Merge 4.14.24 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39
40
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 "sb_writers",
46 "sb_pagefaults",
47 "sb_internal",
48 };
49
50 /*
51 * One thing we have to be careful of with a per-sb shrinker is that we don't
52 * drop the last active reference to the superblock from within the shrinker.
53 * If that happens we could trigger unregistering the shrinker from within the
54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55 * take a passive reference to the superblock to avoid this from occurring.
56 */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 struct shrink_control *sc)
59 {
60 struct super_block *sb;
61 long fs_objects = 0;
62 long total_objects;
63 long freed = 0;
64 long dentries;
65 long inodes;
66
67 sb = container_of(shrink, struct super_block, s_shrink);
68
69 /*
70 * Deadlock avoidance. We may hold various FS locks, and we don't want
71 * to recurse into the FS that called us in clear_inode() and friends..
72 */
73 if (!(sc->gfp_mask & __GFP_FS))
74 return SHRINK_STOP;
75
76 if (!trylock_super(sb))
77 return SHRINK_STOP;
78
79 if (sb->s_op->nr_cached_objects)
80 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81
82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 total_objects = dentries + inodes + fs_objects + 1;
85 if (!total_objects)
86 total_objects = 1;
87
88 /* proportion the scan between the caches */
89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92
93 /*
94 * prune the dcache first as the icache is pinned by it, then
95 * prune the icache, followed by the filesystem specific caches
96 *
97 * Ensure that we always scan at least one object - memcg kmem
98 * accounting uses this to fully empty the caches.
99 */
100 sc->nr_to_scan = dentries + 1;
101 freed = prune_dcache_sb(sb, sc);
102 sc->nr_to_scan = inodes + 1;
103 freed += prune_icache_sb(sb, sc);
104
105 if (fs_objects) {
106 sc->nr_to_scan = fs_objects + 1;
107 freed += sb->s_op->free_cached_objects(sb, sc);
108 }
109
110 up_read(&sb->s_umount);
111 return freed;
112 }
113
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 struct shrink_control *sc)
116 {
117 struct super_block *sb;
118 long total_objects = 0;
119
120 sb = container_of(shrink, struct super_block, s_shrink);
121
122 /*
123 * Don't call trylock_super as it is a potential
124 * scalability bottleneck. The counts could get updated
125 * between super_cache_count and super_cache_scan anyway.
126 * Call to super_cache_count with shrinker_rwsem held
127 * ensures the safety of call to list_lru_shrink_count() and
128 * s_op->nr_cached_objects().
129 */
130 if (sb->s_op && sb->s_op->nr_cached_objects)
131 total_objects = sb->s_op->nr_cached_objects(sb, sc);
132
133 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135
136 total_objects = vfs_pressure_ratio(total_objects);
137 return total_objects;
138 }
139
140 static void destroy_super_work(struct work_struct *work)
141 {
142 struct super_block *s = container_of(work, struct super_block,
143 destroy_work);
144 int i;
145
146 for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 kfree(s);
149 }
150
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 struct super_block *s = container_of(head, struct super_block, rcu);
154 INIT_WORK(&s->destroy_work, destroy_super_work);
155 schedule_work(&s->destroy_work);
156 }
157
158 /**
159 * destroy_super - frees a superblock
160 * @s: superblock to free
161 *
162 * Frees a superblock.
163 */
164 static void destroy_super(struct super_block *s)
165 {
166 list_lru_destroy(&s->s_dentry_lru);
167 list_lru_destroy(&s->s_inode_lru);
168 security_sb_free(s);
169 WARN_ON(!list_empty(&s->s_mounts));
170 put_user_ns(s->s_user_ns);
171 kfree(s->s_subtype);
172 call_rcu(&s->rcu, destroy_super_rcu);
173 }
174
175 /**
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
180 *
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
183 */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 struct user_namespace *user_ns)
186 {
187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
188 static const struct super_operations default_op;
189 int i;
190
191 if (!s)
192 return NULL;
193
194 INIT_LIST_HEAD(&s->s_mounts);
195 s->s_user_ns = get_user_ns(user_ns);
196
197 if (security_sb_alloc(s))
198 goto fail;
199
200 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 sb_writers_name[i],
203 &type->s_writers_key[i]))
204 goto fail;
205 }
206 init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 s->s_bdi = &noop_backing_dev_info;
208 s->s_flags = flags;
209 if (s->s_user_ns != &init_user_ns)
210 s->s_iflags |= SB_I_NODEV;
211 INIT_HLIST_NODE(&s->s_instances);
212 INIT_HLIST_BL_HEAD(&s->s_anon);
213 mutex_init(&s->s_sync_lock);
214 INIT_LIST_HEAD(&s->s_inodes);
215 spin_lock_init(&s->s_inode_list_lock);
216 INIT_LIST_HEAD(&s->s_inodes_wb);
217 spin_lock_init(&s->s_inode_wblist_lock);
218
219 if (list_lru_init_memcg(&s->s_dentry_lru))
220 goto fail;
221 if (list_lru_init_memcg(&s->s_inode_lru))
222 goto fail;
223
224 init_rwsem(&s->s_umount);
225 lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 /*
227 * sget() can have s_umount recursion.
228 *
229 * When it cannot find a suitable sb, it allocates a new
230 * one (this one), and tries again to find a suitable old
231 * one.
232 *
233 * In case that succeeds, it will acquire the s_umount
234 * lock of the old one. Since these are clearly distrinct
235 * locks, and this object isn't exposed yet, there's no
236 * risk of deadlocks.
237 *
238 * Annotate this by putting this lock in a different
239 * subclass.
240 */
241 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 s->s_count = 1;
243 atomic_set(&s->s_active, 1);
244 mutex_init(&s->s_vfs_rename_mutex);
245 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 init_rwsem(&s->s_dquot.dqio_sem);
247 s->s_maxbytes = MAX_NON_LFS;
248 s->s_op = &default_op;
249 s->s_time_gran = 1000000000;
250 s->cleancache_poolid = CLEANCACHE_NO_POOL;
251
252 s->s_shrink.seeks = DEFAULT_SEEKS;
253 s->s_shrink.scan_objects = super_cache_scan;
254 s->s_shrink.count_objects = super_cache_count;
255 s->s_shrink.batch = 1024;
256 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
257 return s;
258
259 fail:
260 destroy_super(s);
261 return NULL;
262 }
263
264 /* Superblock refcounting */
265
266 /*
267 * Drop a superblock's refcount. The caller must hold sb_lock.
268 */
269 static void __put_super(struct super_block *sb)
270 {
271 if (!--sb->s_count) {
272 list_del_init(&sb->s_list);
273 destroy_super(sb);
274 }
275 }
276
277 /**
278 * put_super - drop a temporary reference to superblock
279 * @sb: superblock in question
280 *
281 * Drops a temporary reference, frees superblock if there's no
282 * references left.
283 */
284 static void put_super(struct super_block *sb)
285 {
286 spin_lock(&sb_lock);
287 __put_super(sb);
288 spin_unlock(&sb_lock);
289 }
290
291
292 /**
293 * deactivate_locked_super - drop an active reference to superblock
294 * @s: superblock to deactivate
295 *
296 * Drops an active reference to superblock, converting it into a temporary
297 * one if there is no other active references left. In that case we
298 * tell fs driver to shut it down and drop the temporary reference we
299 * had just acquired.
300 *
301 * Caller holds exclusive lock on superblock; that lock is released.
302 */
303 void deactivate_locked_super(struct super_block *s)
304 {
305 struct file_system_type *fs = s->s_type;
306 if (atomic_dec_and_test(&s->s_active)) {
307 cleancache_invalidate_fs(s);
308 unregister_shrinker(&s->s_shrink);
309 fs->kill_sb(s);
310
311 /*
312 * Since list_lru_destroy() may sleep, we cannot call it from
313 * put_super(), where we hold the sb_lock. Therefore we destroy
314 * the lru lists right now.
315 */
316 list_lru_destroy(&s->s_dentry_lru);
317 list_lru_destroy(&s->s_inode_lru);
318
319 put_filesystem(fs);
320 put_super(s);
321 } else {
322 up_write(&s->s_umount);
323 }
324 }
325
326 EXPORT_SYMBOL(deactivate_locked_super);
327
328 /**
329 * deactivate_super - drop an active reference to superblock
330 * @s: superblock to deactivate
331 *
332 * Variant of deactivate_locked_super(), except that superblock is *not*
333 * locked by caller. If we are going to drop the final active reference,
334 * lock will be acquired prior to that.
335 */
336 void deactivate_super(struct super_block *s)
337 {
338 if (!atomic_add_unless(&s->s_active, -1, 1)) {
339 down_write(&s->s_umount);
340 deactivate_locked_super(s);
341 }
342 }
343
344 EXPORT_SYMBOL(deactivate_super);
345
346 /**
347 * grab_super - acquire an active reference
348 * @s: reference we are trying to make active
349 *
350 * Tries to acquire an active reference. grab_super() is used when we
351 * had just found a superblock in super_blocks or fs_type->fs_supers
352 * and want to turn it into a full-blown active reference. grab_super()
353 * is called with sb_lock held and drops it. Returns 1 in case of
354 * success, 0 if we had failed (superblock contents was already dead or
355 * dying when grab_super() had been called). Note that this is only
356 * called for superblocks not in rundown mode (== ones still on ->fs_supers
357 * of their type), so increment of ->s_count is OK here.
358 */
359 static int grab_super(struct super_block *s) __releases(sb_lock)
360 {
361 s->s_count++;
362 spin_unlock(&sb_lock);
363 down_write(&s->s_umount);
364 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
365 put_super(s);
366 return 1;
367 }
368 up_write(&s->s_umount);
369 put_super(s);
370 return 0;
371 }
372
373 /*
374 * trylock_super - try to grab ->s_umount shared
375 * @sb: reference we are trying to grab
376 *
377 * Try to prevent fs shutdown. This is used in places where we
378 * cannot take an active reference but we need to ensure that the
379 * filesystem is not shut down while we are working on it. It returns
380 * false if we cannot acquire s_umount or if we lose the race and
381 * filesystem already got into shutdown, and returns true with the s_umount
382 * lock held in read mode in case of success. On successful return,
383 * the caller must drop the s_umount lock when done.
384 *
385 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
386 * The reason why it's safe is that we are OK with doing trylock instead
387 * of down_read(). There's a couple of places that are OK with that, but
388 * it's very much not a general-purpose interface.
389 */
390 bool trylock_super(struct super_block *sb)
391 {
392 if (down_read_trylock(&sb->s_umount)) {
393 if (!hlist_unhashed(&sb->s_instances) &&
394 sb->s_root && (sb->s_flags & SB_BORN))
395 return true;
396 up_read(&sb->s_umount);
397 }
398
399 return false;
400 }
401
402 /**
403 * generic_shutdown_super - common helper for ->kill_sb()
404 * @sb: superblock to kill
405 *
406 * generic_shutdown_super() does all fs-independent work on superblock
407 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
408 * that need destruction out of superblock, call generic_shutdown_super()
409 * and release aforementioned objects. Note: dentries and inodes _are_
410 * taken care of and do not need specific handling.
411 *
412 * Upon calling this function, the filesystem may no longer alter or
413 * rearrange the set of dentries belonging to this super_block, nor may it
414 * change the attachments of dentries to inodes.
415 */
416 void generic_shutdown_super(struct super_block *sb)
417 {
418 const struct super_operations *sop = sb->s_op;
419
420 if (sb->s_root) {
421 shrink_dcache_for_umount(sb);
422 sync_filesystem(sb);
423 sb->s_flags &= ~SB_ACTIVE;
424
425 fsnotify_unmount_inodes(sb);
426 cgroup_writeback_umount();
427
428 evict_inodes(sb);
429
430 if (sb->s_dio_done_wq) {
431 destroy_workqueue(sb->s_dio_done_wq);
432 sb->s_dio_done_wq = NULL;
433 }
434
435 if (sop->put_super)
436 sop->put_super(sb);
437
438 if (!list_empty(&sb->s_inodes)) {
439 printk("VFS: Busy inodes after unmount of %s. "
440 "Self-destruct in 5 seconds. Have a nice day...\n",
441 sb->s_id);
442 }
443 }
444 spin_lock(&sb_lock);
445 /* should be initialized for __put_super_and_need_restart() */
446 hlist_del_init(&sb->s_instances);
447 spin_unlock(&sb_lock);
448 up_write(&sb->s_umount);
449 if (sb->s_bdi != &noop_backing_dev_info) {
450 bdi_put(sb->s_bdi);
451 sb->s_bdi = &noop_backing_dev_info;
452 }
453 }
454
455 EXPORT_SYMBOL(generic_shutdown_super);
456
457 /**
458 * sget_userns - find or create a superblock
459 * @type: filesystem type superblock should belong to
460 * @test: comparison callback
461 * @set: setup callback
462 * @flags: mount flags
463 * @user_ns: User namespace for the super_block
464 * @data: argument to each of them
465 */
466 struct super_block *sget_userns(struct file_system_type *type,
467 int (*test)(struct super_block *,void *),
468 int (*set)(struct super_block *,void *),
469 int flags, struct user_namespace *user_ns,
470 void *data)
471 {
472 struct super_block *s = NULL;
473 struct super_block *old;
474 int err;
475
476 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
477 !(type->fs_flags & FS_USERNS_MOUNT) &&
478 !capable(CAP_SYS_ADMIN))
479 return ERR_PTR(-EPERM);
480 retry:
481 spin_lock(&sb_lock);
482 if (test) {
483 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
484 if (!test(old, data))
485 continue;
486 if (user_ns != old->s_user_ns) {
487 spin_unlock(&sb_lock);
488 if (s) {
489 up_write(&s->s_umount);
490 destroy_super(s);
491 }
492 return ERR_PTR(-EBUSY);
493 }
494 if (!grab_super(old))
495 goto retry;
496 if (s) {
497 up_write(&s->s_umount);
498 destroy_super(s);
499 s = NULL;
500 }
501 return old;
502 }
503 }
504 if (!s) {
505 spin_unlock(&sb_lock);
506 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
507 if (!s)
508 return ERR_PTR(-ENOMEM);
509 goto retry;
510 }
511
512 err = set(s, data);
513 if (err) {
514 spin_unlock(&sb_lock);
515 up_write(&s->s_umount);
516 destroy_super(s);
517 return ERR_PTR(err);
518 }
519 s->s_type = type;
520 strlcpy(s->s_id, type->name, sizeof(s->s_id));
521 list_add_tail(&s->s_list, &super_blocks);
522 hlist_add_head(&s->s_instances, &type->fs_supers);
523 spin_unlock(&sb_lock);
524 get_filesystem(type);
525 err = register_shrinker(&s->s_shrink);
526 if (err) {
527 deactivate_locked_super(s);
528 s = ERR_PTR(err);
529 }
530 return s;
531 }
532
533 EXPORT_SYMBOL(sget_userns);
534
535 /**
536 * sget - find or create a superblock
537 * @type: filesystem type superblock should belong to
538 * @test: comparison callback
539 * @set: setup callback
540 * @flags: mount flags
541 * @data: argument to each of them
542 */
543 struct super_block *sget(struct file_system_type *type,
544 int (*test)(struct super_block *,void *),
545 int (*set)(struct super_block *,void *),
546 int flags,
547 void *data)
548 {
549 struct user_namespace *user_ns = current_user_ns();
550
551 /* We don't yet pass the user namespace of the parent
552 * mount through to here so always use &init_user_ns
553 * until that changes.
554 */
555 if (flags & SB_SUBMOUNT)
556 user_ns = &init_user_ns;
557
558 /* Ensure the requestor has permissions over the target filesystem */
559 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
560 return ERR_PTR(-EPERM);
561
562 return sget_userns(type, test, set, flags, user_ns, data);
563 }
564
565 EXPORT_SYMBOL(sget);
566
567 void drop_super(struct super_block *sb)
568 {
569 up_read(&sb->s_umount);
570 put_super(sb);
571 }
572
573 EXPORT_SYMBOL(drop_super);
574
575 void drop_super_exclusive(struct super_block *sb)
576 {
577 up_write(&sb->s_umount);
578 put_super(sb);
579 }
580 EXPORT_SYMBOL(drop_super_exclusive);
581
582 /**
583 * iterate_supers - call function for all active superblocks
584 * @f: function to call
585 * @arg: argument to pass to it
586 *
587 * Scans the superblock list and calls given function, passing it
588 * locked superblock and given argument.
589 */
590 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
591 {
592 struct super_block *sb, *p = NULL;
593
594 spin_lock(&sb_lock);
595 list_for_each_entry(sb, &super_blocks, s_list) {
596 if (hlist_unhashed(&sb->s_instances))
597 continue;
598 sb->s_count++;
599 spin_unlock(&sb_lock);
600
601 down_read(&sb->s_umount);
602 if (sb->s_root && (sb->s_flags & SB_BORN))
603 f(sb, arg);
604 up_read(&sb->s_umount);
605
606 spin_lock(&sb_lock);
607 if (p)
608 __put_super(p);
609 p = sb;
610 }
611 if (p)
612 __put_super(p);
613 spin_unlock(&sb_lock);
614 }
615
616 /**
617 * iterate_supers_type - call function for superblocks of given type
618 * @type: fs type
619 * @f: function to call
620 * @arg: argument to pass to it
621 *
622 * Scans the superblock list and calls given function, passing it
623 * locked superblock and given argument.
624 */
625 void iterate_supers_type(struct file_system_type *type,
626 void (*f)(struct super_block *, void *), void *arg)
627 {
628 struct super_block *sb, *p = NULL;
629
630 spin_lock(&sb_lock);
631 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
632 sb->s_count++;
633 spin_unlock(&sb_lock);
634
635 down_read(&sb->s_umount);
636 if (sb->s_root && (sb->s_flags & SB_BORN))
637 f(sb, arg);
638 up_read(&sb->s_umount);
639
640 spin_lock(&sb_lock);
641 if (p)
642 __put_super(p);
643 p = sb;
644 }
645 if (p)
646 __put_super(p);
647 spin_unlock(&sb_lock);
648 }
649
650 EXPORT_SYMBOL(iterate_supers_type);
651
652 static struct super_block *__get_super(struct block_device *bdev, bool excl)
653 {
654 struct super_block *sb;
655
656 if (!bdev)
657 return NULL;
658
659 spin_lock(&sb_lock);
660 rescan:
661 list_for_each_entry(sb, &super_blocks, s_list) {
662 if (hlist_unhashed(&sb->s_instances))
663 continue;
664 if (sb->s_bdev == bdev) {
665 sb->s_count++;
666 spin_unlock(&sb_lock);
667 if (!excl)
668 down_read(&sb->s_umount);
669 else
670 down_write(&sb->s_umount);
671 /* still alive? */
672 if (sb->s_root && (sb->s_flags & SB_BORN))
673 return sb;
674 if (!excl)
675 up_read(&sb->s_umount);
676 else
677 up_write(&sb->s_umount);
678 /* nope, got unmounted */
679 spin_lock(&sb_lock);
680 __put_super(sb);
681 goto rescan;
682 }
683 }
684 spin_unlock(&sb_lock);
685 return NULL;
686 }
687
688 /**
689 * get_super - get the superblock of a device
690 * @bdev: device to get the superblock for
691 *
692 * Scans the superblock list and finds the superblock of the file system
693 * mounted on the device given. %NULL is returned if no match is found.
694 */
695 struct super_block *get_super(struct block_device *bdev)
696 {
697 return __get_super(bdev, false);
698 }
699 EXPORT_SYMBOL(get_super);
700
701 static struct super_block *__get_super_thawed(struct block_device *bdev,
702 bool excl)
703 {
704 while (1) {
705 struct super_block *s = __get_super(bdev, excl);
706 if (!s || s->s_writers.frozen == SB_UNFROZEN)
707 return s;
708 if (!excl)
709 up_read(&s->s_umount);
710 else
711 up_write(&s->s_umount);
712 wait_event(s->s_writers.wait_unfrozen,
713 s->s_writers.frozen == SB_UNFROZEN);
714 put_super(s);
715 }
716 }
717
718 /**
719 * get_super_thawed - get thawed superblock of a device
720 * @bdev: device to get the superblock for
721 *
722 * Scans the superblock list and finds the superblock of the file system
723 * mounted on the device. The superblock is returned once it is thawed
724 * (or immediately if it was not frozen). %NULL is returned if no match
725 * is found.
726 */
727 struct super_block *get_super_thawed(struct block_device *bdev)
728 {
729 return __get_super_thawed(bdev, false);
730 }
731 EXPORT_SYMBOL(get_super_thawed);
732
733 /**
734 * get_super_exclusive_thawed - get thawed superblock of a device
735 * @bdev: device to get the superblock for
736 *
737 * Scans the superblock list and finds the superblock of the file system
738 * mounted on the device. The superblock is returned once it is thawed
739 * (or immediately if it was not frozen) and s_umount semaphore is held
740 * in exclusive mode. %NULL is returned if no match is found.
741 */
742 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
743 {
744 return __get_super_thawed(bdev, true);
745 }
746 EXPORT_SYMBOL(get_super_exclusive_thawed);
747
748 /**
749 * get_active_super - get an active reference to the superblock of a device
750 * @bdev: device to get the superblock for
751 *
752 * Scans the superblock list and finds the superblock of the file system
753 * mounted on the device given. Returns the superblock with an active
754 * reference or %NULL if none was found.
755 */
756 struct super_block *get_active_super(struct block_device *bdev)
757 {
758 struct super_block *sb;
759
760 if (!bdev)
761 return NULL;
762
763 restart:
764 spin_lock(&sb_lock);
765 list_for_each_entry(sb, &super_blocks, s_list) {
766 if (hlist_unhashed(&sb->s_instances))
767 continue;
768 if (sb->s_bdev == bdev) {
769 if (!grab_super(sb))
770 goto restart;
771 up_write(&sb->s_umount);
772 return sb;
773 }
774 }
775 spin_unlock(&sb_lock);
776 return NULL;
777 }
778
779 struct super_block *user_get_super(dev_t dev)
780 {
781 struct super_block *sb;
782
783 spin_lock(&sb_lock);
784 rescan:
785 list_for_each_entry(sb, &super_blocks, s_list) {
786 if (hlist_unhashed(&sb->s_instances))
787 continue;
788 if (sb->s_dev == dev) {
789 sb->s_count++;
790 spin_unlock(&sb_lock);
791 down_read(&sb->s_umount);
792 /* still alive? */
793 if (sb->s_root && (sb->s_flags & SB_BORN))
794 return sb;
795 up_read(&sb->s_umount);
796 /* nope, got unmounted */
797 spin_lock(&sb_lock);
798 __put_super(sb);
799 goto rescan;
800 }
801 }
802 spin_unlock(&sb_lock);
803 return NULL;
804 }
805
806 /**
807 * do_remount_sb2 - asks filesystem to change mount options.
808 * @mnt: mount we are looking at
809 * @sb: superblock in question
810 * @sb_flags: revised superblock flags
811 * @data: the rest of options
812 * @force: whether or not to force the change
813 *
814 * Alters the mount options of a mounted file system.
815 */
816 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int sb_flags, void *data, int force)
817 {
818 int retval;
819 int remount_ro;
820
821 if (sb->s_writers.frozen != SB_UNFROZEN)
822 return -EBUSY;
823
824 #ifdef CONFIG_BLOCK
825 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
826 return -EACCES;
827 #endif
828
829 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
830
831 if (remount_ro) {
832 if (!hlist_empty(&sb->s_pins)) {
833 up_write(&sb->s_umount);
834 group_pin_kill(&sb->s_pins);
835 down_write(&sb->s_umount);
836 if (!sb->s_root)
837 return 0;
838 if (sb->s_writers.frozen != SB_UNFROZEN)
839 return -EBUSY;
840 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
841 }
842 }
843 shrink_dcache_sb(sb);
844
845 /* If we are remounting RDONLY and current sb is read/write,
846 make sure there are no rw files opened */
847 if (remount_ro) {
848 if (force) {
849 sb->s_readonly_remount = 1;
850 smp_wmb();
851 } else {
852 retval = sb_prepare_remount_readonly(sb);
853 if (retval)
854 return retval;
855 }
856 }
857
858 if (mnt && sb->s_op->remount_fs2) {
859 retval = sb->s_op->remount_fs2(mnt, sb, &sb_flags, data);
860 if (retval) {
861 if (!force)
862 goto cancel_readonly;
863 /* If forced remount, go ahead despite any errors */
864 WARN(1, "forced remount of a %s fs returned %i\n",
865 sb->s_type->name, retval);
866 }
867 } else if (sb->s_op->remount_fs) {
868 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
869 if (retval) {
870 if (!force)
871 goto cancel_readonly;
872 /* If forced remount, go ahead despite any errors */
873 WARN(1, "forced remount of a %s fs returned %i\n",
874 sb->s_type->name, retval);
875 }
876 }
877 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
878 /* Needs to be ordered wrt mnt_is_readonly() */
879 smp_wmb();
880 sb->s_readonly_remount = 0;
881
882 /*
883 * Some filesystems modify their metadata via some other path than the
884 * bdev buffer cache (eg. use a private mapping, or directories in
885 * pagecache, etc). Also file data modifications go via their own
886 * mappings. So If we try to mount readonly then copy the filesystem
887 * from bdev, we could get stale data, so invalidate it to give a best
888 * effort at coherency.
889 */
890 if (remount_ro && sb->s_bdev)
891 invalidate_bdev(sb->s_bdev);
892 return 0;
893
894 cancel_readonly:
895 sb->s_readonly_remount = 0;
896 return retval;
897 }
898
899 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
900 {
901 return do_remount_sb2(NULL, sb, flags, data, force);
902 }
903
904 static void do_emergency_remount(struct work_struct *work)
905 {
906 struct super_block *sb, *p = NULL;
907
908 spin_lock(&sb_lock);
909 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
910 if (hlist_unhashed(&sb->s_instances))
911 continue;
912 sb->s_count++;
913 spin_unlock(&sb_lock);
914 down_write(&sb->s_umount);
915 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
916 !sb_rdonly(sb)) {
917 /*
918 * What lock protects sb->s_flags??
919 */
920 do_remount_sb(sb, SB_RDONLY, NULL, 1);
921 }
922 up_write(&sb->s_umount);
923 spin_lock(&sb_lock);
924 if (p)
925 __put_super(p);
926 p = sb;
927 }
928 if (p)
929 __put_super(p);
930 spin_unlock(&sb_lock);
931 kfree(work);
932 printk("Emergency Remount complete\n");
933 }
934
935 void emergency_remount(void)
936 {
937 struct work_struct *work;
938
939 work = kmalloc(sizeof(*work), GFP_ATOMIC);
940 if (work) {
941 INIT_WORK(work, do_emergency_remount);
942 schedule_work(work);
943 }
944 }
945
946 /*
947 * Unnamed block devices are dummy devices used by virtual
948 * filesystems which don't use real block-devices. -- jrs
949 */
950
951 static DEFINE_IDA(unnamed_dev_ida);
952 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
953 /* Many userspace utilities consider an FSID of 0 invalid.
954 * Always return at least 1 from get_anon_bdev.
955 */
956 static int unnamed_dev_start = 1;
957
958 int get_anon_bdev(dev_t *p)
959 {
960 int dev;
961 int error;
962
963 retry:
964 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
965 return -ENOMEM;
966 spin_lock(&unnamed_dev_lock);
967 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
968 if (!error)
969 unnamed_dev_start = dev + 1;
970 spin_unlock(&unnamed_dev_lock);
971 if (error == -EAGAIN)
972 /* We raced and lost with another CPU. */
973 goto retry;
974 else if (error)
975 return -EAGAIN;
976
977 if (dev >= (1 << MINORBITS)) {
978 spin_lock(&unnamed_dev_lock);
979 ida_remove(&unnamed_dev_ida, dev);
980 if (unnamed_dev_start > dev)
981 unnamed_dev_start = dev;
982 spin_unlock(&unnamed_dev_lock);
983 return -EMFILE;
984 }
985 *p = MKDEV(0, dev & MINORMASK);
986 return 0;
987 }
988 EXPORT_SYMBOL(get_anon_bdev);
989
990 void free_anon_bdev(dev_t dev)
991 {
992 int slot = MINOR(dev);
993 spin_lock(&unnamed_dev_lock);
994 ida_remove(&unnamed_dev_ida, slot);
995 if (slot < unnamed_dev_start)
996 unnamed_dev_start = slot;
997 spin_unlock(&unnamed_dev_lock);
998 }
999 EXPORT_SYMBOL(free_anon_bdev);
1000
1001 int set_anon_super(struct super_block *s, void *data)
1002 {
1003 return get_anon_bdev(&s->s_dev);
1004 }
1005
1006 EXPORT_SYMBOL(set_anon_super);
1007
1008 void kill_anon_super(struct super_block *sb)
1009 {
1010 dev_t dev = sb->s_dev;
1011 generic_shutdown_super(sb);
1012 free_anon_bdev(dev);
1013 }
1014
1015 EXPORT_SYMBOL(kill_anon_super);
1016
1017 void kill_litter_super(struct super_block *sb)
1018 {
1019 if (sb->s_root)
1020 d_genocide(sb->s_root);
1021 kill_anon_super(sb);
1022 }
1023
1024 EXPORT_SYMBOL(kill_litter_super);
1025
1026 static int ns_test_super(struct super_block *sb, void *data)
1027 {
1028 return sb->s_fs_info == data;
1029 }
1030
1031 static int ns_set_super(struct super_block *sb, void *data)
1032 {
1033 sb->s_fs_info = data;
1034 return set_anon_super(sb, NULL);
1035 }
1036
1037 struct dentry *mount_ns(struct file_system_type *fs_type,
1038 int flags, void *data, void *ns, struct user_namespace *user_ns,
1039 int (*fill_super)(struct super_block *, void *, int))
1040 {
1041 struct super_block *sb;
1042
1043 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1044 * over the namespace.
1045 */
1046 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1047 return ERR_PTR(-EPERM);
1048
1049 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1050 user_ns, ns);
1051 if (IS_ERR(sb))
1052 return ERR_CAST(sb);
1053
1054 if (!sb->s_root) {
1055 int err;
1056 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1057 if (err) {
1058 deactivate_locked_super(sb);
1059 return ERR_PTR(err);
1060 }
1061
1062 sb->s_flags |= SB_ACTIVE;
1063 }
1064
1065 return dget(sb->s_root);
1066 }
1067
1068 EXPORT_SYMBOL(mount_ns);
1069
1070 #ifdef CONFIG_BLOCK
1071 static int set_bdev_super(struct super_block *s, void *data)
1072 {
1073 s->s_bdev = data;
1074 s->s_dev = s->s_bdev->bd_dev;
1075 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1076
1077 return 0;
1078 }
1079
1080 static int test_bdev_super(struct super_block *s, void *data)
1081 {
1082 return (void *)s->s_bdev == data;
1083 }
1084
1085 struct dentry *mount_bdev(struct file_system_type *fs_type,
1086 int flags, const char *dev_name, void *data,
1087 int (*fill_super)(struct super_block *, void *, int))
1088 {
1089 struct block_device *bdev;
1090 struct super_block *s;
1091 fmode_t mode = FMODE_READ | FMODE_EXCL;
1092 int error = 0;
1093
1094 if (!(flags & SB_RDONLY))
1095 mode |= FMODE_WRITE;
1096
1097 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1098 if (IS_ERR(bdev))
1099 return ERR_CAST(bdev);
1100
1101 /*
1102 * once the super is inserted into the list by sget, s_umount
1103 * will protect the lockfs code from trying to start a snapshot
1104 * while we are mounting
1105 */
1106 mutex_lock(&bdev->bd_fsfreeze_mutex);
1107 if (bdev->bd_fsfreeze_count > 0) {
1108 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1109 error = -EBUSY;
1110 goto error_bdev;
1111 }
1112 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1113 bdev);
1114 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1115 if (IS_ERR(s))
1116 goto error_s;
1117
1118 if (s->s_root) {
1119 if ((flags ^ s->s_flags) & SB_RDONLY) {
1120 deactivate_locked_super(s);
1121 error = -EBUSY;
1122 goto error_bdev;
1123 }
1124
1125 /*
1126 * s_umount nests inside bd_mutex during
1127 * __invalidate_device(). blkdev_put() acquires
1128 * bd_mutex and can't be called under s_umount. Drop
1129 * s_umount temporarily. This is safe as we're
1130 * holding an active reference.
1131 */
1132 up_write(&s->s_umount);
1133 blkdev_put(bdev, mode);
1134 down_write(&s->s_umount);
1135 } else {
1136 s->s_mode = mode;
1137 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1138 sb_set_blocksize(s, block_size(bdev));
1139 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1140 if (error) {
1141 deactivate_locked_super(s);
1142 goto error;
1143 }
1144
1145 s->s_flags |= SB_ACTIVE;
1146 bdev->bd_super = s;
1147 }
1148
1149 return dget(s->s_root);
1150
1151 error_s:
1152 error = PTR_ERR(s);
1153 error_bdev:
1154 blkdev_put(bdev, mode);
1155 error:
1156 return ERR_PTR(error);
1157 }
1158 EXPORT_SYMBOL(mount_bdev);
1159
1160 void kill_block_super(struct super_block *sb)
1161 {
1162 struct block_device *bdev = sb->s_bdev;
1163 fmode_t mode = sb->s_mode;
1164
1165 bdev->bd_super = NULL;
1166 generic_shutdown_super(sb);
1167 sync_blockdev(bdev);
1168 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1169 blkdev_put(bdev, mode | FMODE_EXCL);
1170 }
1171
1172 EXPORT_SYMBOL(kill_block_super);
1173 #endif
1174
1175 struct dentry *mount_nodev(struct file_system_type *fs_type,
1176 int flags, void *data,
1177 int (*fill_super)(struct super_block *, void *, int))
1178 {
1179 int error;
1180 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1181
1182 if (IS_ERR(s))
1183 return ERR_CAST(s);
1184
1185 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1186 if (error) {
1187 deactivate_locked_super(s);
1188 return ERR_PTR(error);
1189 }
1190 s->s_flags |= SB_ACTIVE;
1191 return dget(s->s_root);
1192 }
1193 EXPORT_SYMBOL(mount_nodev);
1194
1195 static int compare_single(struct super_block *s, void *p)
1196 {
1197 return 1;
1198 }
1199
1200 struct dentry *mount_single(struct file_system_type *fs_type,
1201 int flags, void *data,
1202 int (*fill_super)(struct super_block *, void *, int))
1203 {
1204 struct super_block *s;
1205 int error;
1206
1207 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1208 if (IS_ERR(s))
1209 return ERR_CAST(s);
1210 if (!s->s_root) {
1211 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1212 if (error) {
1213 deactivate_locked_super(s);
1214 return ERR_PTR(error);
1215 }
1216 s->s_flags |= SB_ACTIVE;
1217 } else {
1218 do_remount_sb(s, flags, data, 0);
1219 }
1220 return dget(s->s_root);
1221 }
1222 EXPORT_SYMBOL(mount_single);
1223
1224 struct dentry *
1225 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1226 {
1227 struct dentry *root;
1228 struct super_block *sb;
1229 char *secdata = NULL;
1230 int error = -ENOMEM;
1231
1232 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1233 secdata = alloc_secdata();
1234 if (!secdata)
1235 goto out;
1236
1237 error = security_sb_copy_data(data, secdata);
1238 if (error)
1239 goto out_free_secdata;
1240 }
1241
1242 if (type->mount2)
1243 root = type->mount2(mnt, type, flags, name, data);
1244 else
1245 root = type->mount(type, flags, name, data);
1246 if (IS_ERR(root)) {
1247 error = PTR_ERR(root);
1248 goto out_free_secdata;
1249 }
1250 sb = root->d_sb;
1251 BUG_ON(!sb);
1252 WARN_ON(!sb->s_bdi);
1253 sb->s_flags |= SB_BORN;
1254
1255 error = security_sb_kern_mount(sb, flags, secdata);
1256 if (error)
1257 goto out_sb;
1258
1259 /*
1260 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1261 * but s_maxbytes was an unsigned long long for many releases. Throw
1262 * this warning for a little while to try and catch filesystems that
1263 * violate this rule.
1264 */
1265 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1266 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1267
1268 up_write(&sb->s_umount);
1269 free_secdata(secdata);
1270 return root;
1271 out_sb:
1272 dput(root);
1273 deactivate_locked_super(sb);
1274 out_free_secdata:
1275 free_secdata(secdata);
1276 out:
1277 return ERR_PTR(error);
1278 }
1279
1280 /*
1281 * Setup private BDI for given superblock. It gets automatically cleaned up
1282 * in generic_shutdown_super().
1283 */
1284 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1285 {
1286 struct backing_dev_info *bdi;
1287 int err;
1288 va_list args;
1289
1290 bdi = bdi_alloc(GFP_KERNEL);
1291 if (!bdi)
1292 return -ENOMEM;
1293
1294 bdi->name = sb->s_type->name;
1295
1296 va_start(args, fmt);
1297 err = bdi_register_va(bdi, fmt, args);
1298 va_end(args);
1299 if (err) {
1300 bdi_put(bdi);
1301 return err;
1302 }
1303 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1304 sb->s_bdi = bdi;
1305
1306 return 0;
1307 }
1308 EXPORT_SYMBOL(super_setup_bdi_name);
1309
1310 /*
1311 * Setup private BDI for given superblock. I gets automatically cleaned up
1312 * in generic_shutdown_super().
1313 */
1314 int super_setup_bdi(struct super_block *sb)
1315 {
1316 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1317
1318 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1319 atomic_long_inc_return(&bdi_seq));
1320 }
1321 EXPORT_SYMBOL(super_setup_bdi);
1322
1323 /*
1324 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1325 * instead.
1326 */
1327 void __sb_end_write(struct super_block *sb, int level)
1328 {
1329 percpu_up_read(sb->s_writers.rw_sem + level-1);
1330 }
1331 EXPORT_SYMBOL(__sb_end_write);
1332
1333 /*
1334 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1335 * instead.
1336 */
1337 int __sb_start_write(struct super_block *sb, int level, bool wait)
1338 {
1339 bool force_trylock = false;
1340 int ret = 1;
1341
1342 #ifdef CONFIG_LOCKDEP
1343 /*
1344 * We want lockdep to tell us about possible deadlocks with freezing
1345 * but it's it bit tricky to properly instrument it. Getting a freeze
1346 * protection works as getting a read lock but there are subtle
1347 * problems. XFS for example gets freeze protection on internal level
1348 * twice in some cases, which is OK only because we already hold a
1349 * freeze protection also on higher level. Due to these cases we have
1350 * to use wait == F (trylock mode) which must not fail.
1351 */
1352 if (wait) {
1353 int i;
1354
1355 for (i = 0; i < level - 1; i++)
1356 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1357 force_trylock = true;
1358 break;
1359 }
1360 }
1361 #endif
1362 if (wait && !force_trylock)
1363 percpu_down_read(sb->s_writers.rw_sem + level-1);
1364 else
1365 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1366
1367 WARN_ON(force_trylock && !ret);
1368 return ret;
1369 }
1370 EXPORT_SYMBOL(__sb_start_write);
1371
1372 /**
1373 * sb_wait_write - wait until all writers to given file system finish
1374 * @sb: the super for which we wait
1375 * @level: type of writers we wait for (normal vs page fault)
1376 *
1377 * This function waits until there are no writers of given type to given file
1378 * system.
1379 */
1380 static void sb_wait_write(struct super_block *sb, int level)
1381 {
1382 percpu_down_write(sb->s_writers.rw_sem + level-1);
1383 }
1384
1385 /*
1386 * We are going to return to userspace and forget about these locks, the
1387 * ownership goes to the caller of thaw_super() which does unlock().
1388 */
1389 static void lockdep_sb_freeze_release(struct super_block *sb)
1390 {
1391 int level;
1392
1393 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1394 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1395 }
1396
1397 /*
1398 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1399 */
1400 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1401 {
1402 int level;
1403
1404 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1405 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1406 }
1407
1408 static void sb_freeze_unlock(struct super_block *sb)
1409 {
1410 int level;
1411
1412 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1413 percpu_up_write(sb->s_writers.rw_sem + level);
1414 }
1415
1416 /**
1417 * freeze_super - lock the filesystem and force it into a consistent state
1418 * @sb: the super to lock
1419 *
1420 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1421 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1422 * -EBUSY.
1423 *
1424 * During this function, sb->s_writers.frozen goes through these values:
1425 *
1426 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1427 *
1428 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1429 * writes should be blocked, though page faults are still allowed. We wait for
1430 * all writes to complete and then proceed to the next stage.
1431 *
1432 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1433 * but internal fs threads can still modify the filesystem (although they
1434 * should not dirty new pages or inodes), writeback can run etc. After waiting
1435 * for all running page faults we sync the filesystem which will clean all
1436 * dirty pages and inodes (no new dirty pages or inodes can be created when
1437 * sync is running).
1438 *
1439 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1440 * modification are blocked (e.g. XFS preallocation truncation on inode
1441 * reclaim). This is usually implemented by blocking new transactions for
1442 * filesystems that have them and need this additional guard. After all
1443 * internal writers are finished we call ->freeze_fs() to finish filesystem
1444 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1445 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1446 *
1447 * sb->s_writers.frozen is protected by sb->s_umount.
1448 */
1449 int freeze_super(struct super_block *sb)
1450 {
1451 int ret;
1452
1453 atomic_inc(&sb->s_active);
1454 down_write(&sb->s_umount);
1455 if (sb->s_writers.frozen != SB_UNFROZEN) {
1456 deactivate_locked_super(sb);
1457 return -EBUSY;
1458 }
1459
1460 if (!(sb->s_flags & SB_BORN)) {
1461 up_write(&sb->s_umount);
1462 return 0; /* sic - it's "nothing to do" */
1463 }
1464
1465 if (sb_rdonly(sb)) {
1466 /* Nothing to do really... */
1467 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1468 up_write(&sb->s_umount);
1469 return 0;
1470 }
1471
1472 sb->s_writers.frozen = SB_FREEZE_WRITE;
1473 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1474 up_write(&sb->s_umount);
1475 sb_wait_write(sb, SB_FREEZE_WRITE);
1476 down_write(&sb->s_umount);
1477
1478 /* Now we go and block page faults... */
1479 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1480 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1481
1482 /* All writers are done so after syncing there won't be dirty data */
1483 sync_filesystem(sb);
1484
1485 /* Now wait for internal filesystem counter */
1486 sb->s_writers.frozen = SB_FREEZE_FS;
1487 sb_wait_write(sb, SB_FREEZE_FS);
1488
1489 if (sb->s_op->freeze_fs) {
1490 ret = sb->s_op->freeze_fs(sb);
1491 if (ret) {
1492 printk(KERN_ERR
1493 "VFS:Filesystem freeze failed\n");
1494 sb->s_writers.frozen = SB_UNFROZEN;
1495 sb_freeze_unlock(sb);
1496 wake_up(&sb->s_writers.wait_unfrozen);
1497 deactivate_locked_super(sb);
1498 return ret;
1499 }
1500 }
1501 /*
1502 * For debugging purposes so that fs can warn if it sees write activity
1503 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1504 */
1505 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1506 lockdep_sb_freeze_release(sb);
1507 up_write(&sb->s_umount);
1508 return 0;
1509 }
1510 EXPORT_SYMBOL(freeze_super);
1511
1512 /**
1513 * thaw_super -- unlock filesystem
1514 * @sb: the super to thaw
1515 *
1516 * Unlocks the filesystem and marks it writeable again after freeze_super().
1517 */
1518 int thaw_super(struct super_block *sb)
1519 {
1520 int error;
1521
1522 down_write(&sb->s_umount);
1523 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1524 up_write(&sb->s_umount);
1525 return -EINVAL;
1526 }
1527
1528 if (sb_rdonly(sb)) {
1529 sb->s_writers.frozen = SB_UNFROZEN;
1530 goto out;
1531 }
1532
1533 lockdep_sb_freeze_acquire(sb);
1534
1535 if (sb->s_op->unfreeze_fs) {
1536 error = sb->s_op->unfreeze_fs(sb);
1537 if (error) {
1538 printk(KERN_ERR
1539 "VFS:Filesystem thaw failed\n");
1540 lockdep_sb_freeze_release(sb);
1541 up_write(&sb->s_umount);
1542 return error;
1543 }
1544 }
1545
1546 sb->s_writers.frozen = SB_UNFROZEN;
1547 sb_freeze_unlock(sb);
1548 out:
1549 wake_up(&sb->s_writers.wait_unfrozen);
1550 deactivate_locked_super(sb);
1551 return 0;
1552 }
1553 EXPORT_SYMBOL(thaw_super);