4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
39 static LIST_HEAD(super_blocks
);
40 static DEFINE_SPINLOCK(sb_lock
);
42 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
55 static unsigned long super_cache_scan(struct shrinker
*shrink
,
56 struct shrink_control
*sc
)
58 struct super_block
*sb
;
65 sb
= container_of(shrink
, struct super_block
, s_shrink
);
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
71 if (!(sc
->gfp_mask
& __GFP_FS
))
74 if (!trylock_super(sb
))
77 if (sb
->s_op
->nr_cached_objects
)
78 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
80 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
81 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
82 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
86 /* proportion the scan between the caches */
87 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
88 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
89 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
98 sc
->nr_to_scan
= dentries
+ 1;
99 freed
= prune_dcache_sb(sb
, sc
);
100 sc
->nr_to_scan
= inodes
+ 1;
101 freed
+= prune_icache_sb(sb
, sc
);
104 sc
->nr_to_scan
= fs_objects
+ 1;
105 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
108 up_read(&sb
->s_umount
);
112 static unsigned long super_cache_count(struct shrinker
*shrink
,
113 struct shrink_control
*sc
)
115 struct super_block
*sb
;
116 long total_objects
= 0;
118 sb
= container_of(shrink
, struct super_block
, s_shrink
);
121 * Don't call trylock_super as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
128 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
129 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
131 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
132 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
134 total_objects
= vfs_pressure_ratio(total_objects
);
135 return total_objects
;
138 static void destroy_super_work(struct work_struct
*work
)
140 struct super_block
*s
= container_of(work
, struct super_block
,
144 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
145 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
149 static void destroy_super_rcu(struct rcu_head
*head
)
151 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
152 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
153 schedule_work(&s
->destroy_work
);
157 * destroy_super - frees a superblock
158 * @s: superblock to free
160 * Frees a superblock.
162 static void destroy_super(struct super_block
*s
)
164 list_lru_destroy(&s
->s_dentry_lru
);
165 list_lru_destroy(&s
->s_inode_lru
);
167 WARN_ON(!list_empty(&s
->s_mounts
));
170 call_rcu(&s
->rcu
, destroy_super_rcu
);
174 * alloc_super - create new superblock
175 * @type: filesystem type superblock should belong to
176 * @flags: the mount flags
178 * Allocates and initializes a new &struct super_block. alloc_super()
179 * returns a pointer new superblock or %NULL if allocation had failed.
181 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
)
183 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
184 static const struct super_operations default_op
;
190 INIT_LIST_HEAD(&s
->s_mounts
);
192 if (security_sb_alloc(s
))
195 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
196 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
198 &type
->s_writers_key
[i
]))
201 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
202 s
->s_bdi
= &noop_backing_dev_info
;
204 INIT_HLIST_NODE(&s
->s_instances
);
205 INIT_HLIST_BL_HEAD(&s
->s_anon
);
206 mutex_init(&s
->s_sync_lock
);
207 INIT_LIST_HEAD(&s
->s_inodes
);
208 spin_lock_init(&s
->s_inode_list_lock
);
210 if (list_lru_init_memcg(&s
->s_dentry_lru
))
212 if (list_lru_init_memcg(&s
->s_inode_lru
))
215 init_rwsem(&s
->s_umount
);
216 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
218 * sget() can have s_umount recursion.
220 * When it cannot find a suitable sb, it allocates a new
221 * one (this one), and tries again to find a suitable old
224 * In case that succeeds, it will acquire the s_umount
225 * lock of the old one. Since these are clearly distrinct
226 * locks, and this object isn't exposed yet, there's no
229 * Annotate this by putting this lock in a different
232 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
234 atomic_set(&s
->s_active
, 1);
235 mutex_init(&s
->s_vfs_rename_mutex
);
236 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
237 mutex_init(&s
->s_dquot
.dqio_mutex
);
238 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
239 s
->s_maxbytes
= MAX_NON_LFS
;
240 s
->s_op
= &default_op
;
241 s
->s_time_gran
= 1000000000;
242 s
->cleancache_poolid
= CLEANCACHE_NO_POOL
;
244 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
245 s
->s_shrink
.scan_objects
= super_cache_scan
;
246 s
->s_shrink
.count_objects
= super_cache_count
;
247 s
->s_shrink
.batch
= 1024;
248 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
;
256 /* Superblock refcounting */
259 * Drop a superblock's refcount. The caller must hold sb_lock.
261 static void __put_super(struct super_block
*sb
)
263 if (!--sb
->s_count
) {
264 list_del_init(&sb
->s_list
);
270 * put_super - drop a temporary reference to superblock
271 * @sb: superblock in question
273 * Drops a temporary reference, frees superblock if there's no
276 static void put_super(struct super_block
*sb
)
280 spin_unlock(&sb_lock
);
285 * deactivate_locked_super - drop an active reference to superblock
286 * @s: superblock to deactivate
288 * Drops an active reference to superblock, converting it into a temprory
289 * one if there is no other active references left. In that case we
290 * tell fs driver to shut it down and drop the temporary reference we
293 * Caller holds exclusive lock on superblock; that lock is released.
295 void deactivate_locked_super(struct super_block
*s
)
297 struct file_system_type
*fs
= s
->s_type
;
298 if (atomic_dec_and_test(&s
->s_active
)) {
299 cleancache_invalidate_fs(s
);
300 unregister_shrinker(&s
->s_shrink
);
304 * Since list_lru_destroy() may sleep, we cannot call it from
305 * put_super(), where we hold the sb_lock. Therefore we destroy
306 * the lru lists right now.
308 list_lru_destroy(&s
->s_dentry_lru
);
309 list_lru_destroy(&s
->s_inode_lru
);
314 up_write(&s
->s_umount
);
318 EXPORT_SYMBOL(deactivate_locked_super
);
321 * deactivate_super - drop an active reference to superblock
322 * @s: superblock to deactivate
324 * Variant of deactivate_locked_super(), except that superblock is *not*
325 * locked by caller. If we are going to drop the final active reference,
326 * lock will be acquired prior to that.
328 void deactivate_super(struct super_block
*s
)
330 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
331 down_write(&s
->s_umount
);
332 deactivate_locked_super(s
);
336 EXPORT_SYMBOL(deactivate_super
);
339 * grab_super - acquire an active reference
340 * @s: reference we are trying to make active
342 * Tries to acquire an active reference. grab_super() is used when we
343 * had just found a superblock in super_blocks or fs_type->fs_supers
344 * and want to turn it into a full-blown active reference. grab_super()
345 * is called with sb_lock held and drops it. Returns 1 in case of
346 * success, 0 if we had failed (superblock contents was already dead or
347 * dying when grab_super() had been called). Note that this is only
348 * called for superblocks not in rundown mode (== ones still on ->fs_supers
349 * of their type), so increment of ->s_count is OK here.
351 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
354 spin_unlock(&sb_lock
);
355 down_write(&s
->s_umount
);
356 if ((s
->s_flags
& MS_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
360 up_write(&s
->s_umount
);
366 * trylock_super - try to grab ->s_umount shared
367 * @sb: reference we are trying to grab
369 * Try to prevent fs shutdown. This is used in places where we
370 * cannot take an active reference but we need to ensure that the
371 * filesystem is not shut down while we are working on it. It returns
372 * false if we cannot acquire s_umount or if we lose the race and
373 * filesystem already got into shutdown, and returns true with the s_umount
374 * lock held in read mode in case of success. On successful return,
375 * the caller must drop the s_umount lock when done.
377 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
378 * The reason why it's safe is that we are OK with doing trylock instead
379 * of down_read(). There's a couple of places that are OK with that, but
380 * it's very much not a general-purpose interface.
382 bool trylock_super(struct super_block
*sb
)
384 if (down_read_trylock(&sb
->s_umount
)) {
385 if (!hlist_unhashed(&sb
->s_instances
) &&
386 sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
388 up_read(&sb
->s_umount
);
395 * generic_shutdown_super - common helper for ->kill_sb()
396 * @sb: superblock to kill
398 * generic_shutdown_super() does all fs-independent work on superblock
399 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
400 * that need destruction out of superblock, call generic_shutdown_super()
401 * and release aforementioned objects. Note: dentries and inodes _are_
402 * taken care of and do not need specific handling.
404 * Upon calling this function, the filesystem may no longer alter or
405 * rearrange the set of dentries belonging to this super_block, nor may it
406 * change the attachments of dentries to inodes.
408 void generic_shutdown_super(struct super_block
*sb
)
410 const struct super_operations
*sop
= sb
->s_op
;
413 shrink_dcache_for_umount(sb
);
415 sb
->s_flags
&= ~MS_ACTIVE
;
417 fsnotify_unmount_inodes(sb
);
418 cgroup_writeback_umount();
422 if (sb
->s_dio_done_wq
) {
423 destroy_workqueue(sb
->s_dio_done_wq
);
424 sb
->s_dio_done_wq
= NULL
;
430 if (!list_empty(&sb
->s_inodes
)) {
431 printk("VFS: Busy inodes after unmount of %s. "
432 "Self-destruct in 5 seconds. Have a nice day...\n",
437 /* should be initialized for __put_super_and_need_restart() */
438 hlist_del_init(&sb
->s_instances
);
439 spin_unlock(&sb_lock
);
440 up_write(&sb
->s_umount
);
443 EXPORT_SYMBOL(generic_shutdown_super
);
446 * sget - find or create a superblock
447 * @type: filesystem type superblock should belong to
448 * @test: comparison callback
449 * @set: setup callback
450 * @flags: mount flags
451 * @data: argument to each of them
453 struct super_block
*sget(struct file_system_type
*type
,
454 int (*test
)(struct super_block
*,void *),
455 int (*set
)(struct super_block
*,void *),
459 struct super_block
*s
= NULL
;
460 struct super_block
*old
;
466 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
467 if (!test(old
, data
))
469 if (!grab_super(old
))
472 up_write(&s
->s_umount
);
480 spin_unlock(&sb_lock
);
481 s
= alloc_super(type
, flags
);
483 return ERR_PTR(-ENOMEM
);
489 spin_unlock(&sb_lock
);
490 up_write(&s
->s_umount
);
495 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
496 list_add_tail(&s
->s_list
, &super_blocks
);
497 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
498 spin_unlock(&sb_lock
);
499 get_filesystem(type
);
500 register_shrinker(&s
->s_shrink
);
506 void drop_super(struct super_block
*sb
)
508 up_read(&sb
->s_umount
);
512 EXPORT_SYMBOL(drop_super
);
515 * iterate_supers - call function for all active superblocks
516 * @f: function to call
517 * @arg: argument to pass to it
519 * Scans the superblock list and calls given function, passing it
520 * locked superblock and given argument.
522 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
524 struct super_block
*sb
, *p
= NULL
;
527 list_for_each_entry(sb
, &super_blocks
, s_list
) {
528 if (hlist_unhashed(&sb
->s_instances
))
531 spin_unlock(&sb_lock
);
533 down_read(&sb
->s_umount
);
534 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
536 up_read(&sb
->s_umount
);
545 spin_unlock(&sb_lock
);
549 * iterate_supers_type - call function for superblocks of given type
551 * @f: function to call
552 * @arg: argument to pass to it
554 * Scans the superblock list and calls given function, passing it
555 * locked superblock and given argument.
557 void iterate_supers_type(struct file_system_type
*type
,
558 void (*f
)(struct super_block
*, void *), void *arg
)
560 struct super_block
*sb
, *p
= NULL
;
563 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
565 spin_unlock(&sb_lock
);
567 down_read(&sb
->s_umount
);
568 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
570 up_read(&sb
->s_umount
);
579 spin_unlock(&sb_lock
);
582 EXPORT_SYMBOL(iterate_supers_type
);
585 * get_super - get the superblock of a device
586 * @bdev: device to get the superblock for
588 * Scans the superblock list and finds the superblock of the file system
589 * mounted on the device given. %NULL is returned if no match is found.
592 struct super_block
*get_super(struct block_device
*bdev
)
594 struct super_block
*sb
;
601 list_for_each_entry(sb
, &super_blocks
, s_list
) {
602 if (hlist_unhashed(&sb
->s_instances
))
604 if (sb
->s_bdev
== bdev
) {
606 spin_unlock(&sb_lock
);
607 down_read(&sb
->s_umount
);
609 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
611 up_read(&sb
->s_umount
);
612 /* nope, got unmounted */
618 spin_unlock(&sb_lock
);
622 EXPORT_SYMBOL(get_super
);
625 * get_super_thawed - get thawed superblock of a device
626 * @bdev: device to get the superblock for
628 * Scans the superblock list and finds the superblock of the file system
629 * mounted on the device. The superblock is returned once it is thawed
630 * (or immediately if it was not frozen). %NULL is returned if no match
633 struct super_block
*get_super_thawed(struct block_device
*bdev
)
636 struct super_block
*s
= get_super(bdev
);
637 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
639 up_read(&s
->s_umount
);
640 wait_event(s
->s_writers
.wait_unfrozen
,
641 s
->s_writers
.frozen
== SB_UNFROZEN
);
645 EXPORT_SYMBOL(get_super_thawed
);
648 * get_active_super - get an active reference to the superblock of a device
649 * @bdev: device to get the superblock for
651 * Scans the superblock list and finds the superblock of the file system
652 * mounted on the device given. Returns the superblock with an active
653 * reference or %NULL if none was found.
655 struct super_block
*get_active_super(struct block_device
*bdev
)
657 struct super_block
*sb
;
664 list_for_each_entry(sb
, &super_blocks
, s_list
) {
665 if (hlist_unhashed(&sb
->s_instances
))
667 if (sb
->s_bdev
== bdev
) {
670 up_write(&sb
->s_umount
);
674 spin_unlock(&sb_lock
);
678 struct super_block
*user_get_super(dev_t dev
)
680 struct super_block
*sb
;
684 list_for_each_entry(sb
, &super_blocks
, s_list
) {
685 if (hlist_unhashed(&sb
->s_instances
))
687 if (sb
->s_dev
== dev
) {
689 spin_unlock(&sb_lock
);
690 down_read(&sb
->s_umount
);
692 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
694 up_read(&sb
->s_umount
);
695 /* nope, got unmounted */
701 spin_unlock(&sb_lock
);
706 * do_remount_sb2 - asks filesystem to change mount options.
707 * @mnt: mount we are looking at
708 * @sb: superblock in question
709 * @flags: numeric part of options
710 * @data: the rest of options
711 * @force: whether or not to force the change
713 * Alters the mount options of a mounted file system.
715 int do_remount_sb2(struct vfsmount
*mnt
, struct super_block
*sb
, int flags
, void *data
, int force
)
720 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
724 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
728 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
731 if (!hlist_empty(&sb
->s_pins
)) {
732 up_write(&sb
->s_umount
);
733 group_pin_kill(&sb
->s_pins
);
734 down_write(&sb
->s_umount
);
737 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
739 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
742 shrink_dcache_sb(sb
);
744 /* If we are remounting RDONLY and current sb is read/write,
745 make sure there are no rw files opened */
748 sb
->s_readonly_remount
= 1;
751 retval
= sb_prepare_remount_readonly(sb
);
757 if (mnt
&& sb
->s_op
->remount_fs2
) {
758 retval
= sb
->s_op
->remount_fs2(mnt
, sb
, &flags
, data
);
761 goto cancel_readonly
;
762 /* If forced remount, go ahead despite any errors */
763 WARN(1, "forced remount of a %s fs returned %i\n",
764 sb
->s_type
->name
, retval
);
766 } else if (sb
->s_op
->remount_fs
) {
767 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
770 goto cancel_readonly
;
771 /* If forced remount, go ahead despite any errors */
772 WARN(1, "forced remount of a %s fs returned %i\n",
773 sb
->s_type
->name
, retval
);
776 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
777 /* Needs to be ordered wrt mnt_is_readonly() */
779 sb
->s_readonly_remount
= 0;
782 * Some filesystems modify their metadata via some other path than the
783 * bdev buffer cache (eg. use a private mapping, or directories in
784 * pagecache, etc). Also file data modifications go via their own
785 * mappings. So If we try to mount readonly then copy the filesystem
786 * from bdev, we could get stale data, so invalidate it to give a best
787 * effort at coherency.
789 if (remount_ro
&& sb
->s_bdev
)
790 invalidate_bdev(sb
->s_bdev
);
794 sb
->s_readonly_remount
= 0;
798 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
800 return do_remount_sb2(NULL
, sb
, flags
, data
, force
);
803 static void do_emergency_remount(struct work_struct
*work
)
805 struct super_block
*sb
, *p
= NULL
;
808 list_for_each_entry_reverse(sb
, &super_blocks
, s_list
) {
809 if (hlist_unhashed(&sb
->s_instances
))
812 spin_unlock(&sb_lock
);
813 down_write(&sb
->s_umount
);
814 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
815 !(sb
->s_flags
& MS_RDONLY
)) {
817 * What lock protects sb->s_flags??
819 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
821 up_write(&sb
->s_umount
);
829 spin_unlock(&sb_lock
);
831 printk("Emergency Remount complete\n");
834 void emergency_remount(void)
836 struct work_struct
*work
;
838 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
840 INIT_WORK(work
, do_emergency_remount
);
846 * Unnamed block devices are dummy devices used by virtual
847 * filesystems which don't use real block-devices. -- jrs
850 static DEFINE_IDA(unnamed_dev_ida
);
851 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
852 /* Many userspace utilities consider an FSID of 0 invalid.
853 * Always return at least 1 from get_anon_bdev.
855 static int unnamed_dev_start
= 1;
857 int get_anon_bdev(dev_t
*p
)
863 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
865 spin_lock(&unnamed_dev_lock
);
866 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
868 unnamed_dev_start
= dev
+ 1;
869 spin_unlock(&unnamed_dev_lock
);
870 if (error
== -EAGAIN
)
871 /* We raced and lost with another CPU. */
876 if (dev
>= (1 << MINORBITS
)) {
877 spin_lock(&unnamed_dev_lock
);
878 ida_remove(&unnamed_dev_ida
, dev
);
879 if (unnamed_dev_start
> dev
)
880 unnamed_dev_start
= dev
;
881 spin_unlock(&unnamed_dev_lock
);
884 *p
= MKDEV(0, dev
& MINORMASK
);
887 EXPORT_SYMBOL(get_anon_bdev
);
889 void free_anon_bdev(dev_t dev
)
891 int slot
= MINOR(dev
);
892 spin_lock(&unnamed_dev_lock
);
893 ida_remove(&unnamed_dev_ida
, slot
);
894 if (slot
< unnamed_dev_start
)
895 unnamed_dev_start
= slot
;
896 spin_unlock(&unnamed_dev_lock
);
898 EXPORT_SYMBOL(free_anon_bdev
);
900 int set_anon_super(struct super_block
*s
, void *data
)
902 return get_anon_bdev(&s
->s_dev
);
905 EXPORT_SYMBOL(set_anon_super
);
907 void kill_anon_super(struct super_block
*sb
)
909 dev_t dev
= sb
->s_dev
;
910 generic_shutdown_super(sb
);
914 EXPORT_SYMBOL(kill_anon_super
);
916 void kill_litter_super(struct super_block
*sb
)
919 d_genocide(sb
->s_root
);
923 EXPORT_SYMBOL(kill_litter_super
);
925 static int ns_test_super(struct super_block
*sb
, void *data
)
927 return sb
->s_fs_info
== data
;
930 static int ns_set_super(struct super_block
*sb
, void *data
)
932 sb
->s_fs_info
= data
;
933 return set_anon_super(sb
, NULL
);
936 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
937 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
939 struct super_block
*sb
;
941 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, flags
, data
);
947 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
949 deactivate_locked_super(sb
);
953 sb
->s_flags
|= MS_ACTIVE
;
956 return dget(sb
->s_root
);
959 EXPORT_SYMBOL(mount_ns
);
962 static int set_bdev_super(struct super_block
*s
, void *data
)
965 s
->s_dev
= s
->s_bdev
->bd_dev
;
968 * We set the bdi here to the queue backing, file systems can
969 * overwrite this in ->fill_super()
971 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
975 static int test_bdev_super(struct super_block
*s
, void *data
)
977 return (void *)s
->s_bdev
== data
;
980 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
981 int flags
, const char *dev_name
, void *data
,
982 int (*fill_super
)(struct super_block
*, void *, int))
984 struct block_device
*bdev
;
985 struct super_block
*s
;
986 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
989 if (!(flags
& MS_RDONLY
))
992 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
994 return ERR_CAST(bdev
);
997 * once the super is inserted into the list by sget, s_umount
998 * will protect the lockfs code from trying to start a snapshot
999 * while we are mounting
1001 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1002 if (bdev
->bd_fsfreeze_count
> 0) {
1003 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1007 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
1009 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1014 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
1015 deactivate_locked_super(s
);
1021 * s_umount nests inside bd_mutex during
1022 * __invalidate_device(). blkdev_put() acquires
1023 * bd_mutex and can't be called under s_umount. Drop
1024 * s_umount temporarily. This is safe as we're
1025 * holding an active reference.
1027 up_write(&s
->s_umount
);
1028 blkdev_put(bdev
, mode
);
1029 down_write(&s
->s_umount
);
1031 char b
[BDEVNAME_SIZE
];
1034 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
1035 sb_set_blocksize(s
, block_size(bdev
));
1036 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1038 deactivate_locked_super(s
);
1042 s
->s_flags
|= MS_ACTIVE
;
1046 return dget(s
->s_root
);
1051 blkdev_put(bdev
, mode
);
1053 return ERR_PTR(error
);
1055 EXPORT_SYMBOL(mount_bdev
);
1057 void kill_block_super(struct super_block
*sb
)
1059 struct block_device
*bdev
= sb
->s_bdev
;
1060 fmode_t mode
= sb
->s_mode
;
1062 bdev
->bd_super
= NULL
;
1063 generic_shutdown_super(sb
);
1064 sync_blockdev(bdev
);
1065 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1066 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1069 EXPORT_SYMBOL(kill_block_super
);
1072 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1073 int flags
, void *data
,
1074 int (*fill_super
)(struct super_block
*, void *, int))
1077 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1082 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1084 deactivate_locked_super(s
);
1085 return ERR_PTR(error
);
1087 s
->s_flags
|= MS_ACTIVE
;
1088 return dget(s
->s_root
);
1090 EXPORT_SYMBOL(mount_nodev
);
1092 static int compare_single(struct super_block
*s
, void *p
)
1097 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1098 int flags
, void *data
,
1099 int (*fill_super
)(struct super_block
*, void *, int))
1101 struct super_block
*s
;
1104 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1108 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1110 deactivate_locked_super(s
);
1111 return ERR_PTR(error
);
1113 s
->s_flags
|= MS_ACTIVE
;
1115 do_remount_sb(s
, flags
, data
, 0);
1117 return dget(s
->s_root
);
1119 EXPORT_SYMBOL(mount_single
);
1122 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, struct vfsmount
*mnt
, void *data
)
1124 struct dentry
*root
;
1125 struct super_block
*sb
;
1126 char *secdata
= NULL
;
1127 int error
= -ENOMEM
;
1129 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1130 secdata
= alloc_secdata();
1134 error
= security_sb_copy_data(data
, secdata
);
1136 goto out_free_secdata
;
1140 root
= type
->mount2(mnt
, type
, flags
, name
, data
);
1142 root
= type
->mount(type
, flags
, name
, data
);
1144 error
= PTR_ERR(root
);
1145 goto out_free_secdata
;
1149 WARN_ON(!sb
->s_bdi
);
1150 sb
->s_flags
|= MS_BORN
;
1152 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1157 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1158 * but s_maxbytes was an unsigned long long for many releases. Throw
1159 * this warning for a little while to try and catch filesystems that
1160 * violate this rule.
1162 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1163 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1165 up_write(&sb
->s_umount
);
1166 free_secdata(secdata
);
1170 deactivate_locked_super(sb
);
1172 free_secdata(secdata
);
1174 return ERR_PTR(error
);
1178 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1181 void __sb_end_write(struct super_block
*sb
, int level
)
1183 percpu_up_read(sb
->s_writers
.rw_sem
+ level
-1);
1185 EXPORT_SYMBOL(__sb_end_write
);
1188 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1191 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1193 bool force_trylock
= false;
1196 #ifdef CONFIG_LOCKDEP
1198 * We want lockdep to tell us about possible deadlocks with freezing
1199 * but it's it bit tricky to properly instrument it. Getting a freeze
1200 * protection works as getting a read lock but there are subtle
1201 * problems. XFS for example gets freeze protection on internal level
1202 * twice in some cases, which is OK only because we already hold a
1203 * freeze protection also on higher level. Due to these cases we have
1204 * to use wait == F (trylock mode) which must not fail.
1209 for (i
= 0; i
< level
- 1; i
++)
1210 if (percpu_rwsem_is_held(sb
->s_writers
.rw_sem
+ i
)) {
1211 force_trylock
= true;
1216 if (wait
&& !force_trylock
)
1217 percpu_down_read(sb
->s_writers
.rw_sem
+ level
-1);
1219 ret
= percpu_down_read_trylock(sb
->s_writers
.rw_sem
+ level
-1);
1221 WARN_ON(force_trylock
& !ret
);
1224 EXPORT_SYMBOL(__sb_start_write
);
1227 * sb_wait_write - wait until all writers to given file system finish
1228 * @sb: the super for which we wait
1229 * @level: type of writers we wait for (normal vs page fault)
1231 * This function waits until there are no writers of given type to given file
1234 static void sb_wait_write(struct super_block
*sb
, int level
)
1236 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1238 * We are going to return to userspace and forget about this lock, the
1239 * ownership goes to the caller of thaw_super() which does unlock.
1241 * FIXME: we should do this before return from freeze_super() after we
1242 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1243 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1244 * this leads to lockdep false-positives, so currently we do the early
1245 * release right after acquire.
1247 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
-1, 0, _THIS_IP_
);
1250 static void sb_freeze_unlock(struct super_block
*sb
)
1254 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1255 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1257 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1258 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1262 * freeze_super - lock the filesystem and force it into a consistent state
1263 * @sb: the super to lock
1265 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1266 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1269 * During this function, sb->s_writers.frozen goes through these values:
1271 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1273 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1274 * writes should be blocked, though page faults are still allowed. We wait for
1275 * all writes to complete and then proceed to the next stage.
1277 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1278 * but internal fs threads can still modify the filesystem (although they
1279 * should not dirty new pages or inodes), writeback can run etc. After waiting
1280 * for all running page faults we sync the filesystem which will clean all
1281 * dirty pages and inodes (no new dirty pages or inodes can be created when
1284 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1285 * modification are blocked (e.g. XFS preallocation truncation on inode
1286 * reclaim). This is usually implemented by blocking new transactions for
1287 * filesystems that have them and need this additional guard. After all
1288 * internal writers are finished we call ->freeze_fs() to finish filesystem
1289 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1290 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1292 * sb->s_writers.frozen is protected by sb->s_umount.
1294 int freeze_super(struct super_block
*sb
)
1298 atomic_inc(&sb
->s_active
);
1299 down_write(&sb
->s_umount
);
1300 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1301 deactivate_locked_super(sb
);
1305 if (!(sb
->s_flags
& MS_BORN
)) {
1306 up_write(&sb
->s_umount
);
1307 return 0; /* sic - it's "nothing to do" */
1310 if (sb
->s_flags
& MS_RDONLY
) {
1311 /* Nothing to do really... */
1312 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1313 up_write(&sb
->s_umount
);
1317 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1318 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1319 up_write(&sb
->s_umount
);
1320 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1321 down_write(&sb
->s_umount
);
1323 /* Now we go and block page faults... */
1324 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1325 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1327 /* All writers are done so after syncing there won't be dirty data */
1328 sync_filesystem(sb
);
1330 /* Now wait for internal filesystem counter */
1331 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1332 sb_wait_write(sb
, SB_FREEZE_FS
);
1334 if (sb
->s_op
->freeze_fs
) {
1335 ret
= sb
->s_op
->freeze_fs(sb
);
1338 "VFS:Filesystem freeze failed\n");
1339 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1340 sb_freeze_unlock(sb
);
1341 wake_up(&sb
->s_writers
.wait_unfrozen
);
1342 deactivate_locked_super(sb
);
1347 * For debugging purposes so that fs can warn if it sees write activity
1348 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1350 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1351 up_write(&sb
->s_umount
);
1354 EXPORT_SYMBOL(freeze_super
);
1357 * thaw_super -- unlock filesystem
1358 * @sb: the super to thaw
1360 * Unlocks the filesystem and marks it writeable again after freeze_super().
1362 int thaw_super(struct super_block
*sb
)
1366 down_write(&sb
->s_umount
);
1367 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
) {
1368 up_write(&sb
->s_umount
);
1372 if (sb
->s_flags
& MS_RDONLY
) {
1373 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1377 if (sb
->s_op
->unfreeze_fs
) {
1378 error
= sb
->s_op
->unfreeze_fs(sb
);
1381 "VFS:Filesystem thaw failed\n");
1382 up_write(&sb
->s_umount
);
1387 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1388 sb_freeze_unlock(sb
);
1390 wake_up(&sb
->s_writers
.wait_unfrozen
);
1391 deactivate_locked_super(sb
);
1394 EXPORT_SYMBOL(thaw_super
);