[PATCH] splice(): fix interaction with readahead
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping;
59
60 lock_page(page);
61
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
65
66 /*
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
73 */
74 wait_on_page_writeback(page);
75
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
78
79 /*
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
82 */
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
86 }
87 }
88
89 /*
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
92 */
93 unlock_page(page);
94 return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
106 {
107 struct page *page = buf->page;
108 int err;
109
110 if (!PageUptodate(page)) {
111 lock_page(page);
112
113 /*
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
116 */
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
120 }
121
122 /*
123 * Uh oh, read-error from disk.
124 */
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
128 }
129
130 /*
131 * Page is ok afterall, we are done.
132 */
133 unlock_page(page);
134 }
135
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154 {
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
157
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
170 };
171
172 /*
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175 */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
259
260 return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
267 {
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
282 };
283
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
290
291 /*
292 * Initiate read-ahead on this page range. however, don't call into
293 * read-ahead if this is a non-zero offset (we are likely doing small
294 * chunk splice and the page is already there) for a single page.
295 */
296 if (!loff || nr_pages > 1)
297 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298
299 /*
300 * Now fill in the holes:
301 */
302 error = 0;
303 total_len = 0;
304
305 /*
306 * Lookup the (hopefully) full range of pages we need.
307 */
308 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309
310 /*
311 * If find_get_pages_contig() returned fewer pages than we needed,
312 * allocate the rest.
313 */
314 index += spd.nr_pages;
315 while (spd.nr_pages < nr_pages) {
316 /*
317 * Page could be there, find_get_pages_contig() breaks on
318 * the first hole.
319 */
320 page = find_get_page(mapping, index);
321 if (!page) {
322 /*
323 * Make sure the read-ahead engine is notified
324 * about this failure.
325 */
326 handle_ra_miss(mapping, &in->f_ra, index);
327
328 /*
329 * page didn't exist, allocate one.
330 */
331 page = page_cache_alloc_cold(mapping);
332 if (!page)
333 break;
334
335 error = add_to_page_cache_lru(page, mapping, index,
336 GFP_KERNEL);
337 if (unlikely(error)) {
338 page_cache_release(page);
339 if (error == -EEXIST)
340 continue;
341 break;
342 }
343 /*
344 * add_to_page_cache() locks the page, unlock it
345 * to avoid convoluting the logic below even more.
346 */
347 unlock_page(page);
348 }
349
350 pages[spd.nr_pages++] = page;
351 index++;
352 }
353
354 /*
355 * Now loop over the map and see if we need to start IO on any
356 * pages, fill in the partial map, etc.
357 */
358 index = *ppos >> PAGE_CACHE_SHIFT;
359 nr_pages = spd.nr_pages;
360 spd.nr_pages = 0;
361 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 unsigned int this_len;
363
364 if (!len)
365 break;
366
367 /*
368 * this_len is the max we'll use from this page
369 */
370 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 page = pages[page_nr];
372
373 /*
374 * If the page isn't uptodate, we may need to start io on it
375 */
376 if (!PageUptodate(page)) {
377 /*
378 * If in nonblock mode then dont block on waiting
379 * for an in-flight io page
380 */
381 if (flags & SPLICE_F_NONBLOCK) {
382 if (TestSetPageLocked(page))
383 break;
384 } else
385 lock_page(page);
386
387 /*
388 * page was truncated, stop here. if this isn't the
389 * first page, we'll just complete what we already
390 * added
391 */
392 if (!page->mapping) {
393 unlock_page(page);
394 break;
395 }
396 /*
397 * page was already under io and is now done, great
398 */
399 if (PageUptodate(page)) {
400 unlock_page(page);
401 goto fill_it;
402 }
403
404 /*
405 * need to read in the page
406 */
407 error = mapping->a_ops->readpage(in, page);
408 if (unlikely(error)) {
409 /*
410 * We really should re-lookup the page here,
411 * but it complicates things a lot. Instead
412 * lets just do what we already stored, and
413 * we'll get it the next time we are called.
414 */
415 if (error == AOP_TRUNCATED_PAGE)
416 error = 0;
417
418 break;
419 }
420
421 /*
422 * i_size must be checked after ->readpage().
423 */
424 isize = i_size_read(mapping->host);
425 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
426 if (unlikely(!isize || index > end_index))
427 break;
428
429 /*
430 * if this is the last page, see if we need to shrink
431 * the length and stop
432 */
433 if (end_index == index) {
434 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
435 if (total_len + loff > isize)
436 break;
437 /*
438 * force quit after adding this page
439 */
440 len = this_len;
441 this_len = min(this_len, loff);
442 loff = 0;
443 }
444 }
445 fill_it:
446 partial[page_nr].offset = loff;
447 partial[page_nr].len = this_len;
448 len -= this_len;
449 total_len += this_len;
450 loff = 0;
451 spd.nr_pages++;
452 index++;
453 }
454
455 /*
456 * Release any pages at the end, if we quit early. 'i' is how far
457 * we got, 'nr_pages' is how many pages are in the map.
458 */
459 while (page_nr < nr_pages)
460 page_cache_release(pages[page_nr++]);
461
462 if (spd.nr_pages)
463 return splice_to_pipe(pipe, &spd);
464
465 return error;
466 }
467
468 /**
469 * generic_file_splice_read - splice data from file to a pipe
470 * @in: file to splice from
471 * @pipe: pipe to splice to
472 * @len: number of bytes to splice
473 * @flags: splice modifier flags
474 *
475 * Will read pages from given file and fill them into a pipe.
476 */
477 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
478 struct pipe_inode_info *pipe, size_t len,
479 unsigned int flags)
480 {
481 ssize_t spliced;
482 int ret;
483
484 ret = 0;
485 spliced = 0;
486
487 while (len) {
488 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
489
490 if (ret < 0)
491 break;
492 else if (!ret) {
493 if (spliced)
494 break;
495 if (flags & SPLICE_F_NONBLOCK) {
496 ret = -EAGAIN;
497 break;
498 }
499 }
500
501 *ppos += ret;
502 len -= ret;
503 spliced += ret;
504 }
505
506 if (spliced)
507 return spliced;
508
509 return ret;
510 }
511
512 EXPORT_SYMBOL(generic_file_splice_read);
513
514 /*
515 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
516 * using sendpage(). Return the number of bytes sent.
517 */
518 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
519 struct pipe_buffer *buf, struct splice_desc *sd)
520 {
521 struct file *file = sd->file;
522 loff_t pos = sd->pos;
523 int ret, more;
524
525 ret = buf->ops->pin(pipe, buf);
526 if (!ret) {
527 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528
529 ret = file->f_op->sendpage(file, buf->page, buf->offset,
530 sd->len, &pos, more);
531 }
532
533 return ret;
534 }
535
536 /*
537 * This is a little more tricky than the file -> pipe splicing. There are
538 * basically three cases:
539 *
540 * - Destination page already exists in the address space and there
541 * are users of it. For that case we have no other option that
542 * copying the data. Tough luck.
543 * - Destination page already exists in the address space, but there
544 * are no users of it. Make sure it's uptodate, then drop it. Fall
545 * through to last case.
546 * - Destination page does not exist, we can add the pipe page to
547 * the page cache and avoid the copy.
548 *
549 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
550 * sd->flags), we attempt to migrate pages from the pipe to the output
551 * file address space page cache. This is possible if no one else has
552 * the pipe page referenced outside of the pipe and page cache. If
553 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
554 * a new page in the output file page cache and fill/dirty that.
555 */
556 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
557 struct splice_desc *sd)
558 {
559 struct file *file = sd->file;
560 struct address_space *mapping = file->f_mapping;
561 unsigned int offset, this_len;
562 struct page *page;
563 pgoff_t index;
564 int ret;
565
566 /*
567 * make sure the data in this buffer is uptodate
568 */
569 ret = buf->ops->pin(pipe, buf);
570 if (unlikely(ret))
571 return ret;
572
573 index = sd->pos >> PAGE_CACHE_SHIFT;
574 offset = sd->pos & ~PAGE_CACHE_MASK;
575
576 this_len = sd->len;
577 if (this_len + offset > PAGE_CACHE_SIZE)
578 this_len = PAGE_CACHE_SIZE - offset;
579
580 find_page:
581 page = find_lock_page(mapping, index);
582 if (!page) {
583 ret = -ENOMEM;
584 page = page_cache_alloc_cold(mapping);
585 if (unlikely(!page))
586 goto out_ret;
587
588 /*
589 * This will also lock the page
590 */
591 ret = add_to_page_cache_lru(page, mapping, index,
592 GFP_KERNEL);
593 if (unlikely(ret))
594 goto out;
595 }
596
597 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
598 if (unlikely(ret)) {
599 loff_t isize = i_size_read(mapping->host);
600
601 if (ret != AOP_TRUNCATED_PAGE)
602 unlock_page(page);
603 page_cache_release(page);
604 if (ret == AOP_TRUNCATED_PAGE)
605 goto find_page;
606
607 /*
608 * prepare_write() may have instantiated a few blocks
609 * outside i_size. Trim these off again.
610 */
611 if (sd->pos + this_len > isize)
612 vmtruncate(mapping->host, isize);
613
614 goto out_ret;
615 }
616
617 if (buf->page != page) {
618 /*
619 * Careful, ->map() uses KM_USER0!
620 */
621 char *src = buf->ops->map(pipe, buf, 1);
622 char *dst = kmap_atomic(page, KM_USER1);
623
624 memcpy(dst + offset, src + buf->offset, this_len);
625 flush_dcache_page(page);
626 kunmap_atomic(dst, KM_USER1);
627 buf->ops->unmap(pipe, buf, src);
628 }
629
630 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
631 if (ret) {
632 if (ret == AOP_TRUNCATED_PAGE) {
633 page_cache_release(page);
634 goto find_page;
635 }
636 if (ret < 0)
637 goto out;
638 /*
639 * Partial write has happened, so 'ret' already initialized by
640 * number of bytes written, Where is nothing we have to do here.
641 */
642 } else
643 ret = this_len;
644 /*
645 * Return the number of bytes written and mark page as
646 * accessed, we are now done!
647 */
648 mark_page_accessed(page);
649 balance_dirty_pages_ratelimited(mapping);
650 out:
651 page_cache_release(page);
652 unlock_page(page);
653 out_ret:
654 return ret;
655 }
656
657 /*
658 * Pipe input worker. Most of this logic works like a regular pipe, the
659 * key here is the 'actor' worker passed in that actually moves the data
660 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
661 */
662 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
663 struct file *out, loff_t *ppos, size_t len,
664 unsigned int flags, splice_actor *actor)
665 {
666 int ret, do_wakeup, err;
667 struct splice_desc sd;
668
669 ret = 0;
670 do_wakeup = 0;
671
672 sd.total_len = len;
673 sd.flags = flags;
674 sd.file = out;
675 sd.pos = *ppos;
676
677 for (;;) {
678 if (pipe->nrbufs) {
679 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
680 const struct pipe_buf_operations *ops = buf->ops;
681
682 sd.len = buf->len;
683 if (sd.len > sd.total_len)
684 sd.len = sd.total_len;
685
686 err = actor(pipe, buf, &sd);
687 if (err <= 0) {
688 if (!ret && err != -ENODATA)
689 ret = err;
690
691 break;
692 }
693
694 ret += err;
695 buf->offset += err;
696 buf->len -= err;
697
698 sd.len -= err;
699 sd.pos += err;
700 sd.total_len -= err;
701 if (sd.len)
702 continue;
703
704 if (!buf->len) {
705 buf->ops = NULL;
706 ops->release(pipe, buf);
707 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
708 pipe->nrbufs--;
709 if (pipe->inode)
710 do_wakeup = 1;
711 }
712
713 if (!sd.total_len)
714 break;
715 }
716
717 if (pipe->nrbufs)
718 continue;
719 if (!pipe->writers)
720 break;
721 if (!pipe->waiting_writers) {
722 if (ret)
723 break;
724 }
725
726 if (flags & SPLICE_F_NONBLOCK) {
727 if (!ret)
728 ret = -EAGAIN;
729 break;
730 }
731
732 if (signal_pending(current)) {
733 if (!ret)
734 ret = -ERESTARTSYS;
735 break;
736 }
737
738 if (do_wakeup) {
739 smp_mb();
740 if (waitqueue_active(&pipe->wait))
741 wake_up_interruptible_sync(&pipe->wait);
742 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
743 do_wakeup = 0;
744 }
745
746 pipe_wait(pipe);
747 }
748
749 if (do_wakeup) {
750 smp_mb();
751 if (waitqueue_active(&pipe->wait))
752 wake_up_interruptible(&pipe->wait);
753 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
754 }
755
756 return ret;
757 }
758 EXPORT_SYMBOL(__splice_from_pipe);
759
760 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
761 loff_t *ppos, size_t len, unsigned int flags,
762 splice_actor *actor)
763 {
764 ssize_t ret;
765 struct inode *inode = out->f_mapping->host;
766
767 /*
768 * The actor worker might be calling ->prepare_write and
769 * ->commit_write. Most of the time, these expect i_mutex to
770 * be held. Since this may result in an ABBA deadlock with
771 * pipe->inode, we have to order lock acquiry here.
772 */
773 inode_double_lock(inode, pipe->inode);
774 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
775 inode_double_unlock(inode, pipe->inode);
776
777 return ret;
778 }
779
780 /**
781 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
782 * @pipe: pipe info
783 * @out: file to write to
784 * @len: number of bytes to splice
785 * @flags: splice modifier flags
786 *
787 * Will either move or copy pages (determined by @flags options) from
788 * the given pipe inode to the given file. The caller is responsible
789 * for acquiring i_mutex on both inodes.
790 *
791 */
792 ssize_t
793 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
794 loff_t *ppos, size_t len, unsigned int flags)
795 {
796 struct address_space *mapping = out->f_mapping;
797 struct inode *inode = mapping->host;
798 ssize_t ret;
799 int err;
800
801 err = remove_suid(out->f_path.dentry);
802 if (unlikely(err))
803 return err;
804
805 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
806 if (ret > 0) {
807 *ppos += ret;
808
809 /*
810 * If file or inode is SYNC and we actually wrote some data,
811 * sync it.
812 */
813 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
814 err = generic_osync_inode(inode, mapping,
815 OSYNC_METADATA|OSYNC_DATA);
816
817 if (err)
818 ret = err;
819 }
820 }
821
822 return ret;
823 }
824
825 EXPORT_SYMBOL(generic_file_splice_write_nolock);
826
827 /**
828 * generic_file_splice_write - splice data from a pipe to a file
829 * @pipe: pipe info
830 * @out: file to write to
831 * @len: number of bytes to splice
832 * @flags: splice modifier flags
833 *
834 * Will either move or copy pages (determined by @flags options) from
835 * the given pipe inode to the given file.
836 *
837 */
838 ssize_t
839 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
840 loff_t *ppos, size_t len, unsigned int flags)
841 {
842 struct address_space *mapping = out->f_mapping;
843 struct inode *inode = mapping->host;
844 ssize_t ret;
845 int err;
846
847 err = should_remove_suid(out->f_path.dentry);
848 if (unlikely(err)) {
849 mutex_lock(&inode->i_mutex);
850 err = __remove_suid(out->f_path.dentry, err);
851 mutex_unlock(&inode->i_mutex);
852 if (err)
853 return err;
854 }
855
856 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
857 if (ret > 0) {
858 *ppos += ret;
859
860 /*
861 * If file or inode is SYNC and we actually wrote some data,
862 * sync it.
863 */
864 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
865 mutex_lock(&inode->i_mutex);
866 err = generic_osync_inode(inode, mapping,
867 OSYNC_METADATA|OSYNC_DATA);
868 mutex_unlock(&inode->i_mutex);
869
870 if (err)
871 ret = err;
872 }
873 }
874
875 return ret;
876 }
877
878 EXPORT_SYMBOL(generic_file_splice_write);
879
880 /**
881 * generic_splice_sendpage - splice data from a pipe to a socket
882 * @inode: pipe inode
883 * @out: socket to write to
884 * @len: number of bytes to splice
885 * @flags: splice modifier flags
886 *
887 * Will send @len bytes from the pipe to a network socket. No data copying
888 * is involved.
889 *
890 */
891 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
892 loff_t *ppos, size_t len, unsigned int flags)
893 {
894 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
895 }
896
897 EXPORT_SYMBOL(generic_splice_sendpage);
898
899 /*
900 * Attempt to initiate a splice from pipe to file.
901 */
902 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
903 loff_t *ppos, size_t len, unsigned int flags)
904 {
905 int ret;
906
907 if (unlikely(!out->f_op || !out->f_op->splice_write))
908 return -EINVAL;
909
910 if (unlikely(!(out->f_mode & FMODE_WRITE)))
911 return -EBADF;
912
913 ret = rw_verify_area(WRITE, out, ppos, len);
914 if (unlikely(ret < 0))
915 return ret;
916
917 return out->f_op->splice_write(pipe, out, ppos, len, flags);
918 }
919
920 /*
921 * Attempt to initiate a splice from a file to a pipe.
922 */
923 static long do_splice_to(struct file *in, loff_t *ppos,
924 struct pipe_inode_info *pipe, size_t len,
925 unsigned int flags)
926 {
927 loff_t isize, left;
928 int ret;
929
930 if (unlikely(!in->f_op || !in->f_op->splice_read))
931 return -EINVAL;
932
933 if (unlikely(!(in->f_mode & FMODE_READ)))
934 return -EBADF;
935
936 ret = rw_verify_area(READ, in, ppos, len);
937 if (unlikely(ret < 0))
938 return ret;
939
940 isize = i_size_read(in->f_mapping->host);
941 if (unlikely(*ppos >= isize))
942 return 0;
943
944 left = isize - *ppos;
945 if (unlikely(left < len))
946 len = left;
947
948 return in->f_op->splice_read(in, ppos, pipe, len, flags);
949 }
950
951 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
952 size_t len, unsigned int flags)
953 {
954 struct pipe_inode_info *pipe;
955 long ret, bytes;
956 loff_t out_off;
957 umode_t i_mode;
958 int i;
959
960 /*
961 * We require the input being a regular file, as we don't want to
962 * randomly drop data for eg socket -> socket splicing. Use the
963 * piped splicing for that!
964 */
965 i_mode = in->f_path.dentry->d_inode->i_mode;
966 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
967 return -EINVAL;
968
969 /*
970 * neither in nor out is a pipe, setup an internal pipe attached to
971 * 'out' and transfer the wanted data from 'in' to 'out' through that
972 */
973 pipe = current->splice_pipe;
974 if (unlikely(!pipe)) {
975 pipe = alloc_pipe_info(NULL);
976 if (!pipe)
977 return -ENOMEM;
978
979 /*
980 * We don't have an immediate reader, but we'll read the stuff
981 * out of the pipe right after the splice_to_pipe(). So set
982 * PIPE_READERS appropriately.
983 */
984 pipe->readers = 1;
985
986 current->splice_pipe = pipe;
987 }
988
989 /*
990 * Do the splice.
991 */
992 ret = 0;
993 bytes = 0;
994 out_off = 0;
995
996 while (len) {
997 size_t read_len, max_read_len;
998
999 /*
1000 * Do at most PIPE_BUFFERS pages worth of transfer:
1001 */
1002 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1003
1004 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1005 if (unlikely(ret < 0))
1006 goto out_release;
1007
1008 read_len = ret;
1009
1010 /*
1011 * NOTE: nonblocking mode only applies to the input. We
1012 * must not do the output in nonblocking mode as then we
1013 * could get stuck data in the internal pipe:
1014 */
1015 ret = do_splice_from(pipe, out, &out_off, read_len,
1016 flags & ~SPLICE_F_NONBLOCK);
1017 if (unlikely(ret < 0))
1018 goto out_release;
1019
1020 bytes += ret;
1021 len -= ret;
1022
1023 /*
1024 * In nonblocking mode, if we got back a short read then
1025 * that was due to either an IO error or due to the
1026 * pagecache entry not being there. In the IO error case
1027 * the _next_ splice attempt will produce a clean IO error
1028 * return value (not a short read), so in both cases it's
1029 * correct to break out of the loop here:
1030 */
1031 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1032 break;
1033 }
1034
1035 pipe->nrbufs = pipe->curbuf = 0;
1036
1037 return bytes;
1038
1039 out_release:
1040 /*
1041 * If we did an incomplete transfer we must release
1042 * the pipe buffers in question:
1043 */
1044 for (i = 0; i < PIPE_BUFFERS; i++) {
1045 struct pipe_buffer *buf = pipe->bufs + i;
1046
1047 if (buf->ops) {
1048 buf->ops->release(pipe, buf);
1049 buf->ops = NULL;
1050 }
1051 }
1052 pipe->nrbufs = pipe->curbuf = 0;
1053
1054 /*
1055 * If we transferred some data, return the number of bytes:
1056 */
1057 if (bytes > 0)
1058 return bytes;
1059
1060 return ret;
1061 }
1062
1063 EXPORT_SYMBOL(do_splice_direct);
1064
1065 /*
1066 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1067 * location, so checking ->i_pipe is not enough to verify that this is a
1068 * pipe.
1069 */
1070 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1071 {
1072 if (S_ISFIFO(inode->i_mode))
1073 return inode->i_pipe;
1074
1075 return NULL;
1076 }
1077
1078 /*
1079 * Determine where to splice to/from.
1080 */
1081 static long do_splice(struct file *in, loff_t __user *off_in,
1082 struct file *out, loff_t __user *off_out,
1083 size_t len, unsigned int flags)
1084 {
1085 struct pipe_inode_info *pipe;
1086 loff_t offset, *off;
1087 long ret;
1088
1089 pipe = pipe_info(in->f_path.dentry->d_inode);
1090 if (pipe) {
1091 if (off_in)
1092 return -ESPIPE;
1093 if (off_out) {
1094 if (out->f_op->llseek == no_llseek)
1095 return -EINVAL;
1096 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1097 return -EFAULT;
1098 off = &offset;
1099 } else
1100 off = &out->f_pos;
1101
1102 ret = do_splice_from(pipe, out, off, len, flags);
1103
1104 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1105 ret = -EFAULT;
1106
1107 return ret;
1108 }
1109
1110 pipe = pipe_info(out->f_path.dentry->d_inode);
1111 if (pipe) {
1112 if (off_out)
1113 return -ESPIPE;
1114 if (off_in) {
1115 if (in->f_op->llseek == no_llseek)
1116 return -EINVAL;
1117 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1118 return -EFAULT;
1119 off = &offset;
1120 } else
1121 off = &in->f_pos;
1122
1123 ret = do_splice_to(in, off, pipe, len, flags);
1124
1125 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1126 ret = -EFAULT;
1127
1128 return ret;
1129 }
1130
1131 return -EINVAL;
1132 }
1133
1134 /*
1135 * Map an iov into an array of pages and offset/length tupples. With the
1136 * partial_page structure, we can map several non-contiguous ranges into
1137 * our ones pages[] map instead of splitting that operation into pieces.
1138 * Could easily be exported as a generic helper for other users, in which
1139 * case one would probably want to add a 'max_nr_pages' parameter as well.
1140 */
1141 static int get_iovec_page_array(const struct iovec __user *iov,
1142 unsigned int nr_vecs, struct page **pages,
1143 struct partial_page *partial, int aligned)
1144 {
1145 int buffers = 0, error = 0;
1146
1147 /*
1148 * It's ok to take the mmap_sem for reading, even
1149 * across a "get_user()".
1150 */
1151 down_read(&current->mm->mmap_sem);
1152
1153 while (nr_vecs) {
1154 unsigned long off, npages;
1155 void __user *base;
1156 size_t len;
1157 int i;
1158
1159 /*
1160 * Get user address base and length for this iovec.
1161 */
1162 error = get_user(base, &iov->iov_base);
1163 if (unlikely(error))
1164 break;
1165 error = get_user(len, &iov->iov_len);
1166 if (unlikely(error))
1167 break;
1168
1169 /*
1170 * Sanity check this iovec. 0 read succeeds.
1171 */
1172 if (unlikely(!len))
1173 break;
1174 error = -EFAULT;
1175 if (unlikely(!base))
1176 break;
1177
1178 /*
1179 * Get this base offset and number of pages, then map
1180 * in the user pages.
1181 */
1182 off = (unsigned long) base & ~PAGE_MASK;
1183
1184 /*
1185 * If asked for alignment, the offset must be zero and the
1186 * length a multiple of the PAGE_SIZE.
1187 */
1188 error = -EINVAL;
1189 if (aligned && (off || len & ~PAGE_MASK))
1190 break;
1191
1192 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1193 if (npages > PIPE_BUFFERS - buffers)
1194 npages = PIPE_BUFFERS - buffers;
1195
1196 error = get_user_pages(current, current->mm,
1197 (unsigned long) base, npages, 0, 0,
1198 &pages[buffers], NULL);
1199
1200 if (unlikely(error <= 0))
1201 break;
1202
1203 /*
1204 * Fill this contiguous range into the partial page map.
1205 */
1206 for (i = 0; i < error; i++) {
1207 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1208
1209 partial[buffers].offset = off;
1210 partial[buffers].len = plen;
1211
1212 off = 0;
1213 len -= plen;
1214 buffers++;
1215 }
1216
1217 /*
1218 * We didn't complete this iov, stop here since it probably
1219 * means we have to move some of this into a pipe to
1220 * be able to continue.
1221 */
1222 if (len)
1223 break;
1224
1225 /*
1226 * Don't continue if we mapped fewer pages than we asked for,
1227 * or if we mapped the max number of pages that we have
1228 * room for.
1229 */
1230 if (error < npages || buffers == PIPE_BUFFERS)
1231 break;
1232
1233 nr_vecs--;
1234 iov++;
1235 }
1236
1237 up_read(&current->mm->mmap_sem);
1238
1239 if (buffers)
1240 return buffers;
1241
1242 return error;
1243 }
1244
1245 /*
1246 * vmsplice splices a user address range into a pipe. It can be thought of
1247 * as splice-from-memory, where the regular splice is splice-from-file (or
1248 * to file). In both cases the output is a pipe, naturally.
1249 *
1250 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1251 * not the other way around. Splicing from user memory is a simple operation
1252 * that can be supported without any funky alignment restrictions or nasty
1253 * vm tricks. We simply map in the user memory and fill them into a pipe.
1254 * The reverse isn't quite as easy, though. There are two possible solutions
1255 * for that:
1256 *
1257 * - memcpy() the data internally, at which point we might as well just
1258 * do a regular read() on the buffer anyway.
1259 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1260 * has restriction limitations on both ends of the pipe).
1261 *
1262 * Alas, it isn't here.
1263 *
1264 */
1265 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1266 unsigned long nr_segs, unsigned int flags)
1267 {
1268 struct pipe_inode_info *pipe;
1269 struct page *pages[PIPE_BUFFERS];
1270 struct partial_page partial[PIPE_BUFFERS];
1271 struct splice_pipe_desc spd = {
1272 .pages = pages,
1273 .partial = partial,
1274 .flags = flags,
1275 .ops = &user_page_pipe_buf_ops,
1276 };
1277
1278 pipe = pipe_info(file->f_path.dentry->d_inode);
1279 if (!pipe)
1280 return -EBADF;
1281 if (unlikely(nr_segs > UIO_MAXIOV))
1282 return -EINVAL;
1283 else if (unlikely(!nr_segs))
1284 return 0;
1285
1286 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1287 flags & SPLICE_F_GIFT);
1288 if (spd.nr_pages <= 0)
1289 return spd.nr_pages;
1290
1291 return splice_to_pipe(pipe, &spd);
1292 }
1293
1294 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1295 unsigned long nr_segs, unsigned int flags)
1296 {
1297 struct file *file;
1298 long error;
1299 int fput;
1300
1301 error = -EBADF;
1302 file = fget_light(fd, &fput);
1303 if (file) {
1304 if (file->f_mode & FMODE_WRITE)
1305 error = do_vmsplice(file, iov, nr_segs, flags);
1306
1307 fput_light(file, fput);
1308 }
1309
1310 return error;
1311 }
1312
1313 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1314 int fd_out, loff_t __user *off_out,
1315 size_t len, unsigned int flags)
1316 {
1317 long error;
1318 struct file *in, *out;
1319 int fput_in, fput_out;
1320
1321 if (unlikely(!len))
1322 return 0;
1323
1324 error = -EBADF;
1325 in = fget_light(fd_in, &fput_in);
1326 if (in) {
1327 if (in->f_mode & FMODE_READ) {
1328 out = fget_light(fd_out, &fput_out);
1329 if (out) {
1330 if (out->f_mode & FMODE_WRITE)
1331 error = do_splice(in, off_in,
1332 out, off_out,
1333 len, flags);
1334 fput_light(out, fput_out);
1335 }
1336 }
1337
1338 fput_light(in, fput_in);
1339 }
1340
1341 return error;
1342 }
1343
1344 /*
1345 * Make sure there's data to read. Wait for input if we can, otherwise
1346 * return an appropriate error.
1347 */
1348 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1349 {
1350 int ret;
1351
1352 /*
1353 * Check ->nrbufs without the inode lock first. This function
1354 * is speculative anyways, so missing one is ok.
1355 */
1356 if (pipe->nrbufs)
1357 return 0;
1358
1359 ret = 0;
1360 mutex_lock(&pipe->inode->i_mutex);
1361
1362 while (!pipe->nrbufs) {
1363 if (signal_pending(current)) {
1364 ret = -ERESTARTSYS;
1365 break;
1366 }
1367 if (!pipe->writers)
1368 break;
1369 if (!pipe->waiting_writers) {
1370 if (flags & SPLICE_F_NONBLOCK) {
1371 ret = -EAGAIN;
1372 break;
1373 }
1374 }
1375 pipe_wait(pipe);
1376 }
1377
1378 mutex_unlock(&pipe->inode->i_mutex);
1379 return ret;
1380 }
1381
1382 /*
1383 * Make sure there's writeable room. Wait for room if we can, otherwise
1384 * return an appropriate error.
1385 */
1386 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1387 {
1388 int ret;
1389
1390 /*
1391 * Check ->nrbufs without the inode lock first. This function
1392 * is speculative anyways, so missing one is ok.
1393 */
1394 if (pipe->nrbufs < PIPE_BUFFERS)
1395 return 0;
1396
1397 ret = 0;
1398 mutex_lock(&pipe->inode->i_mutex);
1399
1400 while (pipe->nrbufs >= PIPE_BUFFERS) {
1401 if (!pipe->readers) {
1402 send_sig(SIGPIPE, current, 0);
1403 ret = -EPIPE;
1404 break;
1405 }
1406 if (flags & SPLICE_F_NONBLOCK) {
1407 ret = -EAGAIN;
1408 break;
1409 }
1410 if (signal_pending(current)) {
1411 ret = -ERESTARTSYS;
1412 break;
1413 }
1414 pipe->waiting_writers++;
1415 pipe_wait(pipe);
1416 pipe->waiting_writers--;
1417 }
1418
1419 mutex_unlock(&pipe->inode->i_mutex);
1420 return ret;
1421 }
1422
1423 /*
1424 * Link contents of ipipe to opipe.
1425 */
1426 static int link_pipe(struct pipe_inode_info *ipipe,
1427 struct pipe_inode_info *opipe,
1428 size_t len, unsigned int flags)
1429 {
1430 struct pipe_buffer *ibuf, *obuf;
1431 int ret = 0, i = 0, nbuf;
1432
1433 /*
1434 * Potential ABBA deadlock, work around it by ordering lock
1435 * grabbing by inode address. Otherwise two different processes
1436 * could deadlock (one doing tee from A -> B, the other from B -> A).
1437 */
1438 inode_double_lock(ipipe->inode, opipe->inode);
1439
1440 do {
1441 if (!opipe->readers) {
1442 send_sig(SIGPIPE, current, 0);
1443 if (!ret)
1444 ret = -EPIPE;
1445 break;
1446 }
1447
1448 /*
1449 * If we have iterated all input buffers or ran out of
1450 * output room, break.
1451 */
1452 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1453 break;
1454
1455 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1456 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1457
1458 /*
1459 * Get a reference to this pipe buffer,
1460 * so we can copy the contents over.
1461 */
1462 ibuf->ops->get(ipipe, ibuf);
1463
1464 obuf = opipe->bufs + nbuf;
1465 *obuf = *ibuf;
1466
1467 /*
1468 * Don't inherit the gift flag, we need to
1469 * prevent multiple steals of this page.
1470 */
1471 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1472
1473 if (obuf->len > len)
1474 obuf->len = len;
1475
1476 opipe->nrbufs++;
1477 ret += obuf->len;
1478 len -= obuf->len;
1479 i++;
1480 } while (len);
1481
1482 inode_double_unlock(ipipe->inode, opipe->inode);
1483
1484 /*
1485 * If we put data in the output pipe, wakeup any potential readers.
1486 */
1487 if (ret > 0) {
1488 smp_mb();
1489 if (waitqueue_active(&opipe->wait))
1490 wake_up_interruptible(&opipe->wait);
1491 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1492 }
1493
1494 return ret;
1495 }
1496
1497 /*
1498 * This is a tee(1) implementation that works on pipes. It doesn't copy
1499 * any data, it simply references the 'in' pages on the 'out' pipe.
1500 * The 'flags' used are the SPLICE_F_* variants, currently the only
1501 * applicable one is SPLICE_F_NONBLOCK.
1502 */
1503 static long do_tee(struct file *in, struct file *out, size_t len,
1504 unsigned int flags)
1505 {
1506 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1507 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1508 int ret = -EINVAL;
1509
1510 /*
1511 * Duplicate the contents of ipipe to opipe without actually
1512 * copying the data.
1513 */
1514 if (ipipe && opipe && ipipe != opipe) {
1515 /*
1516 * Keep going, unless we encounter an error. The ipipe/opipe
1517 * ordering doesn't really matter.
1518 */
1519 ret = link_ipipe_prep(ipipe, flags);
1520 if (!ret) {
1521 ret = link_opipe_prep(opipe, flags);
1522 if (!ret) {
1523 ret = link_pipe(ipipe, opipe, len, flags);
1524 if (!ret && (flags & SPLICE_F_NONBLOCK))
1525 ret = -EAGAIN;
1526 }
1527 }
1528 }
1529
1530 return ret;
1531 }
1532
1533 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1534 {
1535 struct file *in;
1536 int error, fput_in;
1537
1538 if (unlikely(!len))
1539 return 0;
1540
1541 error = -EBADF;
1542 in = fget_light(fdin, &fput_in);
1543 if (in) {
1544 if (in->f_mode & FMODE_READ) {
1545 int fput_out;
1546 struct file *out = fget_light(fdout, &fput_out);
1547
1548 if (out) {
1549 if (out->f_mode & FMODE_WRITE)
1550 error = do_tee(in, out, len, flags);
1551 fput_light(out, fput_out);
1552 }
1553 }
1554 fput_light(in, fput_in);
1555 }
1556
1557 return error;
1558 }