fs: move struct kiocb to fs.h
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45 {
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83 out_unlock:
84 unlock_page(page);
85 return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101 {
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 ret = 0;
189 do_wakeup = 0;
190 page_nr = 0;
191
192 pipe_lock(pipe);
193
194 for (;;) {
195 if (!pipe->readers) {
196 send_sig(SIGPIPE, current, 0);
197 if (!ret)
198 ret = -EPIPE;
199 break;
200 }
201
202 if (pipe->nrbufs < pipe->buffers) {
203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 struct pipe_buffer *buf = pipe->bufs + newbuf;
205
206 buf->page = spd->pages[page_nr];
207 buf->offset = spd->partial[page_nr].offset;
208 buf->len = spd->partial[page_nr].len;
209 buf->private = spd->partial[page_nr].private;
210 buf->ops = spd->ops;
211 if (spd->flags & SPLICE_F_GIFT)
212 buf->flags |= PIPE_BUF_FLAG_GIFT;
213
214 pipe->nrbufs++;
215 page_nr++;
216 ret += buf->len;
217
218 if (pipe->files)
219 do_wakeup = 1;
220
221 if (!--spd->nr_pages)
222 break;
223 if (pipe->nrbufs < pipe->buffers)
224 continue;
225
226 break;
227 }
228
229 if (spd->flags & SPLICE_F_NONBLOCK) {
230 if (!ret)
231 ret = -EAGAIN;
232 break;
233 }
234
235 if (signal_pending(current)) {
236 if (!ret)
237 ret = -ERESTARTSYS;
238 break;
239 }
240
241 if (do_wakeup) {
242 smp_mb();
243 if (waitqueue_active(&pipe->wait))
244 wake_up_interruptible_sync(&pipe->wait);
245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 do_wakeup = 0;
247 }
248
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
252 }
253
254 pipe_unlock(pipe);
255
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
258
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
261
262 return ret;
263 }
264
265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267 page_cache_release(spd->pages[i]);
268 }
269
270 /*
271 * Check if we need to grow the arrays holding pages and partial page
272 * descriptions.
273 */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
277
278 spd->nr_pages_max = buffers;
279 if (buffers <= PIPE_DEF_BUFFERS)
280 return 0;
281
282 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
284
285 if (spd->pages && spd->partial)
286 return 0;
287
288 kfree(spd->pages);
289 kfree(spd->partial);
290 return -ENOMEM;
291 }
292
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 return;
297
298 kfree(spd->pages);
299 kfree(spd->partial);
300 }
301
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
306 {
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .nr_pages_max = PIPE_DEF_BUFFERS,
319 .flags = flags,
320 .ops = &page_cache_pipe_buf_ops,
321 .spd_release = spd_release_page,
322 };
323
324 if (splice_grow_spd(pipe, &spd))
325 return -ENOMEM;
326
327 index = *ppos >> PAGE_CACHE_SHIFT;
328 loff = *ppos & ~PAGE_CACHE_MASK;
329 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330 nr_pages = min(req_pages, spd.nr_pages_max);
331
332 /*
333 * Lookup the (hopefully) full range of pages we need.
334 */
335 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336 index += spd.nr_pages;
337
338 /*
339 * If find_get_pages_contig() returned fewer pages than we needed,
340 * readahead/allocate the rest and fill in the holes.
341 */
342 if (spd.nr_pages < nr_pages)
343 page_cache_sync_readahead(mapping, &in->f_ra, in,
344 index, req_pages - spd.nr_pages);
345
346 error = 0;
347 while (spd.nr_pages < nr_pages) {
348 /*
349 * Page could be there, find_get_pages_contig() breaks on
350 * the first hole.
351 */
352 page = find_get_page(mapping, index);
353 if (!page) {
354 /*
355 * page didn't exist, allocate one.
356 */
357 page = page_cache_alloc_cold(mapping);
358 if (!page)
359 break;
360
361 error = add_to_page_cache_lru(page, mapping, index,
362 GFP_KERNEL);
363 if (unlikely(error)) {
364 page_cache_release(page);
365 if (error == -EEXIST)
366 continue;
367 break;
368 }
369 /*
370 * add_to_page_cache() locks the page, unlock it
371 * to avoid convoluting the logic below even more.
372 */
373 unlock_page(page);
374 }
375
376 spd.pages[spd.nr_pages++] = page;
377 index++;
378 }
379
380 /*
381 * Now loop over the map and see if we need to start IO on any
382 * pages, fill in the partial map, etc.
383 */
384 index = *ppos >> PAGE_CACHE_SHIFT;
385 nr_pages = spd.nr_pages;
386 spd.nr_pages = 0;
387 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388 unsigned int this_len;
389
390 if (!len)
391 break;
392
393 /*
394 * this_len is the max we'll use from this page
395 */
396 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397 page = spd.pages[page_nr];
398
399 if (PageReadahead(page))
400 page_cache_async_readahead(mapping, &in->f_ra, in,
401 page, index, req_pages - page_nr);
402
403 /*
404 * If the page isn't uptodate, we may need to start io on it
405 */
406 if (!PageUptodate(page)) {
407 lock_page(page);
408
409 /*
410 * Page was truncated, or invalidated by the
411 * filesystem. Redo the find/create, but this time the
412 * page is kept locked, so there's no chance of another
413 * race with truncate/invalidate.
414 */
415 if (!page->mapping) {
416 unlock_page(page);
417 page = find_or_create_page(mapping, index,
418 mapping_gfp_mask(mapping));
419
420 if (!page) {
421 error = -ENOMEM;
422 break;
423 }
424 page_cache_release(spd.pages[page_nr]);
425 spd.pages[page_nr] = page;
426 }
427 /*
428 * page was already under io and is now done, great
429 */
430 if (PageUptodate(page)) {
431 unlock_page(page);
432 goto fill_it;
433 }
434
435 /*
436 * need to read in the page
437 */
438 error = mapping->a_ops->readpage(in, page);
439 if (unlikely(error)) {
440 /*
441 * We really should re-lookup the page here,
442 * but it complicates things a lot. Instead
443 * lets just do what we already stored, and
444 * we'll get it the next time we are called.
445 */
446 if (error == AOP_TRUNCATED_PAGE)
447 error = 0;
448
449 break;
450 }
451 }
452 fill_it:
453 /*
454 * i_size must be checked after PageUptodate.
455 */
456 isize = i_size_read(mapping->host);
457 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458 if (unlikely(!isize || index > end_index))
459 break;
460
461 /*
462 * if this is the last page, see if we need to shrink
463 * the length and stop
464 */
465 if (end_index == index) {
466 unsigned int plen;
467
468 /*
469 * max good bytes in this page
470 */
471 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472 if (plen <= loff)
473 break;
474
475 /*
476 * force quit after adding this page
477 */
478 this_len = min(this_len, plen - loff);
479 len = this_len;
480 }
481
482 spd.partial[page_nr].offset = loff;
483 spd.partial[page_nr].len = this_len;
484 len -= this_len;
485 loff = 0;
486 spd.nr_pages++;
487 index++;
488 }
489
490 /*
491 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 * we got, 'nr_pages' is how many pages are in the map.
493 */
494 while (page_nr < nr_pages)
495 page_cache_release(spd.pages[page_nr++]);
496 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497
498 if (spd.nr_pages)
499 error = splice_to_pipe(pipe, &spd);
500
501 splice_shrink_spd(&spd);
502 return error;
503 }
504
505 /**
506 * generic_file_splice_read - splice data from file to a pipe
507 * @in: file to splice from
508 * @ppos: position in @in
509 * @pipe: pipe to splice to
510 * @len: number of bytes to splice
511 * @flags: splice modifier flags
512 *
513 * Description:
514 * Will read pages from given file and fill them into a pipe. Can be
515 * used as long as the address_space operations for the source implements
516 * a readpage() hook.
517 *
518 */
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520 struct pipe_inode_info *pipe, size_t len,
521 unsigned int flags)
522 {
523 loff_t isize, left;
524 int ret;
525
526 isize = i_size_read(in->f_mapping->host);
527 if (unlikely(*ppos >= isize))
528 return 0;
529
530 left = isize - *ppos;
531 if (unlikely(left < len))
532 len = left;
533
534 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
535 if (ret > 0) {
536 *ppos += ret;
537 file_accessed(in);
538 }
539
540 return ret;
541 }
542 EXPORT_SYMBOL(generic_file_splice_read);
543
544 static const struct pipe_buf_operations default_pipe_buf_ops = {
545 .can_merge = 0,
546 .confirm = generic_pipe_buf_confirm,
547 .release = generic_pipe_buf_release,
548 .steal = generic_pipe_buf_steal,
549 .get = generic_pipe_buf_get,
550 };
551
552 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
553 struct pipe_buffer *buf)
554 {
555 return 1;
556 }
557
558 /* Pipe buffer operations for a socket and similar. */
559 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
560 .can_merge = 0,
561 .confirm = generic_pipe_buf_confirm,
562 .release = generic_pipe_buf_release,
563 .steal = generic_pipe_buf_nosteal,
564 .get = generic_pipe_buf_get,
565 };
566 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
567
568 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
569 unsigned long vlen, loff_t offset)
570 {
571 mm_segment_t old_fs;
572 loff_t pos = offset;
573 ssize_t res;
574
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
579 set_fs(old_fs);
580
581 return res;
582 }
583
584 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
585 loff_t pos)
586 {
587 mm_segment_t old_fs;
588 ssize_t res;
589
590 old_fs = get_fs();
591 set_fs(get_ds());
592 /* The cast to a user pointer is valid due to the set_fs() */
593 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
594 set_fs(old_fs);
595
596 return res;
597 }
598 EXPORT_SYMBOL(kernel_write);
599
600 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
601 struct pipe_inode_info *pipe, size_t len,
602 unsigned int flags)
603 {
604 unsigned int nr_pages;
605 unsigned int nr_freed;
606 size_t offset;
607 struct page *pages[PIPE_DEF_BUFFERS];
608 struct partial_page partial[PIPE_DEF_BUFFERS];
609 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
610 ssize_t res;
611 size_t this_len;
612 int error;
613 int i;
614 struct splice_pipe_desc spd = {
615 .pages = pages,
616 .partial = partial,
617 .nr_pages_max = PIPE_DEF_BUFFERS,
618 .flags = flags,
619 .ops = &default_pipe_buf_ops,
620 .spd_release = spd_release_page,
621 };
622
623 if (splice_grow_spd(pipe, &spd))
624 return -ENOMEM;
625
626 res = -ENOMEM;
627 vec = __vec;
628 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
629 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
630 if (!vec)
631 goto shrink_ret;
632 }
633
634 offset = *ppos & ~PAGE_CACHE_MASK;
635 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
636
637 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
638 struct page *page;
639
640 page = alloc_page(GFP_USER);
641 error = -ENOMEM;
642 if (!page)
643 goto err;
644
645 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
646 vec[i].iov_base = (void __user *) page_address(page);
647 vec[i].iov_len = this_len;
648 spd.pages[i] = page;
649 spd.nr_pages++;
650 len -= this_len;
651 offset = 0;
652 }
653
654 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
655 if (res < 0) {
656 error = res;
657 goto err;
658 }
659
660 error = 0;
661 if (!res)
662 goto err;
663
664 nr_freed = 0;
665 for (i = 0; i < spd.nr_pages; i++) {
666 this_len = min_t(size_t, vec[i].iov_len, res);
667 spd.partial[i].offset = 0;
668 spd.partial[i].len = this_len;
669 if (!this_len) {
670 __free_page(spd.pages[i]);
671 spd.pages[i] = NULL;
672 nr_freed++;
673 }
674 res -= this_len;
675 }
676 spd.nr_pages -= nr_freed;
677
678 res = splice_to_pipe(pipe, &spd);
679 if (res > 0)
680 *ppos += res;
681
682 shrink_ret:
683 if (vec != __vec)
684 kfree(vec);
685 splice_shrink_spd(&spd);
686 return res;
687
688 err:
689 for (i = 0; i < spd.nr_pages; i++)
690 __free_page(spd.pages[i]);
691
692 res = error;
693 goto shrink_ret;
694 }
695 EXPORT_SYMBOL(default_file_splice_read);
696
697 /*
698 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
699 * using sendpage(). Return the number of bytes sent.
700 */
701 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
702 struct pipe_buffer *buf, struct splice_desc *sd)
703 {
704 struct file *file = sd->u.file;
705 loff_t pos = sd->pos;
706 int more;
707
708 if (!likely(file->f_op->sendpage))
709 return -EINVAL;
710
711 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
712
713 if (sd->len < sd->total_len && pipe->nrbufs > 1)
714 more |= MSG_SENDPAGE_NOTLAST;
715
716 return file->f_op->sendpage(file, buf->page, buf->offset,
717 sd->len, &pos, more);
718 }
719
720 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
721 {
722 smp_mb();
723 if (waitqueue_active(&pipe->wait))
724 wake_up_interruptible(&pipe->wait);
725 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
726 }
727
728 /**
729 * splice_from_pipe_feed - feed available data from a pipe to a file
730 * @pipe: pipe to splice from
731 * @sd: information to @actor
732 * @actor: handler that splices the data
733 *
734 * Description:
735 * This function loops over the pipe and calls @actor to do the
736 * actual moving of a single struct pipe_buffer to the desired
737 * destination. It returns when there's no more buffers left in
738 * the pipe or if the requested number of bytes (@sd->total_len)
739 * have been copied. It returns a positive number (one) if the
740 * pipe needs to be filled with more data, zero if the required
741 * number of bytes have been copied and -errno on error.
742 *
743 * This, together with splice_from_pipe_{begin,end,next}, may be
744 * used to implement the functionality of __splice_from_pipe() when
745 * locking is required around copying the pipe buffers to the
746 * destination.
747 */
748 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
749 splice_actor *actor)
750 {
751 int ret;
752
753 while (pipe->nrbufs) {
754 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
755 const struct pipe_buf_operations *ops = buf->ops;
756
757 sd->len = buf->len;
758 if (sd->len > sd->total_len)
759 sd->len = sd->total_len;
760
761 ret = buf->ops->confirm(pipe, buf);
762 if (unlikely(ret)) {
763 if (ret == -ENODATA)
764 ret = 0;
765 return ret;
766 }
767
768 ret = actor(pipe, buf, sd);
769 if (ret <= 0)
770 return ret;
771
772 buf->offset += ret;
773 buf->len -= ret;
774
775 sd->num_spliced += ret;
776 sd->len -= ret;
777 sd->pos += ret;
778 sd->total_len -= ret;
779
780 if (!buf->len) {
781 buf->ops = NULL;
782 ops->release(pipe, buf);
783 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
784 pipe->nrbufs--;
785 if (pipe->files)
786 sd->need_wakeup = true;
787 }
788
789 if (!sd->total_len)
790 return 0;
791 }
792
793 return 1;
794 }
795
796 /**
797 * splice_from_pipe_next - wait for some data to splice from
798 * @pipe: pipe to splice from
799 * @sd: information about the splice operation
800 *
801 * Description:
802 * This function will wait for some data and return a positive
803 * value (one) if pipe buffers are available. It will return zero
804 * or -errno if no more data needs to be spliced.
805 */
806 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
807 {
808 while (!pipe->nrbufs) {
809 if (!pipe->writers)
810 return 0;
811
812 if (!pipe->waiting_writers && sd->num_spliced)
813 return 0;
814
815 if (sd->flags & SPLICE_F_NONBLOCK)
816 return -EAGAIN;
817
818 if (signal_pending(current))
819 return -ERESTARTSYS;
820
821 if (sd->need_wakeup) {
822 wakeup_pipe_writers(pipe);
823 sd->need_wakeup = false;
824 }
825
826 pipe_wait(pipe);
827 }
828
829 return 1;
830 }
831
832 /**
833 * splice_from_pipe_begin - start splicing from pipe
834 * @sd: information about the splice operation
835 *
836 * Description:
837 * This function should be called before a loop containing
838 * splice_from_pipe_next() and splice_from_pipe_feed() to
839 * initialize the necessary fields of @sd.
840 */
841 static void splice_from_pipe_begin(struct splice_desc *sd)
842 {
843 sd->num_spliced = 0;
844 sd->need_wakeup = false;
845 }
846
847 /**
848 * splice_from_pipe_end - finish splicing from pipe
849 * @pipe: pipe to splice from
850 * @sd: information about the splice operation
851 *
852 * Description:
853 * This function will wake up pipe writers if necessary. It should
854 * be called after a loop containing splice_from_pipe_next() and
855 * splice_from_pipe_feed().
856 */
857 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
858 {
859 if (sd->need_wakeup)
860 wakeup_pipe_writers(pipe);
861 }
862
863 /**
864 * __splice_from_pipe - splice data from a pipe to given actor
865 * @pipe: pipe to splice from
866 * @sd: information to @actor
867 * @actor: handler that splices the data
868 *
869 * Description:
870 * This function does little more than loop over the pipe and call
871 * @actor to do the actual moving of a single struct pipe_buffer to
872 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
873 * pipe_to_user.
874 *
875 */
876 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
877 splice_actor *actor)
878 {
879 int ret;
880
881 splice_from_pipe_begin(sd);
882 do {
883 ret = splice_from_pipe_next(pipe, sd);
884 if (ret > 0)
885 ret = splice_from_pipe_feed(pipe, sd, actor);
886 } while (ret > 0);
887 splice_from_pipe_end(pipe, sd);
888
889 return sd->num_spliced ? sd->num_spliced : ret;
890 }
891 EXPORT_SYMBOL(__splice_from_pipe);
892
893 /**
894 * splice_from_pipe - splice data from a pipe to a file
895 * @pipe: pipe to splice from
896 * @out: file to splice to
897 * @ppos: position in @out
898 * @len: how many bytes to splice
899 * @flags: splice modifier flags
900 * @actor: handler that splices the data
901 *
902 * Description:
903 * See __splice_from_pipe. This function locks the pipe inode,
904 * otherwise it's identical to __splice_from_pipe().
905 *
906 */
907 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
908 loff_t *ppos, size_t len, unsigned int flags,
909 splice_actor *actor)
910 {
911 ssize_t ret;
912 struct splice_desc sd = {
913 .total_len = len,
914 .flags = flags,
915 .pos = *ppos,
916 .u.file = out,
917 };
918
919 pipe_lock(pipe);
920 ret = __splice_from_pipe(pipe, &sd, actor);
921 pipe_unlock(pipe);
922
923 return ret;
924 }
925
926 /**
927 * iter_file_splice_write - splice data from a pipe to a file
928 * @pipe: pipe info
929 * @out: file to write to
930 * @ppos: position in @out
931 * @len: number of bytes to splice
932 * @flags: splice modifier flags
933 *
934 * Description:
935 * Will either move or copy pages (determined by @flags options) from
936 * the given pipe inode to the given file.
937 * This one is ->write_iter-based.
938 *
939 */
940 ssize_t
941 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
942 loff_t *ppos, size_t len, unsigned int flags)
943 {
944 struct splice_desc sd = {
945 .total_len = len,
946 .flags = flags,
947 .pos = *ppos,
948 .u.file = out,
949 };
950 int nbufs = pipe->buffers;
951 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
952 GFP_KERNEL);
953 ssize_t ret;
954
955 if (unlikely(!array))
956 return -ENOMEM;
957
958 pipe_lock(pipe);
959
960 splice_from_pipe_begin(&sd);
961 while (sd.total_len) {
962 struct iov_iter from;
963 size_t left;
964 int n, idx;
965
966 ret = splice_from_pipe_next(pipe, &sd);
967 if (ret <= 0)
968 break;
969
970 if (unlikely(nbufs < pipe->buffers)) {
971 kfree(array);
972 nbufs = pipe->buffers;
973 array = kcalloc(nbufs, sizeof(struct bio_vec),
974 GFP_KERNEL);
975 if (!array) {
976 ret = -ENOMEM;
977 break;
978 }
979 }
980
981 /* build the vector */
982 left = sd.total_len;
983 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
984 struct pipe_buffer *buf = pipe->bufs + idx;
985 size_t this_len = buf->len;
986
987 if (this_len > left)
988 this_len = left;
989
990 if (idx == pipe->buffers - 1)
991 idx = -1;
992
993 ret = buf->ops->confirm(pipe, buf);
994 if (unlikely(ret)) {
995 if (ret == -ENODATA)
996 ret = 0;
997 goto done;
998 }
999
1000 array[n].bv_page = buf->page;
1001 array[n].bv_len = this_len;
1002 array[n].bv_offset = buf->offset;
1003 left -= this_len;
1004 }
1005
1006 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1007 sd.total_len - left);
1008 ret = vfs_iter_write(out, &from, &sd.pos);
1009 if (ret <= 0)
1010 break;
1011
1012 sd.num_spliced += ret;
1013 sd.total_len -= ret;
1014 *ppos = sd.pos;
1015
1016 /* dismiss the fully eaten buffers, adjust the partial one */
1017 while (ret) {
1018 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1019 if (ret >= buf->len) {
1020 const struct pipe_buf_operations *ops = buf->ops;
1021 ret -= buf->len;
1022 buf->len = 0;
1023 buf->ops = NULL;
1024 ops->release(pipe, buf);
1025 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1026 pipe->nrbufs--;
1027 if (pipe->files)
1028 sd.need_wakeup = true;
1029 } else {
1030 buf->offset += ret;
1031 buf->len -= ret;
1032 ret = 0;
1033 }
1034 }
1035 }
1036 done:
1037 kfree(array);
1038 splice_from_pipe_end(pipe, &sd);
1039
1040 pipe_unlock(pipe);
1041
1042 if (sd.num_spliced)
1043 ret = sd.num_spliced;
1044
1045 return ret;
1046 }
1047
1048 EXPORT_SYMBOL(iter_file_splice_write);
1049
1050 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1051 struct splice_desc *sd)
1052 {
1053 int ret;
1054 void *data;
1055 loff_t tmp = sd->pos;
1056
1057 data = kmap(buf->page);
1058 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1059 kunmap(buf->page);
1060
1061 return ret;
1062 }
1063
1064 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1065 struct file *out, loff_t *ppos,
1066 size_t len, unsigned int flags)
1067 {
1068 ssize_t ret;
1069
1070 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1071 if (ret > 0)
1072 *ppos += ret;
1073
1074 return ret;
1075 }
1076
1077 /**
1078 * generic_splice_sendpage - splice data from a pipe to a socket
1079 * @pipe: pipe to splice from
1080 * @out: socket to write to
1081 * @ppos: position in @out
1082 * @len: number of bytes to splice
1083 * @flags: splice modifier flags
1084 *
1085 * Description:
1086 * Will send @len bytes from the pipe to a network socket. No data copying
1087 * is involved.
1088 *
1089 */
1090 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1091 loff_t *ppos, size_t len, unsigned int flags)
1092 {
1093 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1094 }
1095
1096 EXPORT_SYMBOL(generic_splice_sendpage);
1097
1098 /*
1099 * Attempt to initiate a splice from pipe to file.
1100 */
1101 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1102 loff_t *ppos, size_t len, unsigned int flags)
1103 {
1104 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1105 loff_t *, size_t, unsigned int);
1106
1107 if (out->f_op->splice_write)
1108 splice_write = out->f_op->splice_write;
1109 else
1110 splice_write = default_file_splice_write;
1111
1112 return splice_write(pipe, out, ppos, len, flags);
1113 }
1114
1115 /*
1116 * Attempt to initiate a splice from a file to a pipe.
1117 */
1118 static long do_splice_to(struct file *in, loff_t *ppos,
1119 struct pipe_inode_info *pipe, size_t len,
1120 unsigned int flags)
1121 {
1122 ssize_t (*splice_read)(struct file *, loff_t *,
1123 struct pipe_inode_info *, size_t, unsigned int);
1124 int ret;
1125
1126 if (unlikely(!(in->f_mode & FMODE_READ)))
1127 return -EBADF;
1128
1129 ret = rw_verify_area(READ, in, ppos, len);
1130 if (unlikely(ret < 0))
1131 return ret;
1132
1133 if (in->f_op->splice_read)
1134 splice_read = in->f_op->splice_read;
1135 else
1136 splice_read = default_file_splice_read;
1137
1138 return splice_read(in, ppos, pipe, len, flags);
1139 }
1140
1141 /**
1142 * splice_direct_to_actor - splices data directly between two non-pipes
1143 * @in: file to splice from
1144 * @sd: actor information on where to splice to
1145 * @actor: handles the data splicing
1146 *
1147 * Description:
1148 * This is a special case helper to splice directly between two
1149 * points, without requiring an explicit pipe. Internally an allocated
1150 * pipe is cached in the process, and reused during the lifetime of
1151 * that process.
1152 *
1153 */
1154 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1155 splice_direct_actor *actor)
1156 {
1157 struct pipe_inode_info *pipe;
1158 long ret, bytes;
1159 umode_t i_mode;
1160 size_t len;
1161 int i, flags;
1162
1163 /*
1164 * We require the input being a regular file, as we don't want to
1165 * randomly drop data for eg socket -> socket splicing. Use the
1166 * piped splicing for that!
1167 */
1168 i_mode = file_inode(in)->i_mode;
1169 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1170 return -EINVAL;
1171
1172 /*
1173 * neither in nor out is a pipe, setup an internal pipe attached to
1174 * 'out' and transfer the wanted data from 'in' to 'out' through that
1175 */
1176 pipe = current->splice_pipe;
1177 if (unlikely(!pipe)) {
1178 pipe = alloc_pipe_info();
1179 if (!pipe)
1180 return -ENOMEM;
1181
1182 /*
1183 * We don't have an immediate reader, but we'll read the stuff
1184 * out of the pipe right after the splice_to_pipe(). So set
1185 * PIPE_READERS appropriately.
1186 */
1187 pipe->readers = 1;
1188
1189 current->splice_pipe = pipe;
1190 }
1191
1192 /*
1193 * Do the splice.
1194 */
1195 ret = 0;
1196 bytes = 0;
1197 len = sd->total_len;
1198 flags = sd->flags;
1199
1200 /*
1201 * Don't block on output, we have to drain the direct pipe.
1202 */
1203 sd->flags &= ~SPLICE_F_NONBLOCK;
1204
1205 while (len) {
1206 size_t read_len;
1207 loff_t pos = sd->pos, prev_pos = pos;
1208
1209 ret = do_splice_to(in, &pos, pipe, len, flags);
1210 if (unlikely(ret <= 0))
1211 goto out_release;
1212
1213 read_len = ret;
1214 sd->total_len = read_len;
1215
1216 /*
1217 * NOTE: nonblocking mode only applies to the input. We
1218 * must not do the output in nonblocking mode as then we
1219 * could get stuck data in the internal pipe:
1220 */
1221 ret = actor(pipe, sd);
1222 if (unlikely(ret <= 0)) {
1223 sd->pos = prev_pos;
1224 goto out_release;
1225 }
1226
1227 bytes += ret;
1228 len -= ret;
1229 sd->pos = pos;
1230
1231 if (ret < read_len) {
1232 sd->pos = prev_pos + ret;
1233 goto out_release;
1234 }
1235 }
1236
1237 done:
1238 pipe->nrbufs = pipe->curbuf = 0;
1239 file_accessed(in);
1240 return bytes;
1241
1242 out_release:
1243 /*
1244 * If we did an incomplete transfer we must release
1245 * the pipe buffers in question:
1246 */
1247 for (i = 0; i < pipe->buffers; i++) {
1248 struct pipe_buffer *buf = pipe->bufs + i;
1249
1250 if (buf->ops) {
1251 buf->ops->release(pipe, buf);
1252 buf->ops = NULL;
1253 }
1254 }
1255
1256 if (!bytes)
1257 bytes = ret;
1258
1259 goto done;
1260 }
1261 EXPORT_SYMBOL(splice_direct_to_actor);
1262
1263 static int direct_splice_actor(struct pipe_inode_info *pipe,
1264 struct splice_desc *sd)
1265 {
1266 struct file *file = sd->u.file;
1267
1268 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1269 sd->flags);
1270 }
1271
1272 /**
1273 * do_splice_direct - splices data directly between two files
1274 * @in: file to splice from
1275 * @ppos: input file offset
1276 * @out: file to splice to
1277 * @opos: output file offset
1278 * @len: number of bytes to splice
1279 * @flags: splice modifier flags
1280 *
1281 * Description:
1282 * For use by do_sendfile(). splice can easily emulate sendfile, but
1283 * doing it in the application would incur an extra system call
1284 * (splice in + splice out, as compared to just sendfile()). So this helper
1285 * can splice directly through a process-private pipe.
1286 *
1287 */
1288 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1289 loff_t *opos, size_t len, unsigned int flags)
1290 {
1291 struct splice_desc sd = {
1292 .len = len,
1293 .total_len = len,
1294 .flags = flags,
1295 .pos = *ppos,
1296 .u.file = out,
1297 .opos = opos,
1298 };
1299 long ret;
1300
1301 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1302 return -EBADF;
1303
1304 if (unlikely(out->f_flags & O_APPEND))
1305 return -EINVAL;
1306
1307 ret = rw_verify_area(WRITE, out, opos, len);
1308 if (unlikely(ret < 0))
1309 return ret;
1310
1311 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1312 if (ret > 0)
1313 *ppos = sd.pos;
1314
1315 return ret;
1316 }
1317 EXPORT_SYMBOL(do_splice_direct);
1318
1319 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1320 struct pipe_inode_info *opipe,
1321 size_t len, unsigned int flags);
1322
1323 /*
1324 * Determine where to splice to/from.
1325 */
1326 static long do_splice(struct file *in, loff_t __user *off_in,
1327 struct file *out, loff_t __user *off_out,
1328 size_t len, unsigned int flags)
1329 {
1330 struct pipe_inode_info *ipipe;
1331 struct pipe_inode_info *opipe;
1332 loff_t offset;
1333 long ret;
1334
1335 ipipe = get_pipe_info(in);
1336 opipe = get_pipe_info(out);
1337
1338 if (ipipe && opipe) {
1339 if (off_in || off_out)
1340 return -ESPIPE;
1341
1342 if (!(in->f_mode & FMODE_READ))
1343 return -EBADF;
1344
1345 if (!(out->f_mode & FMODE_WRITE))
1346 return -EBADF;
1347
1348 /* Splicing to self would be fun, but... */
1349 if (ipipe == opipe)
1350 return -EINVAL;
1351
1352 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1353 }
1354
1355 if (ipipe) {
1356 if (off_in)
1357 return -ESPIPE;
1358 if (off_out) {
1359 if (!(out->f_mode & FMODE_PWRITE))
1360 return -EINVAL;
1361 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1362 return -EFAULT;
1363 } else {
1364 offset = out->f_pos;
1365 }
1366
1367 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1368 return -EBADF;
1369
1370 if (unlikely(out->f_flags & O_APPEND))
1371 return -EINVAL;
1372
1373 ret = rw_verify_area(WRITE, out, &offset, len);
1374 if (unlikely(ret < 0))
1375 return ret;
1376
1377 file_start_write(out);
1378 ret = do_splice_from(ipipe, out, &offset, len, flags);
1379 file_end_write(out);
1380
1381 if (!off_out)
1382 out->f_pos = offset;
1383 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1384 ret = -EFAULT;
1385
1386 return ret;
1387 }
1388
1389 if (opipe) {
1390 if (off_out)
1391 return -ESPIPE;
1392 if (off_in) {
1393 if (!(in->f_mode & FMODE_PREAD))
1394 return -EINVAL;
1395 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1396 return -EFAULT;
1397 } else {
1398 offset = in->f_pos;
1399 }
1400
1401 ret = do_splice_to(in, &offset, opipe, len, flags);
1402
1403 if (!off_in)
1404 in->f_pos = offset;
1405 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1406 ret = -EFAULT;
1407
1408 return ret;
1409 }
1410
1411 return -EINVAL;
1412 }
1413
1414 /*
1415 * Map an iov into an array of pages and offset/length tupples. With the
1416 * partial_page structure, we can map several non-contiguous ranges into
1417 * our ones pages[] map instead of splitting that operation into pieces.
1418 * Could easily be exported as a generic helper for other users, in which
1419 * case one would probably want to add a 'max_nr_pages' parameter as well.
1420 */
1421 static int get_iovec_page_array(const struct iovec __user *iov,
1422 unsigned int nr_vecs, struct page **pages,
1423 struct partial_page *partial, bool aligned,
1424 unsigned int pipe_buffers)
1425 {
1426 int buffers = 0, error = 0;
1427
1428 while (nr_vecs) {
1429 unsigned long off, npages;
1430 struct iovec entry;
1431 void __user *base;
1432 size_t len;
1433 int i;
1434
1435 error = -EFAULT;
1436 if (copy_from_user(&entry, iov, sizeof(entry)))
1437 break;
1438
1439 base = entry.iov_base;
1440 len = entry.iov_len;
1441
1442 /*
1443 * Sanity check this iovec. 0 read succeeds.
1444 */
1445 error = 0;
1446 if (unlikely(!len))
1447 break;
1448 error = -EFAULT;
1449 if (!access_ok(VERIFY_READ, base, len))
1450 break;
1451
1452 /*
1453 * Get this base offset and number of pages, then map
1454 * in the user pages.
1455 */
1456 off = (unsigned long) base & ~PAGE_MASK;
1457
1458 /*
1459 * If asked for alignment, the offset must be zero and the
1460 * length a multiple of the PAGE_SIZE.
1461 */
1462 error = -EINVAL;
1463 if (aligned && (off || len & ~PAGE_MASK))
1464 break;
1465
1466 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1467 if (npages > pipe_buffers - buffers)
1468 npages = pipe_buffers - buffers;
1469
1470 error = get_user_pages_fast((unsigned long)base, npages,
1471 0, &pages[buffers]);
1472
1473 if (unlikely(error <= 0))
1474 break;
1475
1476 /*
1477 * Fill this contiguous range into the partial page map.
1478 */
1479 for (i = 0; i < error; i++) {
1480 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1481
1482 partial[buffers].offset = off;
1483 partial[buffers].len = plen;
1484
1485 off = 0;
1486 len -= plen;
1487 buffers++;
1488 }
1489
1490 /*
1491 * We didn't complete this iov, stop here since it probably
1492 * means we have to move some of this into a pipe to
1493 * be able to continue.
1494 */
1495 if (len)
1496 break;
1497
1498 /*
1499 * Don't continue if we mapped fewer pages than we asked for,
1500 * or if we mapped the max number of pages that we have
1501 * room for.
1502 */
1503 if (error < npages || buffers == pipe_buffers)
1504 break;
1505
1506 nr_vecs--;
1507 iov++;
1508 }
1509
1510 if (buffers)
1511 return buffers;
1512
1513 return error;
1514 }
1515
1516 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1517 struct splice_desc *sd)
1518 {
1519 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1520 return n == sd->len ? n : -EFAULT;
1521 }
1522
1523 /*
1524 * For lack of a better implementation, implement vmsplice() to userspace
1525 * as a simple copy of the pipes pages to the user iov.
1526 */
1527 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1528 unsigned long nr_segs, unsigned int flags)
1529 {
1530 struct pipe_inode_info *pipe;
1531 struct splice_desc sd;
1532 long ret;
1533 struct iovec iovstack[UIO_FASTIOV];
1534 struct iovec *iov = iovstack;
1535 struct iov_iter iter;
1536 ssize_t count;
1537
1538 pipe = get_pipe_info(file);
1539 if (!pipe)
1540 return -EBADF;
1541
1542 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1543 ARRAY_SIZE(iovstack), iovstack, &iov);
1544 if (ret <= 0)
1545 goto out;
1546
1547 count = ret;
1548 iov_iter_init(&iter, READ, iov, nr_segs, count);
1549
1550 sd.len = 0;
1551 sd.total_len = count;
1552 sd.flags = flags;
1553 sd.u.data = &iter;
1554 sd.pos = 0;
1555
1556 pipe_lock(pipe);
1557 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1558 pipe_unlock(pipe);
1559
1560 out:
1561 if (iov != iovstack)
1562 kfree(iov);
1563
1564 return ret;
1565 }
1566
1567 /*
1568 * vmsplice splices a user address range into a pipe. It can be thought of
1569 * as splice-from-memory, where the regular splice is splice-from-file (or
1570 * to file). In both cases the output is a pipe, naturally.
1571 */
1572 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1573 unsigned long nr_segs, unsigned int flags)
1574 {
1575 struct pipe_inode_info *pipe;
1576 struct page *pages[PIPE_DEF_BUFFERS];
1577 struct partial_page partial[PIPE_DEF_BUFFERS];
1578 struct splice_pipe_desc spd = {
1579 .pages = pages,
1580 .partial = partial,
1581 .nr_pages_max = PIPE_DEF_BUFFERS,
1582 .flags = flags,
1583 .ops = &user_page_pipe_buf_ops,
1584 .spd_release = spd_release_page,
1585 };
1586 long ret;
1587
1588 pipe = get_pipe_info(file);
1589 if (!pipe)
1590 return -EBADF;
1591
1592 if (splice_grow_spd(pipe, &spd))
1593 return -ENOMEM;
1594
1595 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1596 spd.partial, false,
1597 spd.nr_pages_max);
1598 if (spd.nr_pages <= 0)
1599 ret = spd.nr_pages;
1600 else
1601 ret = splice_to_pipe(pipe, &spd);
1602
1603 splice_shrink_spd(&spd);
1604 return ret;
1605 }
1606
1607 /*
1608 * Note that vmsplice only really supports true splicing _from_ user memory
1609 * to a pipe, not the other way around. Splicing from user memory is a simple
1610 * operation that can be supported without any funky alignment restrictions
1611 * or nasty vm tricks. We simply map in the user memory and fill them into
1612 * a pipe. The reverse isn't quite as easy, though. There are two possible
1613 * solutions for that:
1614 *
1615 * - memcpy() the data internally, at which point we might as well just
1616 * do a regular read() on the buffer anyway.
1617 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1618 * has restriction limitations on both ends of the pipe).
1619 *
1620 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1621 *
1622 */
1623 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1624 unsigned long, nr_segs, unsigned int, flags)
1625 {
1626 struct fd f;
1627 long error;
1628
1629 if (unlikely(nr_segs > UIO_MAXIOV))
1630 return -EINVAL;
1631 else if (unlikely(!nr_segs))
1632 return 0;
1633
1634 error = -EBADF;
1635 f = fdget(fd);
1636 if (f.file) {
1637 if (f.file->f_mode & FMODE_WRITE)
1638 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1639 else if (f.file->f_mode & FMODE_READ)
1640 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1641
1642 fdput(f);
1643 }
1644
1645 return error;
1646 }
1647
1648 #ifdef CONFIG_COMPAT
1649 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1650 unsigned int, nr_segs, unsigned int, flags)
1651 {
1652 unsigned i;
1653 struct iovec __user *iov;
1654 if (nr_segs > UIO_MAXIOV)
1655 return -EINVAL;
1656 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1657 for (i = 0; i < nr_segs; i++) {
1658 struct compat_iovec v;
1659 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1660 get_user(v.iov_len, &iov32[i].iov_len) ||
1661 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1662 put_user(v.iov_len, &iov[i].iov_len))
1663 return -EFAULT;
1664 }
1665 return sys_vmsplice(fd, iov, nr_segs, flags);
1666 }
1667 #endif
1668
1669 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1670 int, fd_out, loff_t __user *, off_out,
1671 size_t, len, unsigned int, flags)
1672 {
1673 struct fd in, out;
1674 long error;
1675
1676 if (unlikely(!len))
1677 return 0;
1678
1679 error = -EBADF;
1680 in = fdget(fd_in);
1681 if (in.file) {
1682 if (in.file->f_mode & FMODE_READ) {
1683 out = fdget(fd_out);
1684 if (out.file) {
1685 if (out.file->f_mode & FMODE_WRITE)
1686 error = do_splice(in.file, off_in,
1687 out.file, off_out,
1688 len, flags);
1689 fdput(out);
1690 }
1691 }
1692 fdput(in);
1693 }
1694 return error;
1695 }
1696
1697 /*
1698 * Make sure there's data to read. Wait for input if we can, otherwise
1699 * return an appropriate error.
1700 */
1701 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1702 {
1703 int ret;
1704
1705 /*
1706 * Check ->nrbufs without the inode lock first. This function
1707 * is speculative anyways, so missing one is ok.
1708 */
1709 if (pipe->nrbufs)
1710 return 0;
1711
1712 ret = 0;
1713 pipe_lock(pipe);
1714
1715 while (!pipe->nrbufs) {
1716 if (signal_pending(current)) {
1717 ret = -ERESTARTSYS;
1718 break;
1719 }
1720 if (!pipe->writers)
1721 break;
1722 if (!pipe->waiting_writers) {
1723 if (flags & SPLICE_F_NONBLOCK) {
1724 ret = -EAGAIN;
1725 break;
1726 }
1727 }
1728 pipe_wait(pipe);
1729 }
1730
1731 pipe_unlock(pipe);
1732 return ret;
1733 }
1734
1735 /*
1736 * Make sure there's writeable room. Wait for room if we can, otherwise
1737 * return an appropriate error.
1738 */
1739 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1740 {
1741 int ret;
1742
1743 /*
1744 * Check ->nrbufs without the inode lock first. This function
1745 * is speculative anyways, so missing one is ok.
1746 */
1747 if (pipe->nrbufs < pipe->buffers)
1748 return 0;
1749
1750 ret = 0;
1751 pipe_lock(pipe);
1752
1753 while (pipe->nrbufs >= pipe->buffers) {
1754 if (!pipe->readers) {
1755 send_sig(SIGPIPE, current, 0);
1756 ret = -EPIPE;
1757 break;
1758 }
1759 if (flags & SPLICE_F_NONBLOCK) {
1760 ret = -EAGAIN;
1761 break;
1762 }
1763 if (signal_pending(current)) {
1764 ret = -ERESTARTSYS;
1765 break;
1766 }
1767 pipe->waiting_writers++;
1768 pipe_wait(pipe);
1769 pipe->waiting_writers--;
1770 }
1771
1772 pipe_unlock(pipe);
1773 return ret;
1774 }
1775
1776 /*
1777 * Splice contents of ipipe to opipe.
1778 */
1779 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1780 struct pipe_inode_info *opipe,
1781 size_t len, unsigned int flags)
1782 {
1783 struct pipe_buffer *ibuf, *obuf;
1784 int ret = 0, nbuf;
1785 bool input_wakeup = false;
1786
1787
1788 retry:
1789 ret = ipipe_prep(ipipe, flags);
1790 if (ret)
1791 return ret;
1792
1793 ret = opipe_prep(opipe, flags);
1794 if (ret)
1795 return ret;
1796
1797 /*
1798 * Potential ABBA deadlock, work around it by ordering lock
1799 * grabbing by pipe info address. Otherwise two different processes
1800 * could deadlock (one doing tee from A -> B, the other from B -> A).
1801 */
1802 pipe_double_lock(ipipe, opipe);
1803
1804 do {
1805 if (!opipe->readers) {
1806 send_sig(SIGPIPE, current, 0);
1807 if (!ret)
1808 ret = -EPIPE;
1809 break;
1810 }
1811
1812 if (!ipipe->nrbufs && !ipipe->writers)
1813 break;
1814
1815 /*
1816 * Cannot make any progress, because either the input
1817 * pipe is empty or the output pipe is full.
1818 */
1819 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1820 /* Already processed some buffers, break */
1821 if (ret)
1822 break;
1823
1824 if (flags & SPLICE_F_NONBLOCK) {
1825 ret = -EAGAIN;
1826 break;
1827 }
1828
1829 /*
1830 * We raced with another reader/writer and haven't
1831 * managed to process any buffers. A zero return
1832 * value means EOF, so retry instead.
1833 */
1834 pipe_unlock(ipipe);
1835 pipe_unlock(opipe);
1836 goto retry;
1837 }
1838
1839 ibuf = ipipe->bufs + ipipe->curbuf;
1840 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1841 obuf = opipe->bufs + nbuf;
1842
1843 if (len >= ibuf->len) {
1844 /*
1845 * Simply move the whole buffer from ipipe to opipe
1846 */
1847 *obuf = *ibuf;
1848 ibuf->ops = NULL;
1849 opipe->nrbufs++;
1850 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1851 ipipe->nrbufs--;
1852 input_wakeup = true;
1853 } else {
1854 /*
1855 * Get a reference to this pipe buffer,
1856 * so we can copy the contents over.
1857 */
1858 ibuf->ops->get(ipipe, ibuf);
1859 *obuf = *ibuf;
1860
1861 /*
1862 * Don't inherit the gift flag, we need to
1863 * prevent multiple steals of this page.
1864 */
1865 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1866
1867 obuf->len = len;
1868 opipe->nrbufs++;
1869 ibuf->offset += obuf->len;
1870 ibuf->len -= obuf->len;
1871 }
1872 ret += obuf->len;
1873 len -= obuf->len;
1874 } while (len);
1875
1876 pipe_unlock(ipipe);
1877 pipe_unlock(opipe);
1878
1879 /*
1880 * If we put data in the output pipe, wakeup any potential readers.
1881 */
1882 if (ret > 0)
1883 wakeup_pipe_readers(opipe);
1884
1885 if (input_wakeup)
1886 wakeup_pipe_writers(ipipe);
1887
1888 return ret;
1889 }
1890
1891 /*
1892 * Link contents of ipipe to opipe.
1893 */
1894 static int link_pipe(struct pipe_inode_info *ipipe,
1895 struct pipe_inode_info *opipe,
1896 size_t len, unsigned int flags)
1897 {
1898 struct pipe_buffer *ibuf, *obuf;
1899 int ret = 0, i = 0, nbuf;
1900
1901 /*
1902 * Potential ABBA deadlock, work around it by ordering lock
1903 * grabbing by pipe info address. Otherwise two different processes
1904 * could deadlock (one doing tee from A -> B, the other from B -> A).
1905 */
1906 pipe_double_lock(ipipe, opipe);
1907
1908 do {
1909 if (!opipe->readers) {
1910 send_sig(SIGPIPE, current, 0);
1911 if (!ret)
1912 ret = -EPIPE;
1913 break;
1914 }
1915
1916 /*
1917 * If we have iterated all input buffers or ran out of
1918 * output room, break.
1919 */
1920 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1921 break;
1922
1923 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1924 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1925
1926 /*
1927 * Get a reference to this pipe buffer,
1928 * so we can copy the contents over.
1929 */
1930 ibuf->ops->get(ipipe, ibuf);
1931
1932 obuf = opipe->bufs + nbuf;
1933 *obuf = *ibuf;
1934
1935 /*
1936 * Don't inherit the gift flag, we need to
1937 * prevent multiple steals of this page.
1938 */
1939 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1940
1941 if (obuf->len > len)
1942 obuf->len = len;
1943
1944 opipe->nrbufs++;
1945 ret += obuf->len;
1946 len -= obuf->len;
1947 i++;
1948 } while (len);
1949
1950 /*
1951 * return EAGAIN if we have the potential of some data in the
1952 * future, otherwise just return 0
1953 */
1954 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1955 ret = -EAGAIN;
1956
1957 pipe_unlock(ipipe);
1958 pipe_unlock(opipe);
1959
1960 /*
1961 * If we put data in the output pipe, wakeup any potential readers.
1962 */
1963 if (ret > 0)
1964 wakeup_pipe_readers(opipe);
1965
1966 return ret;
1967 }
1968
1969 /*
1970 * This is a tee(1) implementation that works on pipes. It doesn't copy
1971 * any data, it simply references the 'in' pages on the 'out' pipe.
1972 * The 'flags' used are the SPLICE_F_* variants, currently the only
1973 * applicable one is SPLICE_F_NONBLOCK.
1974 */
1975 static long do_tee(struct file *in, struct file *out, size_t len,
1976 unsigned int flags)
1977 {
1978 struct pipe_inode_info *ipipe = get_pipe_info(in);
1979 struct pipe_inode_info *opipe = get_pipe_info(out);
1980 int ret = -EINVAL;
1981
1982 /*
1983 * Duplicate the contents of ipipe to opipe without actually
1984 * copying the data.
1985 */
1986 if (ipipe && opipe && ipipe != opipe) {
1987 /*
1988 * Keep going, unless we encounter an error. The ipipe/opipe
1989 * ordering doesn't really matter.
1990 */
1991 ret = ipipe_prep(ipipe, flags);
1992 if (!ret) {
1993 ret = opipe_prep(opipe, flags);
1994 if (!ret)
1995 ret = link_pipe(ipipe, opipe, len, flags);
1996 }
1997 }
1998
1999 return ret;
2000 }
2001
2002 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2003 {
2004 struct fd in;
2005 int error;
2006
2007 if (unlikely(!len))
2008 return 0;
2009
2010 error = -EBADF;
2011 in = fdget(fdin);
2012 if (in.file) {
2013 if (in.file->f_mode & FMODE_READ) {
2014 struct fd out = fdget(fdout);
2015 if (out.file) {
2016 if (out.file->f_mode & FMODE_WRITE)
2017 error = do_tee(in.file, out.file,
2018 len, flags);
2019 fdput(out);
2020 }
2021 }
2022 fdput(in);
2023 }
2024
2025 return error;
2026 }