Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32
33 /*
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
38 */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 struct pipe_buffer *buf)
41 {
42 struct page *page = buf->page;
43 struct address_space *mapping;
44
45 lock_page(page);
46
47 mapping = page_mapping(page);
48 if (mapping) {
49 WARN_ON(!PageUptodate(page));
50
51 /*
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
57 * ensues.
58 */
59 wait_on_page_writeback(page);
60
61 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
62 goto out_unlock;
63
64 /*
65 * If we succeeded in removing the mapping, set LRU flag
66 * and return good.
67 */
68 if (remove_mapping(mapping, page)) {
69 buf->flags |= PIPE_BUF_FLAG_LRU;
70 return 0;
71 }
72 }
73
74 /*
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
77 */
78 out_unlock:
79 unlock_page(page);
80 return 1;
81 }
82
83 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 page_cache_release(buf->page);
87 buf->flags &= ~PIPE_BUF_FLAG_LRU;
88 }
89
90 /*
91 * Check whether the contents of buf is OK to access. Since the content
92 * is a page cache page, IO may be in flight.
93 */
94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
95 struct pipe_buffer *buf)
96 {
97 struct page *page = buf->page;
98 int err;
99
100 if (!PageUptodate(page)) {
101 lock_page(page);
102
103 /*
104 * Page got truncated/unhashed. This will cause a 0-byte
105 * splice, if this is the first page.
106 */
107 if (!page->mapping) {
108 err = -ENODATA;
109 goto error;
110 }
111
112 /*
113 * Uh oh, read-error from disk.
114 */
115 if (!PageUptodate(page)) {
116 err = -EIO;
117 goto error;
118 }
119
120 /*
121 * Page is ok afterall, we are done.
122 */
123 unlock_page(page);
124 }
125
126 return 0;
127 error:
128 unlock_page(page);
129 return err;
130 }
131
132 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
133 .can_merge = 0,
134 .map = generic_pipe_buf_map,
135 .unmap = generic_pipe_buf_unmap,
136 .confirm = page_cache_pipe_buf_confirm,
137 .release = page_cache_pipe_buf_release,
138 .steal = page_cache_pipe_buf_steal,
139 .get = generic_pipe_buf_get,
140 };
141
142 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
143 struct pipe_buffer *buf)
144 {
145 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
146 return 1;
147
148 buf->flags |= PIPE_BUF_FLAG_LRU;
149 return generic_pipe_buf_steal(pipe, buf);
150 }
151
152 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
153 .can_merge = 0,
154 .map = generic_pipe_buf_map,
155 .unmap = generic_pipe_buf_unmap,
156 .confirm = generic_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .steal = user_page_pipe_buf_steal,
159 .get = generic_pipe_buf_get,
160 };
161
162 /**
163 * splice_to_pipe - fill passed data into a pipe
164 * @pipe: pipe to fill
165 * @spd: data to fill
166 *
167 * Description:
168 * @spd contains a map of pages and len/offset tuples, along with
169 * the struct pipe_buf_operations associated with these pages. This
170 * function will link that data to the pipe.
171 *
172 */
173 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
174 struct splice_pipe_desc *spd)
175 {
176 unsigned int spd_pages = spd->nr_pages;
177 int ret, do_wakeup, page_nr;
178
179 ret = 0;
180 do_wakeup = 0;
181 page_nr = 0;
182
183 if (pipe->inode)
184 mutex_lock(&pipe->inode->i_mutex);
185
186 for (;;) {
187 if (!pipe->readers) {
188 send_sig(SIGPIPE, current, 0);
189 if (!ret)
190 ret = -EPIPE;
191 break;
192 }
193
194 if (pipe->nrbufs < PIPE_BUFFERS) {
195 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
196 struct pipe_buffer *buf = pipe->bufs + newbuf;
197
198 buf->page = spd->pages[page_nr];
199 buf->offset = spd->partial[page_nr].offset;
200 buf->len = spd->partial[page_nr].len;
201 buf->private = spd->partial[page_nr].private;
202 buf->ops = spd->ops;
203 if (spd->flags & SPLICE_F_GIFT)
204 buf->flags |= PIPE_BUF_FLAG_GIFT;
205
206 pipe->nrbufs++;
207 page_nr++;
208 ret += buf->len;
209
210 if (pipe->inode)
211 do_wakeup = 1;
212
213 if (!--spd->nr_pages)
214 break;
215 if (pipe->nrbufs < PIPE_BUFFERS)
216 continue;
217
218 break;
219 }
220
221 if (spd->flags & SPLICE_F_NONBLOCK) {
222 if (!ret)
223 ret = -EAGAIN;
224 break;
225 }
226
227 if (signal_pending(current)) {
228 if (!ret)
229 ret = -ERESTARTSYS;
230 break;
231 }
232
233 if (do_wakeup) {
234 smp_mb();
235 if (waitqueue_active(&pipe->wait))
236 wake_up_interruptible_sync(&pipe->wait);
237 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
238 do_wakeup = 0;
239 }
240
241 pipe->waiting_writers++;
242 pipe_wait(pipe);
243 pipe->waiting_writers--;
244 }
245
246 if (pipe->inode) {
247 mutex_unlock(&pipe->inode->i_mutex);
248
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 }
255 }
256
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
259
260 return ret;
261 }
262
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 page_cache_release(spd->pages[i]);
266 }
267
268 static int
269 __generic_file_splice_read(struct file *in, loff_t *ppos,
270 struct pipe_inode_info *pipe, size_t len,
271 unsigned int flags)
272 {
273 struct address_space *mapping = in->f_mapping;
274 unsigned int loff, nr_pages, req_pages;
275 struct page *pages[PIPE_BUFFERS];
276 struct partial_page partial[PIPE_BUFFERS];
277 struct page *page;
278 pgoff_t index, end_index;
279 loff_t isize;
280 int error, page_nr;
281 struct splice_pipe_desc spd = {
282 .pages = pages,
283 .partial = partial,
284 .flags = flags,
285 .ops = &page_cache_pipe_buf_ops,
286 .spd_release = spd_release_page,
287 };
288
289 index = *ppos >> PAGE_CACHE_SHIFT;
290 loff = *ppos & ~PAGE_CACHE_MASK;
291 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
292 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
293
294 /*
295 * Lookup the (hopefully) full range of pages we need.
296 */
297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298 index += spd.nr_pages;
299
300 /*
301 * If find_get_pages_contig() returned fewer pages than we needed,
302 * readahead/allocate the rest and fill in the holes.
303 */
304 if (spd.nr_pages < nr_pages)
305 page_cache_sync_readahead(mapping, &in->f_ra, in,
306 index, req_pages - spd.nr_pages);
307
308 error = 0;
309 while (spd.nr_pages < nr_pages) {
310 /*
311 * Page could be there, find_get_pages_contig() breaks on
312 * the first hole.
313 */
314 page = find_get_page(mapping, index);
315 if (!page) {
316 /*
317 * page didn't exist, allocate one.
318 */
319 page = page_cache_alloc_cold(mapping);
320 if (!page)
321 break;
322
323 error = add_to_page_cache_lru(page, mapping, index,
324 mapping_gfp_mask(mapping));
325 if (unlikely(error)) {
326 page_cache_release(page);
327 if (error == -EEXIST)
328 continue;
329 break;
330 }
331 /*
332 * add_to_page_cache() locks the page, unlock it
333 * to avoid convoluting the logic below even more.
334 */
335 unlock_page(page);
336 }
337
338 pages[spd.nr_pages++] = page;
339 index++;
340 }
341
342 /*
343 * Now loop over the map and see if we need to start IO on any
344 * pages, fill in the partial map, etc.
345 */
346 index = *ppos >> PAGE_CACHE_SHIFT;
347 nr_pages = spd.nr_pages;
348 spd.nr_pages = 0;
349 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
350 unsigned int this_len;
351
352 if (!len)
353 break;
354
355 /*
356 * this_len is the max we'll use from this page
357 */
358 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
359 page = pages[page_nr];
360
361 if (PageReadahead(page))
362 page_cache_async_readahead(mapping, &in->f_ra, in,
363 page, index, req_pages - page_nr);
364
365 /*
366 * If the page isn't uptodate, we may need to start io on it
367 */
368 if (!PageUptodate(page)) {
369 /*
370 * If in nonblock mode then dont block on waiting
371 * for an in-flight io page
372 */
373 if (flags & SPLICE_F_NONBLOCK) {
374 if (TestSetPageLocked(page)) {
375 error = -EAGAIN;
376 break;
377 }
378 } else
379 lock_page(page);
380
381 /*
382 * Page was truncated, or invalidated by the
383 * filesystem. Redo the find/create, but this time the
384 * page is kept locked, so there's no chance of another
385 * race with truncate/invalidate.
386 */
387 if (!page->mapping) {
388 unlock_page(page);
389 page = find_or_create_page(mapping, index,
390 mapping_gfp_mask(mapping));
391
392 if (!page) {
393 error = -ENOMEM;
394 break;
395 }
396 page_cache_release(pages[page_nr]);
397 pages[page_nr] = page;
398 }
399 /*
400 * page was already under io and is now done, great
401 */
402 if (PageUptodate(page)) {
403 unlock_page(page);
404 goto fill_it;
405 }
406
407 /*
408 * need to read in the page
409 */
410 error = mapping->a_ops->readpage(in, page);
411 if (unlikely(error)) {
412 /*
413 * We really should re-lookup the page here,
414 * but it complicates things a lot. Instead
415 * lets just do what we already stored, and
416 * we'll get it the next time we are called.
417 */
418 if (error == AOP_TRUNCATED_PAGE)
419 error = 0;
420
421 break;
422 }
423 }
424 fill_it:
425 /*
426 * i_size must be checked after PageUptodate.
427 */
428 isize = i_size_read(mapping->host);
429 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
430 if (unlikely(!isize || index > end_index))
431 break;
432
433 /*
434 * if this is the last page, see if we need to shrink
435 * the length and stop
436 */
437 if (end_index == index) {
438 unsigned int plen;
439
440 /*
441 * max good bytes in this page
442 */
443 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
444 if (plen <= loff)
445 break;
446
447 /*
448 * force quit after adding this page
449 */
450 this_len = min(this_len, plen - loff);
451 len = this_len;
452 }
453
454 partial[page_nr].offset = loff;
455 partial[page_nr].len = this_len;
456 len -= this_len;
457 loff = 0;
458 spd.nr_pages++;
459 index++;
460 }
461
462 /*
463 * Release any pages at the end, if we quit early. 'page_nr' is how far
464 * we got, 'nr_pages' is how many pages are in the map.
465 */
466 while (page_nr < nr_pages)
467 page_cache_release(pages[page_nr++]);
468 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
469
470 if (spd.nr_pages)
471 return splice_to_pipe(pipe, &spd);
472
473 return error;
474 }
475
476 /**
477 * generic_file_splice_read - splice data from file to a pipe
478 * @in: file to splice from
479 * @ppos: position in @in
480 * @pipe: pipe to splice to
481 * @len: number of bytes to splice
482 * @flags: splice modifier flags
483 *
484 * Description:
485 * Will read pages from given file and fill them into a pipe. Can be
486 * used as long as the address_space operations for the source implements
487 * a readpage() hook.
488 *
489 */
490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
491 struct pipe_inode_info *pipe, size_t len,
492 unsigned int flags)
493 {
494 loff_t isize, left;
495 int ret;
496
497 isize = i_size_read(in->f_mapping->host);
498 if (unlikely(*ppos >= isize))
499 return 0;
500
501 left = isize - *ppos;
502 if (unlikely(left < len))
503 len = left;
504
505 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
506 if (ret > 0)
507 *ppos += ret;
508
509 return ret;
510 }
511
512 EXPORT_SYMBOL(generic_file_splice_read);
513
514 /*
515 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
516 * using sendpage(). Return the number of bytes sent.
517 */
518 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
519 struct pipe_buffer *buf, struct splice_desc *sd)
520 {
521 struct file *file = sd->u.file;
522 loff_t pos = sd->pos;
523 int ret, more;
524
525 ret = buf->ops->confirm(pipe, buf);
526 if (!ret) {
527 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528
529 ret = file->f_op->sendpage(file, buf->page, buf->offset,
530 sd->len, &pos, more);
531 }
532
533 return ret;
534 }
535
536 /*
537 * This is a little more tricky than the file -> pipe splicing. There are
538 * basically three cases:
539 *
540 * - Destination page already exists in the address space and there
541 * are users of it. For that case we have no other option that
542 * copying the data. Tough luck.
543 * - Destination page already exists in the address space, but there
544 * are no users of it. Make sure it's uptodate, then drop it. Fall
545 * through to last case.
546 * - Destination page does not exist, we can add the pipe page to
547 * the page cache and avoid the copy.
548 *
549 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
550 * sd->flags), we attempt to migrate pages from the pipe to the output
551 * file address space page cache. This is possible if no one else has
552 * the pipe page referenced outside of the pipe and page cache. If
553 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
554 * a new page in the output file page cache and fill/dirty that.
555 */
556 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
557 struct splice_desc *sd)
558 {
559 struct file *file = sd->u.file;
560 struct address_space *mapping = file->f_mapping;
561 unsigned int offset, this_len;
562 struct page *page;
563 void *fsdata;
564 int ret;
565
566 /*
567 * make sure the data in this buffer is uptodate
568 */
569 ret = buf->ops->confirm(pipe, buf);
570 if (unlikely(ret))
571 return ret;
572
573 offset = sd->pos & ~PAGE_CACHE_MASK;
574
575 this_len = sd->len;
576 if (this_len + offset > PAGE_CACHE_SIZE)
577 this_len = PAGE_CACHE_SIZE - offset;
578
579 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
580 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
581 if (unlikely(ret))
582 goto out;
583
584 if (buf->page != page) {
585 /*
586 * Careful, ->map() uses KM_USER0!
587 */
588 char *src = buf->ops->map(pipe, buf, 1);
589 char *dst = kmap_atomic(page, KM_USER1);
590
591 memcpy(dst + offset, src + buf->offset, this_len);
592 flush_dcache_page(page);
593 kunmap_atomic(dst, KM_USER1);
594 buf->ops->unmap(pipe, buf, src);
595 }
596 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
597 page, fsdata);
598 out:
599 return ret;
600 }
601
602 /**
603 * __splice_from_pipe - splice data from a pipe to given actor
604 * @pipe: pipe to splice from
605 * @sd: information to @actor
606 * @actor: handler that splices the data
607 *
608 * Description:
609 * This function does little more than loop over the pipe and call
610 * @actor to do the actual moving of a single struct pipe_buffer to
611 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
612 * pipe_to_user.
613 *
614 */
615 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
616 splice_actor *actor)
617 {
618 int ret, do_wakeup, err;
619
620 ret = 0;
621 do_wakeup = 0;
622
623 for (;;) {
624 if (pipe->nrbufs) {
625 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
626 const struct pipe_buf_operations *ops = buf->ops;
627
628 sd->len = buf->len;
629 if (sd->len > sd->total_len)
630 sd->len = sd->total_len;
631
632 err = actor(pipe, buf, sd);
633 if (err <= 0) {
634 if (!ret && err != -ENODATA)
635 ret = err;
636
637 break;
638 }
639
640 ret += err;
641 buf->offset += err;
642 buf->len -= err;
643
644 sd->len -= err;
645 sd->pos += err;
646 sd->total_len -= err;
647 if (sd->len)
648 continue;
649
650 if (!buf->len) {
651 buf->ops = NULL;
652 ops->release(pipe, buf);
653 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
654 pipe->nrbufs--;
655 if (pipe->inode)
656 do_wakeup = 1;
657 }
658
659 if (!sd->total_len)
660 break;
661 }
662
663 if (pipe->nrbufs)
664 continue;
665 if (!pipe->writers)
666 break;
667 if (!pipe->waiting_writers) {
668 if (ret)
669 break;
670 }
671
672 if (sd->flags & SPLICE_F_NONBLOCK) {
673 if (!ret)
674 ret = -EAGAIN;
675 break;
676 }
677
678 if (signal_pending(current)) {
679 if (!ret)
680 ret = -ERESTARTSYS;
681 break;
682 }
683
684 if (do_wakeup) {
685 smp_mb();
686 if (waitqueue_active(&pipe->wait))
687 wake_up_interruptible_sync(&pipe->wait);
688 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
689 do_wakeup = 0;
690 }
691
692 pipe_wait(pipe);
693 }
694
695 if (do_wakeup) {
696 smp_mb();
697 if (waitqueue_active(&pipe->wait))
698 wake_up_interruptible(&pipe->wait);
699 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
700 }
701
702 return ret;
703 }
704 EXPORT_SYMBOL(__splice_from_pipe);
705
706 /**
707 * splice_from_pipe - splice data from a pipe to a file
708 * @pipe: pipe to splice from
709 * @out: file to splice to
710 * @ppos: position in @out
711 * @len: how many bytes to splice
712 * @flags: splice modifier flags
713 * @actor: handler that splices the data
714 *
715 * Description:
716 * See __splice_from_pipe. This function locks the input and output inodes,
717 * otherwise it's identical to __splice_from_pipe().
718 *
719 */
720 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
721 loff_t *ppos, size_t len, unsigned int flags,
722 splice_actor *actor)
723 {
724 ssize_t ret;
725 struct inode *inode = out->f_mapping->host;
726 struct splice_desc sd = {
727 .total_len = len,
728 .flags = flags,
729 .pos = *ppos,
730 .u.file = out,
731 };
732
733 /*
734 * The actor worker might be calling ->prepare_write and
735 * ->commit_write. Most of the time, these expect i_mutex to
736 * be held. Since this may result in an ABBA deadlock with
737 * pipe->inode, we have to order lock acquiry here.
738 */
739 inode_double_lock(inode, pipe->inode);
740 ret = __splice_from_pipe(pipe, &sd, actor);
741 inode_double_unlock(inode, pipe->inode);
742
743 return ret;
744 }
745
746 /**
747 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
748 * @pipe: pipe info
749 * @out: file to write to
750 * @ppos: position in @out
751 * @len: number of bytes to splice
752 * @flags: splice modifier flags
753 *
754 * Description:
755 * Will either move or copy pages (determined by @flags options) from
756 * the given pipe inode to the given file. The caller is responsible
757 * for acquiring i_mutex on both inodes.
758 *
759 */
760 ssize_t
761 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
762 loff_t *ppos, size_t len, unsigned int flags)
763 {
764 struct address_space *mapping = out->f_mapping;
765 struct inode *inode = mapping->host;
766 struct splice_desc sd = {
767 .total_len = len,
768 .flags = flags,
769 .pos = *ppos,
770 .u.file = out,
771 };
772 ssize_t ret;
773 int err;
774
775 err = file_remove_suid(out);
776 if (unlikely(err))
777 return err;
778
779 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
780 if (ret > 0) {
781 unsigned long nr_pages;
782
783 *ppos += ret;
784 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
785
786 /*
787 * If file or inode is SYNC and we actually wrote some data,
788 * sync it.
789 */
790 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
791 err = generic_osync_inode(inode, mapping,
792 OSYNC_METADATA|OSYNC_DATA);
793
794 if (err)
795 ret = err;
796 }
797 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
798 }
799
800 return ret;
801 }
802
803 EXPORT_SYMBOL(generic_file_splice_write_nolock);
804
805 /**
806 * generic_file_splice_write - splice data from a pipe to a file
807 * @pipe: pipe info
808 * @out: file to write to
809 * @ppos: position in @out
810 * @len: number of bytes to splice
811 * @flags: splice modifier flags
812 *
813 * Description:
814 * Will either move or copy pages (determined by @flags options) from
815 * the given pipe inode to the given file.
816 *
817 */
818 ssize_t
819 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
820 loff_t *ppos, size_t len, unsigned int flags)
821 {
822 struct address_space *mapping = out->f_mapping;
823 struct inode *inode = mapping->host;
824 struct splice_desc sd = {
825 .total_len = len,
826 .flags = flags,
827 .pos = *ppos,
828 .u.file = out,
829 };
830 ssize_t ret;
831
832 inode_double_lock(inode, pipe->inode);
833 ret = file_remove_suid(out);
834 if (likely(!ret))
835 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
836 inode_double_unlock(inode, pipe->inode);
837 if (ret > 0) {
838 unsigned long nr_pages;
839
840 *ppos += ret;
841 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
842
843 /*
844 * If file or inode is SYNC and we actually wrote some data,
845 * sync it.
846 */
847 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
848 int err;
849
850 mutex_lock(&inode->i_mutex);
851 err = generic_osync_inode(inode, mapping,
852 OSYNC_METADATA|OSYNC_DATA);
853 mutex_unlock(&inode->i_mutex);
854
855 if (err)
856 ret = err;
857 }
858 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
859 }
860
861 return ret;
862 }
863
864 EXPORT_SYMBOL(generic_file_splice_write);
865
866 /**
867 * generic_splice_sendpage - splice data from a pipe to a socket
868 * @pipe: pipe to splice from
869 * @out: socket to write to
870 * @ppos: position in @out
871 * @len: number of bytes to splice
872 * @flags: splice modifier flags
873 *
874 * Description:
875 * Will send @len bytes from the pipe to a network socket. No data copying
876 * is involved.
877 *
878 */
879 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
880 loff_t *ppos, size_t len, unsigned int flags)
881 {
882 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
883 }
884
885 EXPORT_SYMBOL(generic_splice_sendpage);
886
887 /*
888 * Attempt to initiate a splice from pipe to file.
889 */
890 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
891 loff_t *ppos, size_t len, unsigned int flags)
892 {
893 int ret;
894
895 if (unlikely(!out->f_op || !out->f_op->splice_write))
896 return -EINVAL;
897
898 if (unlikely(!(out->f_mode & FMODE_WRITE)))
899 return -EBADF;
900
901 ret = rw_verify_area(WRITE, out, ppos, len);
902 if (unlikely(ret < 0))
903 return ret;
904
905 return out->f_op->splice_write(pipe, out, ppos, len, flags);
906 }
907
908 /*
909 * Attempt to initiate a splice from a file to a pipe.
910 */
911 static long do_splice_to(struct file *in, loff_t *ppos,
912 struct pipe_inode_info *pipe, size_t len,
913 unsigned int flags)
914 {
915 int ret;
916
917 if (unlikely(!in->f_op || !in->f_op->splice_read))
918 return -EINVAL;
919
920 if (unlikely(!(in->f_mode & FMODE_READ)))
921 return -EBADF;
922
923 ret = rw_verify_area(READ, in, ppos, len);
924 if (unlikely(ret < 0))
925 return ret;
926
927 return in->f_op->splice_read(in, ppos, pipe, len, flags);
928 }
929
930 /**
931 * splice_direct_to_actor - splices data directly between two non-pipes
932 * @in: file to splice from
933 * @sd: actor information on where to splice to
934 * @actor: handles the data splicing
935 *
936 * Description:
937 * This is a special case helper to splice directly between two
938 * points, without requiring an explicit pipe. Internally an allocated
939 * pipe is cached in the process, and reused during the lifetime of
940 * that process.
941 *
942 */
943 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
944 splice_direct_actor *actor)
945 {
946 struct pipe_inode_info *pipe;
947 long ret, bytes;
948 umode_t i_mode;
949 size_t len;
950 int i, flags;
951
952 /*
953 * We require the input being a regular file, as we don't want to
954 * randomly drop data for eg socket -> socket splicing. Use the
955 * piped splicing for that!
956 */
957 i_mode = in->f_path.dentry->d_inode->i_mode;
958 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
959 return -EINVAL;
960
961 /*
962 * neither in nor out is a pipe, setup an internal pipe attached to
963 * 'out' and transfer the wanted data from 'in' to 'out' through that
964 */
965 pipe = current->splice_pipe;
966 if (unlikely(!pipe)) {
967 pipe = alloc_pipe_info(NULL);
968 if (!pipe)
969 return -ENOMEM;
970
971 /*
972 * We don't have an immediate reader, but we'll read the stuff
973 * out of the pipe right after the splice_to_pipe(). So set
974 * PIPE_READERS appropriately.
975 */
976 pipe->readers = 1;
977
978 current->splice_pipe = pipe;
979 }
980
981 /*
982 * Do the splice.
983 */
984 ret = 0;
985 bytes = 0;
986 len = sd->total_len;
987 flags = sd->flags;
988
989 /*
990 * Don't block on output, we have to drain the direct pipe.
991 */
992 sd->flags &= ~SPLICE_F_NONBLOCK;
993
994 while (len) {
995 size_t read_len;
996 loff_t pos = sd->pos, prev_pos = pos;
997
998 ret = do_splice_to(in, &pos, pipe, len, flags);
999 if (unlikely(ret <= 0))
1000 goto out_release;
1001
1002 read_len = ret;
1003 sd->total_len = read_len;
1004
1005 /*
1006 * NOTE: nonblocking mode only applies to the input. We
1007 * must not do the output in nonblocking mode as then we
1008 * could get stuck data in the internal pipe:
1009 */
1010 ret = actor(pipe, sd);
1011 if (unlikely(ret <= 0)) {
1012 sd->pos = prev_pos;
1013 goto out_release;
1014 }
1015
1016 bytes += ret;
1017 len -= ret;
1018 sd->pos = pos;
1019
1020 if (ret < read_len) {
1021 sd->pos = prev_pos + ret;
1022 goto out_release;
1023 }
1024 }
1025
1026 done:
1027 pipe->nrbufs = pipe->curbuf = 0;
1028 file_accessed(in);
1029 return bytes;
1030
1031 out_release:
1032 /*
1033 * If we did an incomplete transfer we must release
1034 * the pipe buffers in question:
1035 */
1036 for (i = 0; i < PIPE_BUFFERS; i++) {
1037 struct pipe_buffer *buf = pipe->bufs + i;
1038
1039 if (buf->ops) {
1040 buf->ops->release(pipe, buf);
1041 buf->ops = NULL;
1042 }
1043 }
1044
1045 if (!bytes)
1046 bytes = ret;
1047
1048 goto done;
1049 }
1050 EXPORT_SYMBOL(splice_direct_to_actor);
1051
1052 static int direct_splice_actor(struct pipe_inode_info *pipe,
1053 struct splice_desc *sd)
1054 {
1055 struct file *file = sd->u.file;
1056
1057 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1058 }
1059
1060 /**
1061 * do_splice_direct - splices data directly between two files
1062 * @in: file to splice from
1063 * @ppos: input file offset
1064 * @out: file to splice to
1065 * @len: number of bytes to splice
1066 * @flags: splice modifier flags
1067 *
1068 * Description:
1069 * For use by do_sendfile(). splice can easily emulate sendfile, but
1070 * doing it in the application would incur an extra system call
1071 * (splice in + splice out, as compared to just sendfile()). So this helper
1072 * can splice directly through a process-private pipe.
1073 *
1074 */
1075 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1076 size_t len, unsigned int flags)
1077 {
1078 struct splice_desc sd = {
1079 .len = len,
1080 .total_len = len,
1081 .flags = flags,
1082 .pos = *ppos,
1083 .u.file = out,
1084 };
1085 long ret;
1086
1087 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1088 if (ret > 0)
1089 *ppos = sd.pos;
1090
1091 return ret;
1092 }
1093
1094 /*
1095 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1096 * location, so checking ->i_pipe is not enough to verify that this is a
1097 * pipe.
1098 */
1099 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1100 {
1101 if (S_ISFIFO(inode->i_mode))
1102 return inode->i_pipe;
1103
1104 return NULL;
1105 }
1106
1107 /*
1108 * Determine where to splice to/from.
1109 */
1110 static long do_splice(struct file *in, loff_t __user *off_in,
1111 struct file *out, loff_t __user *off_out,
1112 size_t len, unsigned int flags)
1113 {
1114 struct pipe_inode_info *pipe;
1115 loff_t offset, *off;
1116 long ret;
1117
1118 pipe = pipe_info(in->f_path.dentry->d_inode);
1119 if (pipe) {
1120 if (off_in)
1121 return -ESPIPE;
1122 if (off_out) {
1123 if (out->f_op->llseek == no_llseek)
1124 return -EINVAL;
1125 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1126 return -EFAULT;
1127 off = &offset;
1128 } else
1129 off = &out->f_pos;
1130
1131 ret = do_splice_from(pipe, out, off, len, flags);
1132
1133 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1134 ret = -EFAULT;
1135
1136 return ret;
1137 }
1138
1139 pipe = pipe_info(out->f_path.dentry->d_inode);
1140 if (pipe) {
1141 if (off_out)
1142 return -ESPIPE;
1143 if (off_in) {
1144 if (in->f_op->llseek == no_llseek)
1145 return -EINVAL;
1146 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1147 return -EFAULT;
1148 off = &offset;
1149 } else
1150 off = &in->f_pos;
1151
1152 ret = do_splice_to(in, off, pipe, len, flags);
1153
1154 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1155 ret = -EFAULT;
1156
1157 return ret;
1158 }
1159
1160 return -EINVAL;
1161 }
1162
1163 /*
1164 * Map an iov into an array of pages and offset/length tupples. With the
1165 * partial_page structure, we can map several non-contiguous ranges into
1166 * our ones pages[] map instead of splitting that operation into pieces.
1167 * Could easily be exported as a generic helper for other users, in which
1168 * case one would probably want to add a 'max_nr_pages' parameter as well.
1169 */
1170 static int get_iovec_page_array(const struct iovec __user *iov,
1171 unsigned int nr_vecs, struct page **pages,
1172 struct partial_page *partial, int aligned)
1173 {
1174 int buffers = 0, error = 0;
1175
1176 while (nr_vecs) {
1177 unsigned long off, npages;
1178 struct iovec entry;
1179 void __user *base;
1180 size_t len;
1181 int i;
1182
1183 error = -EFAULT;
1184 if (copy_from_user(&entry, iov, sizeof(entry)))
1185 break;
1186
1187 base = entry.iov_base;
1188 len = entry.iov_len;
1189
1190 /*
1191 * Sanity check this iovec. 0 read succeeds.
1192 */
1193 error = 0;
1194 if (unlikely(!len))
1195 break;
1196 error = -EFAULT;
1197 if (!access_ok(VERIFY_READ, base, len))
1198 break;
1199
1200 /*
1201 * Get this base offset and number of pages, then map
1202 * in the user pages.
1203 */
1204 off = (unsigned long) base & ~PAGE_MASK;
1205
1206 /*
1207 * If asked for alignment, the offset must be zero and the
1208 * length a multiple of the PAGE_SIZE.
1209 */
1210 error = -EINVAL;
1211 if (aligned && (off || len & ~PAGE_MASK))
1212 break;
1213
1214 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1215 if (npages > PIPE_BUFFERS - buffers)
1216 npages = PIPE_BUFFERS - buffers;
1217
1218 error = get_user_pages_fast((unsigned long)base, npages,
1219 0, &pages[buffers]);
1220
1221 if (unlikely(error <= 0))
1222 break;
1223
1224 /*
1225 * Fill this contiguous range into the partial page map.
1226 */
1227 for (i = 0; i < error; i++) {
1228 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1229
1230 partial[buffers].offset = off;
1231 partial[buffers].len = plen;
1232
1233 off = 0;
1234 len -= plen;
1235 buffers++;
1236 }
1237
1238 /*
1239 * We didn't complete this iov, stop here since it probably
1240 * means we have to move some of this into a pipe to
1241 * be able to continue.
1242 */
1243 if (len)
1244 break;
1245
1246 /*
1247 * Don't continue if we mapped fewer pages than we asked for,
1248 * or if we mapped the max number of pages that we have
1249 * room for.
1250 */
1251 if (error < npages || buffers == PIPE_BUFFERS)
1252 break;
1253
1254 nr_vecs--;
1255 iov++;
1256 }
1257
1258 if (buffers)
1259 return buffers;
1260
1261 return error;
1262 }
1263
1264 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1265 struct splice_desc *sd)
1266 {
1267 char *src;
1268 int ret;
1269
1270 ret = buf->ops->confirm(pipe, buf);
1271 if (unlikely(ret))
1272 return ret;
1273
1274 /*
1275 * See if we can use the atomic maps, by prefaulting in the
1276 * pages and doing an atomic copy
1277 */
1278 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1279 src = buf->ops->map(pipe, buf, 1);
1280 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1281 sd->len);
1282 buf->ops->unmap(pipe, buf, src);
1283 if (!ret) {
1284 ret = sd->len;
1285 goto out;
1286 }
1287 }
1288
1289 /*
1290 * No dice, use slow non-atomic map and copy
1291 */
1292 src = buf->ops->map(pipe, buf, 0);
1293
1294 ret = sd->len;
1295 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1296 ret = -EFAULT;
1297
1298 buf->ops->unmap(pipe, buf, src);
1299 out:
1300 if (ret > 0)
1301 sd->u.userptr += ret;
1302 return ret;
1303 }
1304
1305 /*
1306 * For lack of a better implementation, implement vmsplice() to userspace
1307 * as a simple copy of the pipes pages to the user iov.
1308 */
1309 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1310 unsigned long nr_segs, unsigned int flags)
1311 {
1312 struct pipe_inode_info *pipe;
1313 struct splice_desc sd;
1314 ssize_t size;
1315 int error;
1316 long ret;
1317
1318 pipe = pipe_info(file->f_path.dentry->d_inode);
1319 if (!pipe)
1320 return -EBADF;
1321
1322 if (pipe->inode)
1323 mutex_lock(&pipe->inode->i_mutex);
1324
1325 error = ret = 0;
1326 while (nr_segs) {
1327 void __user *base;
1328 size_t len;
1329
1330 /*
1331 * Get user address base and length for this iovec.
1332 */
1333 error = get_user(base, &iov->iov_base);
1334 if (unlikely(error))
1335 break;
1336 error = get_user(len, &iov->iov_len);
1337 if (unlikely(error))
1338 break;
1339
1340 /*
1341 * Sanity check this iovec. 0 read succeeds.
1342 */
1343 if (unlikely(!len))
1344 break;
1345 if (unlikely(!base)) {
1346 error = -EFAULT;
1347 break;
1348 }
1349
1350 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1351 error = -EFAULT;
1352 break;
1353 }
1354
1355 sd.len = 0;
1356 sd.total_len = len;
1357 sd.flags = flags;
1358 sd.u.userptr = base;
1359 sd.pos = 0;
1360
1361 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1362 if (size < 0) {
1363 if (!ret)
1364 ret = size;
1365
1366 break;
1367 }
1368
1369 ret += size;
1370
1371 if (size < len)
1372 break;
1373
1374 nr_segs--;
1375 iov++;
1376 }
1377
1378 if (pipe->inode)
1379 mutex_unlock(&pipe->inode->i_mutex);
1380
1381 if (!ret)
1382 ret = error;
1383
1384 return ret;
1385 }
1386
1387 /*
1388 * vmsplice splices a user address range into a pipe. It can be thought of
1389 * as splice-from-memory, where the regular splice is splice-from-file (or
1390 * to file). In both cases the output is a pipe, naturally.
1391 */
1392 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1393 unsigned long nr_segs, unsigned int flags)
1394 {
1395 struct pipe_inode_info *pipe;
1396 struct page *pages[PIPE_BUFFERS];
1397 struct partial_page partial[PIPE_BUFFERS];
1398 struct splice_pipe_desc spd = {
1399 .pages = pages,
1400 .partial = partial,
1401 .flags = flags,
1402 .ops = &user_page_pipe_buf_ops,
1403 .spd_release = spd_release_page,
1404 };
1405
1406 pipe = pipe_info(file->f_path.dentry->d_inode);
1407 if (!pipe)
1408 return -EBADF;
1409
1410 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1411 flags & SPLICE_F_GIFT);
1412 if (spd.nr_pages <= 0)
1413 return spd.nr_pages;
1414
1415 return splice_to_pipe(pipe, &spd);
1416 }
1417
1418 /*
1419 * Note that vmsplice only really supports true splicing _from_ user memory
1420 * to a pipe, not the other way around. Splicing from user memory is a simple
1421 * operation that can be supported without any funky alignment restrictions
1422 * or nasty vm tricks. We simply map in the user memory and fill them into
1423 * a pipe. The reverse isn't quite as easy, though. There are two possible
1424 * solutions for that:
1425 *
1426 * - memcpy() the data internally, at which point we might as well just
1427 * do a regular read() on the buffer anyway.
1428 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1429 * has restriction limitations on both ends of the pipe).
1430 *
1431 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1432 *
1433 */
1434 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1435 unsigned long nr_segs, unsigned int flags)
1436 {
1437 struct file *file;
1438 long error;
1439 int fput;
1440
1441 if (unlikely(nr_segs > UIO_MAXIOV))
1442 return -EINVAL;
1443 else if (unlikely(!nr_segs))
1444 return 0;
1445
1446 error = -EBADF;
1447 file = fget_light(fd, &fput);
1448 if (file) {
1449 if (file->f_mode & FMODE_WRITE)
1450 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1451 else if (file->f_mode & FMODE_READ)
1452 error = vmsplice_to_user(file, iov, nr_segs, flags);
1453
1454 fput_light(file, fput);
1455 }
1456
1457 return error;
1458 }
1459
1460 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1461 int fd_out, loff_t __user *off_out,
1462 size_t len, unsigned int flags)
1463 {
1464 long error;
1465 struct file *in, *out;
1466 int fput_in, fput_out;
1467
1468 if (unlikely(!len))
1469 return 0;
1470
1471 error = -EBADF;
1472 in = fget_light(fd_in, &fput_in);
1473 if (in) {
1474 if (in->f_mode & FMODE_READ) {
1475 out = fget_light(fd_out, &fput_out);
1476 if (out) {
1477 if (out->f_mode & FMODE_WRITE)
1478 error = do_splice(in, off_in,
1479 out, off_out,
1480 len, flags);
1481 fput_light(out, fput_out);
1482 }
1483 }
1484
1485 fput_light(in, fput_in);
1486 }
1487
1488 return error;
1489 }
1490
1491 /*
1492 * Make sure there's data to read. Wait for input if we can, otherwise
1493 * return an appropriate error.
1494 */
1495 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1496 {
1497 int ret;
1498
1499 /*
1500 * Check ->nrbufs without the inode lock first. This function
1501 * is speculative anyways, so missing one is ok.
1502 */
1503 if (pipe->nrbufs)
1504 return 0;
1505
1506 ret = 0;
1507 mutex_lock(&pipe->inode->i_mutex);
1508
1509 while (!pipe->nrbufs) {
1510 if (signal_pending(current)) {
1511 ret = -ERESTARTSYS;
1512 break;
1513 }
1514 if (!pipe->writers)
1515 break;
1516 if (!pipe->waiting_writers) {
1517 if (flags & SPLICE_F_NONBLOCK) {
1518 ret = -EAGAIN;
1519 break;
1520 }
1521 }
1522 pipe_wait(pipe);
1523 }
1524
1525 mutex_unlock(&pipe->inode->i_mutex);
1526 return ret;
1527 }
1528
1529 /*
1530 * Make sure there's writeable room. Wait for room if we can, otherwise
1531 * return an appropriate error.
1532 */
1533 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1534 {
1535 int ret;
1536
1537 /*
1538 * Check ->nrbufs without the inode lock first. This function
1539 * is speculative anyways, so missing one is ok.
1540 */
1541 if (pipe->nrbufs < PIPE_BUFFERS)
1542 return 0;
1543
1544 ret = 0;
1545 mutex_lock(&pipe->inode->i_mutex);
1546
1547 while (pipe->nrbufs >= PIPE_BUFFERS) {
1548 if (!pipe->readers) {
1549 send_sig(SIGPIPE, current, 0);
1550 ret = -EPIPE;
1551 break;
1552 }
1553 if (flags & SPLICE_F_NONBLOCK) {
1554 ret = -EAGAIN;
1555 break;
1556 }
1557 if (signal_pending(current)) {
1558 ret = -ERESTARTSYS;
1559 break;
1560 }
1561 pipe->waiting_writers++;
1562 pipe_wait(pipe);
1563 pipe->waiting_writers--;
1564 }
1565
1566 mutex_unlock(&pipe->inode->i_mutex);
1567 return ret;
1568 }
1569
1570 /*
1571 * Link contents of ipipe to opipe.
1572 */
1573 static int link_pipe(struct pipe_inode_info *ipipe,
1574 struct pipe_inode_info *opipe,
1575 size_t len, unsigned int flags)
1576 {
1577 struct pipe_buffer *ibuf, *obuf;
1578 int ret = 0, i = 0, nbuf;
1579
1580 /*
1581 * Potential ABBA deadlock, work around it by ordering lock
1582 * grabbing by inode address. Otherwise two different processes
1583 * could deadlock (one doing tee from A -> B, the other from B -> A).
1584 */
1585 inode_double_lock(ipipe->inode, opipe->inode);
1586
1587 do {
1588 if (!opipe->readers) {
1589 send_sig(SIGPIPE, current, 0);
1590 if (!ret)
1591 ret = -EPIPE;
1592 break;
1593 }
1594
1595 /*
1596 * If we have iterated all input buffers or ran out of
1597 * output room, break.
1598 */
1599 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1600 break;
1601
1602 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1603 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1604
1605 /*
1606 * Get a reference to this pipe buffer,
1607 * so we can copy the contents over.
1608 */
1609 ibuf->ops->get(ipipe, ibuf);
1610
1611 obuf = opipe->bufs + nbuf;
1612 *obuf = *ibuf;
1613
1614 /*
1615 * Don't inherit the gift flag, we need to
1616 * prevent multiple steals of this page.
1617 */
1618 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1619
1620 if (obuf->len > len)
1621 obuf->len = len;
1622
1623 opipe->nrbufs++;
1624 ret += obuf->len;
1625 len -= obuf->len;
1626 i++;
1627 } while (len);
1628
1629 /*
1630 * return EAGAIN if we have the potential of some data in the
1631 * future, otherwise just return 0
1632 */
1633 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1634 ret = -EAGAIN;
1635
1636 inode_double_unlock(ipipe->inode, opipe->inode);
1637
1638 /*
1639 * If we put data in the output pipe, wakeup any potential readers.
1640 */
1641 if (ret > 0) {
1642 smp_mb();
1643 if (waitqueue_active(&opipe->wait))
1644 wake_up_interruptible(&opipe->wait);
1645 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1646 }
1647
1648 return ret;
1649 }
1650
1651 /*
1652 * This is a tee(1) implementation that works on pipes. It doesn't copy
1653 * any data, it simply references the 'in' pages on the 'out' pipe.
1654 * The 'flags' used are the SPLICE_F_* variants, currently the only
1655 * applicable one is SPLICE_F_NONBLOCK.
1656 */
1657 static long do_tee(struct file *in, struct file *out, size_t len,
1658 unsigned int flags)
1659 {
1660 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1661 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1662 int ret = -EINVAL;
1663
1664 /*
1665 * Duplicate the contents of ipipe to opipe without actually
1666 * copying the data.
1667 */
1668 if (ipipe && opipe && ipipe != opipe) {
1669 /*
1670 * Keep going, unless we encounter an error. The ipipe/opipe
1671 * ordering doesn't really matter.
1672 */
1673 ret = link_ipipe_prep(ipipe, flags);
1674 if (!ret) {
1675 ret = link_opipe_prep(opipe, flags);
1676 if (!ret)
1677 ret = link_pipe(ipipe, opipe, len, flags);
1678 }
1679 }
1680
1681 return ret;
1682 }
1683
1684 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1685 {
1686 struct file *in;
1687 int error, fput_in;
1688
1689 if (unlikely(!len))
1690 return 0;
1691
1692 error = -EBADF;
1693 in = fget_light(fdin, &fput_in);
1694 if (in) {
1695 if (in->f_mode & FMODE_READ) {
1696 int fput_out;
1697 struct file *out = fget_light(fdout, &fput_out);
1698
1699 if (out) {
1700 if (out->f_mode & FMODE_WRITE)
1701 error = do_tee(in, out, len, flags);
1702 fput_light(out, fput_out);
1703 }
1704 }
1705 fput_light(in, fput_in);
1706 }
1707
1708 return error;
1709 }