usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!trylock_super(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91 /*
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
94 *
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
97 */
98 sc->nr_to_scan = dentries + 1;
99 freed = prune_dcache_sb(sb, sc);
100 sc->nr_to_scan = inodes + 1;
101 freed += prune_icache_sb(sb, sc);
102
103 if (fs_objects) {
104 sc->nr_to_scan = fs_objects + 1;
105 freed += sb->s_op->free_cached_objects(sb, sc);
106 }
107
108 up_read(&sb->s_umount);
109 return freed;
110 }
111
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 struct shrink_control *sc)
114 {
115 struct super_block *sb;
116 long total_objects = 0;
117
118 sb = container_of(shrink, struct super_block, s_shrink);
119
120 /*
121 * Don't call trylock_super as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
127 */
128 if (sb->s_op && sb->s_op->nr_cached_objects)
129 total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
136 }
137
138 static void destroy_super_work(struct work_struct *work)
139 {
140 struct super_block *s = container_of(work, struct super_block,
141 destroy_work);
142 int i;
143
144 for (i = 0; i < SB_FREEZE_LEVELS; i++)
145 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
146 kfree(s);
147 }
148
149 static void destroy_super_rcu(struct rcu_head *head)
150 {
151 struct super_block *s = container_of(head, struct super_block, rcu);
152 INIT_WORK(&s->destroy_work, destroy_super_work);
153 schedule_work(&s->destroy_work);
154 }
155
156 /**
157 * destroy_super - frees a superblock
158 * @s: superblock to free
159 *
160 * Frees a superblock.
161 */
162 static void destroy_super(struct super_block *s)
163 {
164 list_lru_destroy(&s->s_dentry_lru);
165 list_lru_destroy(&s->s_inode_lru);
166 security_sb_free(s);
167 WARN_ON(!list_empty(&s->s_mounts));
168 kfree(s->s_subtype);
169 kfree(s->s_options);
170 call_rcu(&s->rcu, destroy_super_rcu);
171 }
172
173 /**
174 * alloc_super - create new superblock
175 * @type: filesystem type superblock should belong to
176 * @flags: the mount flags
177 *
178 * Allocates and initializes a new &struct super_block. alloc_super()
179 * returns a pointer new superblock or %NULL if allocation had failed.
180 */
181 static struct super_block *alloc_super(struct file_system_type *type, int flags)
182 {
183 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
184 static const struct super_operations default_op;
185 int i;
186
187 if (!s)
188 return NULL;
189
190 INIT_LIST_HEAD(&s->s_mounts);
191
192 if (security_sb_alloc(s))
193 goto fail;
194
195 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
196 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
197 sb_writers_name[i],
198 &type->s_writers_key[i]))
199 goto fail;
200 }
201 init_waitqueue_head(&s->s_writers.wait_unfrozen);
202 s->s_bdi = &noop_backing_dev_info;
203 s->s_flags = flags;
204 INIT_HLIST_NODE(&s->s_instances);
205 INIT_HLIST_BL_HEAD(&s->s_anon);
206 mutex_init(&s->s_sync_lock);
207 INIT_LIST_HEAD(&s->s_inodes);
208 spin_lock_init(&s->s_inode_list_lock);
209
210 if (list_lru_init_memcg(&s->s_dentry_lru))
211 goto fail;
212 if (list_lru_init_memcg(&s->s_inode_lru))
213 goto fail;
214
215 init_rwsem(&s->s_umount);
216 lockdep_set_class(&s->s_umount, &type->s_umount_key);
217 /*
218 * sget() can have s_umount recursion.
219 *
220 * When it cannot find a suitable sb, it allocates a new
221 * one (this one), and tries again to find a suitable old
222 * one.
223 *
224 * In case that succeeds, it will acquire the s_umount
225 * lock of the old one. Since these are clearly distrinct
226 * locks, and this object isn't exposed yet, there's no
227 * risk of deadlocks.
228 *
229 * Annotate this by putting this lock in a different
230 * subclass.
231 */
232 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
233 s->s_count = 1;
234 atomic_set(&s->s_active, 1);
235 mutex_init(&s->s_vfs_rename_mutex);
236 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
237 mutex_init(&s->s_dquot.dqio_mutex);
238 mutex_init(&s->s_dquot.dqonoff_mutex);
239 s->s_maxbytes = MAX_NON_LFS;
240 s->s_op = &default_op;
241 s->s_time_gran = 1000000000;
242 s->cleancache_poolid = CLEANCACHE_NO_POOL;
243
244 s->s_shrink.seeks = DEFAULT_SEEKS;
245 s->s_shrink.scan_objects = super_cache_scan;
246 s->s_shrink.count_objects = super_cache_count;
247 s->s_shrink.batch = 1024;
248 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
249 return s;
250
251 fail:
252 destroy_super(s);
253 return NULL;
254 }
255
256 /* Superblock refcounting */
257
258 /*
259 * Drop a superblock's refcount. The caller must hold sb_lock.
260 */
261 static void __put_super(struct super_block *sb)
262 {
263 if (!--sb->s_count) {
264 list_del_init(&sb->s_list);
265 destroy_super(sb);
266 }
267 }
268
269 /**
270 * put_super - drop a temporary reference to superblock
271 * @sb: superblock in question
272 *
273 * Drops a temporary reference, frees superblock if there's no
274 * references left.
275 */
276 static void put_super(struct super_block *sb)
277 {
278 spin_lock(&sb_lock);
279 __put_super(sb);
280 spin_unlock(&sb_lock);
281 }
282
283
284 /**
285 * deactivate_locked_super - drop an active reference to superblock
286 * @s: superblock to deactivate
287 *
288 * Drops an active reference to superblock, converting it into a temprory
289 * one if there is no other active references left. In that case we
290 * tell fs driver to shut it down and drop the temporary reference we
291 * had just acquired.
292 *
293 * Caller holds exclusive lock on superblock; that lock is released.
294 */
295 void deactivate_locked_super(struct super_block *s)
296 {
297 struct file_system_type *fs = s->s_type;
298 if (atomic_dec_and_test(&s->s_active)) {
299 cleancache_invalidate_fs(s);
300 unregister_shrinker(&s->s_shrink);
301 fs->kill_sb(s);
302
303 /*
304 * Since list_lru_destroy() may sleep, we cannot call it from
305 * put_super(), where we hold the sb_lock. Therefore we destroy
306 * the lru lists right now.
307 */
308 list_lru_destroy(&s->s_dentry_lru);
309 list_lru_destroy(&s->s_inode_lru);
310
311 put_filesystem(fs);
312 put_super(s);
313 } else {
314 up_write(&s->s_umount);
315 }
316 }
317
318 EXPORT_SYMBOL(deactivate_locked_super);
319
320 /**
321 * deactivate_super - drop an active reference to superblock
322 * @s: superblock to deactivate
323 *
324 * Variant of deactivate_locked_super(), except that superblock is *not*
325 * locked by caller. If we are going to drop the final active reference,
326 * lock will be acquired prior to that.
327 */
328 void deactivate_super(struct super_block *s)
329 {
330 if (!atomic_add_unless(&s->s_active, -1, 1)) {
331 down_write(&s->s_umount);
332 deactivate_locked_super(s);
333 }
334 }
335
336 EXPORT_SYMBOL(deactivate_super);
337
338 /**
339 * grab_super - acquire an active reference
340 * @s: reference we are trying to make active
341 *
342 * Tries to acquire an active reference. grab_super() is used when we
343 * had just found a superblock in super_blocks or fs_type->fs_supers
344 * and want to turn it into a full-blown active reference. grab_super()
345 * is called with sb_lock held and drops it. Returns 1 in case of
346 * success, 0 if we had failed (superblock contents was already dead or
347 * dying when grab_super() had been called). Note that this is only
348 * called for superblocks not in rundown mode (== ones still on ->fs_supers
349 * of their type), so increment of ->s_count is OK here.
350 */
351 static int grab_super(struct super_block *s) __releases(sb_lock)
352 {
353 s->s_count++;
354 spin_unlock(&sb_lock);
355 down_write(&s->s_umount);
356 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
357 put_super(s);
358 return 1;
359 }
360 up_write(&s->s_umount);
361 put_super(s);
362 return 0;
363 }
364
365 /*
366 * trylock_super - try to grab ->s_umount shared
367 * @sb: reference we are trying to grab
368 *
369 * Try to prevent fs shutdown. This is used in places where we
370 * cannot take an active reference but we need to ensure that the
371 * filesystem is not shut down while we are working on it. It returns
372 * false if we cannot acquire s_umount or if we lose the race and
373 * filesystem already got into shutdown, and returns true with the s_umount
374 * lock held in read mode in case of success. On successful return,
375 * the caller must drop the s_umount lock when done.
376 *
377 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
378 * The reason why it's safe is that we are OK with doing trylock instead
379 * of down_read(). There's a couple of places that are OK with that, but
380 * it's very much not a general-purpose interface.
381 */
382 bool trylock_super(struct super_block *sb)
383 {
384 if (down_read_trylock(&sb->s_umount)) {
385 if (!hlist_unhashed(&sb->s_instances) &&
386 sb->s_root && (sb->s_flags & MS_BORN))
387 return true;
388 up_read(&sb->s_umount);
389 }
390
391 return false;
392 }
393
394 /**
395 * generic_shutdown_super - common helper for ->kill_sb()
396 * @sb: superblock to kill
397 *
398 * generic_shutdown_super() does all fs-independent work on superblock
399 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
400 * that need destruction out of superblock, call generic_shutdown_super()
401 * and release aforementioned objects. Note: dentries and inodes _are_
402 * taken care of and do not need specific handling.
403 *
404 * Upon calling this function, the filesystem may no longer alter or
405 * rearrange the set of dentries belonging to this super_block, nor may it
406 * change the attachments of dentries to inodes.
407 */
408 void generic_shutdown_super(struct super_block *sb)
409 {
410 const struct super_operations *sop = sb->s_op;
411
412 if (sb->s_root) {
413 shrink_dcache_for_umount(sb);
414 sync_filesystem(sb);
415 sb->s_flags &= ~MS_ACTIVE;
416
417 fsnotify_unmount_inodes(sb);
418 cgroup_writeback_umount();
419
420 evict_inodes(sb);
421
422 if (sb->s_dio_done_wq) {
423 destroy_workqueue(sb->s_dio_done_wq);
424 sb->s_dio_done_wq = NULL;
425 }
426
427 if (sop->put_super)
428 sop->put_super(sb);
429
430 if (!list_empty(&sb->s_inodes)) {
431 printk("VFS: Busy inodes after unmount of %s. "
432 "Self-destruct in 5 seconds. Have a nice day...\n",
433 sb->s_id);
434 }
435 }
436 spin_lock(&sb_lock);
437 /* should be initialized for __put_super_and_need_restart() */
438 hlist_del_init(&sb->s_instances);
439 spin_unlock(&sb_lock);
440 up_write(&sb->s_umount);
441 }
442
443 EXPORT_SYMBOL(generic_shutdown_super);
444
445 /**
446 * sget - find or create a superblock
447 * @type: filesystem type superblock should belong to
448 * @test: comparison callback
449 * @set: setup callback
450 * @flags: mount flags
451 * @data: argument to each of them
452 */
453 struct super_block *sget(struct file_system_type *type,
454 int (*test)(struct super_block *,void *),
455 int (*set)(struct super_block *,void *),
456 int flags,
457 void *data)
458 {
459 struct super_block *s = NULL;
460 struct super_block *old;
461 int err;
462
463 retry:
464 spin_lock(&sb_lock);
465 if (test) {
466 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
467 if (!test(old, data))
468 continue;
469 if (!grab_super(old))
470 goto retry;
471 if (s) {
472 up_write(&s->s_umount);
473 destroy_super(s);
474 s = NULL;
475 }
476 return old;
477 }
478 }
479 if (!s) {
480 spin_unlock(&sb_lock);
481 s = alloc_super(type, flags);
482 if (!s)
483 return ERR_PTR(-ENOMEM);
484 goto retry;
485 }
486
487 err = set(s, data);
488 if (err) {
489 spin_unlock(&sb_lock);
490 up_write(&s->s_umount);
491 destroy_super(s);
492 return ERR_PTR(err);
493 }
494 s->s_type = type;
495 strlcpy(s->s_id, type->name, sizeof(s->s_id));
496 list_add_tail(&s->s_list, &super_blocks);
497 hlist_add_head(&s->s_instances, &type->fs_supers);
498 spin_unlock(&sb_lock);
499 get_filesystem(type);
500 register_shrinker(&s->s_shrink);
501 return s;
502 }
503
504 EXPORT_SYMBOL(sget);
505
506 void drop_super(struct super_block *sb)
507 {
508 up_read(&sb->s_umount);
509 put_super(sb);
510 }
511
512 EXPORT_SYMBOL(drop_super);
513
514 /**
515 * iterate_supers - call function for all active superblocks
516 * @f: function to call
517 * @arg: argument to pass to it
518 *
519 * Scans the superblock list and calls given function, passing it
520 * locked superblock and given argument.
521 */
522 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
523 {
524 struct super_block *sb, *p = NULL;
525
526 spin_lock(&sb_lock);
527 list_for_each_entry(sb, &super_blocks, s_list) {
528 if (hlist_unhashed(&sb->s_instances))
529 continue;
530 sb->s_count++;
531 spin_unlock(&sb_lock);
532
533 down_read(&sb->s_umount);
534 if (sb->s_root && (sb->s_flags & MS_BORN))
535 f(sb, arg);
536 up_read(&sb->s_umount);
537
538 spin_lock(&sb_lock);
539 if (p)
540 __put_super(p);
541 p = sb;
542 }
543 if (p)
544 __put_super(p);
545 spin_unlock(&sb_lock);
546 }
547
548 /**
549 * iterate_supers_type - call function for superblocks of given type
550 * @type: fs type
551 * @f: function to call
552 * @arg: argument to pass to it
553 *
554 * Scans the superblock list and calls given function, passing it
555 * locked superblock and given argument.
556 */
557 void iterate_supers_type(struct file_system_type *type,
558 void (*f)(struct super_block *, void *), void *arg)
559 {
560 struct super_block *sb, *p = NULL;
561
562 spin_lock(&sb_lock);
563 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
564 sb->s_count++;
565 spin_unlock(&sb_lock);
566
567 down_read(&sb->s_umount);
568 if (sb->s_root && (sb->s_flags & MS_BORN))
569 f(sb, arg);
570 up_read(&sb->s_umount);
571
572 spin_lock(&sb_lock);
573 if (p)
574 __put_super(p);
575 p = sb;
576 }
577 if (p)
578 __put_super(p);
579 spin_unlock(&sb_lock);
580 }
581
582 EXPORT_SYMBOL(iterate_supers_type);
583
584 /**
585 * get_super - get the superblock of a device
586 * @bdev: device to get the superblock for
587 *
588 * Scans the superblock list and finds the superblock of the file system
589 * mounted on the device given. %NULL is returned if no match is found.
590 */
591
592 struct super_block *get_super(struct block_device *bdev)
593 {
594 struct super_block *sb;
595
596 if (!bdev)
597 return NULL;
598
599 spin_lock(&sb_lock);
600 rescan:
601 list_for_each_entry(sb, &super_blocks, s_list) {
602 if (hlist_unhashed(&sb->s_instances))
603 continue;
604 if (sb->s_bdev == bdev) {
605 sb->s_count++;
606 spin_unlock(&sb_lock);
607 down_read(&sb->s_umount);
608 /* still alive? */
609 if (sb->s_root && (sb->s_flags & MS_BORN))
610 return sb;
611 up_read(&sb->s_umount);
612 /* nope, got unmounted */
613 spin_lock(&sb_lock);
614 __put_super(sb);
615 goto rescan;
616 }
617 }
618 spin_unlock(&sb_lock);
619 return NULL;
620 }
621
622 EXPORT_SYMBOL(get_super);
623
624 /**
625 * get_super_thawed - get thawed superblock of a device
626 * @bdev: device to get the superblock for
627 *
628 * Scans the superblock list and finds the superblock of the file system
629 * mounted on the device. The superblock is returned once it is thawed
630 * (or immediately if it was not frozen). %NULL is returned if no match
631 * is found.
632 */
633 struct super_block *get_super_thawed(struct block_device *bdev)
634 {
635 while (1) {
636 struct super_block *s = get_super(bdev);
637 if (!s || s->s_writers.frozen == SB_UNFROZEN)
638 return s;
639 up_read(&s->s_umount);
640 wait_event(s->s_writers.wait_unfrozen,
641 s->s_writers.frozen == SB_UNFROZEN);
642 put_super(s);
643 }
644 }
645 EXPORT_SYMBOL(get_super_thawed);
646
647 /**
648 * get_active_super - get an active reference to the superblock of a device
649 * @bdev: device to get the superblock for
650 *
651 * Scans the superblock list and finds the superblock of the file system
652 * mounted on the device given. Returns the superblock with an active
653 * reference or %NULL if none was found.
654 */
655 struct super_block *get_active_super(struct block_device *bdev)
656 {
657 struct super_block *sb;
658
659 if (!bdev)
660 return NULL;
661
662 restart:
663 spin_lock(&sb_lock);
664 list_for_each_entry(sb, &super_blocks, s_list) {
665 if (hlist_unhashed(&sb->s_instances))
666 continue;
667 if (sb->s_bdev == bdev) {
668 if (!grab_super(sb))
669 goto restart;
670 up_write(&sb->s_umount);
671 return sb;
672 }
673 }
674 spin_unlock(&sb_lock);
675 return NULL;
676 }
677
678 struct super_block *user_get_super(dev_t dev)
679 {
680 struct super_block *sb;
681
682 spin_lock(&sb_lock);
683 rescan:
684 list_for_each_entry(sb, &super_blocks, s_list) {
685 if (hlist_unhashed(&sb->s_instances))
686 continue;
687 if (sb->s_dev == dev) {
688 sb->s_count++;
689 spin_unlock(&sb_lock);
690 down_read(&sb->s_umount);
691 /* still alive? */
692 if (sb->s_root && (sb->s_flags & MS_BORN))
693 return sb;
694 up_read(&sb->s_umount);
695 /* nope, got unmounted */
696 spin_lock(&sb_lock);
697 __put_super(sb);
698 goto rescan;
699 }
700 }
701 spin_unlock(&sb_lock);
702 return NULL;
703 }
704
705 /**
706 * do_remount_sb2 - asks filesystem to change mount options.
707 * @mnt: mount we are looking at
708 * @sb: superblock in question
709 * @flags: numeric part of options
710 * @data: the rest of options
711 * @force: whether or not to force the change
712 *
713 * Alters the mount options of a mounted file system.
714 */
715 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
716 {
717 int retval;
718 int remount_ro;
719
720 if (sb->s_writers.frozen != SB_UNFROZEN)
721 return -EBUSY;
722
723 #ifdef CONFIG_BLOCK
724 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
725 return -EACCES;
726 #endif
727
728 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
729
730 if (remount_ro) {
731 if (!hlist_empty(&sb->s_pins)) {
732 up_write(&sb->s_umount);
733 group_pin_kill(&sb->s_pins);
734 down_write(&sb->s_umount);
735 if (!sb->s_root)
736 return 0;
737 if (sb->s_writers.frozen != SB_UNFROZEN)
738 return -EBUSY;
739 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
740 }
741 }
742 shrink_dcache_sb(sb);
743
744 /* If we are remounting RDONLY and current sb is read/write,
745 make sure there are no rw files opened */
746 if (remount_ro) {
747 if (force) {
748 sb->s_readonly_remount = 1;
749 smp_wmb();
750 } else {
751 retval = sb_prepare_remount_readonly(sb);
752 if (retval)
753 return retval;
754 }
755 }
756
757 if (mnt && sb->s_op->remount_fs2) {
758 retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
759 if (retval) {
760 if (!force)
761 goto cancel_readonly;
762 /* If forced remount, go ahead despite any errors */
763 WARN(1, "forced remount of a %s fs returned %i\n",
764 sb->s_type->name, retval);
765 }
766 } else if (sb->s_op->remount_fs) {
767 retval = sb->s_op->remount_fs(sb, &flags, data);
768 if (retval) {
769 if (!force)
770 goto cancel_readonly;
771 /* If forced remount, go ahead despite any errors */
772 WARN(1, "forced remount of a %s fs returned %i\n",
773 sb->s_type->name, retval);
774 }
775 }
776 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
777 /* Needs to be ordered wrt mnt_is_readonly() */
778 smp_wmb();
779 sb->s_readonly_remount = 0;
780
781 /*
782 * Some filesystems modify their metadata via some other path than the
783 * bdev buffer cache (eg. use a private mapping, or directories in
784 * pagecache, etc). Also file data modifications go via their own
785 * mappings. So If we try to mount readonly then copy the filesystem
786 * from bdev, we could get stale data, so invalidate it to give a best
787 * effort at coherency.
788 */
789 if (remount_ro && sb->s_bdev)
790 invalidate_bdev(sb->s_bdev);
791 return 0;
792
793 cancel_readonly:
794 sb->s_readonly_remount = 0;
795 return retval;
796 }
797
798 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
799 {
800 return do_remount_sb2(NULL, sb, flags, data, force);
801 }
802
803 static void do_emergency_remount(struct work_struct *work)
804 {
805 struct super_block *sb, *p = NULL;
806
807 spin_lock(&sb_lock);
808 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
809 if (hlist_unhashed(&sb->s_instances))
810 continue;
811 sb->s_count++;
812 spin_unlock(&sb_lock);
813 down_write(&sb->s_umount);
814 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
815 !(sb->s_flags & MS_RDONLY)) {
816 /*
817 * What lock protects sb->s_flags??
818 */
819 do_remount_sb(sb, MS_RDONLY, NULL, 1);
820 }
821 up_write(&sb->s_umount);
822 spin_lock(&sb_lock);
823 if (p)
824 __put_super(p);
825 p = sb;
826 }
827 if (p)
828 __put_super(p);
829 spin_unlock(&sb_lock);
830 kfree(work);
831 printk("Emergency Remount complete\n");
832 }
833
834 void emergency_remount(void)
835 {
836 struct work_struct *work;
837
838 work = kmalloc(sizeof(*work), GFP_ATOMIC);
839 if (work) {
840 INIT_WORK(work, do_emergency_remount);
841 schedule_work(work);
842 }
843 }
844
845 /*
846 * Unnamed block devices are dummy devices used by virtual
847 * filesystems which don't use real block-devices. -- jrs
848 */
849
850 static DEFINE_IDA(unnamed_dev_ida);
851 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
852 /* Many userspace utilities consider an FSID of 0 invalid.
853 * Always return at least 1 from get_anon_bdev.
854 */
855 static int unnamed_dev_start = 1;
856
857 int get_anon_bdev(dev_t *p)
858 {
859 int dev;
860 int error;
861
862 retry:
863 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
864 return -ENOMEM;
865 spin_lock(&unnamed_dev_lock);
866 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
867 if (!error)
868 unnamed_dev_start = dev + 1;
869 spin_unlock(&unnamed_dev_lock);
870 if (error == -EAGAIN)
871 /* We raced and lost with another CPU. */
872 goto retry;
873 else if (error)
874 return -EAGAIN;
875
876 if (dev >= (1 << MINORBITS)) {
877 spin_lock(&unnamed_dev_lock);
878 ida_remove(&unnamed_dev_ida, dev);
879 if (unnamed_dev_start > dev)
880 unnamed_dev_start = dev;
881 spin_unlock(&unnamed_dev_lock);
882 return -EMFILE;
883 }
884 *p = MKDEV(0, dev & MINORMASK);
885 return 0;
886 }
887 EXPORT_SYMBOL(get_anon_bdev);
888
889 void free_anon_bdev(dev_t dev)
890 {
891 int slot = MINOR(dev);
892 spin_lock(&unnamed_dev_lock);
893 ida_remove(&unnamed_dev_ida, slot);
894 if (slot < unnamed_dev_start)
895 unnamed_dev_start = slot;
896 spin_unlock(&unnamed_dev_lock);
897 }
898 EXPORT_SYMBOL(free_anon_bdev);
899
900 int set_anon_super(struct super_block *s, void *data)
901 {
902 return get_anon_bdev(&s->s_dev);
903 }
904
905 EXPORT_SYMBOL(set_anon_super);
906
907 void kill_anon_super(struct super_block *sb)
908 {
909 dev_t dev = sb->s_dev;
910 generic_shutdown_super(sb);
911 free_anon_bdev(dev);
912 }
913
914 EXPORT_SYMBOL(kill_anon_super);
915
916 void kill_litter_super(struct super_block *sb)
917 {
918 if (sb->s_root)
919 d_genocide(sb->s_root);
920 kill_anon_super(sb);
921 }
922
923 EXPORT_SYMBOL(kill_litter_super);
924
925 static int ns_test_super(struct super_block *sb, void *data)
926 {
927 return sb->s_fs_info == data;
928 }
929
930 static int ns_set_super(struct super_block *sb, void *data)
931 {
932 sb->s_fs_info = data;
933 return set_anon_super(sb, NULL);
934 }
935
936 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
937 void *data, int (*fill_super)(struct super_block *, void *, int))
938 {
939 struct super_block *sb;
940
941 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
942 if (IS_ERR(sb))
943 return ERR_CAST(sb);
944
945 if (!sb->s_root) {
946 int err;
947 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
948 if (err) {
949 deactivate_locked_super(sb);
950 return ERR_PTR(err);
951 }
952
953 sb->s_flags |= MS_ACTIVE;
954 }
955
956 return dget(sb->s_root);
957 }
958
959 EXPORT_SYMBOL(mount_ns);
960
961 #ifdef CONFIG_BLOCK
962 static int set_bdev_super(struct super_block *s, void *data)
963 {
964 s->s_bdev = data;
965 s->s_dev = s->s_bdev->bd_dev;
966
967 /*
968 * We set the bdi here to the queue backing, file systems can
969 * overwrite this in ->fill_super()
970 */
971 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
972 return 0;
973 }
974
975 static int test_bdev_super(struct super_block *s, void *data)
976 {
977 return (void *)s->s_bdev == data;
978 }
979
980 struct dentry *mount_bdev(struct file_system_type *fs_type,
981 int flags, const char *dev_name, void *data,
982 int (*fill_super)(struct super_block *, void *, int))
983 {
984 struct block_device *bdev;
985 struct super_block *s;
986 fmode_t mode = FMODE_READ | FMODE_EXCL;
987 int error = 0;
988
989 if (!(flags & MS_RDONLY))
990 mode |= FMODE_WRITE;
991
992 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
993 if (IS_ERR(bdev))
994 return ERR_CAST(bdev);
995
996 /*
997 * once the super is inserted into the list by sget, s_umount
998 * will protect the lockfs code from trying to start a snapshot
999 * while we are mounting
1000 */
1001 mutex_lock(&bdev->bd_fsfreeze_mutex);
1002 if (bdev->bd_fsfreeze_count > 0) {
1003 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1004 error = -EBUSY;
1005 goto error_bdev;
1006 }
1007 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1008 bdev);
1009 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1010 if (IS_ERR(s))
1011 goto error_s;
1012
1013 if (s->s_root) {
1014 if ((flags ^ s->s_flags) & MS_RDONLY) {
1015 deactivate_locked_super(s);
1016 error = -EBUSY;
1017 goto error_bdev;
1018 }
1019
1020 /*
1021 * s_umount nests inside bd_mutex during
1022 * __invalidate_device(). blkdev_put() acquires
1023 * bd_mutex and can't be called under s_umount. Drop
1024 * s_umount temporarily. This is safe as we're
1025 * holding an active reference.
1026 */
1027 up_write(&s->s_umount);
1028 blkdev_put(bdev, mode);
1029 down_write(&s->s_umount);
1030 } else {
1031 char b[BDEVNAME_SIZE];
1032
1033 s->s_mode = mode;
1034 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1035 sb_set_blocksize(s, block_size(bdev));
1036 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1037 if (error) {
1038 deactivate_locked_super(s);
1039 goto error;
1040 }
1041
1042 s->s_flags |= MS_ACTIVE;
1043 bdev->bd_super = s;
1044 }
1045
1046 return dget(s->s_root);
1047
1048 error_s:
1049 error = PTR_ERR(s);
1050 error_bdev:
1051 blkdev_put(bdev, mode);
1052 error:
1053 return ERR_PTR(error);
1054 }
1055 EXPORT_SYMBOL(mount_bdev);
1056
1057 void kill_block_super(struct super_block *sb)
1058 {
1059 struct block_device *bdev = sb->s_bdev;
1060 fmode_t mode = sb->s_mode;
1061
1062 bdev->bd_super = NULL;
1063 generic_shutdown_super(sb);
1064 sync_blockdev(bdev);
1065 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1066 blkdev_put(bdev, mode | FMODE_EXCL);
1067 }
1068
1069 EXPORT_SYMBOL(kill_block_super);
1070 #endif
1071
1072 struct dentry *mount_nodev(struct file_system_type *fs_type,
1073 int flags, void *data,
1074 int (*fill_super)(struct super_block *, void *, int))
1075 {
1076 int error;
1077 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1078
1079 if (IS_ERR(s))
1080 return ERR_CAST(s);
1081
1082 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1083 if (error) {
1084 deactivate_locked_super(s);
1085 return ERR_PTR(error);
1086 }
1087 s->s_flags |= MS_ACTIVE;
1088 return dget(s->s_root);
1089 }
1090 EXPORT_SYMBOL(mount_nodev);
1091
1092 static int compare_single(struct super_block *s, void *p)
1093 {
1094 return 1;
1095 }
1096
1097 struct dentry *mount_single(struct file_system_type *fs_type,
1098 int flags, void *data,
1099 int (*fill_super)(struct super_block *, void *, int))
1100 {
1101 struct super_block *s;
1102 int error;
1103
1104 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1105 if (IS_ERR(s))
1106 return ERR_CAST(s);
1107 if (!s->s_root) {
1108 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1109 if (error) {
1110 deactivate_locked_super(s);
1111 return ERR_PTR(error);
1112 }
1113 s->s_flags |= MS_ACTIVE;
1114 } else {
1115 do_remount_sb(s, flags, data, 0);
1116 }
1117 return dget(s->s_root);
1118 }
1119 EXPORT_SYMBOL(mount_single);
1120
1121 struct dentry *
1122 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1123 {
1124 struct dentry *root;
1125 struct super_block *sb;
1126 char *secdata = NULL;
1127 int error = -ENOMEM;
1128
1129 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1130 secdata = alloc_secdata();
1131 if (!secdata)
1132 goto out;
1133
1134 error = security_sb_copy_data(data, secdata);
1135 if (error)
1136 goto out_free_secdata;
1137 }
1138
1139 if (type->mount2)
1140 root = type->mount2(mnt, type, flags, name, data);
1141 else
1142 root = type->mount(type, flags, name, data);
1143 if (IS_ERR(root)) {
1144 error = PTR_ERR(root);
1145 goto out_free_secdata;
1146 }
1147 sb = root->d_sb;
1148 BUG_ON(!sb);
1149 WARN_ON(!sb->s_bdi);
1150 sb->s_flags |= MS_BORN;
1151
1152 error = security_sb_kern_mount(sb, flags, secdata);
1153 if (error)
1154 goto out_sb;
1155
1156 /*
1157 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1158 * but s_maxbytes was an unsigned long long for many releases. Throw
1159 * this warning for a little while to try and catch filesystems that
1160 * violate this rule.
1161 */
1162 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1163 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1164
1165 up_write(&sb->s_umount);
1166 free_secdata(secdata);
1167 return root;
1168 out_sb:
1169 dput(root);
1170 deactivate_locked_super(sb);
1171 out_free_secdata:
1172 free_secdata(secdata);
1173 out:
1174 return ERR_PTR(error);
1175 }
1176
1177 /*
1178 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1179 * instead.
1180 */
1181 void __sb_end_write(struct super_block *sb, int level)
1182 {
1183 percpu_up_read(sb->s_writers.rw_sem + level-1);
1184 }
1185 EXPORT_SYMBOL(__sb_end_write);
1186
1187 /*
1188 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1189 * instead.
1190 */
1191 int __sb_start_write(struct super_block *sb, int level, bool wait)
1192 {
1193 bool force_trylock = false;
1194 int ret = 1;
1195
1196 #ifdef CONFIG_LOCKDEP
1197 /*
1198 * We want lockdep to tell us about possible deadlocks with freezing
1199 * but it's it bit tricky to properly instrument it. Getting a freeze
1200 * protection works as getting a read lock but there are subtle
1201 * problems. XFS for example gets freeze protection on internal level
1202 * twice in some cases, which is OK only because we already hold a
1203 * freeze protection also on higher level. Due to these cases we have
1204 * to use wait == F (trylock mode) which must not fail.
1205 */
1206 if (wait) {
1207 int i;
1208
1209 for (i = 0; i < level - 1; i++)
1210 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1211 force_trylock = true;
1212 break;
1213 }
1214 }
1215 #endif
1216 if (wait && !force_trylock)
1217 percpu_down_read(sb->s_writers.rw_sem + level-1);
1218 else
1219 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1220
1221 WARN_ON(force_trylock & !ret);
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(__sb_start_write);
1225
1226 /**
1227 * sb_wait_write - wait until all writers to given file system finish
1228 * @sb: the super for which we wait
1229 * @level: type of writers we wait for (normal vs page fault)
1230 *
1231 * This function waits until there are no writers of given type to given file
1232 * system.
1233 */
1234 static void sb_wait_write(struct super_block *sb, int level)
1235 {
1236 percpu_down_write(sb->s_writers.rw_sem + level-1);
1237 /*
1238 * We are going to return to userspace and forget about this lock, the
1239 * ownership goes to the caller of thaw_super() which does unlock.
1240 *
1241 * FIXME: we should do this before return from freeze_super() after we
1242 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1243 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1244 * this leads to lockdep false-positives, so currently we do the early
1245 * release right after acquire.
1246 */
1247 percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1248 }
1249
1250 static void sb_freeze_unlock(struct super_block *sb)
1251 {
1252 int level;
1253
1254 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1255 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1256
1257 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1258 percpu_up_write(sb->s_writers.rw_sem + level);
1259 }
1260
1261 /**
1262 * freeze_super - lock the filesystem and force it into a consistent state
1263 * @sb: the super to lock
1264 *
1265 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1266 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1267 * -EBUSY.
1268 *
1269 * During this function, sb->s_writers.frozen goes through these values:
1270 *
1271 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1272 *
1273 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1274 * writes should be blocked, though page faults are still allowed. We wait for
1275 * all writes to complete and then proceed to the next stage.
1276 *
1277 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1278 * but internal fs threads can still modify the filesystem (although they
1279 * should not dirty new pages or inodes), writeback can run etc. After waiting
1280 * for all running page faults we sync the filesystem which will clean all
1281 * dirty pages and inodes (no new dirty pages or inodes can be created when
1282 * sync is running).
1283 *
1284 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1285 * modification are blocked (e.g. XFS preallocation truncation on inode
1286 * reclaim). This is usually implemented by blocking new transactions for
1287 * filesystems that have them and need this additional guard. After all
1288 * internal writers are finished we call ->freeze_fs() to finish filesystem
1289 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1290 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1291 *
1292 * sb->s_writers.frozen is protected by sb->s_umount.
1293 */
1294 int freeze_super(struct super_block *sb)
1295 {
1296 int ret;
1297
1298 atomic_inc(&sb->s_active);
1299 down_write(&sb->s_umount);
1300 if (sb->s_writers.frozen != SB_UNFROZEN) {
1301 deactivate_locked_super(sb);
1302 return -EBUSY;
1303 }
1304
1305 if (!(sb->s_flags & MS_BORN)) {
1306 up_write(&sb->s_umount);
1307 return 0; /* sic - it's "nothing to do" */
1308 }
1309
1310 if (sb->s_flags & MS_RDONLY) {
1311 /* Nothing to do really... */
1312 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1313 up_write(&sb->s_umount);
1314 return 0;
1315 }
1316
1317 sb->s_writers.frozen = SB_FREEZE_WRITE;
1318 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1319 up_write(&sb->s_umount);
1320 sb_wait_write(sb, SB_FREEZE_WRITE);
1321 down_write(&sb->s_umount);
1322
1323 /* Now we go and block page faults... */
1324 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1325 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1326
1327 /* All writers are done so after syncing there won't be dirty data */
1328 sync_filesystem(sb);
1329
1330 /* Now wait for internal filesystem counter */
1331 sb->s_writers.frozen = SB_FREEZE_FS;
1332 sb_wait_write(sb, SB_FREEZE_FS);
1333
1334 if (sb->s_op->freeze_fs) {
1335 ret = sb->s_op->freeze_fs(sb);
1336 if (ret) {
1337 printk(KERN_ERR
1338 "VFS:Filesystem freeze failed\n");
1339 sb->s_writers.frozen = SB_UNFROZEN;
1340 sb_freeze_unlock(sb);
1341 wake_up(&sb->s_writers.wait_unfrozen);
1342 deactivate_locked_super(sb);
1343 return ret;
1344 }
1345 }
1346 /*
1347 * For debugging purposes so that fs can warn if it sees write activity
1348 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1349 */
1350 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1351 up_write(&sb->s_umount);
1352 return 0;
1353 }
1354 EXPORT_SYMBOL(freeze_super);
1355
1356 /**
1357 * thaw_super -- unlock filesystem
1358 * @sb: the super to thaw
1359 *
1360 * Unlocks the filesystem and marks it writeable again after freeze_super().
1361 */
1362 int thaw_super(struct super_block *sb)
1363 {
1364 int error;
1365
1366 down_write(&sb->s_umount);
1367 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1368 up_write(&sb->s_umount);
1369 return -EINVAL;
1370 }
1371
1372 if (sb->s_flags & MS_RDONLY) {
1373 sb->s_writers.frozen = SB_UNFROZEN;
1374 goto out;
1375 }
1376
1377 if (sb->s_op->unfreeze_fs) {
1378 error = sb->s_op->unfreeze_fs(sb);
1379 if (error) {
1380 printk(KERN_ERR
1381 "VFS:Filesystem thaw failed\n");
1382 up_write(&sb->s_umount);
1383 return error;
1384 }
1385 }
1386
1387 sb->s_writers.frozen = SB_UNFROZEN;
1388 sb_freeze_unlock(sb);
1389 out:
1390 wake_up(&sb->s_writers.wait_unfrozen);
1391 deactivate_locked_super(sb);
1392 return 0;
1393 }
1394 EXPORT_SYMBOL(thaw_super);