fs: push rcu_barrier() from deactivate_locked_super() to filesystems
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38
39
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 int fs_objects = 0;
60 int total_objects;
61
62 sb = container_of(shrink, struct super_block, s_shrink);
63
64 /*
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
67 */
68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 return -1;
70
71 if (!grab_super_passive(sb))
72 return -1;
73
74 if (sb->s_op && sb->s_op->nr_cached_objects)
75 fs_objects = sb->s_op->nr_cached_objects(sb);
76
77 total_objects = sb->s_nr_dentry_unused +
78 sb->s_nr_inodes_unused + fs_objects + 1;
79
80 if (sc->nr_to_scan) {
81 int dentries;
82 int inodes;
83
84 /* proportion the scan between the caches */
85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 total_objects;
87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 total_objects;
89 if (fs_objects)
90 fs_objects = (sc->nr_to_scan * fs_objects) /
91 total_objects;
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 */
96 prune_dcache_sb(sb, dentries);
97 prune_icache_sb(sb, inodes);
98
99 if (fs_objects && sb->s_op->free_cached_objects) {
100 sb->s_op->free_cached_objects(sb, fs_objects);
101 fs_objects = sb->s_op->nr_cached_objects(sb);
102 }
103 total_objects = sb->s_nr_dentry_unused +
104 sb->s_nr_inodes_unused + fs_objects;
105 }
106
107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 drop_super(sb);
109 return total_objects;
110 }
111
112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 int err;
115 int i;
116
117 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 if (err < 0)
120 goto err_out;
121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 &type->s_writers_key[i], 0);
123 }
124 init_waitqueue_head(&s->s_writers.wait);
125 init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 return 0;
127 err_out:
128 while (--i >= 0)
129 percpu_counter_destroy(&s->s_writers.counter[i]);
130 return err;
131 }
132
133 static void destroy_sb_writers(struct super_block *s)
134 {
135 int i;
136
137 for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140
141 /**
142 * alloc_super - create new superblock
143 * @type: filesystem type superblock should belong to
144 * @flags: the mount flags
145 *
146 * Allocates and initializes a new &struct super_block. alloc_super()
147 * returns a pointer new superblock or %NULL if allocation had failed.
148 */
149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
152 static const struct super_operations default_op;
153
154 if (s) {
155 if (security_sb_alloc(s)) {
156 /*
157 * We cannot call security_sb_free() without
158 * security_sb_alloc() succeeding. So bail out manually
159 */
160 kfree(s);
161 s = NULL;
162 goto out;
163 }
164 #ifdef CONFIG_SMP
165 s->s_files = alloc_percpu(struct list_head);
166 if (!s->s_files)
167 goto err_out;
168 else {
169 int i;
170
171 for_each_possible_cpu(i)
172 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
173 }
174 #else
175 INIT_LIST_HEAD(&s->s_files);
176 #endif
177 if (init_sb_writers(s, type))
178 goto err_out;
179 s->s_flags = flags;
180 s->s_bdi = &default_backing_dev_info;
181 INIT_HLIST_NODE(&s->s_instances);
182 INIT_HLIST_BL_HEAD(&s->s_anon);
183 INIT_LIST_HEAD(&s->s_inodes);
184 INIT_LIST_HEAD(&s->s_dentry_lru);
185 INIT_LIST_HEAD(&s->s_inode_lru);
186 spin_lock_init(&s->s_inode_lru_lock);
187 INIT_LIST_HEAD(&s->s_mounts);
188 init_rwsem(&s->s_umount);
189 mutex_init(&s->s_lock);
190 lockdep_set_class(&s->s_umount, &type->s_umount_key);
191 /*
192 * The locking rules for s_lock are up to the
193 * filesystem. For example ext3fs has different
194 * lock ordering than usbfs:
195 */
196 lockdep_set_class(&s->s_lock, &type->s_lock_key);
197 /*
198 * sget() can have s_umount recursion.
199 *
200 * When it cannot find a suitable sb, it allocates a new
201 * one (this one), and tries again to find a suitable old
202 * one.
203 *
204 * In case that succeeds, it will acquire the s_umount
205 * lock of the old one. Since these are clearly distrinct
206 * locks, and this object isn't exposed yet, there's no
207 * risk of deadlocks.
208 *
209 * Annotate this by putting this lock in a different
210 * subclass.
211 */
212 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
213 s->s_count = 1;
214 atomic_set(&s->s_active, 1);
215 mutex_init(&s->s_vfs_rename_mutex);
216 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
217 mutex_init(&s->s_dquot.dqio_mutex);
218 mutex_init(&s->s_dquot.dqonoff_mutex);
219 init_rwsem(&s->s_dquot.dqptr_sem);
220 s->s_maxbytes = MAX_NON_LFS;
221 s->s_op = &default_op;
222 s->s_time_gran = 1000000000;
223 s->cleancache_poolid = -1;
224
225 s->s_shrink.seeks = DEFAULT_SEEKS;
226 s->s_shrink.shrink = prune_super;
227 s->s_shrink.batch = 1024;
228 }
229 out:
230 return s;
231 err_out:
232 security_sb_free(s);
233 #ifdef CONFIG_SMP
234 if (s->s_files)
235 free_percpu(s->s_files);
236 #endif
237 destroy_sb_writers(s);
238 kfree(s);
239 s = NULL;
240 goto out;
241 }
242
243 /**
244 * destroy_super - frees a superblock
245 * @s: superblock to free
246 *
247 * Frees a superblock.
248 */
249 static inline void destroy_super(struct super_block *s)
250 {
251 #ifdef CONFIG_SMP
252 free_percpu(s->s_files);
253 #endif
254 destroy_sb_writers(s);
255 security_sb_free(s);
256 WARN_ON(!list_empty(&s->s_mounts));
257 kfree(s->s_subtype);
258 kfree(s->s_options);
259 kfree(s);
260 }
261
262 /* Superblock refcounting */
263
264 /*
265 * Drop a superblock's refcount. The caller must hold sb_lock.
266 */
267 static void __put_super(struct super_block *sb)
268 {
269 if (!--sb->s_count) {
270 list_del_init(&sb->s_list);
271 destroy_super(sb);
272 }
273 }
274
275 /**
276 * put_super - drop a temporary reference to superblock
277 * @sb: superblock in question
278 *
279 * Drops a temporary reference, frees superblock if there's no
280 * references left.
281 */
282 static void put_super(struct super_block *sb)
283 {
284 spin_lock(&sb_lock);
285 __put_super(sb);
286 spin_unlock(&sb_lock);
287 }
288
289
290 /**
291 * deactivate_locked_super - drop an active reference to superblock
292 * @s: superblock to deactivate
293 *
294 * Drops an active reference to superblock, converting it into a temprory
295 * one if there is no other active references left. In that case we
296 * tell fs driver to shut it down and drop the temporary reference we
297 * had just acquired.
298 *
299 * Caller holds exclusive lock on superblock; that lock is released.
300 */
301 void deactivate_locked_super(struct super_block *s)
302 {
303 struct file_system_type *fs = s->s_type;
304 if (atomic_dec_and_test(&s->s_active)) {
305 cleancache_invalidate_fs(s);
306 fs->kill_sb(s);
307
308 /* caches are now gone, we can safely kill the shrinker now */
309 unregister_shrinker(&s->s_shrink);
310 put_filesystem(fs);
311 put_super(s);
312 } else {
313 up_write(&s->s_umount);
314 }
315 }
316
317 EXPORT_SYMBOL(deactivate_locked_super);
318
319 /**
320 * deactivate_super - drop an active reference to superblock
321 * @s: superblock to deactivate
322 *
323 * Variant of deactivate_locked_super(), except that superblock is *not*
324 * locked by caller. If we are going to drop the final active reference,
325 * lock will be acquired prior to that.
326 */
327 void deactivate_super(struct super_block *s)
328 {
329 if (!atomic_add_unless(&s->s_active, -1, 1)) {
330 down_write(&s->s_umount);
331 deactivate_locked_super(s);
332 }
333 }
334
335 EXPORT_SYMBOL(deactivate_super);
336
337 /**
338 * grab_super - acquire an active reference
339 * @s: reference we are trying to make active
340 *
341 * Tries to acquire an active reference. grab_super() is used when we
342 * had just found a superblock in super_blocks or fs_type->fs_supers
343 * and want to turn it into a full-blown active reference. grab_super()
344 * is called with sb_lock held and drops it. Returns 1 in case of
345 * success, 0 if we had failed (superblock contents was already dead or
346 * dying when grab_super() had been called).
347 */
348 static int grab_super(struct super_block *s) __releases(sb_lock)
349 {
350 if (atomic_inc_not_zero(&s->s_active)) {
351 spin_unlock(&sb_lock);
352 return 1;
353 }
354 /* it's going away */
355 s->s_count++;
356 spin_unlock(&sb_lock);
357 /* wait for it to die */
358 down_write(&s->s_umount);
359 up_write(&s->s_umount);
360 put_super(s);
361 return 0;
362 }
363
364 /*
365 * grab_super_passive - acquire a passive reference
366 * @sb: reference we are trying to grab
367 *
368 * Tries to acquire a passive reference. This is used in places where we
369 * cannot take an active reference but we need to ensure that the
370 * superblock does not go away while we are working on it. It returns
371 * false if a reference was not gained, and returns true with the s_umount
372 * lock held in read mode if a reference is gained. On successful return,
373 * the caller must drop the s_umount lock and the passive reference when
374 * done.
375 */
376 bool grab_super_passive(struct super_block *sb)
377 {
378 spin_lock(&sb_lock);
379 if (hlist_unhashed(&sb->s_instances)) {
380 spin_unlock(&sb_lock);
381 return false;
382 }
383
384 sb->s_count++;
385 spin_unlock(&sb_lock);
386
387 if (down_read_trylock(&sb->s_umount)) {
388 if (sb->s_root && (sb->s_flags & MS_BORN))
389 return true;
390 up_read(&sb->s_umount);
391 }
392
393 put_super(sb);
394 return false;
395 }
396
397 /*
398 * Superblock locking. We really ought to get rid of these two.
399 */
400 void lock_super(struct super_block * sb)
401 {
402 mutex_lock(&sb->s_lock);
403 }
404
405 void unlock_super(struct super_block * sb)
406 {
407 mutex_unlock(&sb->s_lock);
408 }
409
410 EXPORT_SYMBOL(lock_super);
411 EXPORT_SYMBOL(unlock_super);
412
413 /**
414 * generic_shutdown_super - common helper for ->kill_sb()
415 * @sb: superblock to kill
416 *
417 * generic_shutdown_super() does all fs-independent work on superblock
418 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
419 * that need destruction out of superblock, call generic_shutdown_super()
420 * and release aforementioned objects. Note: dentries and inodes _are_
421 * taken care of and do not need specific handling.
422 *
423 * Upon calling this function, the filesystem may no longer alter or
424 * rearrange the set of dentries belonging to this super_block, nor may it
425 * change the attachments of dentries to inodes.
426 */
427 void generic_shutdown_super(struct super_block *sb)
428 {
429 const struct super_operations *sop = sb->s_op;
430
431 if (sb->s_root) {
432 shrink_dcache_for_umount(sb);
433 sync_filesystem(sb);
434 sb->s_flags &= ~MS_ACTIVE;
435
436 fsnotify_unmount_inodes(&sb->s_inodes);
437
438 evict_inodes(sb);
439
440 if (sop->put_super)
441 sop->put_super(sb);
442
443 if (!list_empty(&sb->s_inodes)) {
444 printk("VFS: Busy inodes after unmount of %s. "
445 "Self-destruct in 5 seconds. Have a nice day...\n",
446 sb->s_id);
447 }
448 }
449 spin_lock(&sb_lock);
450 /* should be initialized for __put_super_and_need_restart() */
451 hlist_del_init(&sb->s_instances);
452 spin_unlock(&sb_lock);
453 up_write(&sb->s_umount);
454 }
455
456 EXPORT_SYMBOL(generic_shutdown_super);
457
458 /**
459 * sget - find or create a superblock
460 * @type: filesystem type superblock should belong to
461 * @test: comparison callback
462 * @set: setup callback
463 * @flags: mount flags
464 * @data: argument to each of them
465 */
466 struct super_block *sget(struct file_system_type *type,
467 int (*test)(struct super_block *,void *),
468 int (*set)(struct super_block *,void *),
469 int flags,
470 void *data)
471 {
472 struct super_block *s = NULL;
473 struct hlist_node *node;
474 struct super_block *old;
475 int err;
476
477 retry:
478 spin_lock(&sb_lock);
479 if (test) {
480 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
481 if (!test(old, data))
482 continue;
483 if (!grab_super(old))
484 goto retry;
485 if (s) {
486 up_write(&s->s_umount);
487 destroy_super(s);
488 s = NULL;
489 }
490 down_write(&old->s_umount);
491 if (unlikely(!(old->s_flags & MS_BORN))) {
492 deactivate_locked_super(old);
493 goto retry;
494 }
495 return old;
496 }
497 }
498 if (!s) {
499 spin_unlock(&sb_lock);
500 s = alloc_super(type, flags);
501 if (!s)
502 return ERR_PTR(-ENOMEM);
503 goto retry;
504 }
505
506 err = set(s, data);
507 if (err) {
508 spin_unlock(&sb_lock);
509 up_write(&s->s_umount);
510 destroy_super(s);
511 return ERR_PTR(err);
512 }
513 s->s_type = type;
514 strlcpy(s->s_id, type->name, sizeof(s->s_id));
515 list_add_tail(&s->s_list, &super_blocks);
516 hlist_add_head(&s->s_instances, &type->fs_supers);
517 spin_unlock(&sb_lock);
518 get_filesystem(type);
519 register_shrinker(&s->s_shrink);
520 return s;
521 }
522
523 EXPORT_SYMBOL(sget);
524
525 void drop_super(struct super_block *sb)
526 {
527 up_read(&sb->s_umount);
528 put_super(sb);
529 }
530
531 EXPORT_SYMBOL(drop_super);
532
533 /**
534 * iterate_supers - call function for all active superblocks
535 * @f: function to call
536 * @arg: argument to pass to it
537 *
538 * Scans the superblock list and calls given function, passing it
539 * locked superblock and given argument.
540 */
541 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
542 {
543 struct super_block *sb, *p = NULL;
544
545 spin_lock(&sb_lock);
546 list_for_each_entry(sb, &super_blocks, s_list) {
547 if (hlist_unhashed(&sb->s_instances))
548 continue;
549 sb->s_count++;
550 spin_unlock(&sb_lock);
551
552 down_read(&sb->s_umount);
553 if (sb->s_root && (sb->s_flags & MS_BORN))
554 f(sb, arg);
555 up_read(&sb->s_umount);
556
557 spin_lock(&sb_lock);
558 if (p)
559 __put_super(p);
560 p = sb;
561 }
562 if (p)
563 __put_super(p);
564 spin_unlock(&sb_lock);
565 }
566
567 /**
568 * iterate_supers_type - call function for superblocks of given type
569 * @type: fs type
570 * @f: function to call
571 * @arg: argument to pass to it
572 *
573 * Scans the superblock list and calls given function, passing it
574 * locked superblock and given argument.
575 */
576 void iterate_supers_type(struct file_system_type *type,
577 void (*f)(struct super_block *, void *), void *arg)
578 {
579 struct super_block *sb, *p = NULL;
580 struct hlist_node *node;
581
582 spin_lock(&sb_lock);
583 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
584 sb->s_count++;
585 spin_unlock(&sb_lock);
586
587 down_read(&sb->s_umount);
588 if (sb->s_root && (sb->s_flags & MS_BORN))
589 f(sb, arg);
590 up_read(&sb->s_umount);
591
592 spin_lock(&sb_lock);
593 if (p)
594 __put_super(p);
595 p = sb;
596 }
597 if (p)
598 __put_super(p);
599 spin_unlock(&sb_lock);
600 }
601
602 EXPORT_SYMBOL(iterate_supers_type);
603
604 /**
605 * get_super - get the superblock of a device
606 * @bdev: device to get the superblock for
607 *
608 * Scans the superblock list and finds the superblock of the file system
609 * mounted on the device given. %NULL is returned if no match is found.
610 */
611
612 struct super_block *get_super(struct block_device *bdev)
613 {
614 struct super_block *sb;
615
616 if (!bdev)
617 return NULL;
618
619 spin_lock(&sb_lock);
620 rescan:
621 list_for_each_entry(sb, &super_blocks, s_list) {
622 if (hlist_unhashed(&sb->s_instances))
623 continue;
624 if (sb->s_bdev == bdev) {
625 sb->s_count++;
626 spin_unlock(&sb_lock);
627 down_read(&sb->s_umount);
628 /* still alive? */
629 if (sb->s_root && (sb->s_flags & MS_BORN))
630 return sb;
631 up_read(&sb->s_umount);
632 /* nope, got unmounted */
633 spin_lock(&sb_lock);
634 __put_super(sb);
635 goto rescan;
636 }
637 }
638 spin_unlock(&sb_lock);
639 return NULL;
640 }
641
642 EXPORT_SYMBOL(get_super);
643
644 /**
645 * get_super_thawed - get thawed superblock of a device
646 * @bdev: device to get the superblock for
647 *
648 * Scans the superblock list and finds the superblock of the file system
649 * mounted on the device. The superblock is returned once it is thawed
650 * (or immediately if it was not frozen). %NULL is returned if no match
651 * is found.
652 */
653 struct super_block *get_super_thawed(struct block_device *bdev)
654 {
655 while (1) {
656 struct super_block *s = get_super(bdev);
657 if (!s || s->s_writers.frozen == SB_UNFROZEN)
658 return s;
659 up_read(&s->s_umount);
660 wait_event(s->s_writers.wait_unfrozen,
661 s->s_writers.frozen == SB_UNFROZEN);
662 put_super(s);
663 }
664 }
665 EXPORT_SYMBOL(get_super_thawed);
666
667 /**
668 * get_active_super - get an active reference to the superblock of a device
669 * @bdev: device to get the superblock for
670 *
671 * Scans the superblock list and finds the superblock of the file system
672 * mounted on the device given. Returns the superblock with an active
673 * reference or %NULL if none was found.
674 */
675 struct super_block *get_active_super(struct block_device *bdev)
676 {
677 struct super_block *sb;
678
679 if (!bdev)
680 return NULL;
681
682 restart:
683 spin_lock(&sb_lock);
684 list_for_each_entry(sb, &super_blocks, s_list) {
685 if (hlist_unhashed(&sb->s_instances))
686 continue;
687 if (sb->s_bdev == bdev) {
688 if (grab_super(sb)) /* drops sb_lock */
689 return sb;
690 else
691 goto restart;
692 }
693 }
694 spin_unlock(&sb_lock);
695 return NULL;
696 }
697
698 struct super_block *user_get_super(dev_t dev)
699 {
700 struct super_block *sb;
701
702 spin_lock(&sb_lock);
703 rescan:
704 list_for_each_entry(sb, &super_blocks, s_list) {
705 if (hlist_unhashed(&sb->s_instances))
706 continue;
707 if (sb->s_dev == dev) {
708 sb->s_count++;
709 spin_unlock(&sb_lock);
710 down_read(&sb->s_umount);
711 /* still alive? */
712 if (sb->s_root && (sb->s_flags & MS_BORN))
713 return sb;
714 up_read(&sb->s_umount);
715 /* nope, got unmounted */
716 spin_lock(&sb_lock);
717 __put_super(sb);
718 goto rescan;
719 }
720 }
721 spin_unlock(&sb_lock);
722 return NULL;
723 }
724
725 /**
726 * do_remount_sb - asks filesystem to change mount options.
727 * @sb: superblock in question
728 * @flags: numeric part of options
729 * @data: the rest of options
730 * @force: whether or not to force the change
731 *
732 * Alters the mount options of a mounted file system.
733 */
734 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
735 {
736 int retval;
737 int remount_ro;
738
739 if (sb->s_writers.frozen != SB_UNFROZEN)
740 return -EBUSY;
741
742 #ifdef CONFIG_BLOCK
743 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
744 return -EACCES;
745 #endif
746
747 if (flags & MS_RDONLY)
748 acct_auto_close(sb);
749 shrink_dcache_sb(sb);
750 sync_filesystem(sb);
751
752 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
753
754 /* If we are remounting RDONLY and current sb is read/write,
755 make sure there are no rw files opened */
756 if (remount_ro) {
757 if (force) {
758 mark_files_ro(sb);
759 } else {
760 retval = sb_prepare_remount_readonly(sb);
761 if (retval)
762 return retval;
763 }
764 }
765
766 if (sb->s_op->remount_fs) {
767 retval = sb->s_op->remount_fs(sb, &flags, data);
768 if (retval) {
769 if (!force)
770 goto cancel_readonly;
771 /* If forced remount, go ahead despite any errors */
772 WARN(1, "forced remount of a %s fs returned %i\n",
773 sb->s_type->name, retval);
774 }
775 }
776 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
777 /* Needs to be ordered wrt mnt_is_readonly() */
778 smp_wmb();
779 sb->s_readonly_remount = 0;
780
781 /*
782 * Some filesystems modify their metadata via some other path than the
783 * bdev buffer cache (eg. use a private mapping, or directories in
784 * pagecache, etc). Also file data modifications go via their own
785 * mappings. So If we try to mount readonly then copy the filesystem
786 * from bdev, we could get stale data, so invalidate it to give a best
787 * effort at coherency.
788 */
789 if (remount_ro && sb->s_bdev)
790 invalidate_bdev(sb->s_bdev);
791 return 0;
792
793 cancel_readonly:
794 sb->s_readonly_remount = 0;
795 return retval;
796 }
797
798 static void do_emergency_remount(struct work_struct *work)
799 {
800 struct super_block *sb, *p = NULL;
801
802 spin_lock(&sb_lock);
803 list_for_each_entry(sb, &super_blocks, s_list) {
804 if (hlist_unhashed(&sb->s_instances))
805 continue;
806 sb->s_count++;
807 spin_unlock(&sb_lock);
808 down_write(&sb->s_umount);
809 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
810 !(sb->s_flags & MS_RDONLY)) {
811 /*
812 * What lock protects sb->s_flags??
813 */
814 do_remount_sb(sb, MS_RDONLY, NULL, 1);
815 }
816 up_write(&sb->s_umount);
817 spin_lock(&sb_lock);
818 if (p)
819 __put_super(p);
820 p = sb;
821 }
822 if (p)
823 __put_super(p);
824 spin_unlock(&sb_lock);
825 kfree(work);
826 printk("Emergency Remount complete\n");
827 }
828
829 void emergency_remount(void)
830 {
831 struct work_struct *work;
832
833 work = kmalloc(sizeof(*work), GFP_ATOMIC);
834 if (work) {
835 INIT_WORK(work, do_emergency_remount);
836 schedule_work(work);
837 }
838 }
839
840 /*
841 * Unnamed block devices are dummy devices used by virtual
842 * filesystems which don't use real block-devices. -- jrs
843 */
844
845 static DEFINE_IDA(unnamed_dev_ida);
846 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
847 static int unnamed_dev_start = 0; /* don't bother trying below it */
848
849 int get_anon_bdev(dev_t *p)
850 {
851 int dev;
852 int error;
853
854 retry:
855 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
856 return -ENOMEM;
857 spin_lock(&unnamed_dev_lock);
858 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
859 if (!error)
860 unnamed_dev_start = dev + 1;
861 spin_unlock(&unnamed_dev_lock);
862 if (error == -EAGAIN)
863 /* We raced and lost with another CPU. */
864 goto retry;
865 else if (error)
866 return -EAGAIN;
867
868 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
869 spin_lock(&unnamed_dev_lock);
870 ida_remove(&unnamed_dev_ida, dev);
871 if (unnamed_dev_start > dev)
872 unnamed_dev_start = dev;
873 spin_unlock(&unnamed_dev_lock);
874 return -EMFILE;
875 }
876 *p = MKDEV(0, dev & MINORMASK);
877 return 0;
878 }
879 EXPORT_SYMBOL(get_anon_bdev);
880
881 void free_anon_bdev(dev_t dev)
882 {
883 int slot = MINOR(dev);
884 spin_lock(&unnamed_dev_lock);
885 ida_remove(&unnamed_dev_ida, slot);
886 if (slot < unnamed_dev_start)
887 unnamed_dev_start = slot;
888 spin_unlock(&unnamed_dev_lock);
889 }
890 EXPORT_SYMBOL(free_anon_bdev);
891
892 int set_anon_super(struct super_block *s, void *data)
893 {
894 int error = get_anon_bdev(&s->s_dev);
895 if (!error)
896 s->s_bdi = &noop_backing_dev_info;
897 return error;
898 }
899
900 EXPORT_SYMBOL(set_anon_super);
901
902 void kill_anon_super(struct super_block *sb)
903 {
904 dev_t dev = sb->s_dev;
905 generic_shutdown_super(sb);
906 free_anon_bdev(dev);
907 }
908
909 EXPORT_SYMBOL(kill_anon_super);
910
911 void kill_litter_super(struct super_block *sb)
912 {
913 if (sb->s_root)
914 d_genocide(sb->s_root);
915 kill_anon_super(sb);
916 }
917
918 EXPORT_SYMBOL(kill_litter_super);
919
920 static int ns_test_super(struct super_block *sb, void *data)
921 {
922 return sb->s_fs_info == data;
923 }
924
925 static int ns_set_super(struct super_block *sb, void *data)
926 {
927 sb->s_fs_info = data;
928 return set_anon_super(sb, NULL);
929 }
930
931 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
932 void *data, int (*fill_super)(struct super_block *, void *, int))
933 {
934 struct super_block *sb;
935
936 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
937 if (IS_ERR(sb))
938 return ERR_CAST(sb);
939
940 if (!sb->s_root) {
941 int err;
942 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
943 if (err) {
944 deactivate_locked_super(sb);
945 return ERR_PTR(err);
946 }
947
948 sb->s_flags |= MS_ACTIVE;
949 }
950
951 return dget(sb->s_root);
952 }
953
954 EXPORT_SYMBOL(mount_ns);
955
956 #ifdef CONFIG_BLOCK
957 static int set_bdev_super(struct super_block *s, void *data)
958 {
959 s->s_bdev = data;
960 s->s_dev = s->s_bdev->bd_dev;
961
962 /*
963 * We set the bdi here to the queue backing, file systems can
964 * overwrite this in ->fill_super()
965 */
966 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
967 return 0;
968 }
969
970 static int test_bdev_super(struct super_block *s, void *data)
971 {
972 return (void *)s->s_bdev == data;
973 }
974
975 struct dentry *mount_bdev(struct file_system_type *fs_type,
976 int flags, const char *dev_name, void *data,
977 int (*fill_super)(struct super_block *, void *, int))
978 {
979 struct block_device *bdev;
980 struct super_block *s;
981 fmode_t mode = FMODE_READ | FMODE_EXCL;
982 int error = 0;
983
984 if (!(flags & MS_RDONLY))
985 mode |= FMODE_WRITE;
986
987 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
988 if (IS_ERR(bdev))
989 return ERR_CAST(bdev);
990
991 /*
992 * once the super is inserted into the list by sget, s_umount
993 * will protect the lockfs code from trying to start a snapshot
994 * while we are mounting
995 */
996 mutex_lock(&bdev->bd_fsfreeze_mutex);
997 if (bdev->bd_fsfreeze_count > 0) {
998 mutex_unlock(&bdev->bd_fsfreeze_mutex);
999 error = -EBUSY;
1000 goto error_bdev;
1001 }
1002 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1003 bdev);
1004 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1005 if (IS_ERR(s))
1006 goto error_s;
1007
1008 if (s->s_root) {
1009 if ((flags ^ s->s_flags) & MS_RDONLY) {
1010 deactivate_locked_super(s);
1011 error = -EBUSY;
1012 goto error_bdev;
1013 }
1014
1015 /*
1016 * s_umount nests inside bd_mutex during
1017 * __invalidate_device(). blkdev_put() acquires
1018 * bd_mutex and can't be called under s_umount. Drop
1019 * s_umount temporarily. This is safe as we're
1020 * holding an active reference.
1021 */
1022 up_write(&s->s_umount);
1023 blkdev_put(bdev, mode);
1024 down_write(&s->s_umount);
1025 } else {
1026 char b[BDEVNAME_SIZE];
1027
1028 s->s_mode = mode;
1029 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1030 sb_set_blocksize(s, block_size(bdev));
1031 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1032 if (error) {
1033 deactivate_locked_super(s);
1034 goto error;
1035 }
1036
1037 s->s_flags |= MS_ACTIVE;
1038 bdev->bd_super = s;
1039 }
1040
1041 return dget(s->s_root);
1042
1043 error_s:
1044 error = PTR_ERR(s);
1045 error_bdev:
1046 blkdev_put(bdev, mode);
1047 error:
1048 return ERR_PTR(error);
1049 }
1050 EXPORT_SYMBOL(mount_bdev);
1051
1052 void kill_block_super(struct super_block *sb)
1053 {
1054 struct block_device *bdev = sb->s_bdev;
1055 fmode_t mode = sb->s_mode;
1056
1057 bdev->bd_super = NULL;
1058 generic_shutdown_super(sb);
1059 sync_blockdev(bdev);
1060 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1061 blkdev_put(bdev, mode | FMODE_EXCL);
1062 }
1063
1064 EXPORT_SYMBOL(kill_block_super);
1065 #endif
1066
1067 struct dentry *mount_nodev(struct file_system_type *fs_type,
1068 int flags, void *data,
1069 int (*fill_super)(struct super_block *, void *, int))
1070 {
1071 int error;
1072 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1073
1074 if (IS_ERR(s))
1075 return ERR_CAST(s);
1076
1077 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1078 if (error) {
1079 deactivate_locked_super(s);
1080 return ERR_PTR(error);
1081 }
1082 s->s_flags |= MS_ACTIVE;
1083 return dget(s->s_root);
1084 }
1085 EXPORT_SYMBOL(mount_nodev);
1086
1087 static int compare_single(struct super_block *s, void *p)
1088 {
1089 return 1;
1090 }
1091
1092 struct dentry *mount_single(struct file_system_type *fs_type,
1093 int flags, void *data,
1094 int (*fill_super)(struct super_block *, void *, int))
1095 {
1096 struct super_block *s;
1097 int error;
1098
1099 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1100 if (IS_ERR(s))
1101 return ERR_CAST(s);
1102 if (!s->s_root) {
1103 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1104 if (error) {
1105 deactivate_locked_super(s);
1106 return ERR_PTR(error);
1107 }
1108 s->s_flags |= MS_ACTIVE;
1109 } else {
1110 do_remount_sb(s, flags, data, 0);
1111 }
1112 return dget(s->s_root);
1113 }
1114 EXPORT_SYMBOL(mount_single);
1115
1116 struct dentry *
1117 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1118 {
1119 struct dentry *root;
1120 struct super_block *sb;
1121 char *secdata = NULL;
1122 int error = -ENOMEM;
1123
1124 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1125 secdata = alloc_secdata();
1126 if (!secdata)
1127 goto out;
1128
1129 error = security_sb_copy_data(data, secdata);
1130 if (error)
1131 goto out_free_secdata;
1132 }
1133
1134 root = type->mount(type, flags, name, data);
1135 if (IS_ERR(root)) {
1136 error = PTR_ERR(root);
1137 goto out_free_secdata;
1138 }
1139 sb = root->d_sb;
1140 BUG_ON(!sb);
1141 WARN_ON(!sb->s_bdi);
1142 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1143 sb->s_flags |= MS_BORN;
1144
1145 error = security_sb_kern_mount(sb, flags, secdata);
1146 if (error)
1147 goto out_sb;
1148
1149 /*
1150 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1151 * but s_maxbytes was an unsigned long long for many releases. Throw
1152 * this warning for a little while to try and catch filesystems that
1153 * violate this rule.
1154 */
1155 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1156 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1157
1158 up_write(&sb->s_umount);
1159 free_secdata(secdata);
1160 return root;
1161 out_sb:
1162 dput(root);
1163 deactivate_locked_super(sb);
1164 out_free_secdata:
1165 free_secdata(secdata);
1166 out:
1167 return ERR_PTR(error);
1168 }
1169
1170 /*
1171 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1172 * instead.
1173 */
1174 void __sb_end_write(struct super_block *sb, int level)
1175 {
1176 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1177 /*
1178 * Make sure s_writers are updated before we wake up waiters in
1179 * freeze_super().
1180 */
1181 smp_mb();
1182 if (waitqueue_active(&sb->s_writers.wait))
1183 wake_up(&sb->s_writers.wait);
1184 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1185 }
1186 EXPORT_SYMBOL(__sb_end_write);
1187
1188 #ifdef CONFIG_LOCKDEP
1189 /*
1190 * We want lockdep to tell us about possible deadlocks with freezing but
1191 * it's it bit tricky to properly instrument it. Getting a freeze protection
1192 * works as getting a read lock but there are subtle problems. XFS for example
1193 * gets freeze protection on internal level twice in some cases, which is OK
1194 * only because we already hold a freeze protection also on higher level. Due
1195 * to these cases we have to tell lockdep we are doing trylock when we
1196 * already hold a freeze protection for a higher freeze level.
1197 */
1198 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1199 unsigned long ip)
1200 {
1201 int i;
1202
1203 if (!trylock) {
1204 for (i = 0; i < level - 1; i++)
1205 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1206 trylock = true;
1207 break;
1208 }
1209 }
1210 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1211 }
1212 #endif
1213
1214 /*
1215 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1216 * instead.
1217 */
1218 int __sb_start_write(struct super_block *sb, int level, bool wait)
1219 {
1220 retry:
1221 if (unlikely(sb->s_writers.frozen >= level)) {
1222 if (!wait)
1223 return 0;
1224 wait_event(sb->s_writers.wait_unfrozen,
1225 sb->s_writers.frozen < level);
1226 }
1227
1228 #ifdef CONFIG_LOCKDEP
1229 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1230 #endif
1231 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1232 /*
1233 * Make sure counter is updated before we check for frozen.
1234 * freeze_super() first sets frozen and then checks the counter.
1235 */
1236 smp_mb();
1237 if (unlikely(sb->s_writers.frozen >= level)) {
1238 __sb_end_write(sb, level);
1239 goto retry;
1240 }
1241 return 1;
1242 }
1243 EXPORT_SYMBOL(__sb_start_write);
1244
1245 /**
1246 * sb_wait_write - wait until all writers to given file system finish
1247 * @sb: the super for which we wait
1248 * @level: type of writers we wait for (normal vs page fault)
1249 *
1250 * This function waits until there are no writers of given type to given file
1251 * system. Caller of this function should make sure there can be no new writers
1252 * of type @level before calling this function. Otherwise this function can
1253 * livelock.
1254 */
1255 static void sb_wait_write(struct super_block *sb, int level)
1256 {
1257 s64 writers;
1258
1259 /*
1260 * We just cycle-through lockdep here so that it does not complain
1261 * about returning with lock to userspace
1262 */
1263 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1264 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1265
1266 do {
1267 DEFINE_WAIT(wait);
1268
1269 /*
1270 * We use a barrier in prepare_to_wait() to separate setting
1271 * of frozen and checking of the counter
1272 */
1273 prepare_to_wait(&sb->s_writers.wait, &wait,
1274 TASK_UNINTERRUPTIBLE);
1275
1276 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1277 if (writers)
1278 schedule();
1279
1280 finish_wait(&sb->s_writers.wait, &wait);
1281 } while (writers);
1282 }
1283
1284 /**
1285 * freeze_super - lock the filesystem and force it into a consistent state
1286 * @sb: the super to lock
1287 *
1288 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1289 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1290 * -EBUSY.
1291 *
1292 * During this function, sb->s_writers.frozen goes through these values:
1293 *
1294 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1295 *
1296 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1297 * writes should be blocked, though page faults are still allowed. We wait for
1298 * all writes to complete and then proceed to the next stage.
1299 *
1300 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1301 * but internal fs threads can still modify the filesystem (although they
1302 * should not dirty new pages or inodes), writeback can run etc. After waiting
1303 * for all running page faults we sync the filesystem which will clean all
1304 * dirty pages and inodes (no new dirty pages or inodes can be created when
1305 * sync is running).
1306 *
1307 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1308 * modification are blocked (e.g. XFS preallocation truncation on inode
1309 * reclaim). This is usually implemented by blocking new transactions for
1310 * filesystems that have them and need this additional guard. After all
1311 * internal writers are finished we call ->freeze_fs() to finish filesystem
1312 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1313 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1314 *
1315 * sb->s_writers.frozen is protected by sb->s_umount.
1316 */
1317 int freeze_super(struct super_block *sb)
1318 {
1319 int ret;
1320
1321 atomic_inc(&sb->s_active);
1322 down_write(&sb->s_umount);
1323 if (sb->s_writers.frozen != SB_UNFROZEN) {
1324 deactivate_locked_super(sb);
1325 return -EBUSY;
1326 }
1327
1328 if (!(sb->s_flags & MS_BORN)) {
1329 up_write(&sb->s_umount);
1330 return 0; /* sic - it's "nothing to do" */
1331 }
1332
1333 if (sb->s_flags & MS_RDONLY) {
1334 /* Nothing to do really... */
1335 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1336 up_write(&sb->s_umount);
1337 return 0;
1338 }
1339
1340 /* From now on, no new normal writers can start */
1341 sb->s_writers.frozen = SB_FREEZE_WRITE;
1342 smp_wmb();
1343
1344 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1345 up_write(&sb->s_umount);
1346
1347 sb_wait_write(sb, SB_FREEZE_WRITE);
1348
1349 /* Now we go and block page faults... */
1350 down_write(&sb->s_umount);
1351 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1352 smp_wmb();
1353
1354 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1355
1356 /* All writers are done so after syncing there won't be dirty data */
1357 sync_filesystem(sb);
1358
1359 /* Now wait for internal filesystem counter */
1360 sb->s_writers.frozen = SB_FREEZE_FS;
1361 smp_wmb();
1362 sb_wait_write(sb, SB_FREEZE_FS);
1363
1364 if (sb->s_op->freeze_fs) {
1365 ret = sb->s_op->freeze_fs(sb);
1366 if (ret) {
1367 printk(KERN_ERR
1368 "VFS:Filesystem freeze failed\n");
1369 sb->s_writers.frozen = SB_UNFROZEN;
1370 smp_wmb();
1371 wake_up(&sb->s_writers.wait_unfrozen);
1372 deactivate_locked_super(sb);
1373 return ret;
1374 }
1375 }
1376 /*
1377 * This is just for debugging purposes so that fs can warn if it
1378 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1379 */
1380 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1381 up_write(&sb->s_umount);
1382 return 0;
1383 }
1384 EXPORT_SYMBOL(freeze_super);
1385
1386 /**
1387 * thaw_super -- unlock filesystem
1388 * @sb: the super to thaw
1389 *
1390 * Unlocks the filesystem and marks it writeable again after freeze_super().
1391 */
1392 int thaw_super(struct super_block *sb)
1393 {
1394 int error;
1395
1396 down_write(&sb->s_umount);
1397 if (sb->s_writers.frozen == SB_UNFROZEN) {
1398 up_write(&sb->s_umount);
1399 return -EINVAL;
1400 }
1401
1402 if (sb->s_flags & MS_RDONLY)
1403 goto out;
1404
1405 if (sb->s_op->unfreeze_fs) {
1406 error = sb->s_op->unfreeze_fs(sb);
1407 if (error) {
1408 printk(KERN_ERR
1409 "VFS:Filesystem thaw failed\n");
1410 up_write(&sb->s_umount);
1411 return error;
1412 }
1413 }
1414
1415 out:
1416 sb->s_writers.frozen = SB_UNFROZEN;
1417 smp_wmb();
1418 wake_up(&sb->s_writers.wait_unfrozen);
1419 deactivate_locked_super(sb);
1420
1421 return 0;
1422 }
1423 EXPORT_SYMBOL(thaw_super);