5df49f48096e707d379edc004c63855a64ccdea0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ubifs / recovery.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
31 *
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
37 *
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
42 *
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
47 * refuses to mount.
48 */
49
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
52 #include "ubifs.h"
53
54 /**
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
58 *
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
60 * %0 is returned.
61 */
62 static int is_empty(void *buf, int len)
63 {
64 uint8_t *p = buf;
65 int i;
66
67 for (i = 0; i < len; i++)
68 if (*p++ != 0xff)
69 return 0;
70 return 1;
71 }
72
73 /**
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
77 *
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
80 */
81 static int first_non_ff(void *buf, int len)
82 {
83 uint8_t *p = buf;
84 int i;
85
86 for (i = 0; i < len; i++)
87 if (*p++ != 0xff)
88 return i;
89 return -1;
90 }
91
92 /**
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
95 * @lnum: LEB number
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
99 *
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
105 * master node.
106 *
107 * This function returns %0 on success and a negative error code on failure.
108 */
109 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
110 struct ubifs_mst_node **mst, void **cor)
111 {
112 const int sz = c->mst_node_alsz;
113 int err, offs, len;
114 void *sbuf, *buf;
115
116 sbuf = kmalloc(c->leb_size, GFP_KERNEL);
117 if (!sbuf)
118 return -ENOMEM;
119
120 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
121 if (err && err != -EBADMSG)
122 goto out_free;
123
124 /* Find the first position that is definitely not a node */
125 offs = 0;
126 buf = sbuf;
127 len = c->leb_size;
128 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
129 struct ubifs_ch *ch = buf;
130
131 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
132 break;
133 offs += sz;
134 buf += sz;
135 len -= sz;
136 }
137 /* See if there was a valid master node before that */
138 if (offs) {
139 int ret;
140
141 offs -= sz;
142 buf -= sz;
143 len += sz;
144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 if (ret != SCANNED_A_NODE && offs) {
146 /* Could have been corruption so check one place back */
147 offs -= sz;
148 buf -= sz;
149 len += sz;
150 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
151 if (ret != SCANNED_A_NODE)
152 /*
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
156 */
157 goto out_err;
158 }
159 if (ret == SCANNED_A_NODE) {
160 struct ubifs_ch *ch = buf;
161
162 if (ch->node_type != UBIFS_MST_NODE)
163 goto out_err;
164 dbg_rcvry("found a master node at %d:%d", lnum, offs);
165 *mst = buf;
166 offs += sz;
167 buf += sz;
168 len -= sz;
169 }
170 }
171 /* Check for corruption */
172 if (offs < c->leb_size) {
173 if (!is_empty(buf, min_t(int, len, sz))) {
174 *cor = buf;
175 dbg_rcvry("found corruption at %d:%d", lnum, offs);
176 }
177 offs += sz;
178 buf += sz;
179 len -= sz;
180 }
181 /* Check remaining empty space */
182 if (offs < c->leb_size)
183 if (!is_empty(buf, len))
184 goto out_err;
185 *pbuf = sbuf;
186 return 0;
187
188 out_err:
189 err = -EINVAL;
190 out_free:
191 kfree(sbuf);
192 *mst = NULL;
193 *cor = NULL;
194 return err;
195 }
196
197 /**
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
200 * @mst: master node
201 *
202 * This function returns %0 on success and a negative error code on failure.
203 */
204 static int write_rcvrd_mst_node(struct ubifs_info *c,
205 struct ubifs_mst_node *mst)
206 {
207 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
208 __le32 save_flags;
209
210 dbg_rcvry("recovery");
211
212 save_flags = mst->flags;
213 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
214
215 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
216 err = ubifs_leb_change(c, lnum, mst, sz);
217 if (err)
218 goto out;
219 err = ubifs_leb_change(c, lnum + 1, mst, sz);
220 if (err)
221 goto out;
222 c->mst_offs = 0; //MTK
223 out:
224 mst->flags = save_flags;
225 return err;
226 }
227
228 /**
229 * ubifs_recover_master_node - recover the master node.
230 * @c: UBIFS file-system description object
231 *
232 * This function recovers the master node from corruption that may occur due to
233 * an unclean unmount.
234 *
235 * This function returns %0 on success and a negative error code on failure.
236 */
237 int ubifs_recover_master_node(struct ubifs_info *c)
238 {
239 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
240 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
241 const int sz = c->mst_node_alsz;
242 int err, offs1, offs2;
243
244 dbg_rcvry("recovery");
245
246 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
247 if (err)
248 goto out_free;
249
250 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
251 if (err)
252 goto out_free;
253
254 if (mst1) {
255 offs1 = (void *)mst1 - buf1;
256 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
257 (offs1 == 0 && !cor1)) {
258 /*
259 * mst1 was written by recovery at offset 0 with no
260 * corruption.
261 */
262 dbg_rcvry("recovery recovery");
263 mst = mst1;
264 } else if (mst2) {
265 offs2 = (void *)mst2 - buf2;
266 if (offs1 == offs2) {
267 /* Same offset, so must be the same */
268 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
269 (void *)mst2 + UBIFS_CH_SZ,
270 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
271 goto out_err;
272 mst = mst1;
273 } else if (offs2 + sz == offs1) {
274 /* 1st LEB was written, 2nd was not */
275 if (cor1)
276 goto out_err;
277 mst = mst1;
278 } else if (offs1 == 0 &&
279 c->leb_size - offs2 - sz < sz) {
280 /* 1st LEB was unmapped and written, 2nd not */
281 if (cor1)
282 goto out_err;
283 mst = mst1;
284 } else
285 goto out_err;
286 } else {
287 /*
288 * 2nd LEB was unmapped and about to be written, so
289 * there must be only one master node in the first LEB
290 * and no corruption.
291 */
292 if (offs1 != 0 || cor1)
293 goto out_err;
294 mst = mst1;
295 }
296 } else {
297 if (!mst2)
298 goto out_err;
299 /*
300 * 1st LEB was unmapped and about to be written, so there must
301 * be no room left in 2nd LEB.
302 */
303 offs2 = (void *)mst2 - buf2;
304 if (offs2 + sz + sz <= c->leb_size)
305 goto out_err;
306 mst = mst2;
307 }
308
309 ubifs_msg("recovered master node from LEB %d",
310 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
311
312 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
313
314 if (c->ro_mount) {
315 /* Read-only mode. Keep a copy for switching to rw mode */
316 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
317 if (!c->rcvrd_mst_node) {
318 err = -ENOMEM;
319 goto out_free;
320 }
321 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
322
323 /*
324 * We had to recover the master node, which means there was an
325 * unclean reboot. However, it is possible that the master node
326 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
327 * E.g., consider the following chain of events:
328 *
329 * 1. UBIFS was cleanly unmounted, so the master node is clean
330 * 2. UBIFS is being mounted R/W and starts changing the master
331 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
332 * so this LEB ends up with some amount of garbage at the
333 * end.
334 * 3. UBIFS is being mounted R/O. We reach this place and
335 * recover the master node from the second LEB
336 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
337 * because we are being mounted R/O. We have to defer the
338 * operation.
339 * 4. However, this master node (@c->mst_node) is marked as
340 * clean (since the step 1). And if we just return, the
341 * mount code will be confused and won't recover the master
342 * node when it is re-mounter R/W later.
343 *
344 * Thus, to force the recovery by marking the master node as
345 * dirty.
346 */
347 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
348 } else {
349 /* Write the recovered master node */
350 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
351 err = write_rcvrd_mst_node(c, c->mst_node);
352 if (err)
353 goto out_free;
354 }
355
356 kfree(buf2);
357 kfree(buf1);
358
359 return 0;
360
361 out_err:
362 err = -EINVAL;
363 out_free:
364 ubifs_err("failed to recover master node");
365 if (mst1) {
366 ubifs_err("dumping first master node");
367 ubifs_dump_node(c, mst1);
368 }
369 if (mst2) {
370 ubifs_err("dumping second master node");
371 ubifs_dump_node(c, mst2);
372 }
373 kfree(buf2);
374 kfree(buf1);
375 return err;
376 }
377
378 /**
379 * ubifs_write_rcvrd_mst_node - write the recovered master node.
380 * @c: UBIFS file-system description object
381 *
382 * This function writes the master node that was recovered during mounting in
383 * read-only mode and must now be written because we are remounting rw.
384 *
385 * This function returns %0 on success and a negative error code on failure.
386 */
387 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
388 {
389 int err;
390
391 if (!c->rcvrd_mst_node)
392 return 0;
393 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
394 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
395 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
396 if (err)
397 return err;
398 kfree(c->rcvrd_mst_node);
399 c->rcvrd_mst_node = NULL;
400 return 0;
401 }
402
403 /**
404 * is_last_write - determine if an offset was in the last write to a LEB.
405 * @c: UBIFS file-system description object
406 * @buf: buffer to check
407 * @offs: offset to check
408 *
409 * This function returns %1 if @offs was in the last write to the LEB whose data
410 * is in @buf, otherwise %0 is returned. The determination is made by checking
411 * for subsequent empty space starting from the next @c->max_write_size
412 * boundary.
413 */
414 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
415 {
416 int empty_offs, check_len;
417 uint8_t *p;
418
419 /*
420 * Round up to the next @c->max_write_size boundary i.e. @offs is in
421 * the last wbuf written. After that should be empty space.
422 */
423 empty_offs = ALIGN(offs + 1, c->max_write_size);
424 check_len = c->leb_size - empty_offs;
425 p = buf + empty_offs - offs;
426 return is_empty(p, check_len);
427 }
428
429 /**
430 * clean_buf - clean the data from an LEB sitting in a buffer.
431 * @c: UBIFS file-system description object
432 * @buf: buffer to clean
433 * @lnum: LEB number to clean
434 * @offs: offset from which to clean
435 * @len: length of buffer
436 *
437 * This function pads up to the next min_io_size boundary (if there is one) and
438 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
439 * @c->min_io_size boundary.
440 */
441 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
442 int *offs, int *len)
443 {
444 int empty_offs, pad_len;
445
446 lnum = lnum;
447 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
448
449 ubifs_assert(!(*offs & 7));
450 empty_offs = ALIGN(*offs, c->min_io_size);
451 pad_len = empty_offs - *offs;
452 ubifs_pad(c, *buf, pad_len);
453 *offs += pad_len;
454 *buf += pad_len;
455 *len -= pad_len;
456 memset(*buf, 0xff, c->leb_size - empty_offs);
457 }
458
459 /**
460 * no_more_nodes - determine if there are no more nodes in a buffer.
461 * @c: UBIFS file-system description object
462 * @buf: buffer to check
463 * @len: length of buffer
464 * @lnum: LEB number of the LEB from which @buf was read
465 * @offs: offset from which @buf was read
466 *
467 * This function ensures that the corrupted node at @offs is the last thing
468 * written to a LEB. This function returns %1 if more data is not found and
469 * %0 if more data is found.
470 */
471 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
472 int lnum, int offs)
473 {
474 struct ubifs_ch *ch = buf;
475 int skip, dlen = le32_to_cpu(ch->len);
476
477 /* Check for empty space after the corrupt node's common header */
478 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
479 if (is_empty(buf + skip, len - skip))
480 return 1;
481 /*
482 * The area after the common header size is not empty, so the common
483 * header must be intact. Check it.
484 */
485 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
486 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
487 return 0;
488 }
489 /* Now we know the corrupt node's length we can skip over it */
490 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
491 /* After which there should be empty space */
492 if (is_empty(buf + skip, len - skip))
493 return 1;
494 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
495 return 0;
496 }
497
498 /**
499 * fix_unclean_leb - fix an unclean LEB.
500 * @c: UBIFS file-system description object
501 * @sleb: scanned LEB information
502 * @start: offset where scan started
503 */
504 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
505 int start)
506 {
507 int lnum = sleb->lnum, endpt = start;
508
509 /* Get the end offset of the last node we are keeping */
510 if (!list_empty(&sleb->nodes)) {
511 struct ubifs_scan_node *snod;
512
513 snod = list_entry(sleb->nodes.prev,
514 struct ubifs_scan_node, list);
515 endpt = snod->offs + snod->len;
516 }
517
518 if (c->ro_mount && !c->remounting_rw) {
519 /* Add to recovery list */
520 struct ubifs_unclean_leb *ucleb;
521
522 dbg_rcvry("need to fix LEB %d start %d endpt %d",
523 lnum, start, sleb->endpt);
524 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
525 if (!ucleb)
526 return -ENOMEM;
527 ucleb->lnum = lnum;
528 ucleb->endpt = endpt;
529 list_add_tail(&ucleb->list, &c->unclean_leb_list);
530 } else {
531 /* Write the fixed LEB back to flash */
532 int err;
533
534 dbg_rcvry("fixing LEB %d start %d endpt %d",
535 lnum, start, sleb->endpt);
536 if (endpt == 0) {
537 err = ubifs_leb_unmap(c, lnum);
538 if (err)
539 return err;
540 } else {
541 int len = ALIGN(endpt, c->min_io_size);
542
543 if (start) {
544 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
545 start, 1);
546 if (err)
547 return err;
548 }
549 /* Pad to min_io_size */
550 if (len > endpt) {
551 int pad_len = len - ALIGN(endpt, 8);
552
553 if (pad_len > 0) {
554 void *buf = sleb->buf + len - pad_len;
555
556 ubifs_pad(c, buf, pad_len);
557 }
558 }
559 err = ubifs_leb_change(c, lnum, sleb->buf, len);
560 if (err)
561 return err;
562 }
563 }
564 return 0;
565 }
566
567 /**
568 * drop_last_group - drop the last group of nodes.
569 * @sleb: scanned LEB information
570 * @offs: offset of dropped nodes is returned here
571 *
572 * This is a helper function for 'ubifs_recover_leb()' which drops the last
573 * group of nodes of the scanned LEB.
574 */
575 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
576 {
577 while (!list_empty(&sleb->nodes)) {
578 struct ubifs_scan_node *snod;
579 struct ubifs_ch *ch;
580
581 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
582 list);
583 ch = snod->node;
584 if (ch->group_type != UBIFS_IN_NODE_GROUP)
585 break;
586
587 dbg_rcvry("dropping grouped node at %d:%d",
588 sleb->lnum, snod->offs);
589 *offs = snod->offs;
590 list_del(&snod->list);
591 kfree(snod);
592 sleb->nodes_cnt -= 1;
593 }
594 }
595
596 /**
597 * drop_last_node - drop the last node.
598 * @sleb: scanned LEB information
599 * @offs: offset of dropped nodes is returned here
600 * @grouped: non-zero if whole group of nodes have to be dropped
601 *
602 * This is a helper function for 'ubifs_recover_leb()' which drops the last
603 * node of the scanned LEB.
604 */
605 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
606 {
607 struct ubifs_scan_node *snod;
608
609 if (!list_empty(&sleb->nodes)) {
610 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
611 list);
612
613 dbg_rcvry("dropping last node at %d:%d",
614 sleb->lnum, snod->offs);
615 *offs = snod->offs;
616 list_del(&snod->list);
617 kfree(snod);
618 sleb->nodes_cnt -= 1;
619 }
620 }
621
622 /**
623 * ubifs_recover_leb - scan and recover a LEB.
624 * @c: UBIFS file-system description object
625 * @lnum: LEB number
626 * @offs: offset
627 * @sbuf: LEB-sized buffer to use
628 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
629 * belong to any journal head)
630 *
631 * This function does a scan of a LEB, but caters for errors that might have
632 * been caused by the unclean unmount from which we are attempting to recover.
633 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
634 * found, and a negative error code in case of failure.
635 */
636 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
637 int offs, void *sbuf, int jhead)
638 {
639 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
640 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
641 struct ubifs_scan_leb *sleb;
642 void *buf = sbuf + offs;
643
644 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
645
646 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
647 if (IS_ERR(sleb))
648 return sleb;
649
650 ubifs_assert(len >= 8);
651 while (len >= 8) {
652 dbg_scan("look at LEB %d:%d (%d bytes left)",
653 lnum, offs, len);
654
655 cond_resched();
656
657 /*
658 * Scan quietly until there is an error from which we cannot
659 * recover
660 */
661 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
662 if (ret == SCANNED_A_NODE) {
663 /* A valid node, and not a padding node */
664 struct ubifs_ch *ch = buf;
665 int node_len;
666
667 err = ubifs_add_snod(c, sleb, buf, offs);
668 if (err)
669 goto error;
670 node_len = ALIGN(le32_to_cpu(ch->len), 8);
671 offs += node_len;
672 buf += node_len;
673 len -= node_len;
674 } else if (ret > 0) {
675 /* Padding bytes or a valid padding node */
676 offs += ret;
677 buf += ret;
678 len -= ret;
679 } else if (ret == SCANNED_EMPTY_SPACE ||
680 ret == SCANNED_GARBAGE ||
681 ret == SCANNED_A_BAD_PAD_NODE ||
682 ret == SCANNED_A_CORRUPT_NODE) {
683 dbg_rcvry("found corruption (%d) at %d:%d",
684 ret, lnum, offs);
685 break;
686 } else {
687 ubifs_err("unexpected return value %d", ret);
688 err = -EINVAL;
689 goto error;
690 }
691 }
692
693 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
694 if (!is_last_write(c, buf, offs))
695 goto corrupted_rescan;
696 } else if (ret == SCANNED_A_CORRUPT_NODE) {
697 if (!no_more_nodes(c, buf, len, lnum, offs))
698 goto corrupted_rescan;
699 } else if (!is_empty(buf, len)) {
700 if (!is_last_write(c, buf, offs)) {
701 int corruption = first_non_ff(buf, len);
702
703 /*
704 * See header comment for this file for more
705 * explanations about the reasons we have this check.
706 */
707 ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d",
708 lnum, offs, corruption);
709 /* Make sure we dump interesting non-0xFF data */
710 offs += corruption;
711 buf += corruption;
712 goto corrupted;
713 }
714 }
715
716 min_io_unit = round_down(offs, c->min_io_size);
717 if (grouped)
718 /*
719 * If nodes are grouped, always drop the incomplete group at
720 * the end.
721 */
722 drop_last_group(sleb, &offs);
723
724 if (jhead == GCHD) {
725 /*
726 * If this LEB belongs to the GC head then while we are in the
727 * middle of the same min. I/O unit keep dropping nodes. So
728 * basically, what we want is to make sure that the last min.
729 * I/O unit where we saw the corruption is dropped completely
730 * with all the uncorrupted nodes which may possibly sit there.
731 *
732 * In other words, let's name the min. I/O unit where the
733 * corruption starts B, and the previous min. I/O unit A. The
734 * below code tries to deal with a situation when half of B
735 * contains valid nodes or the end of a valid node, and the
736 * second half of B contains corrupted data or garbage. This
737 * means that UBIFS had been writing to B just before the power
738 * cut happened. I do not know how realistic is this scenario
739 * that half of the min. I/O unit had been written successfully
740 * and the other half not, but this is possible in our 'failure
741 * mode emulation' infrastructure at least.
742 *
743 * So what is the problem, why we need to drop those nodes? Why
744 * can't we just clean-up the second half of B by putting a
745 * padding node there? We can, and this works fine with one
746 * exception which was reproduced with power cut emulation
747 * testing and happens extremely rarely.
748 *
749 * Imagine the file-system is full, we run GC which starts
750 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
751 * the current GC head LEB). The @c->gc_lnum is -1, which means
752 * that GC will retain LEB X and will try to continue. Imagine
753 * that LEB X is currently the dirtiest LEB, and the amount of
754 * used space in LEB Y is exactly the same as amount of free
755 * space in LEB X.
756 *
757 * And a power cut happens when nodes are moved from LEB X to
758 * LEB Y. We are here trying to recover LEB Y which is the GC
759 * head LEB. We find the min. I/O unit B as described above.
760 * Then we clean-up LEB Y by padding min. I/O unit. And later
761 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
762 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
763 * does not match because the amount of valid nodes there does
764 * not fit the free space in LEB Y any more! And this is
765 * because of the padding node which we added to LEB Y. The
766 * user-visible effect of this which I once observed and
767 * analysed is that we cannot mount the file-system with
768 * -ENOSPC error.
769 *
770 * So obviously, to make sure that situation does not happen we
771 * should free min. I/O unit B in LEB Y completely and the last
772 * used min. I/O unit in LEB Y should be A. This is basically
773 * what the below code tries to do.
774 */
775 while (offs > min_io_unit)
776 drop_last_node(sleb, &offs);
777 }
778
779 buf = sbuf + offs;
780 len = c->leb_size - offs;
781
782 clean_buf(c, &buf, lnum, &offs, &len);
783 ubifs_end_scan(c, sleb, lnum, offs);
784
785 err = fix_unclean_leb(c, sleb, start);
786 if (err)
787 goto error;
788
789 return sleb;
790
791 corrupted_rescan:
792 /* Re-scan the corrupted data with verbose messages */
793 ubifs_err("corruption %d", ret);
794 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
795 corrupted:
796 ubifs_scanned_corruption(c, lnum, offs, buf);
797 err = -EUCLEAN;
798 error:
799 ubifs_err("LEB %d scanning failed", lnum);
800 ubifs_scan_destroy(sleb);
801 return ERR_PTR(err);
802 }
803
804 /**
805 * get_cs_sqnum - get commit start sequence number.
806 * @c: UBIFS file-system description object
807 * @lnum: LEB number of commit start node
808 * @offs: offset of commit start node
809 * @cs_sqnum: commit start sequence number is returned here
810 *
811 * This function returns %0 on success and a negative error code on failure.
812 */
813 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
814 unsigned long long *cs_sqnum)
815 {
816 struct ubifs_cs_node *cs_node = NULL;
817 int err, ret;
818
819 dbg_rcvry("at %d:%d", lnum, offs);
820 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
821 if (!cs_node)
822 return -ENOMEM;
823 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
824 goto out_err;
825 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
826 UBIFS_CS_NODE_SZ, 0);
827 if (err && err != -EBADMSG)
828 goto out_free;
829 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
830 if (ret != SCANNED_A_NODE) {
831 ubifs_err("Not a valid node");
832 goto out_err;
833 }
834 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
835 ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type);
836 goto out_err;
837 }
838 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
839 ubifs_err("CS node cmt_no %llu != current cmt_no %llu",
840 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
841 c->cmt_no);
842 goto out_err;
843 }
844 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
845 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
846 kfree(cs_node);
847 return 0;
848
849 out_err:
850 err = -EINVAL;
851 out_free:
852 ubifs_err("failed to get CS sqnum");
853 kfree(cs_node);
854 return err;
855 }
856
857 /**
858 * ubifs_recover_log_leb - scan and recover a log LEB.
859 * @c: UBIFS file-system description object
860 * @lnum: LEB number
861 * @offs: offset
862 * @sbuf: LEB-sized buffer to use
863 *
864 * This function does a scan of a LEB, but caters for errors that might have
865 * been caused by unclean reboots from which we are attempting to recover
866 * (assume that only the last log LEB can be corrupted by an unclean reboot).
867 *
868 * This function returns %0 on success and a negative error code on failure.
869 */
870 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
871 int offs, void *sbuf)
872 {
873 struct ubifs_scan_leb *sleb;
874 int next_lnum;
875
876 dbg_rcvry("LEB %d", lnum);
877 next_lnum = lnum + 1;
878 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
879 next_lnum = UBIFS_LOG_LNUM;
880 if (next_lnum != c->ltail_lnum) {
881 /*
882 * We can only recover at the end of the log, so check that the
883 * next log LEB is empty or out of date.
884 */
885 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
886 if (IS_ERR(sleb))
887 return sleb;
888 if (sleb->nodes_cnt) {
889 struct ubifs_scan_node *snod;
890 unsigned long long cs_sqnum = c->cs_sqnum;
891
892 snod = list_entry(sleb->nodes.next,
893 struct ubifs_scan_node, list);
894 if (cs_sqnum == 0) {
895 int err;
896
897 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
898 if (err) {
899 ubifs_scan_destroy(sleb);
900 return ERR_PTR(err);
901 }
902 }
903 if (snod->sqnum > cs_sqnum) {
904 ubifs_err("unrecoverable log corruption in LEB %d",
905 lnum);
906 ubifs_scan_destroy(sleb);
907 return ERR_PTR(-EUCLEAN);
908 }
909 }
910 ubifs_scan_destroy(sleb);
911 }
912 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
913 }
914
915 /**
916 * recover_head - recover a head.
917 * @c: UBIFS file-system description object
918 * @lnum: LEB number of head to recover
919 * @offs: offset of head to recover
920 * @sbuf: LEB-sized buffer to use
921 *
922 * This function ensures that there is no data on the flash at a head location.
923 *
924 * This function returns %0 on success and a negative error code on failure.
925 */
926 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
927 {
928 int len = c->max_write_size, err;
929
930 if (offs + len > c->leb_size)
931 len = c->leb_size - offs;
932
933 if (!len)
934 return 0;
935
936 /* Read at the head location and check it is empty flash */
937 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
938 if (err || !is_empty(sbuf, len)) {
939 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
940 if (offs == 0)
941 return ubifs_leb_unmap(c, lnum);
942 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
943 if (err)
944 return err;
945 return ubifs_leb_change(c, lnum, sbuf, offs);
946 }
947
948 return 0;
949 }
950
951 /**
952 * ubifs_recover_inl_heads - recover index and LPT heads.
953 * @c: UBIFS file-system description object
954 * @sbuf: LEB-sized buffer to use
955 *
956 * This function ensures that there is no data on the flash at the index and
957 * LPT head locations.
958 *
959 * This deals with the recovery of a half-completed journal commit. UBIFS is
960 * careful never to overwrite the last version of the index or the LPT. Because
961 * the index and LPT are wandering trees, data from a half-completed commit will
962 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
963 * assumed to be empty and will be unmapped anyway before use, or in the index
964 * and LPT heads.
965 *
966 * This function returns %0 on success and a negative error code on failure.
967 */
968 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
969 {
970 int err;
971
972 ubifs_assert(!c->ro_mount || c->remounting_rw);
973
974 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
975 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
976 if (err)
977 return err;
978
979 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
980 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
981 if (err)
982 return err;
983
984 return 0;
985 }
986
987 /**
988 * clean_an_unclean_leb - read and write a LEB to remove corruption.
989 * @c: UBIFS file-system description object
990 * @ucleb: unclean LEB information
991 * @sbuf: LEB-sized buffer to use
992 *
993 * This function reads a LEB up to a point pre-determined by the mount recovery,
994 * checks the nodes, and writes the result back to the flash, thereby cleaning
995 * off any following corruption, or non-fatal ECC errors.
996 *
997 * This function returns %0 on success and a negative error code on failure.
998 */
999 static int clean_an_unclean_leb(struct ubifs_info *c,
1000 struct ubifs_unclean_leb *ucleb, void *sbuf)
1001 {
1002 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
1003 void *buf = sbuf;
1004
1005 dbg_rcvry("LEB %d len %d", lnum, len);
1006
1007 if (len == 0) {
1008 /* Nothing to read, just unmap it */
1009 err = ubifs_leb_unmap(c, lnum);
1010 if (err)
1011 return err;
1012 return 0;
1013 }
1014
1015 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1016 if (err && err != -EBADMSG)
1017 return err;
1018
1019 while (len >= 8) {
1020 int ret;
1021
1022 cond_resched();
1023
1024 /* Scan quietly until there is an error */
1025 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1026
1027 if (ret == SCANNED_A_NODE) {
1028 /* A valid node, and not a padding node */
1029 struct ubifs_ch *ch = buf;
1030 int node_len;
1031
1032 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1033 offs += node_len;
1034 buf += node_len;
1035 len -= node_len;
1036 continue;
1037 }
1038
1039 if (ret > 0) {
1040 /* Padding bytes or a valid padding node */
1041 offs += ret;
1042 buf += ret;
1043 len -= ret;
1044 continue;
1045 }
1046
1047 if (ret == SCANNED_EMPTY_SPACE) {
1048 ubifs_err("unexpected empty space at %d:%d",
1049 lnum, offs);
1050 return -EUCLEAN;
1051 }
1052
1053 if (quiet) {
1054 /* Redo the last scan but noisily */
1055 quiet = 0;
1056 continue;
1057 }
1058
1059 ubifs_scanned_corruption(c, lnum, offs, buf);
1060 return -EUCLEAN;
1061 }
1062
1063 /* Pad to min_io_size */
1064 len = ALIGN(ucleb->endpt, c->min_io_size);
1065 if (len > ucleb->endpt) {
1066 int pad_len = len - ALIGN(ucleb->endpt, 8);
1067
1068 if (pad_len > 0) {
1069 buf = c->sbuf + len - pad_len;
1070 ubifs_pad(c, buf, pad_len);
1071 }
1072 }
1073
1074 /* Write back the LEB atomically */
1075 err = ubifs_leb_change(c, lnum, sbuf, len);
1076 if (err)
1077 return err;
1078
1079 dbg_rcvry("cleaned LEB %d", lnum);
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1086 * @c: UBIFS file-system description object
1087 * @sbuf: LEB-sized buffer to use
1088 *
1089 * This function cleans a LEB identified during recovery that needs to be
1090 * written but was not because UBIFS was mounted read-only. This happens when
1091 * remounting to read-write mode.
1092 *
1093 * This function returns %0 on success and a negative error code on failure.
1094 */
1095 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1096 {
1097 dbg_rcvry("recovery");
1098 while (!list_empty(&c->unclean_leb_list)) {
1099 struct ubifs_unclean_leb *ucleb;
1100 int err;
1101
1102 ucleb = list_entry(c->unclean_leb_list.next,
1103 struct ubifs_unclean_leb, list);
1104 err = clean_an_unclean_leb(c, ucleb, sbuf);
1105 if (err)
1106 return err;
1107 list_del(&ucleb->list);
1108 kfree(ucleb);
1109 }
1110 return 0;
1111 }
1112
1113 /**
1114 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1115 * @c: UBIFS file-system description object
1116 *
1117 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1118 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1119 * zero in case of success and a negative error code in case of failure.
1120 */
1121 static int grab_empty_leb(struct ubifs_info *c)
1122 {
1123 int lnum, err;
1124
1125 /*
1126 * Note, it is very important to first search for an empty LEB and then
1127 * run the commit, not vice-versa. The reason is that there might be
1128 * only one empty LEB at the moment, the one which has been the
1129 * @c->gc_lnum just before the power cut happened. During the regular
1130 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1131 * one but GC can grab it. But at this moment this single empty LEB is
1132 * not marked as taken, so if we run commit - what happens? Right, the
1133 * commit will grab it and write the index there. Remember that the
1134 * index always expands as long as there is free space, and it only
1135 * starts consolidating when we run out of space.
1136 *
1137 * IOW, if we run commit now, we might not be able to find a free LEB
1138 * after this.
1139 */
1140 lnum = ubifs_find_free_leb_for_idx(c);
1141 if (lnum < 0) {
1142 ubifs_err("could not find an empty LEB");
1143 ubifs_dump_lprops(c);
1144 ubifs_dump_budg(c, &c->bi);
1145 return lnum;
1146 }
1147
1148 /* Reset the index flag */
1149 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1150 LPROPS_INDEX, 0);
1151 if (err)
1152 return err;
1153
1154 c->gc_lnum = lnum;
1155 dbg_rcvry("found empty LEB %d, run commit", lnum);
1156
1157 return ubifs_run_commit(c);
1158 }
1159
1160 /**
1161 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1162 * @c: UBIFS file-system description object
1163 *
1164 * Out-of-place garbage collection requires always one empty LEB with which to
1165 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1166 * written to the master node on unmounting. In the case of an unclean unmount
1167 * the value of gc_lnum recorded in the master node is out of date and cannot
1168 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1169 * However, there may not be enough empty space, in which case it must be
1170 * possible to GC the dirtiest LEB into the GC head LEB.
1171 *
1172 * This function also runs the commit which causes the TNC updates from
1173 * size-recovery and orphans to be written to the flash. That is important to
1174 * ensure correct replay order for subsequent mounts.
1175 *
1176 * This function returns %0 on success and a negative error code on failure.
1177 */
1178 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1179 {
1180 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1181 struct ubifs_lprops lp;
1182 int err;
1183
1184 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1185
1186 c->gc_lnum = -1;
1187 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1188 return grab_empty_leb(c);
1189
1190 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1191 if (err) {
1192 if (err != -ENOSPC)
1193 return err;
1194
1195 dbg_rcvry("could not find a dirty LEB");
1196 return grab_empty_leb(c);
1197 }
1198
1199 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1200 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1201
1202 /*
1203 * We run the commit before garbage collection otherwise subsequent
1204 * mounts will see the GC and orphan deletion in a different order.
1205 */
1206 dbg_rcvry("committing");
1207 err = ubifs_run_commit(c);
1208 if (err)
1209 return err;
1210
1211 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1212 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1213 err = ubifs_garbage_collect_leb(c, &lp);
1214 if (err >= 0) {
1215 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1216
1217 if (err2)
1218 err = err2;
1219 }
1220 mutex_unlock(&wbuf->io_mutex);
1221 if (err < 0) {
1222 ubifs_err("GC failed, error %d", err);
1223 if (err == -EAGAIN)
1224 err = -EINVAL;
1225 return err;
1226 }
1227
1228 ubifs_assert(err == LEB_RETAINED);
1229 if (err != LEB_RETAINED)
1230 return -EINVAL;
1231
1232 err = ubifs_leb_unmap(c, c->gc_lnum);
1233 if (err)
1234 return err;
1235
1236 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1237 return 0;
1238 }
1239
1240 /**
1241 * struct size_entry - inode size information for recovery.
1242 * @rb: link in the RB-tree of sizes
1243 * @inum: inode number
1244 * @i_size: size on inode
1245 * @d_size: maximum size based on data nodes
1246 * @exists: indicates whether the inode exists
1247 * @inode: inode if pinned in memory awaiting rw mode to fix it
1248 */
1249 struct size_entry {
1250 struct rb_node rb;
1251 ino_t inum;
1252 loff_t i_size;
1253 loff_t d_size;
1254 int exists;
1255 struct inode *inode;
1256 };
1257
1258 /**
1259 * add_ino - add an entry to the size tree.
1260 * @c: UBIFS file-system description object
1261 * @inum: inode number
1262 * @i_size: size on inode
1263 * @d_size: maximum size based on data nodes
1264 * @exists: indicates whether the inode exists
1265 */
1266 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1267 loff_t d_size, int exists)
1268 {
1269 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1270 struct size_entry *e;
1271
1272 while (*p) {
1273 parent = *p;
1274 e = rb_entry(parent, struct size_entry, rb);
1275 if (inum < e->inum)
1276 p = &(*p)->rb_left;
1277 else
1278 p = &(*p)->rb_right;
1279 }
1280
1281 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1282 if (!e)
1283 return -ENOMEM;
1284
1285 e->inum = inum;
1286 e->i_size = i_size;
1287 e->d_size = d_size;
1288 e->exists = exists;
1289
1290 rb_link_node(&e->rb, parent, p);
1291 rb_insert_color(&e->rb, &c->size_tree);
1292
1293 return 0;
1294 }
1295
1296 /**
1297 * find_ino - find an entry on the size tree.
1298 * @c: UBIFS file-system description object
1299 * @inum: inode number
1300 */
1301 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1302 {
1303 struct rb_node *p = c->size_tree.rb_node;
1304 struct size_entry *e;
1305
1306 while (p) {
1307 e = rb_entry(p, struct size_entry, rb);
1308 if (inum < e->inum)
1309 p = p->rb_left;
1310 else if (inum > e->inum)
1311 p = p->rb_right;
1312 else
1313 return e;
1314 }
1315 return NULL;
1316 }
1317
1318 /**
1319 * remove_ino - remove an entry from the size tree.
1320 * @c: UBIFS file-system description object
1321 * @inum: inode number
1322 */
1323 static void remove_ino(struct ubifs_info *c, ino_t inum)
1324 {
1325 struct size_entry *e = find_ino(c, inum);
1326
1327 if (!e)
1328 return;
1329 rb_erase(&e->rb, &c->size_tree);
1330 kfree(e);
1331 }
1332
1333 /**
1334 * ubifs_destroy_size_tree - free resources related to the size tree.
1335 * @c: UBIFS file-system description object
1336 */
1337 void ubifs_destroy_size_tree(struct ubifs_info *c)
1338 {
1339 struct rb_node *this = c->size_tree.rb_node;
1340 struct size_entry *e;
1341
1342 while (this) {
1343 if (this->rb_left) {
1344 this = this->rb_left;
1345 continue;
1346 } else if (this->rb_right) {
1347 this = this->rb_right;
1348 continue;
1349 }
1350 e = rb_entry(this, struct size_entry, rb);
1351 if (e->inode)
1352 iput(e->inode);
1353 this = rb_parent(this);
1354 if (this) {
1355 if (this->rb_left == &e->rb)
1356 this->rb_left = NULL;
1357 else
1358 this->rb_right = NULL;
1359 }
1360 kfree(e);
1361 }
1362 c->size_tree = RB_ROOT;
1363 }
1364
1365 /**
1366 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1367 * @c: UBIFS file-system description object
1368 * @key: node key
1369 * @deletion: node is for a deletion
1370 * @new_size: inode size
1371 *
1372 * This function has two purposes:
1373 * 1) to ensure there are no data nodes that fall outside the inode size
1374 * 2) to ensure there are no data nodes for inodes that do not exist
1375 * To accomplish those purposes, a rb-tree is constructed containing an entry
1376 * for each inode number in the journal that has not been deleted, and recording
1377 * the size from the inode node, the maximum size of any data node (also altered
1378 * by truncations) and a flag indicating a inode number for which no inode node
1379 * was present in the journal.
1380 *
1381 * Note that there is still the possibility that there are data nodes that have
1382 * been committed that are beyond the inode size, however the only way to find
1383 * them would be to scan the entire index. Alternatively, some provision could
1384 * be made to record the size of inodes at the start of commit, which would seem
1385 * very cumbersome for a scenario that is quite unlikely and the only negative
1386 * consequence of which is wasted space.
1387 *
1388 * This functions returns %0 on success and a negative error code on failure.
1389 */
1390 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1391 int deletion, loff_t new_size)
1392 {
1393 ino_t inum = key_inum(c, key);
1394 struct size_entry *e;
1395 int err;
1396
1397 switch (key_type(c, key)) {
1398 case UBIFS_INO_KEY:
1399 if (deletion)
1400 remove_ino(c, inum);
1401 else {
1402 e = find_ino(c, inum);
1403 if (e) {
1404 e->i_size = new_size;
1405 e->exists = 1;
1406 } else {
1407 err = add_ino(c, inum, new_size, 0, 1);
1408 if (err)
1409 return err;
1410 }
1411 }
1412 break;
1413 case UBIFS_DATA_KEY:
1414 e = find_ino(c, inum);
1415 if (e) {
1416 if (new_size > e->d_size)
1417 e->d_size = new_size;
1418 } else {
1419 err = add_ino(c, inum, 0, new_size, 0);
1420 if (err)
1421 return err;
1422 }
1423 break;
1424 case UBIFS_TRUN_KEY:
1425 e = find_ino(c, inum);
1426 if (e)
1427 e->d_size = new_size;
1428 break;
1429 }
1430 return 0;
1431 }
1432
1433 /**
1434 * fix_size_in_place - fix inode size in place on flash.
1435 * @c: UBIFS file-system description object
1436 * @e: inode size information for recovery
1437 */
1438 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1439 {
1440 struct ubifs_ino_node *ino = c->sbuf;
1441 unsigned char *p;
1442 union ubifs_key key;
1443 int err, lnum, offs, len;
1444 loff_t i_size;
1445 uint32_t crc;
1446
1447 /* Locate the inode node LEB number and offset */
1448 ino_key_init(c, &key, e->inum);
1449 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1450 if (err)
1451 goto out;
1452 /*
1453 * If the size recorded on the inode node is greater than the size that
1454 * was calculated from nodes in the journal then don't change the inode.
1455 */
1456 i_size = le64_to_cpu(ino->size);
1457 if (i_size >= e->d_size)
1458 return 0;
1459 /* Read the LEB */
1460 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1461 if (err)
1462 goto out;
1463 /* Change the size field and recalculate the CRC */
1464 ino = c->sbuf + offs;
1465 ino->size = cpu_to_le64(e->d_size);
1466 len = le32_to_cpu(ino->ch.len);
1467 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1468 ino->ch.crc = cpu_to_le32(crc);
1469 /* Work out where data in the LEB ends and free space begins */
1470 p = c->sbuf;
1471 len = c->leb_size - 1;
1472 while (p[len] == 0xff)
1473 len -= 1;
1474 len = ALIGN(len + 1, c->min_io_size);
1475 /* Atomically write the fixed LEB back again */
1476 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1477 if (err)
1478 goto out;
1479 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1480 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1481 return 0;
1482
1483 out:
1484 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1485 (unsigned long)e->inum, e->i_size, e->d_size, err);
1486 return err;
1487 }
1488
1489 /**
1490 * ubifs_recover_size - recover inode size.
1491 * @c: UBIFS file-system description object
1492 *
1493 * This function attempts to fix inode size discrepancies identified by the
1494 * 'ubifs_recover_size_accum()' function.
1495 *
1496 * This functions returns %0 on success and a negative error code on failure.
1497 */
1498 int ubifs_recover_size(struct ubifs_info *c)
1499 {
1500 struct rb_node *this = rb_first(&c->size_tree);
1501
1502 while (this) {
1503 struct size_entry *e;
1504 int err;
1505
1506 e = rb_entry(this, struct size_entry, rb);
1507 if (!e->exists) {
1508 union ubifs_key key;
1509
1510 ino_key_init(c, &key, e->inum);
1511 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1512 if (err && err != -ENOENT)
1513 return err;
1514 if (err == -ENOENT) {
1515 /* Remove data nodes that have no inode */
1516 dbg_rcvry("removing ino %lu",
1517 (unsigned long)e->inum);
1518 err = ubifs_tnc_remove_ino(c, e->inum);
1519 if (err)
1520 return err;
1521 } else {
1522 struct ubifs_ino_node *ino = c->sbuf;
1523
1524 e->exists = 1;
1525 e->i_size = le64_to_cpu(ino->size);
1526 }
1527 }
1528
1529 if (e->exists && e->i_size < e->d_size) {
1530 if (c->ro_mount) {
1531 /* Fix the inode size and pin it in memory */
1532 struct inode *inode;
1533 struct ubifs_inode *ui;
1534
1535 ubifs_assert(!e->inode);
1536
1537 inode = ubifs_iget(c->vfs_sb, e->inum);
1538 if (IS_ERR(inode))
1539 return PTR_ERR(inode);
1540
1541 ui = ubifs_inode(inode);
1542 if (inode->i_size < e->d_size) {
1543 dbg_rcvry("ino %lu size %lld -> %lld",
1544 (unsigned long)e->inum,
1545 inode->i_size, e->d_size);
1546 inode->i_size = e->d_size;
1547 ui->ui_size = e->d_size;
1548 ui->synced_i_size = e->d_size;
1549 e->inode = inode;
1550 this = rb_next(this);
1551 continue;
1552 }
1553 iput(inode);
1554 } else {
1555 /* Fix the size in place */
1556 err = fix_size_in_place(c, e);
1557 if (err)
1558 return err;
1559 if (e->inode)
1560 iput(e->inode);
1561 }
1562 }
1563
1564 this = rb_next(this);
1565 rb_erase(&e->rb, &c->size_tree);
1566 kfree(e);
1567 }
1568
1569 return 0;
1570 }