Input: tca8418-keypad - switch to using managed resources
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34
35 /*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43 {
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81 out_unlock:
82 unlock_page(page);
83 return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88 {
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
133 }
134
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163 };
164
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172
173 /**
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
177 *
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
182 *
183 */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
186 {
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 pipe_lock(pipe);
195
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
202 }
203
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
219
220 if (pipe->inode)
221 do_wakeup = 1;
222
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
227
228 break;
229 }
230
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
235 }
236
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
241 }
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
249 }
250
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
254 }
255
256 pipe_unlock(pipe);
257
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
260
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
263
264 return ret;
265 }
266
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269 page_cache_release(spd->pages[i]);
270 }
271
272 /*
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
275 */
276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279
280 spd->nr_pages_max = buffers;
281 if (buffers <= PIPE_DEF_BUFFERS)
282 return 0;
283
284 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
285 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286
287 if (spd->pages && spd->partial)
288 return 0;
289
290 kfree(spd->pages);
291 kfree(spd->partial);
292 return -ENOMEM;
293 }
294
295 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 {
297 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
298 return;
299
300 kfree(spd->pages);
301 kfree(spd->partial);
302 }
303
304 static int
305 __generic_file_splice_read(struct file *in, loff_t *ppos,
306 struct pipe_inode_info *pipe, size_t len,
307 unsigned int flags)
308 {
309 struct address_space *mapping = in->f_mapping;
310 unsigned int loff, nr_pages, req_pages;
311 struct page *pages[PIPE_DEF_BUFFERS];
312 struct partial_page partial[PIPE_DEF_BUFFERS];
313 struct page *page;
314 pgoff_t index, end_index;
315 loff_t isize;
316 int error, page_nr;
317 struct splice_pipe_desc spd = {
318 .pages = pages,
319 .partial = partial,
320 .nr_pages_max = PIPE_DEF_BUFFERS,
321 .flags = flags,
322 .ops = &page_cache_pipe_buf_ops,
323 .spd_release = spd_release_page,
324 };
325
326 if (splice_grow_spd(pipe, &spd))
327 return -ENOMEM;
328
329 index = *ppos >> PAGE_CACHE_SHIFT;
330 loff = *ppos & ~PAGE_CACHE_MASK;
331 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
332 nr_pages = min(req_pages, spd.nr_pages_max);
333
334 /*
335 * Lookup the (hopefully) full range of pages we need.
336 */
337 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
338 index += spd.nr_pages;
339
340 /*
341 * If find_get_pages_contig() returned fewer pages than we needed,
342 * readahead/allocate the rest and fill in the holes.
343 */
344 if (spd.nr_pages < nr_pages)
345 page_cache_sync_readahead(mapping, &in->f_ra, in,
346 index, req_pages - spd.nr_pages);
347
348 error = 0;
349 while (spd.nr_pages < nr_pages) {
350 /*
351 * Page could be there, find_get_pages_contig() breaks on
352 * the first hole.
353 */
354 page = find_get_page(mapping, index);
355 if (!page) {
356 /*
357 * page didn't exist, allocate one.
358 */
359 page = page_cache_alloc_cold(mapping);
360 if (!page)
361 break;
362
363 error = add_to_page_cache_lru(page, mapping, index,
364 GFP_KERNEL);
365 if (unlikely(error)) {
366 page_cache_release(page);
367 if (error == -EEXIST)
368 continue;
369 break;
370 }
371 /*
372 * add_to_page_cache() locks the page, unlock it
373 * to avoid convoluting the logic below even more.
374 */
375 unlock_page(page);
376 }
377
378 spd.pages[spd.nr_pages++] = page;
379 index++;
380 }
381
382 /*
383 * Now loop over the map and see if we need to start IO on any
384 * pages, fill in the partial map, etc.
385 */
386 index = *ppos >> PAGE_CACHE_SHIFT;
387 nr_pages = spd.nr_pages;
388 spd.nr_pages = 0;
389 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
390 unsigned int this_len;
391
392 if (!len)
393 break;
394
395 /*
396 * this_len is the max we'll use from this page
397 */
398 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
399 page = spd.pages[page_nr];
400
401 if (PageReadahead(page))
402 page_cache_async_readahead(mapping, &in->f_ra, in,
403 page, index, req_pages - page_nr);
404
405 /*
406 * If the page isn't uptodate, we may need to start io on it
407 */
408 if (!PageUptodate(page)) {
409 lock_page(page);
410
411 /*
412 * Page was truncated, or invalidated by the
413 * filesystem. Redo the find/create, but this time the
414 * page is kept locked, so there's no chance of another
415 * race with truncate/invalidate.
416 */
417 if (!page->mapping) {
418 unlock_page(page);
419 page = find_or_create_page(mapping, index,
420 mapping_gfp_mask(mapping));
421
422 if (!page) {
423 error = -ENOMEM;
424 break;
425 }
426 page_cache_release(spd.pages[page_nr]);
427 spd.pages[page_nr] = page;
428 }
429 /*
430 * page was already under io and is now done, great
431 */
432 if (PageUptodate(page)) {
433 unlock_page(page);
434 goto fill_it;
435 }
436
437 /*
438 * need to read in the page
439 */
440 error = mapping->a_ops->readpage(in, page);
441 if (unlikely(error)) {
442 /*
443 * We really should re-lookup the page here,
444 * but it complicates things a lot. Instead
445 * lets just do what we already stored, and
446 * we'll get it the next time we are called.
447 */
448 if (error == AOP_TRUNCATED_PAGE)
449 error = 0;
450
451 break;
452 }
453 }
454 fill_it:
455 /*
456 * i_size must be checked after PageUptodate.
457 */
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
462
463 /*
464 * if this is the last page, see if we need to shrink
465 * the length and stop
466 */
467 if (end_index == index) {
468 unsigned int plen;
469
470 /*
471 * max good bytes in this page
472 */
473 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
474 if (plen <= loff)
475 break;
476
477 /*
478 * force quit after adding this page
479 */
480 this_len = min(this_len, plen - loff);
481 len = this_len;
482 }
483
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
490 }
491
492 /*
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
495 */
496 while (page_nr < nr_pages)
497 page_cache_release(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
502
503 splice_shrink_spd(&spd);
504 return error;
505 }
506
507 /**
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
514 *
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
519 *
520 */
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
524 {
525 loff_t isize, left;
526 int ret;
527
528 isize = i_size_read(in->f_mapping->host);
529 if (unlikely(*ppos >= isize))
530 return 0;
531
532 left = isize - *ppos;
533 if (unlikely(left < len))
534 len = left;
535
536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 if (ret > 0) {
538 *ppos += ret;
539 file_accessed(in);
540 }
541
542 return ret;
543 }
544 EXPORT_SYMBOL(generic_file_splice_read);
545
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 .can_merge = 0,
548 .map = generic_pipe_buf_map,
549 .unmap = generic_pipe_buf_unmap,
550 .confirm = generic_pipe_buf_confirm,
551 .release = generic_pipe_buf_release,
552 .steal = generic_pipe_buf_steal,
553 .get = generic_pipe_buf_get,
554 };
555
556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
557 unsigned long vlen, loff_t offset)
558 {
559 mm_segment_t old_fs;
560 loff_t pos = offset;
561 ssize_t res;
562
563 old_fs = get_fs();
564 set_fs(get_ds());
565 /* The cast to a user pointer is valid due to the set_fs() */
566 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
567 set_fs(old_fs);
568
569 return res;
570 }
571
572 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
573 loff_t pos)
574 {
575 mm_segment_t old_fs;
576 ssize_t res;
577
578 old_fs = get_fs();
579 set_fs(get_ds());
580 /* The cast to a user pointer is valid due to the set_fs() */
581 res = vfs_write(file, (const char __user *)buf, count, &pos);
582 set_fs(old_fs);
583
584 return res;
585 }
586
587 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
588 struct pipe_inode_info *pipe, size_t len,
589 unsigned int flags)
590 {
591 unsigned int nr_pages;
592 unsigned int nr_freed;
593 size_t offset;
594 struct page *pages[PIPE_DEF_BUFFERS];
595 struct partial_page partial[PIPE_DEF_BUFFERS];
596 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
597 ssize_t res;
598 size_t this_len;
599 int error;
600 int i;
601 struct splice_pipe_desc spd = {
602 .pages = pages,
603 .partial = partial,
604 .nr_pages_max = PIPE_DEF_BUFFERS,
605 .flags = flags,
606 .ops = &default_pipe_buf_ops,
607 .spd_release = spd_release_page,
608 };
609
610 if (splice_grow_spd(pipe, &spd))
611 return -ENOMEM;
612
613 res = -ENOMEM;
614 vec = __vec;
615 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
616 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
617 if (!vec)
618 goto shrink_ret;
619 }
620
621 offset = *ppos & ~PAGE_CACHE_MASK;
622 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
623
624 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
625 struct page *page;
626
627 page = alloc_page(GFP_USER);
628 error = -ENOMEM;
629 if (!page)
630 goto err;
631
632 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
633 vec[i].iov_base = (void __user *) page_address(page);
634 vec[i].iov_len = this_len;
635 spd.pages[i] = page;
636 spd.nr_pages++;
637 len -= this_len;
638 offset = 0;
639 }
640
641 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
642 if (res < 0) {
643 error = res;
644 goto err;
645 }
646
647 error = 0;
648 if (!res)
649 goto err;
650
651 nr_freed = 0;
652 for (i = 0; i < spd.nr_pages; i++) {
653 this_len = min_t(size_t, vec[i].iov_len, res);
654 spd.partial[i].offset = 0;
655 spd.partial[i].len = this_len;
656 if (!this_len) {
657 __free_page(spd.pages[i]);
658 spd.pages[i] = NULL;
659 nr_freed++;
660 }
661 res -= this_len;
662 }
663 spd.nr_pages -= nr_freed;
664
665 res = splice_to_pipe(pipe, &spd);
666 if (res > 0)
667 *ppos += res;
668
669 shrink_ret:
670 if (vec != __vec)
671 kfree(vec);
672 splice_shrink_spd(&spd);
673 return res;
674
675 err:
676 for (i = 0; i < spd.nr_pages; i++)
677 __free_page(spd.pages[i]);
678
679 res = error;
680 goto shrink_ret;
681 }
682 EXPORT_SYMBOL(default_file_splice_read);
683
684 /*
685 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
686 * using sendpage(). Return the number of bytes sent.
687 */
688 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
689 struct pipe_buffer *buf, struct splice_desc *sd)
690 {
691 struct file *file = sd->u.file;
692 loff_t pos = sd->pos;
693 int more;
694
695 if (!likely(file->f_op && file->f_op->sendpage))
696 return -EINVAL;
697
698 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
699 if (sd->len < sd->total_len)
700 more |= MSG_SENDPAGE_NOTLAST;
701 return file->f_op->sendpage(file, buf->page, buf->offset,
702 sd->len, &pos, more);
703 }
704
705 /*
706 * This is a little more tricky than the file -> pipe splicing. There are
707 * basically three cases:
708 *
709 * - Destination page already exists in the address space and there
710 * are users of it. For that case we have no other option that
711 * copying the data. Tough luck.
712 * - Destination page already exists in the address space, but there
713 * are no users of it. Make sure it's uptodate, then drop it. Fall
714 * through to last case.
715 * - Destination page does not exist, we can add the pipe page to
716 * the page cache and avoid the copy.
717 *
718 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
719 * sd->flags), we attempt to migrate pages from the pipe to the output
720 * file address space page cache. This is possible if no one else has
721 * the pipe page referenced outside of the pipe and page cache. If
722 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
723 * a new page in the output file page cache and fill/dirty that.
724 */
725 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
726 struct splice_desc *sd)
727 {
728 struct file *file = sd->u.file;
729 struct address_space *mapping = file->f_mapping;
730 unsigned int offset, this_len;
731 struct page *page;
732 void *fsdata;
733 int ret;
734
735 offset = sd->pos & ~PAGE_CACHE_MASK;
736
737 this_len = sd->len;
738 if (this_len + offset > PAGE_CACHE_SIZE)
739 this_len = PAGE_CACHE_SIZE - offset;
740
741 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
742 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
743 if (unlikely(ret))
744 goto out;
745
746 if (buf->page != page) {
747 char *src = buf->ops->map(pipe, buf, 1);
748 char *dst = kmap_atomic(page);
749
750 memcpy(dst + offset, src + buf->offset, this_len);
751 flush_dcache_page(page);
752 kunmap_atomic(dst);
753 buf->ops->unmap(pipe, buf, src);
754 }
755 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
756 page, fsdata);
757 out:
758 return ret;
759 }
760 EXPORT_SYMBOL(pipe_to_file);
761
762 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
763 {
764 smp_mb();
765 if (waitqueue_active(&pipe->wait))
766 wake_up_interruptible(&pipe->wait);
767 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
768 }
769
770 /**
771 * splice_from_pipe_feed - feed available data from a pipe to a file
772 * @pipe: pipe to splice from
773 * @sd: information to @actor
774 * @actor: handler that splices the data
775 *
776 * Description:
777 * This function loops over the pipe and calls @actor to do the
778 * actual moving of a single struct pipe_buffer to the desired
779 * destination. It returns when there's no more buffers left in
780 * the pipe or if the requested number of bytes (@sd->total_len)
781 * have been copied. It returns a positive number (one) if the
782 * pipe needs to be filled with more data, zero if the required
783 * number of bytes have been copied and -errno on error.
784 *
785 * This, together with splice_from_pipe_{begin,end,next}, may be
786 * used to implement the functionality of __splice_from_pipe() when
787 * locking is required around copying the pipe buffers to the
788 * destination.
789 */
790 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
791 splice_actor *actor)
792 {
793 int ret;
794
795 while (pipe->nrbufs) {
796 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
797 const struct pipe_buf_operations *ops = buf->ops;
798
799 sd->len = buf->len;
800 if (sd->len > sd->total_len)
801 sd->len = sd->total_len;
802
803 ret = buf->ops->confirm(pipe, buf);
804 if (unlikely(ret)) {
805 if (ret == -ENODATA)
806 ret = 0;
807 return ret;
808 }
809
810 ret = actor(pipe, buf, sd);
811 if (ret <= 0)
812 return ret;
813
814 buf->offset += ret;
815 buf->len -= ret;
816
817 sd->num_spliced += ret;
818 sd->len -= ret;
819 sd->pos += ret;
820 sd->total_len -= ret;
821
822 if (!buf->len) {
823 buf->ops = NULL;
824 ops->release(pipe, buf);
825 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826 pipe->nrbufs--;
827 if (pipe->inode)
828 sd->need_wakeup = true;
829 }
830
831 if (!sd->total_len)
832 return 0;
833 }
834
835 return 1;
836 }
837 EXPORT_SYMBOL(splice_from_pipe_feed);
838
839 /**
840 * splice_from_pipe_next - wait for some data to splice from
841 * @pipe: pipe to splice from
842 * @sd: information about the splice operation
843 *
844 * Description:
845 * This function will wait for some data and return a positive
846 * value (one) if pipe buffers are available. It will return zero
847 * or -errno if no more data needs to be spliced.
848 */
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 {
851 while (!pipe->nrbufs) {
852 if (!pipe->writers)
853 return 0;
854
855 if (!pipe->waiting_writers && sd->num_spliced)
856 return 0;
857
858 if (sd->flags & SPLICE_F_NONBLOCK)
859 return -EAGAIN;
860
861 if (signal_pending(current))
862 return -ERESTARTSYS;
863
864 if (sd->need_wakeup) {
865 wakeup_pipe_writers(pipe);
866 sd->need_wakeup = false;
867 }
868
869 pipe_wait(pipe);
870 }
871
872 return 1;
873 }
874 EXPORT_SYMBOL(splice_from_pipe_next);
875
876 /**
877 * splice_from_pipe_begin - start splicing from pipe
878 * @sd: information about the splice operation
879 *
880 * Description:
881 * This function should be called before a loop containing
882 * splice_from_pipe_next() and splice_from_pipe_feed() to
883 * initialize the necessary fields of @sd.
884 */
885 void splice_from_pipe_begin(struct splice_desc *sd)
886 {
887 sd->num_spliced = 0;
888 sd->need_wakeup = false;
889 }
890 EXPORT_SYMBOL(splice_from_pipe_begin);
891
892 /**
893 * splice_from_pipe_end - finish splicing from pipe
894 * @pipe: pipe to splice from
895 * @sd: information about the splice operation
896 *
897 * Description:
898 * This function will wake up pipe writers if necessary. It should
899 * be called after a loop containing splice_from_pipe_next() and
900 * splice_from_pipe_feed().
901 */
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 {
904 if (sd->need_wakeup)
905 wakeup_pipe_writers(pipe);
906 }
907 EXPORT_SYMBOL(splice_from_pipe_end);
908
909 /**
910 * __splice_from_pipe - splice data from a pipe to given actor
911 * @pipe: pipe to splice from
912 * @sd: information to @actor
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * This function does little more than loop over the pipe and call
917 * @actor to do the actual moving of a single struct pipe_buffer to
918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
919 * pipe_to_user.
920 *
921 */
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923 splice_actor *actor)
924 {
925 int ret;
926
927 splice_from_pipe_begin(sd);
928 do {
929 ret = splice_from_pipe_next(pipe, sd);
930 if (ret > 0)
931 ret = splice_from_pipe_feed(pipe, sd, actor);
932 } while (ret > 0);
933 splice_from_pipe_end(pipe, sd);
934
935 return sd->num_spliced ? sd->num_spliced : ret;
936 }
937 EXPORT_SYMBOL(__splice_from_pipe);
938
939 /**
940 * splice_from_pipe - splice data from a pipe to a file
941 * @pipe: pipe to splice from
942 * @out: file to splice to
943 * @ppos: position in @out
944 * @len: how many bytes to splice
945 * @flags: splice modifier flags
946 * @actor: handler that splices the data
947 *
948 * Description:
949 * See __splice_from_pipe. This function locks the pipe inode,
950 * otherwise it's identical to __splice_from_pipe().
951 *
952 */
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954 loff_t *ppos, size_t len, unsigned int flags,
955 splice_actor *actor)
956 {
957 ssize_t ret;
958 struct splice_desc sd = {
959 .total_len = len,
960 .flags = flags,
961 .pos = *ppos,
962 .u.file = out,
963 };
964
965 pipe_lock(pipe);
966 ret = __splice_from_pipe(pipe, &sd, actor);
967 pipe_unlock(pipe);
968
969 return ret;
970 }
971
972 /**
973 * generic_file_splice_write - splice data from a pipe to a file
974 * @pipe: pipe info
975 * @out: file to write to
976 * @ppos: position in @out
977 * @len: number of bytes to splice
978 * @flags: splice modifier flags
979 *
980 * Description:
981 * Will either move or copy pages (determined by @flags options) from
982 * the given pipe inode to the given file.
983 *
984 */
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987 loff_t *ppos, size_t len, unsigned int flags)
988 {
989 struct address_space *mapping = out->f_mapping;
990 struct inode *inode = mapping->host;
991 struct splice_desc sd = {
992 .total_len = len,
993 .flags = flags,
994 .pos = *ppos,
995 .u.file = out,
996 };
997 ssize_t ret;
998
999 sb_start_write(inode->i_sb);
1000
1001 pipe_lock(pipe);
1002
1003 splice_from_pipe_begin(&sd);
1004 do {
1005 ret = splice_from_pipe_next(pipe, &sd);
1006 if (ret <= 0)
1007 break;
1008
1009 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1010 ret = file_remove_suid(out);
1011 if (!ret) {
1012 ret = file_update_time(out);
1013 if (!ret)
1014 ret = splice_from_pipe_feed(pipe, &sd,
1015 pipe_to_file);
1016 }
1017 mutex_unlock(&inode->i_mutex);
1018 } while (ret > 0);
1019 splice_from_pipe_end(pipe, &sd);
1020
1021 pipe_unlock(pipe);
1022
1023 if (sd.num_spliced)
1024 ret = sd.num_spliced;
1025
1026 if (ret > 0) {
1027 unsigned long nr_pages;
1028 int err;
1029
1030 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1031
1032 err = generic_write_sync(out, *ppos, ret);
1033 if (err)
1034 ret = err;
1035 else
1036 *ppos += ret;
1037 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1038 }
1039 sb_end_write(inode->i_sb);
1040
1041 return ret;
1042 }
1043
1044 EXPORT_SYMBOL(generic_file_splice_write);
1045
1046 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1047 struct splice_desc *sd)
1048 {
1049 int ret;
1050 void *data;
1051
1052 data = buf->ops->map(pipe, buf, 0);
1053 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1054 buf->ops->unmap(pipe, buf, data);
1055
1056 return ret;
1057 }
1058
1059 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1060 struct file *out, loff_t *ppos,
1061 size_t len, unsigned int flags)
1062 {
1063 ssize_t ret;
1064
1065 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1066 if (ret > 0)
1067 *ppos += ret;
1068
1069 return ret;
1070 }
1071
1072 /**
1073 * generic_splice_sendpage - splice data from a pipe to a socket
1074 * @pipe: pipe to splice from
1075 * @out: socket to write to
1076 * @ppos: position in @out
1077 * @len: number of bytes to splice
1078 * @flags: splice modifier flags
1079 *
1080 * Description:
1081 * Will send @len bytes from the pipe to a network socket. No data copying
1082 * is involved.
1083 *
1084 */
1085 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1086 loff_t *ppos, size_t len, unsigned int flags)
1087 {
1088 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1089 }
1090
1091 EXPORT_SYMBOL(generic_splice_sendpage);
1092
1093 /*
1094 * Attempt to initiate a splice from pipe to file.
1095 */
1096 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1097 loff_t *ppos, size_t len, unsigned int flags)
1098 {
1099 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1100 loff_t *, size_t, unsigned int);
1101 int ret;
1102
1103 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1104 return -EBADF;
1105
1106 if (unlikely(out->f_flags & O_APPEND))
1107 return -EINVAL;
1108
1109 ret = rw_verify_area(WRITE, out, ppos, len);
1110 if (unlikely(ret < 0))
1111 return ret;
1112
1113 if (out->f_op && out->f_op->splice_write)
1114 splice_write = out->f_op->splice_write;
1115 else
1116 splice_write = default_file_splice_write;
1117
1118 return splice_write(pipe, out, ppos, len, flags);
1119 }
1120
1121 /*
1122 * Attempt to initiate a splice from a file to a pipe.
1123 */
1124 static long do_splice_to(struct file *in, loff_t *ppos,
1125 struct pipe_inode_info *pipe, size_t len,
1126 unsigned int flags)
1127 {
1128 ssize_t (*splice_read)(struct file *, loff_t *,
1129 struct pipe_inode_info *, size_t, unsigned int);
1130 int ret;
1131
1132 if (unlikely(!(in->f_mode & FMODE_READ)))
1133 return -EBADF;
1134
1135 ret = rw_verify_area(READ, in, ppos, len);
1136 if (unlikely(ret < 0))
1137 return ret;
1138
1139 if (in->f_op && in->f_op->splice_read)
1140 splice_read = in->f_op->splice_read;
1141 else
1142 splice_read = default_file_splice_read;
1143
1144 return splice_read(in, ppos, pipe, len, flags);
1145 }
1146
1147 /**
1148 * splice_direct_to_actor - splices data directly between two non-pipes
1149 * @in: file to splice from
1150 * @sd: actor information on where to splice to
1151 * @actor: handles the data splicing
1152 *
1153 * Description:
1154 * This is a special case helper to splice directly between two
1155 * points, without requiring an explicit pipe. Internally an allocated
1156 * pipe is cached in the process, and reused during the lifetime of
1157 * that process.
1158 *
1159 */
1160 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1161 splice_direct_actor *actor)
1162 {
1163 struct pipe_inode_info *pipe;
1164 long ret, bytes;
1165 umode_t i_mode;
1166 size_t len;
1167 int i, flags;
1168
1169 /*
1170 * We require the input being a regular file, as we don't want to
1171 * randomly drop data for eg socket -> socket splicing. Use the
1172 * piped splicing for that!
1173 */
1174 i_mode = in->f_path.dentry->d_inode->i_mode;
1175 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1176 return -EINVAL;
1177
1178 /*
1179 * neither in nor out is a pipe, setup an internal pipe attached to
1180 * 'out' and transfer the wanted data from 'in' to 'out' through that
1181 */
1182 pipe = current->splice_pipe;
1183 if (unlikely(!pipe)) {
1184 pipe = alloc_pipe_info(NULL);
1185 if (!pipe)
1186 return -ENOMEM;
1187
1188 /*
1189 * We don't have an immediate reader, but we'll read the stuff
1190 * out of the pipe right after the splice_to_pipe(). So set
1191 * PIPE_READERS appropriately.
1192 */
1193 pipe->readers = 1;
1194
1195 current->splice_pipe = pipe;
1196 }
1197
1198 /*
1199 * Do the splice.
1200 */
1201 ret = 0;
1202 bytes = 0;
1203 len = sd->total_len;
1204 flags = sd->flags;
1205
1206 /*
1207 * Don't block on output, we have to drain the direct pipe.
1208 */
1209 sd->flags &= ~SPLICE_F_NONBLOCK;
1210
1211 while (len) {
1212 size_t read_len;
1213 loff_t pos = sd->pos, prev_pos = pos;
1214
1215 ret = do_splice_to(in, &pos, pipe, len, flags);
1216 if (unlikely(ret <= 0))
1217 goto out_release;
1218
1219 read_len = ret;
1220 sd->total_len = read_len;
1221
1222 /*
1223 * NOTE: nonblocking mode only applies to the input. We
1224 * must not do the output in nonblocking mode as then we
1225 * could get stuck data in the internal pipe:
1226 */
1227 ret = actor(pipe, sd);
1228 if (unlikely(ret <= 0)) {
1229 sd->pos = prev_pos;
1230 goto out_release;
1231 }
1232
1233 bytes += ret;
1234 len -= ret;
1235 sd->pos = pos;
1236
1237 if (ret < read_len) {
1238 sd->pos = prev_pos + ret;
1239 goto out_release;
1240 }
1241 }
1242
1243 done:
1244 pipe->nrbufs = pipe->curbuf = 0;
1245 file_accessed(in);
1246 return bytes;
1247
1248 out_release:
1249 /*
1250 * If we did an incomplete transfer we must release
1251 * the pipe buffers in question:
1252 */
1253 for (i = 0; i < pipe->buffers; i++) {
1254 struct pipe_buffer *buf = pipe->bufs + i;
1255
1256 if (buf->ops) {
1257 buf->ops->release(pipe, buf);
1258 buf->ops = NULL;
1259 }
1260 }
1261
1262 if (!bytes)
1263 bytes = ret;
1264
1265 goto done;
1266 }
1267 EXPORT_SYMBOL(splice_direct_to_actor);
1268
1269 static int direct_splice_actor(struct pipe_inode_info *pipe,
1270 struct splice_desc *sd)
1271 {
1272 struct file *file = sd->u.file;
1273
1274 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1275 sd->flags);
1276 }
1277
1278 /**
1279 * do_splice_direct - splices data directly between two files
1280 * @in: file to splice from
1281 * @ppos: input file offset
1282 * @out: file to splice to
1283 * @len: number of bytes to splice
1284 * @flags: splice modifier flags
1285 *
1286 * Description:
1287 * For use by do_sendfile(). splice can easily emulate sendfile, but
1288 * doing it in the application would incur an extra system call
1289 * (splice in + splice out, as compared to just sendfile()). So this helper
1290 * can splice directly through a process-private pipe.
1291 *
1292 */
1293 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294 size_t len, unsigned int flags)
1295 {
1296 struct splice_desc sd = {
1297 .len = len,
1298 .total_len = len,
1299 .flags = flags,
1300 .pos = *ppos,
1301 .u.file = out,
1302 };
1303 long ret;
1304
1305 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1306 if (ret > 0)
1307 *ppos = sd.pos;
1308
1309 return ret;
1310 }
1311
1312 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1313 struct pipe_inode_info *opipe,
1314 size_t len, unsigned int flags);
1315
1316 /*
1317 * Determine where to splice to/from.
1318 */
1319 static long do_splice(struct file *in, loff_t __user *off_in,
1320 struct file *out, loff_t __user *off_out,
1321 size_t len, unsigned int flags)
1322 {
1323 struct pipe_inode_info *ipipe;
1324 struct pipe_inode_info *opipe;
1325 loff_t offset, *off;
1326 long ret;
1327
1328 ipipe = get_pipe_info(in);
1329 opipe = get_pipe_info(out);
1330
1331 if (ipipe && opipe) {
1332 if (off_in || off_out)
1333 return -ESPIPE;
1334
1335 if (!(in->f_mode & FMODE_READ))
1336 return -EBADF;
1337
1338 if (!(out->f_mode & FMODE_WRITE))
1339 return -EBADF;
1340
1341 /* Splicing to self would be fun, but... */
1342 if (ipipe == opipe)
1343 return -EINVAL;
1344
1345 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1346 }
1347
1348 if (ipipe) {
1349 if (off_in)
1350 return -ESPIPE;
1351 if (off_out) {
1352 if (!(out->f_mode & FMODE_PWRITE))
1353 return -EINVAL;
1354 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1355 return -EFAULT;
1356 off = &offset;
1357 } else
1358 off = &out->f_pos;
1359
1360 ret = do_splice_from(ipipe, out, off, len, flags);
1361
1362 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1363 ret = -EFAULT;
1364
1365 return ret;
1366 }
1367
1368 if (opipe) {
1369 if (off_out)
1370 return -ESPIPE;
1371 if (off_in) {
1372 if (!(in->f_mode & FMODE_PREAD))
1373 return -EINVAL;
1374 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1375 return -EFAULT;
1376 off = &offset;
1377 } else
1378 off = &in->f_pos;
1379
1380 ret = do_splice_to(in, off, opipe, len, flags);
1381
1382 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1383 ret = -EFAULT;
1384
1385 return ret;
1386 }
1387
1388 return -EINVAL;
1389 }
1390
1391 /*
1392 * Map an iov into an array of pages and offset/length tupples. With the
1393 * partial_page structure, we can map several non-contiguous ranges into
1394 * our ones pages[] map instead of splitting that operation into pieces.
1395 * Could easily be exported as a generic helper for other users, in which
1396 * case one would probably want to add a 'max_nr_pages' parameter as well.
1397 */
1398 static int get_iovec_page_array(const struct iovec __user *iov,
1399 unsigned int nr_vecs, struct page **pages,
1400 struct partial_page *partial, bool aligned,
1401 unsigned int pipe_buffers)
1402 {
1403 int buffers = 0, error = 0;
1404
1405 while (nr_vecs) {
1406 unsigned long off, npages;
1407 struct iovec entry;
1408 void __user *base;
1409 size_t len;
1410 int i;
1411
1412 error = -EFAULT;
1413 if (copy_from_user(&entry, iov, sizeof(entry)))
1414 break;
1415
1416 base = entry.iov_base;
1417 len = entry.iov_len;
1418
1419 /*
1420 * Sanity check this iovec. 0 read succeeds.
1421 */
1422 error = 0;
1423 if (unlikely(!len))
1424 break;
1425 error = -EFAULT;
1426 if (!access_ok(VERIFY_READ, base, len))
1427 break;
1428
1429 /*
1430 * Get this base offset and number of pages, then map
1431 * in the user pages.
1432 */
1433 off = (unsigned long) base & ~PAGE_MASK;
1434
1435 /*
1436 * If asked for alignment, the offset must be zero and the
1437 * length a multiple of the PAGE_SIZE.
1438 */
1439 error = -EINVAL;
1440 if (aligned && (off || len & ~PAGE_MASK))
1441 break;
1442
1443 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1444 if (npages > pipe_buffers - buffers)
1445 npages = pipe_buffers - buffers;
1446
1447 error = get_user_pages_fast((unsigned long)base, npages,
1448 0, &pages[buffers]);
1449
1450 if (unlikely(error <= 0))
1451 break;
1452
1453 /*
1454 * Fill this contiguous range into the partial page map.
1455 */
1456 for (i = 0; i < error; i++) {
1457 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1458
1459 partial[buffers].offset = off;
1460 partial[buffers].len = plen;
1461
1462 off = 0;
1463 len -= plen;
1464 buffers++;
1465 }
1466
1467 /*
1468 * We didn't complete this iov, stop here since it probably
1469 * means we have to move some of this into a pipe to
1470 * be able to continue.
1471 */
1472 if (len)
1473 break;
1474
1475 /*
1476 * Don't continue if we mapped fewer pages than we asked for,
1477 * or if we mapped the max number of pages that we have
1478 * room for.
1479 */
1480 if (error < npages || buffers == pipe_buffers)
1481 break;
1482
1483 nr_vecs--;
1484 iov++;
1485 }
1486
1487 if (buffers)
1488 return buffers;
1489
1490 return error;
1491 }
1492
1493 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1494 struct splice_desc *sd)
1495 {
1496 char *src;
1497 int ret;
1498
1499 /*
1500 * See if we can use the atomic maps, by prefaulting in the
1501 * pages and doing an atomic copy
1502 */
1503 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1504 src = buf->ops->map(pipe, buf, 1);
1505 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1506 sd->len);
1507 buf->ops->unmap(pipe, buf, src);
1508 if (!ret) {
1509 ret = sd->len;
1510 goto out;
1511 }
1512 }
1513
1514 /*
1515 * No dice, use slow non-atomic map and copy
1516 */
1517 src = buf->ops->map(pipe, buf, 0);
1518
1519 ret = sd->len;
1520 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1521 ret = -EFAULT;
1522
1523 buf->ops->unmap(pipe, buf, src);
1524 out:
1525 if (ret > 0)
1526 sd->u.userptr += ret;
1527 return ret;
1528 }
1529
1530 /*
1531 * For lack of a better implementation, implement vmsplice() to userspace
1532 * as a simple copy of the pipes pages to the user iov.
1533 */
1534 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1535 unsigned long nr_segs, unsigned int flags)
1536 {
1537 struct pipe_inode_info *pipe;
1538 struct splice_desc sd;
1539 ssize_t size;
1540 int error;
1541 long ret;
1542
1543 pipe = get_pipe_info(file);
1544 if (!pipe)
1545 return -EBADF;
1546
1547 pipe_lock(pipe);
1548
1549 error = ret = 0;
1550 while (nr_segs) {
1551 void __user *base;
1552 size_t len;
1553
1554 /*
1555 * Get user address base and length for this iovec.
1556 */
1557 error = get_user(base, &iov->iov_base);
1558 if (unlikely(error))
1559 break;
1560 error = get_user(len, &iov->iov_len);
1561 if (unlikely(error))
1562 break;
1563
1564 /*
1565 * Sanity check this iovec. 0 read succeeds.
1566 */
1567 if (unlikely(!len))
1568 break;
1569 if (unlikely(!base)) {
1570 error = -EFAULT;
1571 break;
1572 }
1573
1574 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1575 error = -EFAULT;
1576 break;
1577 }
1578
1579 sd.len = 0;
1580 sd.total_len = len;
1581 sd.flags = flags;
1582 sd.u.userptr = base;
1583 sd.pos = 0;
1584
1585 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1586 if (size < 0) {
1587 if (!ret)
1588 ret = size;
1589
1590 break;
1591 }
1592
1593 ret += size;
1594
1595 if (size < len)
1596 break;
1597
1598 nr_segs--;
1599 iov++;
1600 }
1601
1602 pipe_unlock(pipe);
1603
1604 if (!ret)
1605 ret = error;
1606
1607 return ret;
1608 }
1609
1610 /*
1611 * vmsplice splices a user address range into a pipe. It can be thought of
1612 * as splice-from-memory, where the regular splice is splice-from-file (or
1613 * to file). In both cases the output is a pipe, naturally.
1614 */
1615 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1616 unsigned long nr_segs, unsigned int flags)
1617 {
1618 struct pipe_inode_info *pipe;
1619 struct page *pages[PIPE_DEF_BUFFERS];
1620 struct partial_page partial[PIPE_DEF_BUFFERS];
1621 struct splice_pipe_desc spd = {
1622 .pages = pages,
1623 .partial = partial,
1624 .nr_pages_max = PIPE_DEF_BUFFERS,
1625 .flags = flags,
1626 .ops = &user_page_pipe_buf_ops,
1627 .spd_release = spd_release_page,
1628 };
1629 long ret;
1630
1631 pipe = get_pipe_info(file);
1632 if (!pipe)
1633 return -EBADF;
1634
1635 if (splice_grow_spd(pipe, &spd))
1636 return -ENOMEM;
1637
1638 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1639 spd.partial, false,
1640 spd.nr_pages_max);
1641 if (spd.nr_pages <= 0)
1642 ret = spd.nr_pages;
1643 else
1644 ret = splice_to_pipe(pipe, &spd);
1645
1646 splice_shrink_spd(&spd);
1647 return ret;
1648 }
1649
1650 /*
1651 * Note that vmsplice only really supports true splicing _from_ user memory
1652 * to a pipe, not the other way around. Splicing from user memory is a simple
1653 * operation that can be supported without any funky alignment restrictions
1654 * or nasty vm tricks. We simply map in the user memory and fill them into
1655 * a pipe. The reverse isn't quite as easy, though. There are two possible
1656 * solutions for that:
1657 *
1658 * - memcpy() the data internally, at which point we might as well just
1659 * do a regular read() on the buffer anyway.
1660 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1661 * has restriction limitations on both ends of the pipe).
1662 *
1663 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1664 *
1665 */
1666 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1667 unsigned long, nr_segs, unsigned int, flags)
1668 {
1669 struct fd f;
1670 long error;
1671
1672 if (unlikely(nr_segs > UIO_MAXIOV))
1673 return -EINVAL;
1674 else if (unlikely(!nr_segs))
1675 return 0;
1676
1677 error = -EBADF;
1678 f = fdget(fd);
1679 if (f.file) {
1680 if (f.file->f_mode & FMODE_WRITE)
1681 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1682 else if (f.file->f_mode & FMODE_READ)
1683 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1684
1685 fdput(f);
1686 }
1687
1688 return error;
1689 }
1690
1691 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1692 int, fd_out, loff_t __user *, off_out,
1693 size_t, len, unsigned int, flags)
1694 {
1695 struct fd in, out;
1696 long error;
1697
1698 if (unlikely(!len))
1699 return 0;
1700
1701 error = -EBADF;
1702 in = fdget(fd_in);
1703 if (in.file) {
1704 if (in.file->f_mode & FMODE_READ) {
1705 out = fdget(fd_out);
1706 if (out.file) {
1707 if (out.file->f_mode & FMODE_WRITE)
1708 error = do_splice(in.file, off_in,
1709 out.file, off_out,
1710 len, flags);
1711 fdput(out);
1712 }
1713 }
1714 fdput(in);
1715 }
1716 return error;
1717 }
1718
1719 /*
1720 * Make sure there's data to read. Wait for input if we can, otherwise
1721 * return an appropriate error.
1722 */
1723 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1724 {
1725 int ret;
1726
1727 /*
1728 * Check ->nrbufs without the inode lock first. This function
1729 * is speculative anyways, so missing one is ok.
1730 */
1731 if (pipe->nrbufs)
1732 return 0;
1733
1734 ret = 0;
1735 pipe_lock(pipe);
1736
1737 while (!pipe->nrbufs) {
1738 if (signal_pending(current)) {
1739 ret = -ERESTARTSYS;
1740 break;
1741 }
1742 if (!pipe->writers)
1743 break;
1744 if (!pipe->waiting_writers) {
1745 if (flags & SPLICE_F_NONBLOCK) {
1746 ret = -EAGAIN;
1747 break;
1748 }
1749 }
1750 pipe_wait(pipe);
1751 }
1752
1753 pipe_unlock(pipe);
1754 return ret;
1755 }
1756
1757 /*
1758 * Make sure there's writeable room. Wait for room if we can, otherwise
1759 * return an appropriate error.
1760 */
1761 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1762 {
1763 int ret;
1764
1765 /*
1766 * Check ->nrbufs without the inode lock first. This function
1767 * is speculative anyways, so missing one is ok.
1768 */
1769 if (pipe->nrbufs < pipe->buffers)
1770 return 0;
1771
1772 ret = 0;
1773 pipe_lock(pipe);
1774
1775 while (pipe->nrbufs >= pipe->buffers) {
1776 if (!pipe->readers) {
1777 send_sig(SIGPIPE, current, 0);
1778 ret = -EPIPE;
1779 break;
1780 }
1781 if (flags & SPLICE_F_NONBLOCK) {
1782 ret = -EAGAIN;
1783 break;
1784 }
1785 if (signal_pending(current)) {
1786 ret = -ERESTARTSYS;
1787 break;
1788 }
1789 pipe->waiting_writers++;
1790 pipe_wait(pipe);
1791 pipe->waiting_writers--;
1792 }
1793
1794 pipe_unlock(pipe);
1795 return ret;
1796 }
1797
1798 /*
1799 * Splice contents of ipipe to opipe.
1800 */
1801 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1802 struct pipe_inode_info *opipe,
1803 size_t len, unsigned int flags)
1804 {
1805 struct pipe_buffer *ibuf, *obuf;
1806 int ret = 0, nbuf;
1807 bool input_wakeup = false;
1808
1809
1810 retry:
1811 ret = ipipe_prep(ipipe, flags);
1812 if (ret)
1813 return ret;
1814
1815 ret = opipe_prep(opipe, flags);
1816 if (ret)
1817 return ret;
1818
1819 /*
1820 * Potential ABBA deadlock, work around it by ordering lock
1821 * grabbing by pipe info address. Otherwise two different processes
1822 * could deadlock (one doing tee from A -> B, the other from B -> A).
1823 */
1824 pipe_double_lock(ipipe, opipe);
1825
1826 do {
1827 if (!opipe->readers) {
1828 send_sig(SIGPIPE, current, 0);
1829 if (!ret)
1830 ret = -EPIPE;
1831 break;
1832 }
1833
1834 if (!ipipe->nrbufs && !ipipe->writers)
1835 break;
1836
1837 /*
1838 * Cannot make any progress, because either the input
1839 * pipe is empty or the output pipe is full.
1840 */
1841 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1842 /* Already processed some buffers, break */
1843 if (ret)
1844 break;
1845
1846 if (flags & SPLICE_F_NONBLOCK) {
1847 ret = -EAGAIN;
1848 break;
1849 }
1850
1851 /*
1852 * We raced with another reader/writer and haven't
1853 * managed to process any buffers. A zero return
1854 * value means EOF, so retry instead.
1855 */
1856 pipe_unlock(ipipe);
1857 pipe_unlock(opipe);
1858 goto retry;
1859 }
1860
1861 ibuf = ipipe->bufs + ipipe->curbuf;
1862 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1863 obuf = opipe->bufs + nbuf;
1864
1865 if (len >= ibuf->len) {
1866 /*
1867 * Simply move the whole buffer from ipipe to opipe
1868 */
1869 *obuf = *ibuf;
1870 ibuf->ops = NULL;
1871 opipe->nrbufs++;
1872 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1873 ipipe->nrbufs--;
1874 input_wakeup = true;
1875 } else {
1876 /*
1877 * Get a reference to this pipe buffer,
1878 * so we can copy the contents over.
1879 */
1880 ibuf->ops->get(ipipe, ibuf);
1881 *obuf = *ibuf;
1882
1883 /*
1884 * Don't inherit the gift flag, we need to
1885 * prevent multiple steals of this page.
1886 */
1887 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1888
1889 obuf->len = len;
1890 opipe->nrbufs++;
1891 ibuf->offset += obuf->len;
1892 ibuf->len -= obuf->len;
1893 }
1894 ret += obuf->len;
1895 len -= obuf->len;
1896 } while (len);
1897
1898 pipe_unlock(ipipe);
1899 pipe_unlock(opipe);
1900
1901 /*
1902 * If we put data in the output pipe, wakeup any potential readers.
1903 */
1904 if (ret > 0)
1905 wakeup_pipe_readers(opipe);
1906
1907 if (input_wakeup)
1908 wakeup_pipe_writers(ipipe);
1909
1910 return ret;
1911 }
1912
1913 /*
1914 * Link contents of ipipe to opipe.
1915 */
1916 static int link_pipe(struct pipe_inode_info *ipipe,
1917 struct pipe_inode_info *opipe,
1918 size_t len, unsigned int flags)
1919 {
1920 struct pipe_buffer *ibuf, *obuf;
1921 int ret = 0, i = 0, nbuf;
1922
1923 /*
1924 * Potential ABBA deadlock, work around it by ordering lock
1925 * grabbing by pipe info address. Otherwise two different processes
1926 * could deadlock (one doing tee from A -> B, the other from B -> A).
1927 */
1928 pipe_double_lock(ipipe, opipe);
1929
1930 do {
1931 if (!opipe->readers) {
1932 send_sig(SIGPIPE, current, 0);
1933 if (!ret)
1934 ret = -EPIPE;
1935 break;
1936 }
1937
1938 /*
1939 * If we have iterated all input buffers or ran out of
1940 * output room, break.
1941 */
1942 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1943 break;
1944
1945 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1946 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1947
1948 /*
1949 * Get a reference to this pipe buffer,
1950 * so we can copy the contents over.
1951 */
1952 ibuf->ops->get(ipipe, ibuf);
1953
1954 obuf = opipe->bufs + nbuf;
1955 *obuf = *ibuf;
1956
1957 /*
1958 * Don't inherit the gift flag, we need to
1959 * prevent multiple steals of this page.
1960 */
1961 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1962
1963 if (obuf->len > len)
1964 obuf->len = len;
1965
1966 opipe->nrbufs++;
1967 ret += obuf->len;
1968 len -= obuf->len;
1969 i++;
1970 } while (len);
1971
1972 /*
1973 * return EAGAIN if we have the potential of some data in the
1974 * future, otherwise just return 0
1975 */
1976 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1977 ret = -EAGAIN;
1978
1979 pipe_unlock(ipipe);
1980 pipe_unlock(opipe);
1981
1982 /*
1983 * If we put data in the output pipe, wakeup any potential readers.
1984 */
1985 if (ret > 0)
1986 wakeup_pipe_readers(opipe);
1987
1988 return ret;
1989 }
1990
1991 /*
1992 * This is a tee(1) implementation that works on pipes. It doesn't copy
1993 * any data, it simply references the 'in' pages on the 'out' pipe.
1994 * The 'flags' used are the SPLICE_F_* variants, currently the only
1995 * applicable one is SPLICE_F_NONBLOCK.
1996 */
1997 static long do_tee(struct file *in, struct file *out, size_t len,
1998 unsigned int flags)
1999 {
2000 struct pipe_inode_info *ipipe = get_pipe_info(in);
2001 struct pipe_inode_info *opipe = get_pipe_info(out);
2002 int ret = -EINVAL;
2003
2004 /*
2005 * Duplicate the contents of ipipe to opipe without actually
2006 * copying the data.
2007 */
2008 if (ipipe && opipe && ipipe != opipe) {
2009 /*
2010 * Keep going, unless we encounter an error. The ipipe/opipe
2011 * ordering doesn't really matter.
2012 */
2013 ret = ipipe_prep(ipipe, flags);
2014 if (!ret) {
2015 ret = opipe_prep(opipe, flags);
2016 if (!ret)
2017 ret = link_pipe(ipipe, opipe, len, flags);
2018 }
2019 }
2020
2021 return ret;
2022 }
2023
2024 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2025 {
2026 struct fd in;
2027 int error;
2028
2029 if (unlikely(!len))
2030 return 0;
2031
2032 error = -EBADF;
2033 in = fdget(fdin);
2034 if (in.file) {
2035 if (in.file->f_mode & FMODE_READ) {
2036 struct fd out = fdget(fdout);
2037 if (out.file) {
2038 if (out.file->f_mode & FMODE_WRITE)
2039 error = do_tee(in.file, out.file,
2040 len, flags);
2041 fdput(out);
2042 }
2043 }
2044 fdput(in);
2045 }
2046
2047 return error;
2048 }