0, name + 4, mode);
1933
1934 if (!isdigit(name[3]))
1935 return ERR_PTR(-EINVAL);
1936
1937 dev = simple_strtoul(name + 3, &endptr, 0);
1938
1939 /* ubiY method */
1940 if (*endptr == '\0')
1941 return ubi_open_volume(0, dev, mode);
1942
1943 /* ubiX_Y method */
1944 if (*endptr == '_' && isdigit(endptr[1])) {
1945 vol = simple_strtoul(endptr + 1, &endptr, 0);
1946 if (*endptr != '\0')
1947 return ERR_PTR(-EINVAL);
1948 return ubi_open_volume(dev, vol, mode);
1949 }
1950
1951 /* ubiX:NAME method */
1952 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1953 return ubi_open_volume_nm(dev, ++endptr, mode);
1954
1955 return ERR_PTR(-EINVAL);
1956 }
1957
1958 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1959 {
1960 struct ubifs_info *c;
1961
1962 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1963 if (c) {
1964 spin_lock_init(&c->cnt_lock);
1965 spin_lock_init(&c->cs_lock);
1966 spin_lock_init(&c->buds_lock);
1967 spin_lock_init(&c->space_lock);
1968 spin_lock_init(&c->orphan_lock);
1969 init_rwsem(&c->commit_sem);
1970 mutex_init(&c->lp_mutex);
1971 mutex_init(&c->tnc_mutex);
1972 mutex_init(&c->log_mutex);
1973 mutex_init(&c->mst_mutex);
1974 mutex_init(&c->umount_mutex);
1975 mutex_init(&c->bu_mutex);
1976 mutex_init(&c->write_reserve_mutex);
1977 init_waitqueue_head(&c->cmt_wq);
1978 c->buds = RB_ROOT;
1979 c->old_idx = RB_ROOT;
1980 c->size_tree = RB_ROOT;
1981 c->orph_tree = RB_ROOT;
1982 INIT_LIST_HEAD(&c->infos_list);
1983 INIT_LIST_HEAD(&c->idx_gc);
1984 INIT_LIST_HEAD(&c->replay_list);
1985 INIT_LIST_HEAD(&c->replay_buds);
1986 INIT_LIST_HEAD(&c->uncat_list);
1987 INIT_LIST_HEAD(&c->empty_list);
1988 INIT_LIST_HEAD(&c->freeable_list);
1989 INIT_LIST_HEAD(&c->frdi_idx_list);
1990 INIT_LIST_HEAD(&c->unclean_leb_list);
1991 INIT_LIST_HEAD(&c->old_buds);
1992 INIT_LIST_HEAD(&c->orph_list);
1993 INIT_LIST_HEAD(&c->orph_new);
1994 c->no_chk_data_crc = 1;
1995
1996 c->highest_inum = UBIFS_FIRST_INO;
1997 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1998
1999 ubi_get_volume_info(ubi, &c->vi);
2000 ubi_get_device_info(c->vi.ubi_num, &c->di);
2001 }
2002 return c;
2003 }
2004
2005 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2006 {
2007 struct ubifs_info *c = sb->s_fs_info;
2008 struct inode *root;
2009 int err;
2010
2011 c->vfs_sb = sb;
2012 /* Re-open the UBI device in read-write mode */
2013 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2014 if (IS_ERR(c->ubi)) {
2015 err = PTR_ERR(c->ubi);
2016 goto out;
2017 }
2018
2019 /*
2020 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2021 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2022 * which means the user would have to wait not just for their own I/O
2023 * but the read-ahead I/O as well i.e. completely pointless.
2024 *
2025 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2026 */
2027 c->bdi.name = "ubifs",
2028 c->bdi.capabilities = BDI_CAP_MAP_COPY;
2029 err = bdi_init(&c->bdi);
2030 if (err)
2031 goto out_close;
2032 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2033 c->vi.ubi_num, c->vi.vol_id);
2034 if (err)
2035 goto out_bdi;
2036
2037 err = ubifs_parse_options(c, data, 0);
2038 if (err)
2039 goto out_bdi;
2040
2041 sb->s_bdi = &c->bdi;
2042 sb->s_fs_info = c;
2043 sb->s_magic = UBIFS_SUPER_MAGIC;
2044 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2045 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2046 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2047 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2048 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2049 sb->s_op = &ubifs_super_operations;
2050
2051 mutex_lock(&c->umount_mutex);
2052 err = mount_ubifs(c);
2053 if (err) {
2054 ubifs_assert(err < 0);
2055 goto out_unlock;
2056 }
2057
2058 /* Read the root inode */
2059 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2060 if (IS_ERR(root)) {
2061 err = PTR_ERR(root);
2062 goto out_umount;
2063 }
2064
2065 sb->s_root = d_make_root(root);
2066 if (!sb->s_root)
2067 goto out_umount;
2068
2069 mutex_unlock(&c->umount_mutex);
2070 return 0;
2071
2072 out_umount:
2073 ubifs_umount(c);
2074 out_unlock:
2075 mutex_unlock(&c->umount_mutex);
2076 out_bdi:
2077 bdi_destroy(&c->bdi);
2078 out_close:
2079 ubi_close_volume(c->ubi);
2080 out:
2081 return err;
2082 }
2083
2084 static int sb_test(struct super_block *sb, void *data)
2085 {
2086 struct ubifs_info *c1 = data;
2087 struct ubifs_info *c = sb->s_fs_info;
2088
2089 return c->vi.cdev == c1->vi.cdev;
2090 }
2091
2092 static int sb_set(struct super_block *sb, void *data)
2093 {
2094 sb->s_fs_info = data;
2095 return set_anon_super(sb, NULL);
2096 }
2097
2098 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2099 const char *name, void *data)
2100 {
2101 struct ubi_volume_desc *ubi;
2102 struct ubifs_info *c;
2103 struct super_block *sb;
2104 int err;
2105
2106 dbg_gen("name %s, flags %#x", name, flags);
2107
2108 /*
2109 * Get UBI device number and volume ID. Mount it read-only so far
2110 * because this might be a new mount point, and UBI allows only one
2111 * read-write user at a time.
2112 */
2113 ubi = open_ubi(name, UBI_READONLY);
2114 if (IS_ERR(ubi)) {
2115 ubifs_err("cannot open \"%s\", error %d",
2116 name, (int)PTR_ERR(ubi));
2117 return ERR_CAST(ubi);
2118 }
2119
2120 c = alloc_ubifs_info(ubi);
2121 if (!c) {
2122 err = -ENOMEM;
2123 goto out_close;
2124 }
2125
2126 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2127
2128 sb = sget(fs_type, sb_test, sb_set, flags, c);
2129 if (IS_ERR(sb)) {
2130 err = PTR_ERR(sb);
2131 kfree(c);
2132 goto out_close;
2133 }
2134
2135 if (sb->s_root) {
2136 struct ubifs_info *c1 = sb->s_fs_info;
2137 kfree(c);
2138 /* A new mount point for already mounted UBIFS */
2139 dbg_gen("this ubi volume is already mounted");
2140 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2141 err = -EBUSY;
2142 goto out_deact;
2143 }
2144 } else {
2145 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2146 if (err)
2147 goto out_deact;
2148 /* We do not support atime */
2149 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2150 }
2151
2152 /* 'fill_super()' opens ubi again so we must close it here */
2153 ubi_close_volume(ubi);
2154
2155 return dget(sb->s_root);
2156
2157 out_deact:
2158 deactivate_locked_super(sb);
2159 out_close:
2160 ubi_close_volume(ubi);
2161 return ERR_PTR(err);
2162 }
2163
2164 static void kill_ubifs_super(struct super_block *s)
2165 {
2166 struct ubifs_info *c = s->s_fs_info;
2167 kill_anon_super(s);
2168 kfree(c);
2169 }
2170
2171 static struct file_system_type ubifs_fs_type = {
2172 .name = "ubifs",
2173 .owner = THIS_MODULE,
2174 .mount = ubifs_mount,
2175 .kill_sb = kill_ubifs_super,
2176 };
2177 MODULE_ALIAS_FS("ubifs");
2178
2179 /*
2180 * Inode slab cache constructor.
2181 */
2182 static void inode_slab_ctor(void *obj)
2183 {
2184 struct ubifs_inode *ui = obj;
2185 inode_init_once(&ui->vfs_inode);
2186 }
2187
2188 static int __init ubifs_init(void)
2189 {
2190 int err;
2191
2192 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2193
2194 /* Make sure node sizes are 8-byte aligned */
2195 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2196 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2197 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2198 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2199 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2200 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2201 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2202 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2203 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2204 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2205 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2206
2207 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2208 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2209 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2210 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2211 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2212 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2213
2214 /* Check min. node size */
2215 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2216 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2217 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2218 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2219
2220 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2221 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2222 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2223 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2224
2225 /* Defined node sizes */
2226 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2227 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2228 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2229 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2230
2231 /*
2232 * We use 2 bit wide bit-fields to store compression type, which should
2233 * be amended if more compressors are added. The bit-fields are:
2234 * @compr_type in 'struct ubifs_inode', @default_compr in
2235 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2236 */
2237 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2238
2239 /*
2240 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2241 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2242 */
2243 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2244 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2245 (unsigned int)PAGE_CACHE_SIZE);
2246 return -EINVAL;
2247 }
2248
2249 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2250 sizeof(struct ubifs_inode), 0,
2251 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2252 &inode_slab_ctor);
2253 if (!ubifs_inode_slab)
2254 return -ENOMEM;
2255
2256 register_shrinker(&ubifs_shrinker_info);
2257
2258 err = ubifs_compressors_init();
2259 if (err)
2260 goto out_shrinker;
2261
2262 err = dbg_debugfs_init();
2263 if (err)
2264 goto out_compr;
2265
2266 err = register_filesystem(&ubifs_fs_type);
2267 if (err) {
2268 ubifs_err("cannot register file system, error %d", err);
2269 goto out_dbg;
2270 }
2271 return 0;
2272
2273 out_dbg:
2274 dbg_debugfs_exit();
2275 out_compr:
2276 ubifs_compressors_exit();
2277 out_shrinker:
2278 unregister_shrinker(&ubifs_shrinker_info);
2279 kmem_cache_destroy(ubifs_inode_slab);
2280 return err;
2281 }
2282 /* late_initcall to let compressors initialize first */
2283 late_initcall(ubifs_init);
2284
2285 static void __exit ubifs_exit(void)
2286 {
2287 ubifs_assert(list_empty(&ubifs_infos));
2288 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2289
2290 dbg_debugfs_exit();
2291 ubifs_compressors_exit();
2292 unregister_shrinker(&ubifs_shrinker_info);
2293
2294 /*
2295 * Make sure all delayed rcu free inodes are flushed before we
2296 * destroy cache.
2297 */
2298 rcu_barrier();
2299 kmem_cache_destroy(ubifs_inode_slab);
2300 unregister_filesystem(&ubifs_fs_type);
2301 }
2302 module_exit(ubifs_exit);
2303
2304 MODULE_LICENSE("GPL");
2305 MODULE_VERSION(__stringify(UBIFS_VERSION));
2306 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2307 MODULE_DESCRIPTION("UBIFS - UBI File System");