readahead: pass real splice size
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32
33 /*
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
38 */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 struct pipe_buffer *buf)
41 {
42 struct page *page = buf->page;
43 struct address_space *mapping;
44
45 lock_page(page);
46
47 mapping = page_mapping(page);
48 if (mapping) {
49 WARN_ON(!PageUptodate(page));
50
51 /*
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
57 * ensues.
58 */
59 wait_on_page_writeback(page);
60
61 if (PagePrivate(page))
62 try_to_release_page(page, GFP_KERNEL);
63
64 /*
65 * If we succeeded in removing the mapping, set LRU flag
66 * and return good.
67 */
68 if (remove_mapping(mapping, page)) {
69 buf->flags |= PIPE_BUF_FLAG_LRU;
70 return 0;
71 }
72 }
73
74 /*
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
77 */
78 unlock_page(page);
79 return 1;
80 }
81
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
84 {
85 page_cache_release(buf->page);
86 buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88
89 /*
90 * Check whether the contents of buf is OK to access. Since the content
91 * is a page cache page, IO may be in flight.
92 */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 struct pipe_buffer *buf)
95 {
96 struct page *page = buf->page;
97 int err;
98
99 if (!PageUptodate(page)) {
100 lock_page(page);
101
102 /*
103 * Page got truncated/unhashed. This will cause a 0-byte
104 * splice, if this is the first page.
105 */
106 if (!page->mapping) {
107 err = -ENODATA;
108 goto error;
109 }
110
111 /*
112 * Uh oh, read-error from disk.
113 */
114 if (!PageUptodate(page)) {
115 err = -EIO;
116 goto error;
117 }
118
119 /*
120 * Page is ok afterall, we are done.
121 */
122 unlock_page(page);
123 }
124
125 return 0;
126 error:
127 unlock_page(page);
128 return err;
129 }
130
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 .can_merge = 0,
133 .map = generic_pipe_buf_map,
134 .unmap = generic_pipe_buf_unmap,
135 .confirm = page_cache_pipe_buf_confirm,
136 .release = page_cache_pipe_buf_release,
137 .steal = page_cache_pipe_buf_steal,
138 .get = generic_pipe_buf_get,
139 };
140
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143 {
144 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 return 1;
146
147 buf->flags |= PIPE_BUF_FLAG_LRU;
148 return generic_pipe_buf_steal(pipe, buf);
149 }
150
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 .can_merge = 0,
153 .map = generic_pipe_buf_map,
154 .unmap = generic_pipe_buf_unmap,
155 .confirm = generic_pipe_buf_confirm,
156 .release = page_cache_pipe_buf_release,
157 .steal = user_page_pipe_buf_steal,
158 .get = generic_pipe_buf_get,
159 };
160
161 /**
162 * splice_to_pipe - fill passed data into a pipe
163 * @pipe: pipe to fill
164 * @spd: data to fill
165 *
166 * Description:
167 * @spd contains a map of pages and len/offset tupples, a long with
168 * the struct pipe_buf_operations associated with these pages. This
169 * function will link that data to the pipe.
170 *
171 */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 struct splice_pipe_desc *spd)
174 {
175 unsigned int spd_pages = spd->nr_pages;
176 int ret, do_wakeup, page_nr;
177
178 ret = 0;
179 do_wakeup = 0;
180 page_nr = 0;
181
182 if (pipe->inode)
183 mutex_lock(&pipe->inode->i_mutex);
184
185 for (;;) {
186 if (!pipe->readers) {
187 send_sig(SIGPIPE, current, 0);
188 if (!ret)
189 ret = -EPIPE;
190 break;
191 }
192
193 if (pipe->nrbufs < PIPE_BUFFERS) {
194 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 struct pipe_buffer *buf = pipe->bufs + newbuf;
196
197 buf->page = spd->pages[page_nr];
198 buf->offset = spd->partial[page_nr].offset;
199 buf->len = spd->partial[page_nr].len;
200 buf->private = spd->partial[page_nr].private;
201 buf->ops = spd->ops;
202 if (spd->flags & SPLICE_F_GIFT)
203 buf->flags |= PIPE_BUF_FLAG_GIFT;
204
205 pipe->nrbufs++;
206 page_nr++;
207 ret += buf->len;
208
209 if (pipe->inode)
210 do_wakeup = 1;
211
212 if (!--spd->nr_pages)
213 break;
214 if (pipe->nrbufs < PIPE_BUFFERS)
215 continue;
216
217 break;
218 }
219
220 if (spd->flags & SPLICE_F_NONBLOCK) {
221 if (!ret)
222 ret = -EAGAIN;
223 break;
224 }
225
226 if (signal_pending(current)) {
227 if (!ret)
228 ret = -ERESTARTSYS;
229 break;
230 }
231
232 if (do_wakeup) {
233 smp_mb();
234 if (waitqueue_active(&pipe->wait))
235 wake_up_interruptible_sync(&pipe->wait);
236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 do_wakeup = 0;
238 }
239
240 pipe->waiting_writers++;
241 pipe_wait(pipe);
242 pipe->waiting_writers--;
243 }
244
245 if (pipe->inode) {
246 mutex_unlock(&pipe->inode->i_mutex);
247
248 if (do_wakeup) {
249 smp_mb();
250 if (waitqueue_active(&pipe->wait))
251 wake_up_interruptible(&pipe->wait);
252 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 }
254 }
255
256 while (page_nr < spd_pages)
257 page_cache_release(spd->pages[page_nr++]);
258
259 return ret;
260 }
261
262 static int
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264 struct pipe_inode_info *pipe, size_t len,
265 unsigned int flags)
266 {
267 struct address_space *mapping = in->f_mapping;
268 unsigned int loff, nr_pages, req_pages;
269 struct page *pages[PIPE_BUFFERS];
270 struct partial_page partial[PIPE_BUFFERS];
271 struct page *page;
272 pgoff_t index, end_index;
273 loff_t isize;
274 int error, page_nr;
275 struct splice_pipe_desc spd = {
276 .pages = pages,
277 .partial = partial,
278 .flags = flags,
279 .ops = &page_cache_pipe_buf_ops,
280 };
281
282 index = *ppos >> PAGE_CACHE_SHIFT;
283 loff = *ppos & ~PAGE_CACHE_MASK;
284 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
286
287 /*
288 * Lookup the (hopefully) full range of pages we need.
289 */
290 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
291 index += spd.nr_pages;
292
293 /*
294 * If find_get_pages_contig() returned fewer pages than we needed,
295 * readahead/allocate the rest and fill in the holes.
296 */
297 if (spd.nr_pages < nr_pages)
298 page_cache_readahead_ondemand(mapping, &in->f_ra, in,
299 NULL, index, req_pages - spd.nr_pages);
300
301 error = 0;
302 while (spd.nr_pages < nr_pages) {
303 /*
304 * Page could be there, find_get_pages_contig() breaks on
305 * the first hole.
306 */
307 page = find_get_page(mapping, index);
308 if (!page) {
309 /*
310 * page didn't exist, allocate one.
311 */
312 page = page_cache_alloc_cold(mapping);
313 if (!page)
314 break;
315
316 error = add_to_page_cache_lru(page, mapping, index,
317 GFP_KERNEL);
318 if (unlikely(error)) {
319 page_cache_release(page);
320 if (error == -EEXIST)
321 continue;
322 break;
323 }
324 /*
325 * add_to_page_cache() locks the page, unlock it
326 * to avoid convoluting the logic below even more.
327 */
328 unlock_page(page);
329 }
330
331 pages[spd.nr_pages++] = page;
332 index++;
333 }
334
335 /*
336 * Now loop over the map and see if we need to start IO on any
337 * pages, fill in the partial map, etc.
338 */
339 index = *ppos >> PAGE_CACHE_SHIFT;
340 nr_pages = spd.nr_pages;
341 spd.nr_pages = 0;
342 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
343 unsigned int this_len;
344
345 if (!len)
346 break;
347
348 /*
349 * this_len is the max we'll use from this page
350 */
351 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
352 page = pages[page_nr];
353
354 if (PageReadahead(page))
355 page_cache_readahead_ondemand(mapping, &in->f_ra, in,
356 page, index, req_pages - page_nr);
357
358 /*
359 * If the page isn't uptodate, we may need to start io on it
360 */
361 if (!PageUptodate(page)) {
362 /*
363 * If in nonblock mode then dont block on waiting
364 * for an in-flight io page
365 */
366 if (flags & SPLICE_F_NONBLOCK) {
367 if (TestSetPageLocked(page))
368 break;
369 } else
370 lock_page(page);
371
372 /*
373 * page was truncated, stop here. if this isn't the
374 * first page, we'll just complete what we already
375 * added
376 */
377 if (!page->mapping) {
378 unlock_page(page);
379 break;
380 }
381 /*
382 * page was already under io and is now done, great
383 */
384 if (PageUptodate(page)) {
385 unlock_page(page);
386 goto fill_it;
387 }
388
389 /*
390 * need to read in the page
391 */
392 error = mapping->a_ops->readpage(in, page);
393 if (unlikely(error)) {
394 /*
395 * We really should re-lookup the page here,
396 * but it complicates things a lot. Instead
397 * lets just do what we already stored, and
398 * we'll get it the next time we are called.
399 */
400 if (error == AOP_TRUNCATED_PAGE)
401 error = 0;
402
403 break;
404 }
405 }
406 fill_it:
407 /*
408 * i_size must be checked after PageUptodate.
409 */
410 isize = i_size_read(mapping->host);
411 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
412 if (unlikely(!isize || index > end_index))
413 break;
414
415 /*
416 * if this is the last page, see if we need to shrink
417 * the length and stop
418 */
419 if (end_index == index) {
420 unsigned int plen;
421
422 /*
423 * max good bytes in this page
424 */
425 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
426 if (plen <= loff)
427 break;
428
429 /*
430 * force quit after adding this page
431 */
432 this_len = min(this_len, plen - loff);
433 len = this_len;
434 }
435
436 partial[page_nr].offset = loff;
437 partial[page_nr].len = this_len;
438 len -= this_len;
439 loff = 0;
440 spd.nr_pages++;
441 index++;
442 }
443
444 /*
445 * Release any pages at the end, if we quit early. 'page_nr' is how far
446 * we got, 'nr_pages' is how many pages are in the map.
447 */
448 while (page_nr < nr_pages)
449 page_cache_release(pages[page_nr++]);
450 in->f_ra.prev_index = index;
451
452 if (spd.nr_pages)
453 return splice_to_pipe(pipe, &spd);
454
455 return error;
456 }
457
458 /**
459 * generic_file_splice_read - splice data from file to a pipe
460 * @in: file to splice from
461 * @ppos: position in @in
462 * @pipe: pipe to splice to
463 * @len: number of bytes to splice
464 * @flags: splice modifier flags
465 *
466 * Description:
467 * Will read pages from given file and fill them into a pipe. Can be
468 * used as long as the address_space operations for the source implements
469 * a readpage() hook.
470 *
471 */
472 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
473 struct pipe_inode_info *pipe, size_t len,
474 unsigned int flags)
475 {
476 ssize_t spliced;
477 int ret;
478 loff_t isize, left;
479
480 isize = i_size_read(in->f_mapping->host);
481 if (unlikely(*ppos >= isize))
482 return 0;
483
484 left = isize - *ppos;
485 if (unlikely(left < len))
486 len = left;
487
488 ret = 0;
489 spliced = 0;
490 while (len && !spliced) {
491 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
492
493 if (ret < 0)
494 break;
495 else if (!ret) {
496 if (spliced)
497 break;
498 if (flags & SPLICE_F_NONBLOCK) {
499 ret = -EAGAIN;
500 break;
501 }
502 }
503
504 *ppos += ret;
505 len -= ret;
506 spliced += ret;
507 }
508
509 if (spliced)
510 return spliced;
511
512 return ret;
513 }
514
515 EXPORT_SYMBOL(generic_file_splice_read);
516
517 /*
518 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
519 * using sendpage(). Return the number of bytes sent.
520 */
521 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
522 struct pipe_buffer *buf, struct splice_desc *sd)
523 {
524 struct file *file = sd->u.file;
525 loff_t pos = sd->pos;
526 int ret, more;
527
528 ret = buf->ops->confirm(pipe, buf);
529 if (!ret) {
530 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
531
532 ret = file->f_op->sendpage(file, buf->page, buf->offset,
533 sd->len, &pos, more);
534 }
535
536 return ret;
537 }
538
539 /*
540 * This is a little more tricky than the file -> pipe splicing. There are
541 * basically three cases:
542 *
543 * - Destination page already exists in the address space and there
544 * are users of it. For that case we have no other option that
545 * copying the data. Tough luck.
546 * - Destination page already exists in the address space, but there
547 * are no users of it. Make sure it's uptodate, then drop it. Fall
548 * through to last case.
549 * - Destination page does not exist, we can add the pipe page to
550 * the page cache and avoid the copy.
551 *
552 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
553 * sd->flags), we attempt to migrate pages from the pipe to the output
554 * file address space page cache. This is possible if no one else has
555 * the pipe page referenced outside of the pipe and page cache. If
556 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
557 * a new page in the output file page cache and fill/dirty that.
558 */
559 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
560 struct splice_desc *sd)
561 {
562 struct file *file = sd->u.file;
563 struct address_space *mapping = file->f_mapping;
564 unsigned int offset, this_len;
565 struct page *page;
566 pgoff_t index;
567 int ret;
568
569 /*
570 * make sure the data in this buffer is uptodate
571 */
572 ret = buf->ops->confirm(pipe, buf);
573 if (unlikely(ret))
574 return ret;
575
576 index = sd->pos >> PAGE_CACHE_SHIFT;
577 offset = sd->pos & ~PAGE_CACHE_MASK;
578
579 this_len = sd->len;
580 if (this_len + offset > PAGE_CACHE_SIZE)
581 this_len = PAGE_CACHE_SIZE - offset;
582
583 find_page:
584 page = find_lock_page(mapping, index);
585 if (!page) {
586 ret = -ENOMEM;
587 page = page_cache_alloc_cold(mapping);
588 if (unlikely(!page))
589 goto out_ret;
590
591 /*
592 * This will also lock the page
593 */
594 ret = add_to_page_cache_lru(page, mapping, index,
595 GFP_KERNEL);
596 if (unlikely(ret))
597 goto out;
598 }
599
600 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
601 if (unlikely(ret)) {
602 loff_t isize = i_size_read(mapping->host);
603
604 if (ret != AOP_TRUNCATED_PAGE)
605 unlock_page(page);
606 page_cache_release(page);
607 if (ret == AOP_TRUNCATED_PAGE)
608 goto find_page;
609
610 /*
611 * prepare_write() may have instantiated a few blocks
612 * outside i_size. Trim these off again.
613 */
614 if (sd->pos + this_len > isize)
615 vmtruncate(mapping->host, isize);
616
617 goto out_ret;
618 }
619
620 if (buf->page != page) {
621 /*
622 * Careful, ->map() uses KM_USER0!
623 */
624 char *src = buf->ops->map(pipe, buf, 1);
625 char *dst = kmap_atomic(page, KM_USER1);
626
627 memcpy(dst + offset, src + buf->offset, this_len);
628 flush_dcache_page(page);
629 kunmap_atomic(dst, KM_USER1);
630 buf->ops->unmap(pipe, buf, src);
631 }
632
633 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
634 if (ret) {
635 if (ret == AOP_TRUNCATED_PAGE) {
636 page_cache_release(page);
637 goto find_page;
638 }
639 if (ret < 0)
640 goto out;
641 /*
642 * Partial write has happened, so 'ret' already initialized by
643 * number of bytes written, Where is nothing we have to do here.
644 */
645 } else
646 ret = this_len;
647 /*
648 * Return the number of bytes written and mark page as
649 * accessed, we are now done!
650 */
651 mark_page_accessed(page);
652 out:
653 page_cache_release(page);
654 unlock_page(page);
655 out_ret:
656 return ret;
657 }
658
659 /**
660 * __splice_from_pipe - splice data from a pipe to given actor
661 * @pipe: pipe to splice from
662 * @sd: information to @actor
663 * @actor: handler that splices the data
664 *
665 * Description:
666 * This function does little more than loop over the pipe and call
667 * @actor to do the actual moving of a single struct pipe_buffer to
668 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
669 * pipe_to_user.
670 *
671 */
672 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
673 splice_actor *actor)
674 {
675 int ret, do_wakeup, err;
676
677 ret = 0;
678 do_wakeup = 0;
679
680 for (;;) {
681 if (pipe->nrbufs) {
682 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
683 const struct pipe_buf_operations *ops = buf->ops;
684
685 sd->len = buf->len;
686 if (sd->len > sd->total_len)
687 sd->len = sd->total_len;
688
689 err = actor(pipe, buf, sd);
690 if (err <= 0) {
691 if (!ret && err != -ENODATA)
692 ret = err;
693
694 break;
695 }
696
697 ret += err;
698 buf->offset += err;
699 buf->len -= err;
700
701 sd->len -= err;
702 sd->pos += err;
703 sd->total_len -= err;
704 if (sd->len)
705 continue;
706
707 if (!buf->len) {
708 buf->ops = NULL;
709 ops->release(pipe, buf);
710 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
711 pipe->nrbufs--;
712 if (pipe->inode)
713 do_wakeup = 1;
714 }
715
716 if (!sd->total_len)
717 break;
718 }
719
720 if (pipe->nrbufs)
721 continue;
722 if (!pipe->writers)
723 break;
724 if (!pipe->waiting_writers) {
725 if (ret)
726 break;
727 }
728
729 if (sd->flags & SPLICE_F_NONBLOCK) {
730 if (!ret)
731 ret = -EAGAIN;
732 break;
733 }
734
735 if (signal_pending(current)) {
736 if (!ret)
737 ret = -ERESTARTSYS;
738 break;
739 }
740
741 if (do_wakeup) {
742 smp_mb();
743 if (waitqueue_active(&pipe->wait))
744 wake_up_interruptible_sync(&pipe->wait);
745 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
746 do_wakeup = 0;
747 }
748
749 pipe_wait(pipe);
750 }
751
752 if (do_wakeup) {
753 smp_mb();
754 if (waitqueue_active(&pipe->wait))
755 wake_up_interruptible(&pipe->wait);
756 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
757 }
758
759 return ret;
760 }
761 EXPORT_SYMBOL(__splice_from_pipe);
762
763 /**
764 * splice_from_pipe - splice data from a pipe to a file
765 * @pipe: pipe to splice from
766 * @out: file to splice to
767 * @ppos: position in @out
768 * @len: how many bytes to splice
769 * @flags: splice modifier flags
770 * @actor: handler that splices the data
771 *
772 * Description:
773 * See __splice_from_pipe. This function locks the input and output inodes,
774 * otherwise it's identical to __splice_from_pipe().
775 *
776 */
777 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
778 loff_t *ppos, size_t len, unsigned int flags,
779 splice_actor *actor)
780 {
781 ssize_t ret;
782 struct inode *inode = out->f_mapping->host;
783 struct splice_desc sd = {
784 .total_len = len,
785 .flags = flags,
786 .pos = *ppos,
787 .u.file = out,
788 };
789
790 /*
791 * The actor worker might be calling ->prepare_write and
792 * ->commit_write. Most of the time, these expect i_mutex to
793 * be held. Since this may result in an ABBA deadlock with
794 * pipe->inode, we have to order lock acquiry here.
795 */
796 inode_double_lock(inode, pipe->inode);
797 ret = __splice_from_pipe(pipe, &sd, actor);
798 inode_double_unlock(inode, pipe->inode);
799
800 return ret;
801 }
802
803 /**
804 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
805 * @pipe: pipe info
806 * @out: file to write to
807 * @ppos: position in @out
808 * @len: number of bytes to splice
809 * @flags: splice modifier flags
810 *
811 * Description:
812 * Will either move or copy pages (determined by @flags options) from
813 * the given pipe inode to the given file. The caller is responsible
814 * for acquiring i_mutex on both inodes.
815 *
816 */
817 ssize_t
818 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
819 loff_t *ppos, size_t len, unsigned int flags)
820 {
821 struct address_space *mapping = out->f_mapping;
822 struct inode *inode = mapping->host;
823 struct splice_desc sd = {
824 .total_len = len,
825 .flags = flags,
826 .pos = *ppos,
827 .u.file = out,
828 };
829 ssize_t ret;
830 int err;
831
832 err = remove_suid(out->f_path.dentry);
833 if (unlikely(err))
834 return err;
835
836 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
837 if (ret > 0) {
838 unsigned long nr_pages;
839
840 *ppos += ret;
841 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
842
843 /*
844 * If file or inode is SYNC and we actually wrote some data,
845 * sync it.
846 */
847 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
848 err = generic_osync_inode(inode, mapping,
849 OSYNC_METADATA|OSYNC_DATA);
850
851 if (err)
852 ret = err;
853 }
854 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
855 }
856
857 return ret;
858 }
859
860 EXPORT_SYMBOL(generic_file_splice_write_nolock);
861
862 /**
863 * generic_file_splice_write - splice data from a pipe to a file
864 * @pipe: pipe info
865 * @out: file to write to
866 * @ppos: position in @out
867 * @len: number of bytes to splice
868 * @flags: splice modifier flags
869 *
870 * Description:
871 * Will either move or copy pages (determined by @flags options) from
872 * the given pipe inode to the given file.
873 *
874 */
875 ssize_t
876 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
877 loff_t *ppos, size_t len, unsigned int flags)
878 {
879 struct address_space *mapping = out->f_mapping;
880 struct inode *inode = mapping->host;
881 ssize_t ret;
882 int err;
883
884 err = should_remove_suid(out->f_path.dentry);
885 if (unlikely(err)) {
886 mutex_lock(&inode->i_mutex);
887 err = __remove_suid(out->f_path.dentry, err);
888 mutex_unlock(&inode->i_mutex);
889 if (err)
890 return err;
891 }
892
893 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
894 if (ret > 0) {
895 unsigned long nr_pages;
896
897 *ppos += ret;
898 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
899
900 /*
901 * If file or inode is SYNC and we actually wrote some data,
902 * sync it.
903 */
904 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
905 mutex_lock(&inode->i_mutex);
906 err = generic_osync_inode(inode, mapping,
907 OSYNC_METADATA|OSYNC_DATA);
908 mutex_unlock(&inode->i_mutex);
909
910 if (err)
911 ret = err;
912 }
913 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
914 }
915
916 return ret;
917 }
918
919 EXPORT_SYMBOL(generic_file_splice_write);
920
921 /**
922 * generic_splice_sendpage - splice data from a pipe to a socket
923 * @pipe: pipe to splice from
924 * @out: socket to write to
925 * @ppos: position in @out
926 * @len: number of bytes to splice
927 * @flags: splice modifier flags
928 *
929 * Description:
930 * Will send @len bytes from the pipe to a network socket. No data copying
931 * is involved.
932 *
933 */
934 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
935 loff_t *ppos, size_t len, unsigned int flags)
936 {
937 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
938 }
939
940 EXPORT_SYMBOL(generic_splice_sendpage);
941
942 /*
943 * Attempt to initiate a splice from pipe to file.
944 */
945 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
946 loff_t *ppos, size_t len, unsigned int flags)
947 {
948 int ret;
949
950 if (unlikely(!out->f_op || !out->f_op->splice_write))
951 return -EINVAL;
952
953 if (unlikely(!(out->f_mode & FMODE_WRITE)))
954 return -EBADF;
955
956 ret = rw_verify_area(WRITE, out, ppos, len);
957 if (unlikely(ret < 0))
958 return ret;
959
960 ret = security_file_permission(out, MAY_WRITE);
961 if (unlikely(ret < 0))
962 return ret;
963
964 return out->f_op->splice_write(pipe, out, ppos, len, flags);
965 }
966
967 /*
968 * Attempt to initiate a splice from a file to a pipe.
969 */
970 static long do_splice_to(struct file *in, loff_t *ppos,
971 struct pipe_inode_info *pipe, size_t len,
972 unsigned int flags)
973 {
974 int ret;
975
976 if (unlikely(!in->f_op || !in->f_op->splice_read))
977 return -EINVAL;
978
979 if (unlikely(!(in->f_mode & FMODE_READ)))
980 return -EBADF;
981
982 ret = rw_verify_area(READ, in, ppos, len);
983 if (unlikely(ret < 0))
984 return ret;
985
986 ret = security_file_permission(in, MAY_READ);
987 if (unlikely(ret < 0))
988 return ret;
989
990 return in->f_op->splice_read(in, ppos, pipe, len, flags);
991 }
992
993 /**
994 * splice_direct_to_actor - splices data directly between two non-pipes
995 * @in: file to splice from
996 * @sd: actor information on where to splice to
997 * @actor: handles the data splicing
998 *
999 * Description:
1000 * This is a special case helper to splice directly between two
1001 * points, without requiring an explicit pipe. Internally an allocated
1002 * pipe is cached in the process, and reused during the life time of
1003 * that process.
1004 *
1005 */
1006 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1007 splice_direct_actor *actor)
1008 {
1009 struct pipe_inode_info *pipe;
1010 long ret, bytes;
1011 umode_t i_mode;
1012 size_t len;
1013 int i, flags;
1014
1015 /*
1016 * We require the input being a regular file, as we don't want to
1017 * randomly drop data for eg socket -> socket splicing. Use the
1018 * piped splicing for that!
1019 */
1020 i_mode = in->f_path.dentry->d_inode->i_mode;
1021 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1022 return -EINVAL;
1023
1024 /*
1025 * neither in nor out is a pipe, setup an internal pipe attached to
1026 * 'out' and transfer the wanted data from 'in' to 'out' through that
1027 */
1028 pipe = current->splice_pipe;
1029 if (unlikely(!pipe)) {
1030 pipe = alloc_pipe_info(NULL);
1031 if (!pipe)
1032 return -ENOMEM;
1033
1034 /*
1035 * We don't have an immediate reader, but we'll read the stuff
1036 * out of the pipe right after the splice_to_pipe(). So set
1037 * PIPE_READERS appropriately.
1038 */
1039 pipe->readers = 1;
1040
1041 current->splice_pipe = pipe;
1042 }
1043
1044 /*
1045 * Do the splice.
1046 */
1047 ret = 0;
1048 bytes = 0;
1049 len = sd->total_len;
1050 flags = sd->flags;
1051
1052 /*
1053 * Don't block on output, we have to drain the direct pipe.
1054 */
1055 sd->flags &= ~SPLICE_F_NONBLOCK;
1056
1057 while (len) {
1058 size_t read_len;
1059 loff_t pos = sd->pos;
1060
1061 ret = do_splice_to(in, &pos, pipe, len, flags);
1062 if (unlikely(ret <= 0))
1063 goto out_release;
1064
1065 read_len = ret;
1066 sd->total_len = read_len;
1067
1068 /*
1069 * NOTE: nonblocking mode only applies to the input. We
1070 * must not do the output in nonblocking mode as then we
1071 * could get stuck data in the internal pipe:
1072 */
1073 ret = actor(pipe, sd);
1074 if (unlikely(ret <= 0))
1075 goto out_release;
1076
1077 bytes += ret;
1078 len -= ret;
1079 sd->pos = pos;
1080
1081 if (ret < read_len)
1082 goto out_release;
1083 }
1084
1085 pipe->nrbufs = pipe->curbuf = 0;
1086 return bytes;
1087
1088 out_release:
1089 /*
1090 * If we did an incomplete transfer we must release
1091 * the pipe buffers in question:
1092 */
1093 for (i = 0; i < PIPE_BUFFERS; i++) {
1094 struct pipe_buffer *buf = pipe->bufs + i;
1095
1096 if (buf->ops) {
1097 buf->ops->release(pipe, buf);
1098 buf->ops = NULL;
1099 }
1100 }
1101 pipe->nrbufs = pipe->curbuf = 0;
1102
1103 /*
1104 * If we transferred some data, return the number of bytes:
1105 */
1106 if (bytes > 0)
1107 return bytes;
1108
1109 return ret;
1110
1111 }
1112 EXPORT_SYMBOL(splice_direct_to_actor);
1113
1114 static int direct_splice_actor(struct pipe_inode_info *pipe,
1115 struct splice_desc *sd)
1116 {
1117 struct file *file = sd->u.file;
1118
1119 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1120 }
1121
1122 /**
1123 * do_splice_direct - splices data directly between two files
1124 * @in: file to splice from
1125 * @ppos: input file offset
1126 * @out: file to splice to
1127 * @len: number of bytes to splice
1128 * @flags: splice modifier flags
1129 *
1130 * Description:
1131 * For use by do_sendfile(). splice can easily emulate sendfile, but
1132 * doing it in the application would incur an extra system call
1133 * (splice in + splice out, as compared to just sendfile()). So this helper
1134 * can splice directly through a process-private pipe.
1135 *
1136 */
1137 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1138 size_t len, unsigned int flags)
1139 {
1140 struct splice_desc sd = {
1141 .len = len,
1142 .total_len = len,
1143 .flags = flags,
1144 .pos = *ppos,
1145 .u.file = out,
1146 };
1147 long ret;
1148
1149 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1150 if (ret > 0)
1151 *ppos += ret;
1152
1153 return ret;
1154 }
1155
1156 /*
1157 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1158 * location, so checking ->i_pipe is not enough to verify that this is a
1159 * pipe.
1160 */
1161 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1162 {
1163 if (S_ISFIFO(inode->i_mode))
1164 return inode->i_pipe;
1165
1166 return NULL;
1167 }
1168
1169 /*
1170 * Determine where to splice to/from.
1171 */
1172 static long do_splice(struct file *in, loff_t __user *off_in,
1173 struct file *out, loff_t __user *off_out,
1174 size_t len, unsigned int flags)
1175 {
1176 struct pipe_inode_info *pipe;
1177 loff_t offset, *off;
1178 long ret;
1179
1180 pipe = pipe_info(in->f_path.dentry->d_inode);
1181 if (pipe) {
1182 if (off_in)
1183 return -ESPIPE;
1184 if (off_out) {
1185 if (out->f_op->llseek == no_llseek)
1186 return -EINVAL;
1187 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1188 return -EFAULT;
1189 off = &offset;
1190 } else
1191 off = &out->f_pos;
1192
1193 ret = do_splice_from(pipe, out, off, len, flags);
1194
1195 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1196 ret = -EFAULT;
1197
1198 return ret;
1199 }
1200
1201 pipe = pipe_info(out->f_path.dentry->d_inode);
1202 if (pipe) {
1203 if (off_out)
1204 return -ESPIPE;
1205 if (off_in) {
1206 if (in->f_op->llseek == no_llseek)
1207 return -EINVAL;
1208 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1209 return -EFAULT;
1210 off = &offset;
1211 } else
1212 off = &in->f_pos;
1213
1214 ret = do_splice_to(in, off, pipe, len, flags);
1215
1216 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1217 ret = -EFAULT;
1218
1219 return ret;
1220 }
1221
1222 return -EINVAL;
1223 }
1224
1225 /*
1226 * Map an iov into an array of pages and offset/length tupples. With the
1227 * partial_page structure, we can map several non-contiguous ranges into
1228 * our ones pages[] map instead of splitting that operation into pieces.
1229 * Could easily be exported as a generic helper for other users, in which
1230 * case one would probably want to add a 'max_nr_pages' parameter as well.
1231 */
1232 static int get_iovec_page_array(const struct iovec __user *iov,
1233 unsigned int nr_vecs, struct page **pages,
1234 struct partial_page *partial, int aligned)
1235 {
1236 int buffers = 0, error = 0;
1237
1238 /*
1239 * It's ok to take the mmap_sem for reading, even
1240 * across a "get_user()".
1241 */
1242 down_read(&current->mm->mmap_sem);
1243
1244 while (nr_vecs) {
1245 unsigned long off, npages;
1246 void __user *base;
1247 size_t len;
1248 int i;
1249
1250 /*
1251 * Get user address base and length for this iovec.
1252 */
1253 error = get_user(base, &iov->iov_base);
1254 if (unlikely(error))
1255 break;
1256 error = get_user(len, &iov->iov_len);
1257 if (unlikely(error))
1258 break;
1259
1260 /*
1261 * Sanity check this iovec. 0 read succeeds.
1262 */
1263 if (unlikely(!len))
1264 break;
1265 error = -EFAULT;
1266 if (unlikely(!base))
1267 break;
1268
1269 /*
1270 * Get this base offset and number of pages, then map
1271 * in the user pages.
1272 */
1273 off = (unsigned long) base & ~PAGE_MASK;
1274
1275 /*
1276 * If asked for alignment, the offset must be zero and the
1277 * length a multiple of the PAGE_SIZE.
1278 */
1279 error = -EINVAL;
1280 if (aligned && (off || len & ~PAGE_MASK))
1281 break;
1282
1283 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1284 if (npages > PIPE_BUFFERS - buffers)
1285 npages = PIPE_BUFFERS - buffers;
1286
1287 error = get_user_pages(current, current->mm,
1288 (unsigned long) base, npages, 0, 0,
1289 &pages[buffers], NULL);
1290
1291 if (unlikely(error <= 0))
1292 break;
1293
1294 /*
1295 * Fill this contiguous range into the partial page map.
1296 */
1297 for (i = 0; i < error; i++) {
1298 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1299
1300 partial[buffers].offset = off;
1301 partial[buffers].len = plen;
1302
1303 off = 0;
1304 len -= plen;
1305 buffers++;
1306 }
1307
1308 /*
1309 * We didn't complete this iov, stop here since it probably
1310 * means we have to move some of this into a pipe to
1311 * be able to continue.
1312 */
1313 if (len)
1314 break;
1315
1316 /*
1317 * Don't continue if we mapped fewer pages than we asked for,
1318 * or if we mapped the max number of pages that we have
1319 * room for.
1320 */
1321 if (error < npages || buffers == PIPE_BUFFERS)
1322 break;
1323
1324 nr_vecs--;
1325 iov++;
1326 }
1327
1328 up_read(&current->mm->mmap_sem);
1329
1330 if (buffers)
1331 return buffers;
1332
1333 return error;
1334 }
1335
1336 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1337 struct splice_desc *sd)
1338 {
1339 char *src;
1340 int ret;
1341
1342 ret = buf->ops->confirm(pipe, buf);
1343 if (unlikely(ret))
1344 return ret;
1345
1346 /*
1347 * See if we can use the atomic maps, by prefaulting in the
1348 * pages and doing an atomic copy
1349 */
1350 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1351 src = buf->ops->map(pipe, buf, 1);
1352 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1353 sd->len);
1354 buf->ops->unmap(pipe, buf, src);
1355 if (!ret) {
1356 ret = sd->len;
1357 goto out;
1358 }
1359 }
1360
1361 /*
1362 * No dice, use slow non-atomic map and copy
1363 */
1364 src = buf->ops->map(pipe, buf, 0);
1365
1366 ret = sd->len;
1367 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1368 ret = -EFAULT;
1369
1370 out:
1371 if (ret > 0)
1372 sd->u.userptr += ret;
1373 buf->ops->unmap(pipe, buf, src);
1374 return ret;
1375 }
1376
1377 /*
1378 * For lack of a better implementation, implement vmsplice() to userspace
1379 * as a simple copy of the pipes pages to the user iov.
1380 */
1381 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1382 unsigned long nr_segs, unsigned int flags)
1383 {
1384 struct pipe_inode_info *pipe;
1385 struct splice_desc sd;
1386 ssize_t size;
1387 int error;
1388 long ret;
1389
1390 pipe = pipe_info(file->f_path.dentry->d_inode);
1391 if (!pipe)
1392 return -EBADF;
1393
1394 if (pipe->inode)
1395 mutex_lock(&pipe->inode->i_mutex);
1396
1397 error = ret = 0;
1398 while (nr_segs) {
1399 void __user *base;
1400 size_t len;
1401
1402 /*
1403 * Get user address base and length for this iovec.
1404 */
1405 error = get_user(base, &iov->iov_base);
1406 if (unlikely(error))
1407 break;
1408 error = get_user(len, &iov->iov_len);
1409 if (unlikely(error))
1410 break;
1411
1412 /*
1413 * Sanity check this iovec. 0 read succeeds.
1414 */
1415 if (unlikely(!len))
1416 break;
1417 if (unlikely(!base)) {
1418 error = -EFAULT;
1419 break;
1420 }
1421
1422 sd.len = 0;
1423 sd.total_len = len;
1424 sd.flags = flags;
1425 sd.u.userptr = base;
1426 sd.pos = 0;
1427
1428 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1429 if (size < 0) {
1430 if (!ret)
1431 ret = size;
1432
1433 break;
1434 }
1435
1436 ret += size;
1437
1438 if (size < len)
1439 break;
1440
1441 nr_segs--;
1442 iov++;
1443 }
1444
1445 if (pipe->inode)
1446 mutex_unlock(&pipe->inode->i_mutex);
1447
1448 if (!ret)
1449 ret = error;
1450
1451 return ret;
1452 }
1453
1454 /*
1455 * vmsplice splices a user address range into a pipe. It can be thought of
1456 * as splice-from-memory, where the regular splice is splice-from-file (or
1457 * to file). In both cases the output is a pipe, naturally.
1458 */
1459 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1460 unsigned long nr_segs, unsigned int flags)
1461 {
1462 struct pipe_inode_info *pipe;
1463 struct page *pages[PIPE_BUFFERS];
1464 struct partial_page partial[PIPE_BUFFERS];
1465 struct splice_pipe_desc spd = {
1466 .pages = pages,
1467 .partial = partial,
1468 .flags = flags,
1469 .ops = &user_page_pipe_buf_ops,
1470 };
1471
1472 pipe = pipe_info(file->f_path.dentry->d_inode);
1473 if (!pipe)
1474 return -EBADF;
1475
1476 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1477 flags & SPLICE_F_GIFT);
1478 if (spd.nr_pages <= 0)
1479 return spd.nr_pages;
1480
1481 return splice_to_pipe(pipe, &spd);
1482 }
1483
1484 /*
1485 * Note that vmsplice only really supports true splicing _from_ user memory
1486 * to a pipe, not the other way around. Splicing from user memory is a simple
1487 * operation that can be supported without any funky alignment restrictions
1488 * or nasty vm tricks. We simply map in the user memory and fill them into
1489 * a pipe. The reverse isn't quite as easy, though. There are two possible
1490 * solutions for that:
1491 *
1492 * - memcpy() the data internally, at which point we might as well just
1493 * do a regular read() on the buffer anyway.
1494 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1495 * has restriction limitations on both ends of the pipe).
1496 *
1497 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1498 *
1499 */
1500 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1501 unsigned long nr_segs, unsigned int flags)
1502 {
1503 struct file *file;
1504 long error;
1505 int fput;
1506
1507 if (unlikely(nr_segs > UIO_MAXIOV))
1508 return -EINVAL;
1509 else if (unlikely(!nr_segs))
1510 return 0;
1511
1512 error = -EBADF;
1513 file = fget_light(fd, &fput);
1514 if (file) {
1515 if (file->f_mode & FMODE_WRITE)
1516 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1517 else if (file->f_mode & FMODE_READ)
1518 error = vmsplice_to_user(file, iov, nr_segs, flags);
1519
1520 fput_light(file, fput);
1521 }
1522
1523 return error;
1524 }
1525
1526 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1527 int fd_out, loff_t __user *off_out,
1528 size_t len, unsigned int flags)
1529 {
1530 long error;
1531 struct file *in, *out;
1532 int fput_in, fput_out;
1533
1534 if (unlikely(!len))
1535 return 0;
1536
1537 error = -EBADF;
1538 in = fget_light(fd_in, &fput_in);
1539 if (in) {
1540 if (in->f_mode & FMODE_READ) {
1541 out = fget_light(fd_out, &fput_out);
1542 if (out) {
1543 if (out->f_mode & FMODE_WRITE)
1544 error = do_splice(in, off_in,
1545 out, off_out,
1546 len, flags);
1547 fput_light(out, fput_out);
1548 }
1549 }
1550
1551 fput_light(in, fput_in);
1552 }
1553
1554 return error;
1555 }
1556
1557 /*
1558 * Make sure there's data to read. Wait for input if we can, otherwise
1559 * return an appropriate error.
1560 */
1561 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1562 {
1563 int ret;
1564
1565 /*
1566 * Check ->nrbufs without the inode lock first. This function
1567 * is speculative anyways, so missing one is ok.
1568 */
1569 if (pipe->nrbufs)
1570 return 0;
1571
1572 ret = 0;
1573 mutex_lock(&pipe->inode->i_mutex);
1574
1575 while (!pipe->nrbufs) {
1576 if (signal_pending(current)) {
1577 ret = -ERESTARTSYS;
1578 break;
1579 }
1580 if (!pipe->writers)
1581 break;
1582 if (!pipe->waiting_writers) {
1583 if (flags & SPLICE_F_NONBLOCK) {
1584 ret = -EAGAIN;
1585 break;
1586 }
1587 }
1588 pipe_wait(pipe);
1589 }
1590
1591 mutex_unlock(&pipe->inode->i_mutex);
1592 return ret;
1593 }
1594
1595 /*
1596 * Make sure there's writeable room. Wait for room if we can, otherwise
1597 * return an appropriate error.
1598 */
1599 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1600 {
1601 int ret;
1602
1603 /*
1604 * Check ->nrbufs without the inode lock first. This function
1605 * is speculative anyways, so missing one is ok.
1606 */
1607 if (pipe->nrbufs < PIPE_BUFFERS)
1608 return 0;
1609
1610 ret = 0;
1611 mutex_lock(&pipe->inode->i_mutex);
1612
1613 while (pipe->nrbufs >= PIPE_BUFFERS) {
1614 if (!pipe->readers) {
1615 send_sig(SIGPIPE, current, 0);
1616 ret = -EPIPE;
1617 break;
1618 }
1619 if (flags & SPLICE_F_NONBLOCK) {
1620 ret = -EAGAIN;
1621 break;
1622 }
1623 if (signal_pending(current)) {
1624 ret = -ERESTARTSYS;
1625 break;
1626 }
1627 pipe->waiting_writers++;
1628 pipe_wait(pipe);
1629 pipe->waiting_writers--;
1630 }
1631
1632 mutex_unlock(&pipe->inode->i_mutex);
1633 return ret;
1634 }
1635
1636 /*
1637 * Link contents of ipipe to opipe.
1638 */
1639 static int link_pipe(struct pipe_inode_info *ipipe,
1640 struct pipe_inode_info *opipe,
1641 size_t len, unsigned int flags)
1642 {
1643 struct pipe_buffer *ibuf, *obuf;
1644 int ret = 0, i = 0, nbuf;
1645
1646 /*
1647 * Potential ABBA deadlock, work around it by ordering lock
1648 * grabbing by inode address. Otherwise two different processes
1649 * could deadlock (one doing tee from A -> B, the other from B -> A).
1650 */
1651 inode_double_lock(ipipe->inode, opipe->inode);
1652
1653 do {
1654 if (!opipe->readers) {
1655 send_sig(SIGPIPE, current, 0);
1656 if (!ret)
1657 ret = -EPIPE;
1658 break;
1659 }
1660
1661 /*
1662 * If we have iterated all input buffers or ran out of
1663 * output room, break.
1664 */
1665 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1666 break;
1667
1668 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1669 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1670
1671 /*
1672 * Get a reference to this pipe buffer,
1673 * so we can copy the contents over.
1674 */
1675 ibuf->ops->get(ipipe, ibuf);
1676
1677 obuf = opipe->bufs + nbuf;
1678 *obuf = *ibuf;
1679
1680 /*
1681 * Don't inherit the gift flag, we need to
1682 * prevent multiple steals of this page.
1683 */
1684 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1685
1686 if (obuf->len > len)
1687 obuf->len = len;
1688
1689 opipe->nrbufs++;
1690 ret += obuf->len;
1691 len -= obuf->len;
1692 i++;
1693 } while (len);
1694
1695 inode_double_unlock(ipipe->inode, opipe->inode);
1696
1697 /*
1698 * If we put data in the output pipe, wakeup any potential readers.
1699 */
1700 if (ret > 0) {
1701 smp_mb();
1702 if (waitqueue_active(&opipe->wait))
1703 wake_up_interruptible(&opipe->wait);
1704 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1705 }
1706
1707 return ret;
1708 }
1709
1710 /*
1711 * This is a tee(1) implementation that works on pipes. It doesn't copy
1712 * any data, it simply references the 'in' pages on the 'out' pipe.
1713 * The 'flags' used are the SPLICE_F_* variants, currently the only
1714 * applicable one is SPLICE_F_NONBLOCK.
1715 */
1716 static long do_tee(struct file *in, struct file *out, size_t len,
1717 unsigned int flags)
1718 {
1719 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1720 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1721 int ret = -EINVAL;
1722
1723 /*
1724 * Duplicate the contents of ipipe to opipe without actually
1725 * copying the data.
1726 */
1727 if (ipipe && opipe && ipipe != opipe) {
1728 /*
1729 * Keep going, unless we encounter an error. The ipipe/opipe
1730 * ordering doesn't really matter.
1731 */
1732 ret = link_ipipe_prep(ipipe, flags);
1733 if (!ret) {
1734 ret = link_opipe_prep(opipe, flags);
1735 if (!ret) {
1736 ret = link_pipe(ipipe, opipe, len, flags);
1737 if (!ret && (flags & SPLICE_F_NONBLOCK))
1738 ret = -EAGAIN;
1739 }
1740 }
1741 }
1742
1743 return ret;
1744 }
1745
1746 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1747 {
1748 struct file *in;
1749 int error, fput_in;
1750
1751 if (unlikely(!len))
1752 return 0;
1753
1754 error = -EBADF;
1755 in = fget_light(fdin, &fput_in);
1756 if (in) {
1757 if (in->f_mode & FMODE_READ) {
1758 int fput_out;
1759 struct file *out = fget_light(fdout, &fput_out);
1760
1761 if (out) {
1762 if (out->f_mode & FMODE_WRITE)
1763 error = do_tee(in, out, len, flags);
1764 fput_light(out, fput_out);
1765 }
1766 }
1767 fput_light(in, fput_in);
1768 }
1769
1770 return error;
1771 }