Pull battery into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20
21 static int reiserfs_commit_write(struct file *f, struct page *page,
22 unsigned from, unsigned to);
23 static int reiserfs_prepare_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25
26 void reiserfs_delete_inode(struct inode *inode)
27 {
28 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 int jbegin_count =
30 JOURNAL_PER_BALANCE_CNT * 2 +
31 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 struct reiserfs_transaction_handle th;
33 int err;
34
35 truncate_inode_pages(&inode->i_data, 0);
36
37 reiserfs_write_lock(inode->i_sb);
38
39 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
40 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
41 reiserfs_delete_xattrs(inode);
42
43 if (journal_begin(&th, inode->i_sb, jbegin_count))
44 goto out;
45 reiserfs_update_inode_transaction(inode);
46
47 err = reiserfs_delete_object(&th, inode);
48
49 /* Do quota update inside a transaction for journaled quotas. We must do that
50 * after delete_object so that quota updates go into the same transaction as
51 * stat data deletion */
52 if (!err)
53 DQUOT_FREE_INODE(inode);
54
55 if (journal_end(&th, inode->i_sb, jbegin_count))
56 goto out;
57
58 /* check return value from reiserfs_delete_object after
59 * ending the transaction
60 */
61 if (err)
62 goto out;
63
64 /* all items of file are deleted, so we can remove "save" link */
65 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
66 * about an error here */
67 } else {
68 /* no object items are in the tree */
69 ;
70 }
71 out:
72 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
73 inode->i_blocks = 0;
74 reiserfs_write_unlock(inode->i_sb);
75 }
76
77 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
78 __u32 objectid, loff_t offset, int type, int length)
79 {
80 key->version = version;
81
82 key->on_disk_key.k_dir_id = dirid;
83 key->on_disk_key.k_objectid = objectid;
84 set_cpu_key_k_offset(key, offset);
85 set_cpu_key_k_type(key, type);
86 key->key_length = length;
87 }
88
89 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
90 offset and type of key */
91 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
92 int type, int length)
93 {
94 _make_cpu_key(key, get_inode_item_key_version(inode),
95 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
96 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
97 length);
98 }
99
100 //
101 // when key is 0, do not set version and short key
102 //
103 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
104 int version,
105 loff_t offset, int type, int length,
106 int entry_count /*or ih_free_space */ )
107 {
108 if (key) {
109 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
110 ih->ih_key.k_objectid =
111 cpu_to_le32(key->on_disk_key.k_objectid);
112 }
113 put_ih_version(ih, version);
114 set_le_ih_k_offset(ih, offset);
115 set_le_ih_k_type(ih, type);
116 put_ih_item_len(ih, length);
117 /* set_ih_free_space (ih, 0); */
118 // for directory items it is entry count, for directs and stat
119 // datas - 0xffff, for indirects - 0
120 put_ih_entry_count(ih, entry_count);
121 }
122
123 //
124 // FIXME: we might cache recently accessed indirect item
125
126 // Ugh. Not too eager for that....
127 // I cut the code until such time as I see a convincing argument (benchmark).
128 // I don't want a bloated inode struct..., and I don't like code complexity....
129
130 /* cutting the code is fine, since it really isn't in use yet and is easy
131 ** to add back in. But, Vladimir has a really good idea here. Think
132 ** about what happens for reading a file. For each page,
133 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
134 ** an indirect item. This indirect item has X number of pointers, where
135 ** X is a big number if we've done the block allocation right. But,
136 ** we only use one or two of these pointers during each call to readpage,
137 ** needlessly researching again later on.
138 **
139 ** The size of the cache could be dynamic based on the size of the file.
140 **
141 ** I'd also like to see us cache the location the stat data item, since
142 ** we are needlessly researching for that frequently.
143 **
144 ** --chris
145 */
146
147 /* If this page has a file tail in it, and
148 ** it was read in by get_block_create_0, the page data is valid,
149 ** but tail is still sitting in a direct item, and we can't write to
150 ** it. So, look through this page, and check all the mapped buffers
151 ** to make sure they have valid block numbers. Any that don't need
152 ** to be unmapped, so that block_prepare_write will correctly call
153 ** reiserfs_get_block to convert the tail into an unformatted node
154 */
155 static inline void fix_tail_page_for_writing(struct page *page)
156 {
157 struct buffer_head *head, *next, *bh;
158
159 if (page && page_has_buffers(page)) {
160 head = page_buffers(page);
161 bh = head;
162 do {
163 next = bh->b_this_page;
164 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
165 reiserfs_unmap_buffer(bh);
166 }
167 bh = next;
168 } while (bh != head);
169 }
170 }
171
172 /* reiserfs_get_block does not need to allocate a block only if it has been
173 done already or non-hole position has been found in the indirect item */
174 static inline int allocation_needed(int retval, b_blocknr_t allocated,
175 struct item_head *ih,
176 __le32 * item, int pos_in_item)
177 {
178 if (allocated)
179 return 0;
180 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
181 get_block_num(item, pos_in_item))
182 return 0;
183 return 1;
184 }
185
186 static inline int indirect_item_found(int retval, struct item_head *ih)
187 {
188 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
189 }
190
191 static inline void set_block_dev_mapped(struct buffer_head *bh,
192 b_blocknr_t block, struct inode *inode)
193 {
194 map_bh(bh, inode->i_sb, block);
195 }
196
197 //
198 // files which were created in the earlier version can not be longer,
199 // than 2 gb
200 //
201 static int file_capable(struct inode *inode, long block)
202 {
203 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
204 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
205 return 1;
206
207 return 0;
208 }
209
210 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
211 struct inode *inode, struct treepath *path)
212 {
213 struct super_block *s = th->t_super;
214 int len = th->t_blocks_allocated;
215 int err;
216
217 BUG_ON(!th->t_trans_id);
218 BUG_ON(!th->t_refcount);
219
220 pathrelse(path);
221
222 /* we cannot restart while nested */
223 if (th->t_refcount > 1) {
224 return 0;
225 }
226 reiserfs_update_sd(th, inode);
227 err = journal_end(th, s, len);
228 if (!err) {
229 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
230 if (!err)
231 reiserfs_update_inode_transaction(inode);
232 }
233 return err;
234 }
235
236 // it is called by get_block when create == 0. Returns block number
237 // for 'block'-th logical block of file. When it hits direct item it
238 // returns 0 (being called from bmap) or read direct item into piece
239 // of page (bh_result)
240
241 // Please improve the english/clarity in the comment above, as it is
242 // hard to understand.
243
244 static int _get_block_create_0(struct inode *inode, long block,
245 struct buffer_head *bh_result, int args)
246 {
247 INITIALIZE_PATH(path);
248 struct cpu_key key;
249 struct buffer_head *bh;
250 struct item_head *ih, tmp_ih;
251 int fs_gen;
252 int blocknr;
253 char *p = NULL;
254 int chars;
255 int ret;
256 int result;
257 int done = 0;
258 unsigned long offset;
259
260 // prepare the key to look for the 'block'-th block of file
261 make_cpu_key(&key, inode,
262 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
263 3);
264
265 research:
266 result = search_for_position_by_key(inode->i_sb, &key, &path);
267 if (result != POSITION_FOUND) {
268 pathrelse(&path);
269 if (p)
270 kunmap(bh_result->b_page);
271 if (result == IO_ERROR)
272 return -EIO;
273 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
274 // That there is some MMAPED data associated with it that is yet to be written to disk.
275 if ((args & GET_BLOCK_NO_HOLE)
276 && !PageUptodate(bh_result->b_page)) {
277 return -ENOENT;
278 }
279 return 0;
280 }
281 //
282 bh = get_last_bh(&path);
283 ih = get_ih(&path);
284 if (is_indirect_le_ih(ih)) {
285 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
286
287 /* FIXME: here we could cache indirect item or part of it in
288 the inode to avoid search_by_key in case of subsequent
289 access to file */
290 blocknr = get_block_num(ind_item, path.pos_in_item);
291 ret = 0;
292 if (blocknr) {
293 map_bh(bh_result, inode->i_sb, blocknr);
294 if (path.pos_in_item ==
295 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
296 set_buffer_boundary(bh_result);
297 }
298 } else
299 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
300 // That there is some MMAPED data associated with it that is yet to be written to disk.
301 if ((args & GET_BLOCK_NO_HOLE)
302 && !PageUptodate(bh_result->b_page)) {
303 ret = -ENOENT;
304 }
305
306 pathrelse(&path);
307 if (p)
308 kunmap(bh_result->b_page);
309 return ret;
310 }
311 // requested data are in direct item(s)
312 if (!(args & GET_BLOCK_READ_DIRECT)) {
313 // we are called by bmap. FIXME: we can not map block of file
314 // when it is stored in direct item(s)
315 pathrelse(&path);
316 if (p)
317 kunmap(bh_result->b_page);
318 return -ENOENT;
319 }
320
321 /* if we've got a direct item, and the buffer or page was uptodate,
322 ** we don't want to pull data off disk again. skip to the
323 ** end, where we map the buffer and return
324 */
325 if (buffer_uptodate(bh_result)) {
326 goto finished;
327 } else
328 /*
329 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
330 ** pages without any buffers. If the page is up to date, we don't want
331 ** read old data off disk. Set the up to date bit on the buffer instead
332 ** and jump to the end
333 */
334 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
335 set_buffer_uptodate(bh_result);
336 goto finished;
337 }
338 // read file tail into part of page
339 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
340 fs_gen = get_generation(inode->i_sb);
341 copy_item_head(&tmp_ih, ih);
342
343 /* we only want to kmap if we are reading the tail into the page.
344 ** this is not the common case, so we don't kmap until we are
345 ** sure we need to. But, this means the item might move if
346 ** kmap schedules
347 */
348 if (!p) {
349 p = (char *)kmap(bh_result->b_page);
350 if (fs_changed(fs_gen, inode->i_sb)
351 && item_moved(&tmp_ih, &path)) {
352 goto research;
353 }
354 }
355 p += offset;
356 memset(p, 0, inode->i_sb->s_blocksize);
357 do {
358 if (!is_direct_le_ih(ih)) {
359 BUG();
360 }
361 /* make sure we don't read more bytes than actually exist in
362 ** the file. This can happen in odd cases where i_size isn't
363 ** correct, and when direct item padding results in a few
364 ** extra bytes at the end of the direct item
365 */
366 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
367 break;
368 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
369 chars =
370 inode->i_size - (le_ih_k_offset(ih) - 1) -
371 path.pos_in_item;
372 done = 1;
373 } else {
374 chars = ih_item_len(ih) - path.pos_in_item;
375 }
376 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
377
378 if (done)
379 break;
380
381 p += chars;
382
383 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
384 // we done, if read direct item is not the last item of
385 // node FIXME: we could try to check right delimiting key
386 // to see whether direct item continues in the right
387 // neighbor or rely on i_size
388 break;
389
390 // update key to look for the next piece
391 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
392 result = search_for_position_by_key(inode->i_sb, &key, &path);
393 if (result != POSITION_FOUND)
394 // i/o error most likely
395 break;
396 bh = get_last_bh(&path);
397 ih = get_ih(&path);
398 } while (1);
399
400 flush_dcache_page(bh_result->b_page);
401 kunmap(bh_result->b_page);
402
403 finished:
404 pathrelse(&path);
405
406 if (result == IO_ERROR)
407 return -EIO;
408
409 /* this buffer has valid data, but isn't valid for io. mapping it to
410 * block #0 tells the rest of reiserfs it just has a tail in it
411 */
412 map_bh(bh_result, inode->i_sb, 0);
413 set_buffer_uptodate(bh_result);
414 return 0;
415 }
416
417 // this is called to create file map. So, _get_block_create_0 will not
418 // read direct item
419 static int reiserfs_bmap(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
421 {
422 if (!file_capable(inode, block))
423 return -EFBIG;
424
425 reiserfs_write_lock(inode->i_sb);
426 /* do not read the direct item */
427 _get_block_create_0(inode, block, bh_result, 0);
428 reiserfs_write_unlock(inode->i_sb);
429 return 0;
430 }
431
432 /* special version of get_block that is only used by grab_tail_page right
433 ** now. It is sent to block_prepare_write, and when you try to get a
434 ** block past the end of the file (or a block from a hole) it returns
435 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
436 ** be able to do i/o on the buffers returned, unless an error value
437 ** is also returned.
438 **
439 ** So, this allows block_prepare_write to be used for reading a single block
440 ** in a page. Where it does not produce a valid page for holes, or past the
441 ** end of the file. This turns out to be exactly what we need for reading
442 ** tails for conversion.
443 **
444 ** The point of the wrapper is forcing a certain value for create, even
445 ** though the VFS layer is calling this function with create==1. If you
446 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
447 ** don't use this function.
448 */
449 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
450 struct buffer_head *bh_result,
451 int create)
452 {
453 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
454 }
455
456 /* This is special helper for reiserfs_get_block in case we are executing
457 direct_IO request. */
458 static int reiserfs_get_blocks_direct_io(struct inode *inode,
459 sector_t iblock,
460 struct buffer_head *bh_result,
461 int create)
462 {
463 int ret;
464
465 bh_result->b_page = NULL;
466
467 /* We set the b_size before reiserfs_get_block call since it is
468 referenced in convert_tail_for_hole() that may be called from
469 reiserfs_get_block() */
470 bh_result->b_size = (1 << inode->i_blkbits);
471
472 ret = reiserfs_get_block(inode, iblock, bh_result,
473 create | GET_BLOCK_NO_DANGLE);
474 if (ret)
475 goto out;
476
477 /* don't allow direct io onto tail pages */
478 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
479 /* make sure future calls to the direct io funcs for this offset
480 ** in the file fail by unmapping the buffer
481 */
482 clear_buffer_mapped(bh_result);
483 ret = -EINVAL;
484 }
485 /* Possible unpacked tail. Flush the data before pages have
486 disappeared */
487 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
488 int err;
489 lock_kernel();
490 err = reiserfs_commit_for_inode(inode);
491 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
492 unlock_kernel();
493 if (err < 0)
494 ret = err;
495 }
496 out:
497 return ret;
498 }
499
500 /*
501 ** helper function for when reiserfs_get_block is called for a hole
502 ** but the file tail is still in a direct item
503 ** bh_result is the buffer head for the hole
504 ** tail_offset is the offset of the start of the tail in the file
505 **
506 ** This calls prepare_write, which will start a new transaction
507 ** you should not be in a transaction, or have any paths held when you
508 ** call this.
509 */
510 static int convert_tail_for_hole(struct inode *inode,
511 struct buffer_head *bh_result,
512 loff_t tail_offset)
513 {
514 unsigned long index;
515 unsigned long tail_end;
516 unsigned long tail_start;
517 struct page *tail_page;
518 struct page *hole_page = bh_result->b_page;
519 int retval = 0;
520
521 if ((tail_offset & (bh_result->b_size - 1)) != 1)
522 return -EIO;
523
524 /* always try to read until the end of the block */
525 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
526 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
527
528 index = tail_offset >> PAGE_CACHE_SHIFT;
529 /* hole_page can be zero in case of direct_io, we are sure
530 that we cannot get here if we write with O_DIRECT into
531 tail page */
532 if (!hole_page || index != hole_page->index) {
533 tail_page = grab_cache_page(inode->i_mapping, index);
534 retval = -ENOMEM;
535 if (!tail_page) {
536 goto out;
537 }
538 } else {
539 tail_page = hole_page;
540 }
541
542 /* we don't have to make sure the conversion did not happen while
543 ** we were locking the page because anyone that could convert
544 ** must first take i_mutex.
545 **
546 ** We must fix the tail page for writing because it might have buffers
547 ** that are mapped, but have a block number of 0. This indicates tail
548 ** data that has been read directly into the page, and block_prepare_write
549 ** won't trigger a get_block in this case.
550 */
551 fix_tail_page_for_writing(tail_page);
552 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
553 if (retval)
554 goto unlock;
555
556 /* tail conversion might change the data in the page */
557 flush_dcache_page(tail_page);
558
559 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
560
561 unlock:
562 if (tail_page != hole_page) {
563 unlock_page(tail_page);
564 page_cache_release(tail_page);
565 }
566 out:
567 return retval;
568 }
569
570 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
571 long block,
572 struct inode *inode,
573 b_blocknr_t * allocated_block_nr,
574 struct treepath *path, int flags)
575 {
576 BUG_ON(!th->t_trans_id);
577
578 #ifdef REISERFS_PREALLOCATE
579 if (!(flags & GET_BLOCK_NO_IMUX)) {
580 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
581 path, block);
582 }
583 #endif
584 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
585 block);
586 }
587
588 int reiserfs_get_block(struct inode *inode, sector_t block,
589 struct buffer_head *bh_result, int create)
590 {
591 int repeat, retval = 0;
592 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
593 INITIALIZE_PATH(path);
594 int pos_in_item;
595 struct cpu_key key;
596 struct buffer_head *bh, *unbh = NULL;
597 struct item_head *ih, tmp_ih;
598 __le32 *item;
599 int done;
600 int fs_gen;
601 struct reiserfs_transaction_handle *th = NULL;
602 /* space reserved in transaction batch:
603 . 3 balancings in direct->indirect conversion
604 . 1 block involved into reiserfs_update_sd()
605 XXX in practically impossible worst case direct2indirect()
606 can incur (much) more than 3 balancings.
607 quota update for user, group */
608 int jbegin_count =
609 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
610 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
611 int version;
612 int dangle = 1;
613 loff_t new_offset =
614 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
615
616 /* bad.... */
617 reiserfs_write_lock(inode->i_sb);
618 version = get_inode_item_key_version(inode);
619
620 if (!file_capable(inode, block)) {
621 reiserfs_write_unlock(inode->i_sb);
622 return -EFBIG;
623 }
624
625 /* if !create, we aren't changing the FS, so we don't need to
626 ** log anything, so we don't need to start a transaction
627 */
628 if (!(create & GET_BLOCK_CREATE)) {
629 int ret;
630 /* find number of block-th logical block of the file */
631 ret = _get_block_create_0(inode, block, bh_result,
632 create | GET_BLOCK_READ_DIRECT);
633 reiserfs_write_unlock(inode->i_sb);
634 return ret;
635 }
636 /*
637 * if we're already in a transaction, make sure to close
638 * any new transactions we start in this func
639 */
640 if ((create & GET_BLOCK_NO_DANGLE) ||
641 reiserfs_transaction_running(inode->i_sb))
642 dangle = 0;
643
644 /* If file is of such a size, that it might have a tail and tails are enabled
645 ** we should mark it as possibly needing tail packing on close
646 */
647 if ((have_large_tails(inode->i_sb)
648 && inode->i_size < i_block_size(inode) * 4)
649 || (have_small_tails(inode->i_sb)
650 && inode->i_size < i_block_size(inode)))
651 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
652
653 /* set the key of the first byte in the 'block'-th block of file */
654 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
655 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
656 start_trans:
657 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
658 if (!th) {
659 retval = -ENOMEM;
660 goto failure;
661 }
662 reiserfs_update_inode_transaction(inode);
663 }
664 research:
665
666 retval = search_for_position_by_key(inode->i_sb, &key, &path);
667 if (retval == IO_ERROR) {
668 retval = -EIO;
669 goto failure;
670 }
671
672 bh = get_last_bh(&path);
673 ih = get_ih(&path);
674 item = get_item(&path);
675 pos_in_item = path.pos_in_item;
676
677 fs_gen = get_generation(inode->i_sb);
678 copy_item_head(&tmp_ih, ih);
679
680 if (allocation_needed
681 (retval, allocated_block_nr, ih, item, pos_in_item)) {
682 /* we have to allocate block for the unformatted node */
683 if (!th) {
684 pathrelse(&path);
685 goto start_trans;
686 }
687
688 repeat =
689 _allocate_block(th, block, inode, &allocated_block_nr,
690 &path, create);
691
692 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
693 /* restart the transaction to give the journal a chance to free
694 ** some blocks. releases the path, so we have to go back to
695 ** research if we succeed on the second try
696 */
697 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
698 retval = restart_transaction(th, inode, &path);
699 if (retval)
700 goto failure;
701 repeat =
702 _allocate_block(th, block, inode,
703 &allocated_block_nr, NULL, create);
704
705 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
706 goto research;
707 }
708 if (repeat == QUOTA_EXCEEDED)
709 retval = -EDQUOT;
710 else
711 retval = -ENOSPC;
712 goto failure;
713 }
714
715 if (fs_changed(fs_gen, inode->i_sb)
716 && item_moved(&tmp_ih, &path)) {
717 goto research;
718 }
719 }
720
721 if (indirect_item_found(retval, ih)) {
722 b_blocknr_t unfm_ptr;
723 /* 'block'-th block is in the file already (there is
724 corresponding cell in some indirect item). But it may be
725 zero unformatted node pointer (hole) */
726 unfm_ptr = get_block_num(item, pos_in_item);
727 if (unfm_ptr == 0) {
728 /* use allocated block to plug the hole */
729 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
730 if (fs_changed(fs_gen, inode->i_sb)
731 && item_moved(&tmp_ih, &path)) {
732 reiserfs_restore_prepared_buffer(inode->i_sb,
733 bh);
734 goto research;
735 }
736 set_buffer_new(bh_result);
737 if (buffer_dirty(bh_result)
738 && reiserfs_data_ordered(inode->i_sb))
739 reiserfs_add_ordered_list(inode, bh_result);
740 put_block_num(item, pos_in_item, allocated_block_nr);
741 unfm_ptr = allocated_block_nr;
742 journal_mark_dirty(th, inode->i_sb, bh);
743 reiserfs_update_sd(th, inode);
744 }
745 set_block_dev_mapped(bh_result, unfm_ptr, inode);
746 pathrelse(&path);
747 retval = 0;
748 if (!dangle && th)
749 retval = reiserfs_end_persistent_transaction(th);
750
751 reiserfs_write_unlock(inode->i_sb);
752
753 /* the item was found, so new blocks were not added to the file
754 ** there is no need to make sure the inode is updated with this
755 ** transaction
756 */
757 return retval;
758 }
759
760 if (!th) {
761 pathrelse(&path);
762 goto start_trans;
763 }
764
765 /* desired position is not found or is in the direct item. We have
766 to append file with holes up to 'block'-th block converting
767 direct items to indirect one if necessary */
768 done = 0;
769 do {
770 if (is_statdata_le_ih(ih)) {
771 __le32 unp = 0;
772 struct cpu_key tmp_key;
773
774 /* indirect item has to be inserted */
775 make_le_item_head(&tmp_ih, &key, version, 1,
776 TYPE_INDIRECT, UNFM_P_SIZE,
777 0 /* free_space */ );
778
779 if (cpu_key_k_offset(&key) == 1) {
780 /* we are going to add 'block'-th block to the file. Use
781 allocated block for that */
782 unp = cpu_to_le32(allocated_block_nr);
783 set_block_dev_mapped(bh_result,
784 allocated_block_nr, inode);
785 set_buffer_new(bh_result);
786 done = 1;
787 }
788 tmp_key = key; // ;)
789 set_cpu_key_k_offset(&tmp_key, 1);
790 PATH_LAST_POSITION(&path)++;
791
792 retval =
793 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
794 inode, (char *)&unp);
795 if (retval) {
796 reiserfs_free_block(th, inode,
797 allocated_block_nr, 1);
798 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
799 }
800 //mark_tail_converted (inode);
801 } else if (is_direct_le_ih(ih)) {
802 /* direct item has to be converted */
803 loff_t tail_offset;
804
805 tail_offset =
806 ((le_ih_k_offset(ih) -
807 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
808 if (tail_offset == cpu_key_k_offset(&key)) {
809 /* direct item we just found fits into block we have
810 to map. Convert it into unformatted node: use
811 bh_result for the conversion */
812 set_block_dev_mapped(bh_result,
813 allocated_block_nr, inode);
814 unbh = bh_result;
815 done = 1;
816 } else {
817 /* we have to padd file tail stored in direct item(s)
818 up to block size and convert it to unformatted
819 node. FIXME: this should also get into page cache */
820
821 pathrelse(&path);
822 /*
823 * ugly, but we can only end the transaction if
824 * we aren't nested
825 */
826 BUG_ON(!th->t_refcount);
827 if (th->t_refcount == 1) {
828 retval =
829 reiserfs_end_persistent_transaction
830 (th);
831 th = NULL;
832 if (retval)
833 goto failure;
834 }
835
836 retval =
837 convert_tail_for_hole(inode, bh_result,
838 tail_offset);
839 if (retval) {
840 if (retval != -ENOSPC)
841 reiserfs_warning(inode->i_sb,
842 "clm-6004: convert tail failed inode %lu, error %d",
843 inode->i_ino,
844 retval);
845 if (allocated_block_nr) {
846 /* the bitmap, the super, and the stat data == 3 */
847 if (!th)
848 th = reiserfs_persistent_transaction(inode->i_sb, 3);
849 if (th)
850 reiserfs_free_block(th,
851 inode,
852 allocated_block_nr,
853 1);
854 }
855 goto failure;
856 }
857 goto research;
858 }
859 retval =
860 direct2indirect(th, inode, &path, unbh,
861 tail_offset);
862 if (retval) {
863 reiserfs_unmap_buffer(unbh);
864 reiserfs_free_block(th, inode,
865 allocated_block_nr, 1);
866 goto failure;
867 }
868 /* it is important the set_buffer_uptodate is done after
869 ** the direct2indirect. The buffer might contain valid
870 ** data newer than the data on disk (read by readpage, changed,
871 ** and then sent here by writepage). direct2indirect needs
872 ** to know if unbh was already up to date, so it can decide
873 ** if the data in unbh needs to be replaced with data from
874 ** the disk
875 */
876 set_buffer_uptodate(unbh);
877
878 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
879 buffer will disappear shortly, so it should not be added to
880 */
881 if (unbh->b_page) {
882 /* we've converted the tail, so we must
883 ** flush unbh before the transaction commits
884 */
885 reiserfs_add_tail_list(inode, unbh);
886
887 /* mark it dirty now to prevent commit_write from adding
888 ** this buffer to the inode's dirty buffer list
889 */
890 /*
891 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
892 * It's still atomic, but it sets the page dirty too,
893 * which makes it eligible for writeback at any time by the
894 * VM (which was also the case with __mark_buffer_dirty())
895 */
896 mark_buffer_dirty(unbh);
897 }
898 } else {
899 /* append indirect item with holes if needed, when appending
900 pointer to 'block'-th block use block, which is already
901 allocated */
902 struct cpu_key tmp_key;
903 unp_t unf_single = 0; // We use this in case we need to allocate only
904 // one block which is a fastpath
905 unp_t *un;
906 __u64 max_to_insert =
907 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
908 UNFM_P_SIZE;
909 __u64 blocks_needed;
910
911 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
912 "vs-804: invalid position for append");
913 /* indirect item has to be appended, set up key of that position */
914 make_cpu_key(&tmp_key, inode,
915 le_key_k_offset(version,
916 &(ih->ih_key)) +
917 op_bytes_number(ih,
918 inode->i_sb->s_blocksize),
919 //pos_in_item * inode->i_sb->s_blocksize,
920 TYPE_INDIRECT, 3); // key type is unimportant
921
922 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
923 "green-805: invalid offset");
924 blocks_needed =
925 1 +
926 ((cpu_key_k_offset(&key) -
927 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
928 s_blocksize_bits);
929
930 if (blocks_needed == 1) {
931 un = &unf_single;
932 } else {
933 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
934 if (!un) {
935 un = &unf_single;
936 blocks_needed = 1;
937 max_to_insert = 0;
938 }
939 }
940 if (blocks_needed <= max_to_insert) {
941 /* we are going to add target block to the file. Use allocated
942 block for that */
943 un[blocks_needed - 1] =
944 cpu_to_le32(allocated_block_nr);
945 set_block_dev_mapped(bh_result,
946 allocated_block_nr, inode);
947 set_buffer_new(bh_result);
948 done = 1;
949 } else {
950 /* paste hole to the indirect item */
951 /* If kmalloc failed, max_to_insert becomes zero and it means we
952 only have space for one block */
953 blocks_needed =
954 max_to_insert ? max_to_insert : 1;
955 }
956 retval =
957 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
958 (char *)un,
959 UNFM_P_SIZE *
960 blocks_needed);
961
962 if (blocks_needed != 1)
963 kfree(un);
964
965 if (retval) {
966 reiserfs_free_block(th, inode,
967 allocated_block_nr, 1);
968 goto failure;
969 }
970 if (!done) {
971 /* We need to mark new file size in case this function will be
972 interrupted/aborted later on. And we may do this only for
973 holes. */
974 inode->i_size +=
975 inode->i_sb->s_blocksize * blocks_needed;
976 }
977 }
978
979 if (done == 1)
980 break;
981
982 /* this loop could log more blocks than we had originally asked
983 ** for. So, we have to allow the transaction to end if it is
984 ** too big or too full. Update the inode so things are
985 ** consistent if we crash before the function returns
986 **
987 ** release the path so that anybody waiting on the path before
988 ** ending their transaction will be able to continue.
989 */
990 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
991 retval = restart_transaction(th, inode, &path);
992 if (retval)
993 goto failure;
994 }
995 /* inserting indirect pointers for a hole can take a
996 ** long time. reschedule if needed
997 */
998 cond_resched();
999
1000 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1001 if (retval == IO_ERROR) {
1002 retval = -EIO;
1003 goto failure;
1004 }
1005 if (retval == POSITION_FOUND) {
1006 reiserfs_warning(inode->i_sb,
1007 "vs-825: reiserfs_get_block: "
1008 "%K should not be found", &key);
1009 retval = -EEXIST;
1010 if (allocated_block_nr)
1011 reiserfs_free_block(th, inode,
1012 allocated_block_nr, 1);
1013 pathrelse(&path);
1014 goto failure;
1015 }
1016 bh = get_last_bh(&path);
1017 ih = get_ih(&path);
1018 item = get_item(&path);
1019 pos_in_item = path.pos_in_item;
1020 } while (1);
1021
1022 retval = 0;
1023
1024 failure:
1025 if (th && (!dangle || (retval && !th->t_trans_id))) {
1026 int err;
1027 if (th->t_trans_id)
1028 reiserfs_update_sd(th, inode);
1029 err = reiserfs_end_persistent_transaction(th);
1030 if (err)
1031 retval = err;
1032 }
1033
1034 reiserfs_write_unlock(inode->i_sb);
1035 reiserfs_check_path(&path);
1036 return retval;
1037 }
1038
1039 static int
1040 reiserfs_readpages(struct file *file, struct address_space *mapping,
1041 struct list_head *pages, unsigned nr_pages)
1042 {
1043 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1044 }
1045
1046 /* Compute real number of used bytes by file
1047 * Following three functions can go away when we'll have enough space in stat item
1048 */
1049 static int real_space_diff(struct inode *inode, int sd_size)
1050 {
1051 int bytes;
1052 loff_t blocksize = inode->i_sb->s_blocksize;
1053
1054 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1055 return sd_size;
1056
1057 /* End of file is also in full block with indirect reference, so round
1058 ** up to the next block.
1059 **
1060 ** there is just no way to know if the tail is actually packed
1061 ** on the file, so we have to assume it isn't. When we pack the
1062 ** tail, we add 4 bytes to pretend there really is an unformatted
1063 ** node pointer
1064 */
1065 bytes =
1066 ((inode->i_size +
1067 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1068 sd_size;
1069 return bytes;
1070 }
1071
1072 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1073 int sd_size)
1074 {
1075 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1076 return inode->i_size +
1077 (loff_t) (real_space_diff(inode, sd_size));
1078 }
1079 return ((loff_t) real_space_diff(inode, sd_size)) +
1080 (((loff_t) blocks) << 9);
1081 }
1082
1083 /* Compute number of blocks used by file in ReiserFS counting */
1084 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1085 {
1086 loff_t bytes = inode_get_bytes(inode);
1087 loff_t real_space = real_space_diff(inode, sd_size);
1088
1089 /* keeps fsck and non-quota versions of reiserfs happy */
1090 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1091 bytes += (loff_t) 511;
1092 }
1093
1094 /* files from before the quota patch might i_blocks such that
1095 ** bytes < real_space. Deal with that here to prevent it from
1096 ** going negative.
1097 */
1098 if (bytes < real_space)
1099 return 0;
1100 return (bytes - real_space) >> 9;
1101 }
1102
1103 //
1104 // BAD: new directories have stat data of new type and all other items
1105 // of old type. Version stored in the inode says about body items, so
1106 // in update_stat_data we can not rely on inode, but have to check
1107 // item version directly
1108 //
1109
1110 // called by read_locked_inode
1111 static void init_inode(struct inode *inode, struct treepath *path)
1112 {
1113 struct buffer_head *bh;
1114 struct item_head *ih;
1115 __u32 rdev;
1116 //int version = ITEM_VERSION_1;
1117
1118 bh = PATH_PLAST_BUFFER(path);
1119 ih = PATH_PITEM_HEAD(path);
1120
1121 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1122
1123 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1124 REISERFS_I(inode)->i_flags = 0;
1125 REISERFS_I(inode)->i_prealloc_block = 0;
1126 REISERFS_I(inode)->i_prealloc_count = 0;
1127 REISERFS_I(inode)->i_trans_id = 0;
1128 REISERFS_I(inode)->i_jl = NULL;
1129 mutex_init(&(REISERFS_I(inode)->i_mmap));
1130 reiserfs_init_acl_access(inode);
1131 reiserfs_init_acl_default(inode);
1132 reiserfs_init_xattr_rwsem(inode);
1133
1134 if (stat_data_v1(ih)) {
1135 struct stat_data_v1 *sd =
1136 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1137 unsigned long blocks;
1138
1139 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1140 set_inode_sd_version(inode, STAT_DATA_V1);
1141 inode->i_mode = sd_v1_mode(sd);
1142 inode->i_nlink = sd_v1_nlink(sd);
1143 inode->i_uid = sd_v1_uid(sd);
1144 inode->i_gid = sd_v1_gid(sd);
1145 inode->i_size = sd_v1_size(sd);
1146 inode->i_atime.tv_sec = sd_v1_atime(sd);
1147 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1148 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1149 inode->i_atime.tv_nsec = 0;
1150 inode->i_ctime.tv_nsec = 0;
1151 inode->i_mtime.tv_nsec = 0;
1152
1153 inode->i_blocks = sd_v1_blocks(sd);
1154 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1155 blocks = (inode->i_size + 511) >> 9;
1156 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1157 if (inode->i_blocks > blocks) {
1158 // there was a bug in <=3.5.23 when i_blocks could take negative
1159 // values. Starting from 3.5.17 this value could even be stored in
1160 // stat data. For such files we set i_blocks based on file
1161 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1162 // only updated if file's inode will ever change
1163 inode->i_blocks = blocks;
1164 }
1165
1166 rdev = sd_v1_rdev(sd);
1167 REISERFS_I(inode)->i_first_direct_byte =
1168 sd_v1_first_direct_byte(sd);
1169 /* an early bug in the quota code can give us an odd number for the
1170 ** block count. This is incorrect, fix it here.
1171 */
1172 if (inode->i_blocks & 1) {
1173 inode->i_blocks++;
1174 }
1175 inode_set_bytes(inode,
1176 to_real_used_space(inode, inode->i_blocks,
1177 SD_V1_SIZE));
1178 /* nopack is initially zero for v1 objects. For v2 objects,
1179 nopack is initialised from sd_attrs */
1180 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1181 } else {
1182 // new stat data found, but object may have old items
1183 // (directories and symlinks)
1184 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1185
1186 inode->i_mode = sd_v2_mode(sd);
1187 inode->i_nlink = sd_v2_nlink(sd);
1188 inode->i_uid = sd_v2_uid(sd);
1189 inode->i_size = sd_v2_size(sd);
1190 inode->i_gid = sd_v2_gid(sd);
1191 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1192 inode->i_atime.tv_sec = sd_v2_atime(sd);
1193 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1194 inode->i_ctime.tv_nsec = 0;
1195 inode->i_mtime.tv_nsec = 0;
1196 inode->i_atime.tv_nsec = 0;
1197 inode->i_blocks = sd_v2_blocks(sd);
1198 rdev = sd_v2_rdev(sd);
1199 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1200 inode->i_generation =
1201 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1202 else
1203 inode->i_generation = sd_v2_generation(sd);
1204
1205 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1206 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1207 else
1208 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1209 REISERFS_I(inode)->i_first_direct_byte = 0;
1210 set_inode_sd_version(inode, STAT_DATA_V2);
1211 inode_set_bytes(inode,
1212 to_real_used_space(inode, inode->i_blocks,
1213 SD_V2_SIZE));
1214 /* read persistent inode attributes from sd and initalise
1215 generic inode flags from them */
1216 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1217 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1218 }
1219
1220 pathrelse(path);
1221 if (S_ISREG(inode->i_mode)) {
1222 inode->i_op = &reiserfs_file_inode_operations;
1223 inode->i_fop = &reiserfs_file_operations;
1224 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1225 } else if (S_ISDIR(inode->i_mode)) {
1226 inode->i_op = &reiserfs_dir_inode_operations;
1227 inode->i_fop = &reiserfs_dir_operations;
1228 } else if (S_ISLNK(inode->i_mode)) {
1229 inode->i_op = &reiserfs_symlink_inode_operations;
1230 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1231 } else {
1232 inode->i_blocks = 0;
1233 inode->i_op = &reiserfs_special_inode_operations;
1234 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1235 }
1236 }
1237
1238 // update new stat data with inode fields
1239 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1240 {
1241 struct stat_data *sd_v2 = (struct stat_data *)sd;
1242 __u16 flags;
1243
1244 set_sd_v2_mode(sd_v2, inode->i_mode);
1245 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1246 set_sd_v2_uid(sd_v2, inode->i_uid);
1247 set_sd_v2_size(sd_v2, size);
1248 set_sd_v2_gid(sd_v2, inode->i_gid);
1249 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1250 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1251 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1252 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1253 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1254 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1255 else
1256 set_sd_v2_generation(sd_v2, inode->i_generation);
1257 flags = REISERFS_I(inode)->i_attrs;
1258 i_attrs_to_sd_attrs(inode, &flags);
1259 set_sd_v2_attrs(sd_v2, flags);
1260 }
1261
1262 // used to copy inode's fields to old stat data
1263 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1264 {
1265 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1266
1267 set_sd_v1_mode(sd_v1, inode->i_mode);
1268 set_sd_v1_uid(sd_v1, inode->i_uid);
1269 set_sd_v1_gid(sd_v1, inode->i_gid);
1270 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1271 set_sd_v1_size(sd_v1, size);
1272 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1273 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1274 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1275
1276 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1277 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1278 else
1279 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1280
1281 // Sigh. i_first_direct_byte is back
1282 set_sd_v1_first_direct_byte(sd_v1,
1283 REISERFS_I(inode)->i_first_direct_byte);
1284 }
1285
1286 /* NOTE, you must prepare the buffer head before sending it here,
1287 ** and then log it after the call
1288 */
1289 static void update_stat_data(struct treepath *path, struct inode *inode,
1290 loff_t size)
1291 {
1292 struct buffer_head *bh;
1293 struct item_head *ih;
1294
1295 bh = PATH_PLAST_BUFFER(path);
1296 ih = PATH_PITEM_HEAD(path);
1297
1298 if (!is_statdata_le_ih(ih))
1299 reiserfs_panic(inode->i_sb,
1300 "vs-13065: update_stat_data: key %k, found item %h",
1301 INODE_PKEY(inode), ih);
1302
1303 if (stat_data_v1(ih)) {
1304 // path points to old stat data
1305 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1306 } else {
1307 inode2sd(B_I_PITEM(bh, ih), inode, size);
1308 }
1309
1310 return;
1311 }
1312
1313 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1314 struct inode *inode, loff_t size)
1315 {
1316 struct cpu_key key;
1317 INITIALIZE_PATH(path);
1318 struct buffer_head *bh;
1319 int fs_gen;
1320 struct item_head *ih, tmp_ih;
1321 int retval;
1322
1323 BUG_ON(!th->t_trans_id);
1324
1325 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1326
1327 for (;;) {
1328 int pos;
1329 /* look for the object's stat data */
1330 retval = search_item(inode->i_sb, &key, &path);
1331 if (retval == IO_ERROR) {
1332 reiserfs_warning(inode->i_sb,
1333 "vs-13050: reiserfs_update_sd: "
1334 "i/o failure occurred trying to update %K stat data",
1335 &key);
1336 return;
1337 }
1338 if (retval == ITEM_NOT_FOUND) {
1339 pos = PATH_LAST_POSITION(&path);
1340 pathrelse(&path);
1341 if (inode->i_nlink == 0) {
1342 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1343 return;
1344 }
1345 reiserfs_warning(inode->i_sb,
1346 "vs-13060: reiserfs_update_sd: "
1347 "stat data of object %k (nlink == %d) not found (pos %d)",
1348 INODE_PKEY(inode), inode->i_nlink,
1349 pos);
1350 reiserfs_check_path(&path);
1351 return;
1352 }
1353
1354 /* sigh, prepare_for_journal might schedule. When it schedules the
1355 ** FS might change. We have to detect that, and loop back to the
1356 ** search if the stat data item has moved
1357 */
1358 bh = get_last_bh(&path);
1359 ih = get_ih(&path);
1360 copy_item_head(&tmp_ih, ih);
1361 fs_gen = get_generation(inode->i_sb);
1362 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1363 if (fs_changed(fs_gen, inode->i_sb)
1364 && item_moved(&tmp_ih, &path)) {
1365 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1366 continue; /* Stat_data item has been moved after scheduling. */
1367 }
1368 break;
1369 }
1370 update_stat_data(&path, inode, size);
1371 journal_mark_dirty(th, th->t_super, bh);
1372 pathrelse(&path);
1373 return;
1374 }
1375
1376 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1377 ** does a make_bad_inode when things go wrong. But, we need to make sure
1378 ** and clear the key in the private portion of the inode, otherwise a
1379 ** corresponding iput might try to delete whatever object the inode last
1380 ** represented.
1381 */
1382 static void reiserfs_make_bad_inode(struct inode *inode)
1383 {
1384 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1385 make_bad_inode(inode);
1386 }
1387
1388 //
1389 // initially this function was derived from minix or ext2's analog and
1390 // evolved as the prototype did
1391 //
1392
1393 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1394 {
1395 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1396 inode->i_ino = args->objectid;
1397 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1398 return 0;
1399 }
1400
1401 /* looks for stat data in the tree, and fills up the fields of in-core
1402 inode stat data fields */
1403 void reiserfs_read_locked_inode(struct inode *inode,
1404 struct reiserfs_iget_args *args)
1405 {
1406 INITIALIZE_PATH(path_to_sd);
1407 struct cpu_key key;
1408 unsigned long dirino;
1409 int retval;
1410
1411 dirino = args->dirid;
1412
1413 /* set version 1, version 2 could be used too, because stat data
1414 key is the same in both versions */
1415 key.version = KEY_FORMAT_3_5;
1416 key.on_disk_key.k_dir_id = dirino;
1417 key.on_disk_key.k_objectid = inode->i_ino;
1418 key.on_disk_key.k_offset = 0;
1419 key.on_disk_key.k_type = 0;
1420
1421 /* look for the object's stat data */
1422 retval = search_item(inode->i_sb, &key, &path_to_sd);
1423 if (retval == IO_ERROR) {
1424 reiserfs_warning(inode->i_sb,
1425 "vs-13070: reiserfs_read_locked_inode: "
1426 "i/o failure occurred trying to find stat data of %K",
1427 &key);
1428 reiserfs_make_bad_inode(inode);
1429 return;
1430 }
1431 if (retval != ITEM_FOUND) {
1432 /* a stale NFS handle can trigger this without it being an error */
1433 pathrelse(&path_to_sd);
1434 reiserfs_make_bad_inode(inode);
1435 inode->i_nlink = 0;
1436 return;
1437 }
1438
1439 init_inode(inode, &path_to_sd);
1440
1441 /* It is possible that knfsd is trying to access inode of a file
1442 that is being removed from the disk by some other thread. As we
1443 update sd on unlink all that is required is to check for nlink
1444 here. This bug was first found by Sizif when debugging
1445 SquidNG/Butterfly, forgotten, and found again after Philippe
1446 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1447
1448 More logical fix would require changes in fs/inode.c:iput() to
1449 remove inode from hash-table _after_ fs cleaned disk stuff up and
1450 in iget() to return NULL if I_FREEING inode is found in
1451 hash-table. */
1452 /* Currently there is one place where it's ok to meet inode with
1453 nlink==0: processing of open-unlinked and half-truncated files
1454 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1455 if ((inode->i_nlink == 0) &&
1456 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1457 reiserfs_warning(inode->i_sb,
1458 "vs-13075: reiserfs_read_locked_inode: "
1459 "dead inode read from disk %K. "
1460 "This is likely to be race with knfsd. Ignore",
1461 &key);
1462 reiserfs_make_bad_inode(inode);
1463 }
1464
1465 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1466
1467 }
1468
1469 /**
1470 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1471 *
1472 * @inode: inode from hash table to check
1473 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1474 *
1475 * This function is called by iget5_locked() to distinguish reiserfs inodes
1476 * having the same inode numbers. Such inodes can only exist due to some
1477 * error condition. One of them should be bad. Inodes with identical
1478 * inode numbers (objectids) are distinguished by parent directory ids.
1479 *
1480 */
1481 int reiserfs_find_actor(struct inode *inode, void *opaque)
1482 {
1483 struct reiserfs_iget_args *args;
1484
1485 args = opaque;
1486 /* args is already in CPU order */
1487 return (inode->i_ino == args->objectid) &&
1488 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1489 }
1490
1491 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1492 {
1493 struct inode *inode;
1494 struct reiserfs_iget_args args;
1495
1496 args.objectid = key->on_disk_key.k_objectid;
1497 args.dirid = key->on_disk_key.k_dir_id;
1498 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1499 reiserfs_find_actor, reiserfs_init_locked_inode,
1500 (void *)(&args));
1501 if (!inode)
1502 return ERR_PTR(-ENOMEM);
1503
1504 if (inode->i_state & I_NEW) {
1505 reiserfs_read_locked_inode(inode, &args);
1506 unlock_new_inode(inode);
1507 }
1508
1509 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1510 /* either due to i/o error or a stale NFS handle */
1511 iput(inode);
1512 inode = NULL;
1513 }
1514 return inode;
1515 }
1516
1517 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1518 {
1519 __u32 *data = vobjp;
1520 struct cpu_key key;
1521 struct dentry *result;
1522 struct inode *inode;
1523
1524 key.on_disk_key.k_objectid = data[0];
1525 key.on_disk_key.k_dir_id = data[1];
1526 reiserfs_write_lock(sb);
1527 inode = reiserfs_iget(sb, &key);
1528 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1529 data[2] != inode->i_generation) {
1530 iput(inode);
1531 inode = NULL;
1532 }
1533 reiserfs_write_unlock(sb);
1534 if (!inode)
1535 inode = ERR_PTR(-ESTALE);
1536 if (IS_ERR(inode))
1537 return ERR_PTR(PTR_ERR(inode));
1538 result = d_alloc_anon(inode);
1539 if (!result) {
1540 iput(inode);
1541 return ERR_PTR(-ENOMEM);
1542 }
1543 return result;
1544 }
1545
1546 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1547 int len, int fhtype,
1548 int (*acceptable) (void *contect,
1549 struct dentry * de),
1550 void *context)
1551 {
1552 __u32 obj[3], parent[3];
1553
1554 /* fhtype happens to reflect the number of u32s encoded.
1555 * due to a bug in earlier code, fhtype might indicate there
1556 * are more u32s then actually fitted.
1557 * so if fhtype seems to be more than len, reduce fhtype.
1558 * Valid types are:
1559 * 2 - objectid + dir_id - legacy support
1560 * 3 - objectid + dir_id + generation
1561 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1562 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1563 * 6 - as above plus generation of directory
1564 * 6 does not fit in NFSv2 handles
1565 */
1566 if (fhtype > len) {
1567 if (fhtype != 6 || len != 5)
1568 reiserfs_warning(sb,
1569 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570 fhtype, len);
1571 fhtype = 5;
1572 }
1573
1574 obj[0] = data[0];
1575 obj[1] = data[1];
1576 if (fhtype == 3 || fhtype >= 5)
1577 obj[2] = data[2];
1578 else
1579 obj[2] = 0; /* generation number */
1580
1581 if (fhtype >= 4) {
1582 parent[0] = data[fhtype >= 5 ? 3 : 2];
1583 parent[1] = data[fhtype >= 5 ? 4 : 3];
1584 if (fhtype == 6)
1585 parent[2] = data[5];
1586 else
1587 parent[2] = 0;
1588 }
1589 return sb->s_export_op->find_exported_dentry(sb, obj,
1590 fhtype < 4 ? NULL : parent,
1591 acceptable, context);
1592 }
1593
1594 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1595 int need_parent)
1596 {
1597 struct inode *inode = dentry->d_inode;
1598 int maxlen = *lenp;
1599
1600 if (maxlen < 3)
1601 return 255;
1602
1603 data[0] = inode->i_ino;
1604 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1605 data[2] = inode->i_generation;
1606 *lenp = 3;
1607 /* no room for directory info? return what we've stored so far */
1608 if (maxlen < 5 || !need_parent)
1609 return 3;
1610
1611 spin_lock(&dentry->d_lock);
1612 inode = dentry->d_parent->d_inode;
1613 data[3] = inode->i_ino;
1614 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 *lenp = 5;
1616 if (maxlen >= 6) {
1617 data[5] = inode->i_generation;
1618 *lenp = 6;
1619 }
1620 spin_unlock(&dentry->d_lock);
1621 return *lenp;
1622 }
1623
1624 /* looks for stat data, then copies fields to it, marks the buffer
1625 containing stat data as dirty */
1626 /* reiserfs inodes are never really dirty, since the dirty inode call
1627 ** always logs them. This call allows the VFS inode marking routines
1628 ** to properly mark inodes for datasync and such, but only actually
1629 ** does something when called for a synchronous update.
1630 */
1631 int reiserfs_write_inode(struct inode *inode, int do_sync)
1632 {
1633 struct reiserfs_transaction_handle th;
1634 int jbegin_count = 1;
1635
1636 if (inode->i_sb->s_flags & MS_RDONLY)
1637 return -EROFS;
1638 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1639 ** these cases are just when the system needs ram, not when the
1640 ** inode needs to reach disk for safety, and they can safely be
1641 ** ignored because the altered inode has already been logged.
1642 */
1643 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1644 reiserfs_write_lock(inode->i_sb);
1645 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1646 reiserfs_update_sd(&th, inode);
1647 journal_end_sync(&th, inode->i_sb, jbegin_count);
1648 }
1649 reiserfs_write_unlock(inode->i_sb);
1650 }
1651 return 0;
1652 }
1653
1654 /* stat data of new object is inserted already, this inserts the item
1655 containing "." and ".." entries */
1656 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1657 struct inode *inode,
1658 struct item_head *ih, struct treepath *path,
1659 struct inode *dir)
1660 {
1661 struct super_block *sb = th->t_super;
1662 char empty_dir[EMPTY_DIR_SIZE];
1663 char *body = empty_dir;
1664 struct cpu_key key;
1665 int retval;
1666
1667 BUG_ON(!th->t_trans_id);
1668
1669 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1670 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1671 TYPE_DIRENTRY, 3 /*key length */ );
1672
1673 /* compose item head for new item. Directories consist of items of
1674 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1675 is done by reiserfs_new_inode */
1676 if (old_format_only(sb)) {
1677 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1679
1680 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1681 ih->ih_key.k_objectid,
1682 INODE_PKEY(dir)->k_dir_id,
1683 INODE_PKEY(dir)->k_objectid);
1684 } else {
1685 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1686 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1687
1688 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1689 ih->ih_key.k_objectid,
1690 INODE_PKEY(dir)->k_dir_id,
1691 INODE_PKEY(dir)->k_objectid);
1692 }
1693
1694 /* look for place in the tree for new item */
1695 retval = search_item(sb, &key, path);
1696 if (retval == IO_ERROR) {
1697 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1698 "i/o failure occurred creating new directory");
1699 return -EIO;
1700 }
1701 if (retval == ITEM_FOUND) {
1702 pathrelse(path);
1703 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1704 "object with this key exists (%k)",
1705 &(ih->ih_key));
1706 return -EEXIST;
1707 }
1708
1709 /* insert item, that is empty directory item */
1710 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1711 }
1712
1713 /* stat data of object has been inserted, this inserts the item
1714 containing the body of symlink */
1715 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1716 struct item_head *ih,
1717 struct treepath *path, const char *symname,
1718 int item_len)
1719 {
1720 struct super_block *sb = th->t_super;
1721 struct cpu_key key;
1722 int retval;
1723
1724 BUG_ON(!th->t_trans_id);
1725
1726 _make_cpu_key(&key, KEY_FORMAT_3_5,
1727 le32_to_cpu(ih->ih_key.k_dir_id),
1728 le32_to_cpu(ih->ih_key.k_objectid),
1729 1, TYPE_DIRECT, 3 /*key length */ );
1730
1731 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1732 0 /*free_space */ );
1733
1734 /* look for place in the tree for new item */
1735 retval = search_item(sb, &key, path);
1736 if (retval == IO_ERROR) {
1737 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1738 "i/o failure occurred creating new symlink");
1739 return -EIO;
1740 }
1741 if (retval == ITEM_FOUND) {
1742 pathrelse(path);
1743 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1744 "object with this key exists (%k)",
1745 &(ih->ih_key));
1746 return -EEXIST;
1747 }
1748
1749 /* insert item, that is body of symlink */
1750 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1751 }
1752
1753 /* inserts the stat data into the tree, and then calls
1754 reiserfs_new_directory (to insert ".", ".." item if new object is
1755 directory) or reiserfs_new_symlink (to insert symlink body if new
1756 object is symlink) or nothing (if new object is regular file)
1757
1758 NOTE! uid and gid must already be set in the inode. If we return
1759 non-zero due to an error, we have to drop the quota previously allocated
1760 for the fresh inode. This can only be done outside a transaction, so
1761 if we return non-zero, we also end the transaction. */
1762 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1763 struct inode *dir, int mode, const char *symname,
1764 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1765 strlen (symname) for symlinks) */
1766 loff_t i_size, struct dentry *dentry,
1767 struct inode *inode)
1768 {
1769 struct super_block *sb;
1770 INITIALIZE_PATH(path_to_key);
1771 struct cpu_key key;
1772 struct item_head ih;
1773 struct stat_data sd;
1774 int retval;
1775 int err;
1776
1777 BUG_ON(!th->t_trans_id);
1778
1779 if (DQUOT_ALLOC_INODE(inode)) {
1780 err = -EDQUOT;
1781 goto out_end_trans;
1782 }
1783 if (!dir->i_nlink) {
1784 err = -EPERM;
1785 goto out_bad_inode;
1786 }
1787
1788 sb = dir->i_sb;
1789
1790 /* item head of new item */
1791 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1792 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1793 if (!ih.ih_key.k_objectid) {
1794 err = -ENOMEM;
1795 goto out_bad_inode;
1796 }
1797 if (old_format_only(sb))
1798 /* not a perfect generation count, as object ids can be reused, but
1799 ** this is as good as reiserfs can do right now.
1800 ** note that the private part of inode isn't filled in yet, we have
1801 ** to use the directory.
1802 */
1803 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1804 else
1805 #if defined( USE_INODE_GENERATION_COUNTER )
1806 inode->i_generation =
1807 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1808 #else
1809 inode->i_generation = ++event;
1810 #endif
1811
1812 /* fill stat data */
1813 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1814
1815 /* uid and gid must already be set by the caller for quota init */
1816
1817 /* symlink cannot be immutable or append only, right? */
1818 if (S_ISLNK(inode->i_mode))
1819 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1820
1821 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1822 inode->i_size = i_size;
1823 inode->i_blocks = 0;
1824 inode->i_bytes = 0;
1825 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1826 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1827
1828 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1829 REISERFS_I(inode)->i_flags = 0;
1830 REISERFS_I(inode)->i_prealloc_block = 0;
1831 REISERFS_I(inode)->i_prealloc_count = 0;
1832 REISERFS_I(inode)->i_trans_id = 0;
1833 REISERFS_I(inode)->i_jl = NULL;
1834 REISERFS_I(inode)->i_attrs =
1835 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1836 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1837 mutex_init(&(REISERFS_I(inode)->i_mmap));
1838 reiserfs_init_acl_access(inode);
1839 reiserfs_init_acl_default(inode);
1840 reiserfs_init_xattr_rwsem(inode);
1841
1842 if (old_format_only(sb))
1843 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1844 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1845 else
1846 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1847 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1848
1849 /* key to search for correct place for new stat data */
1850 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1851 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1852 TYPE_STAT_DATA, 3 /*key length */ );
1853
1854 /* find proper place for inserting of stat data */
1855 retval = search_item(sb, &key, &path_to_key);
1856 if (retval == IO_ERROR) {
1857 err = -EIO;
1858 goto out_bad_inode;
1859 }
1860 if (retval == ITEM_FOUND) {
1861 pathrelse(&path_to_key);
1862 err = -EEXIST;
1863 goto out_bad_inode;
1864 }
1865 if (old_format_only(sb)) {
1866 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1867 pathrelse(&path_to_key);
1868 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1869 err = -EINVAL;
1870 goto out_bad_inode;
1871 }
1872 inode2sd_v1(&sd, inode, inode->i_size);
1873 } else {
1874 inode2sd(&sd, inode, inode->i_size);
1875 }
1876 // these do not go to on-disk stat data
1877 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1878
1879 // store in in-core inode the key of stat data and version all
1880 // object items will have (directory items will have old offset
1881 // format, other new objects will consist of new items)
1882 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1883 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1884 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1885 else
1886 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1887 if (old_format_only(sb))
1888 set_inode_sd_version(inode, STAT_DATA_V1);
1889 else
1890 set_inode_sd_version(inode, STAT_DATA_V2);
1891
1892 /* insert the stat data into the tree */
1893 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1894 if (REISERFS_I(dir)->new_packing_locality)
1895 th->displace_new_blocks = 1;
1896 #endif
1897 retval =
1898 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1899 (char *)(&sd));
1900 if (retval) {
1901 err = retval;
1902 reiserfs_check_path(&path_to_key);
1903 goto out_bad_inode;
1904 }
1905 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1906 if (!th->displace_new_blocks)
1907 REISERFS_I(dir)->new_packing_locality = 0;
1908 #endif
1909 if (S_ISDIR(mode)) {
1910 /* insert item with "." and ".." */
1911 retval =
1912 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1913 }
1914
1915 if (S_ISLNK(mode)) {
1916 /* insert body of symlink */
1917 if (!old_format_only(sb))
1918 i_size = ROUND_UP(i_size);
1919 retval =
1920 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1921 i_size);
1922 }
1923 if (retval) {
1924 err = retval;
1925 reiserfs_check_path(&path_to_key);
1926 journal_end(th, th->t_super, th->t_blocks_allocated);
1927 goto out_inserted_sd;
1928 }
1929
1930 /* XXX CHECK THIS */
1931 if (reiserfs_posixacl(inode->i_sb)) {
1932 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1933 if (retval) {
1934 err = retval;
1935 reiserfs_check_path(&path_to_key);
1936 journal_end(th, th->t_super, th->t_blocks_allocated);
1937 goto out_inserted_sd;
1938 }
1939 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1940 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1941 "but vfs thinks they are!");
1942 } else if (is_reiserfs_priv_object(dir)) {
1943 reiserfs_mark_inode_private(inode);
1944 }
1945
1946 insert_inode_hash(inode);
1947 reiserfs_update_sd(th, inode);
1948 reiserfs_check_path(&path_to_key);
1949
1950 return 0;
1951
1952 /* it looks like you can easily compress these two goto targets into
1953 * one. Keeping it like this doesn't actually hurt anything, and they
1954 * are place holders for what the quota code actually needs.
1955 */
1956 out_bad_inode:
1957 /* Invalidate the object, nothing was inserted yet */
1958 INODE_PKEY(inode)->k_objectid = 0;
1959
1960 /* Quota change must be inside a transaction for journaling */
1961 DQUOT_FREE_INODE(inode);
1962
1963 out_end_trans:
1964 journal_end(th, th->t_super, th->t_blocks_allocated);
1965 /* Drop can be outside and it needs more credits so it's better to have it outside */
1966 DQUOT_DROP(inode);
1967 inode->i_flags |= S_NOQUOTA;
1968 make_bad_inode(inode);
1969
1970 out_inserted_sd:
1971 inode->i_nlink = 0;
1972 th->t_trans_id = 0; /* so the caller can't use this handle later */
1973
1974 /* If we were inheriting an ACL, we need to release the lock so that
1975 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1976 * code really needs to be reworked, but this will take care of it
1977 * for now. -jeffm */
1978 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1979 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1980 reiserfs_write_unlock_xattrs(dir->i_sb);
1981 iput(inode);
1982 reiserfs_write_lock_xattrs(dir->i_sb);
1983 } else
1984 #endif
1985 iput(inode);
1986 return err;
1987 }
1988
1989 /*
1990 ** finds the tail page in the page cache,
1991 ** reads the last block in.
1992 **
1993 ** On success, page_result is set to a locked, pinned page, and bh_result
1994 ** is set to an up to date buffer for the last block in the file. returns 0.
1995 **
1996 ** tail conversion is not done, so bh_result might not be valid for writing
1997 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1998 ** trying to write the block.
1999 **
2000 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2001 */
2002 static int grab_tail_page(struct inode *p_s_inode,
2003 struct page **page_result,
2004 struct buffer_head **bh_result)
2005 {
2006
2007 /* we want the page with the last byte in the file,
2008 ** not the page that will hold the next byte for appending
2009 */
2010 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2011 unsigned long pos = 0;
2012 unsigned long start = 0;
2013 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2014 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2015 struct buffer_head *bh;
2016 struct buffer_head *head;
2017 struct page *page;
2018 int error;
2019
2020 /* we know that we are only called with inode->i_size > 0.
2021 ** we also know that a file tail can never be as big as a block
2022 ** If i_size % blocksize == 0, our file is currently block aligned
2023 ** and it won't need converting or zeroing after a truncate.
2024 */
2025 if ((offset & (blocksize - 1)) == 0) {
2026 return -ENOENT;
2027 }
2028 page = grab_cache_page(p_s_inode->i_mapping, index);
2029 error = -ENOMEM;
2030 if (!page) {
2031 goto out;
2032 }
2033 /* start within the page of the last block in the file */
2034 start = (offset / blocksize) * blocksize;
2035
2036 error = block_prepare_write(page, start, offset,
2037 reiserfs_get_block_create_0);
2038 if (error)
2039 goto unlock;
2040
2041 head = page_buffers(page);
2042 bh = head;
2043 do {
2044 if (pos >= start) {
2045 break;
2046 }
2047 bh = bh->b_this_page;
2048 pos += blocksize;
2049 } while (bh != head);
2050
2051 if (!buffer_uptodate(bh)) {
2052 /* note, this should never happen, prepare_write should
2053 ** be taking care of this for us. If the buffer isn't up to date,
2054 ** I've screwed up the code to find the buffer, or the code to
2055 ** call prepare_write
2056 */
2057 reiserfs_warning(p_s_inode->i_sb,
2058 "clm-6000: error reading block %lu on dev %s",
2059 bh->b_blocknr,
2060 reiserfs_bdevname(p_s_inode->i_sb));
2061 error = -EIO;
2062 goto unlock;
2063 }
2064 *bh_result = bh;
2065 *page_result = page;
2066
2067 out:
2068 return error;
2069
2070 unlock:
2071 unlock_page(page);
2072 page_cache_release(page);
2073 return error;
2074 }
2075
2076 /*
2077 ** vfs version of truncate file. Must NOT be called with
2078 ** a transaction already started.
2079 **
2080 ** some code taken from block_truncate_page
2081 */
2082 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2083 {
2084 struct reiserfs_transaction_handle th;
2085 /* we want the offset for the first byte after the end of the file */
2086 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2087 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2088 unsigned length;
2089 struct page *page = NULL;
2090 int error;
2091 struct buffer_head *bh = NULL;
2092 int err2;
2093
2094 reiserfs_write_lock(p_s_inode->i_sb);
2095
2096 if (p_s_inode->i_size > 0) {
2097 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2098 // -ENOENT means we truncated past the end of the file,
2099 // and get_block_create_0 could not find a block to read in,
2100 // which is ok.
2101 if (error != -ENOENT)
2102 reiserfs_warning(p_s_inode->i_sb,
2103 "clm-6001: grab_tail_page failed %d",
2104 error);
2105 page = NULL;
2106 bh = NULL;
2107 }
2108 }
2109
2110 /* so, if page != NULL, we have a buffer head for the offset at
2111 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2112 ** then we have an unformatted node. Otherwise, we have a direct item,
2113 ** and no zeroing is required on disk. We zero after the truncate,
2114 ** because the truncate might pack the item anyway
2115 ** (it will unmap bh if it packs).
2116 */
2117 /* it is enough to reserve space in transaction for 2 balancings:
2118 one for "save" link adding and another for the first
2119 cut_from_item. 1 is for update_sd */
2120 error = journal_begin(&th, p_s_inode->i_sb,
2121 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2122 if (error)
2123 goto out;
2124 reiserfs_update_inode_transaction(p_s_inode);
2125 if (update_timestamps)
2126 /* we are doing real truncate: if the system crashes before the last
2127 transaction of truncating gets committed - on reboot the file
2128 either appears truncated properly or not truncated at all */
2129 add_save_link(&th, p_s_inode, 1);
2130 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2131 error =
2132 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2133 if (error)
2134 goto out;
2135
2136 /* check reiserfs_do_truncate after ending the transaction */
2137 if (err2) {
2138 error = err2;
2139 goto out;
2140 }
2141
2142 if (update_timestamps) {
2143 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2144 if (error)
2145 goto out;
2146 }
2147
2148 if (page) {
2149 length = offset & (blocksize - 1);
2150 /* if we are not on a block boundary */
2151 if (length) {
2152 length = blocksize - length;
2153 zero_user_page(page, offset, length, KM_USER0);
2154 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2155 mark_buffer_dirty(bh);
2156 }
2157 }
2158 unlock_page(page);
2159 page_cache_release(page);
2160 }
2161
2162 reiserfs_write_unlock(p_s_inode->i_sb);
2163 return 0;
2164 out:
2165 if (page) {
2166 unlock_page(page);
2167 page_cache_release(page);
2168 }
2169 reiserfs_write_unlock(p_s_inode->i_sb);
2170 return error;
2171 }
2172
2173 static int map_block_for_writepage(struct inode *inode,
2174 struct buffer_head *bh_result,
2175 unsigned long block)
2176 {
2177 struct reiserfs_transaction_handle th;
2178 int fs_gen;
2179 struct item_head tmp_ih;
2180 struct item_head *ih;
2181 struct buffer_head *bh;
2182 __le32 *item;
2183 struct cpu_key key;
2184 INITIALIZE_PATH(path);
2185 int pos_in_item;
2186 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2187 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2188 int retval;
2189 int use_get_block = 0;
2190 int bytes_copied = 0;
2191 int copy_size;
2192 int trans_running = 0;
2193
2194 /* catch places below that try to log something without starting a trans */
2195 th.t_trans_id = 0;
2196
2197 if (!buffer_uptodate(bh_result)) {
2198 return -EIO;
2199 }
2200
2201 kmap(bh_result->b_page);
2202 start_over:
2203 reiserfs_write_lock(inode->i_sb);
2204 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2205
2206 research:
2207 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2208 if (retval != POSITION_FOUND) {
2209 use_get_block = 1;
2210 goto out;
2211 }
2212
2213 bh = get_last_bh(&path);
2214 ih = get_ih(&path);
2215 item = get_item(&path);
2216 pos_in_item = path.pos_in_item;
2217
2218 /* we've found an unformatted node */
2219 if (indirect_item_found(retval, ih)) {
2220 if (bytes_copied > 0) {
2221 reiserfs_warning(inode->i_sb,
2222 "clm-6002: bytes_copied %d",
2223 bytes_copied);
2224 }
2225 if (!get_block_num(item, pos_in_item)) {
2226 /* crap, we are writing to a hole */
2227 use_get_block = 1;
2228 goto out;
2229 }
2230 set_block_dev_mapped(bh_result,
2231 get_block_num(item, pos_in_item), inode);
2232 } else if (is_direct_le_ih(ih)) {
2233 char *p;
2234 p = page_address(bh_result->b_page);
2235 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2236 copy_size = ih_item_len(ih) - pos_in_item;
2237
2238 fs_gen = get_generation(inode->i_sb);
2239 copy_item_head(&tmp_ih, ih);
2240
2241 if (!trans_running) {
2242 /* vs-3050 is gone, no need to drop the path */
2243 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2244 if (retval)
2245 goto out;
2246 reiserfs_update_inode_transaction(inode);
2247 trans_running = 1;
2248 if (fs_changed(fs_gen, inode->i_sb)
2249 && item_moved(&tmp_ih, &path)) {
2250 reiserfs_restore_prepared_buffer(inode->i_sb,
2251 bh);
2252 goto research;
2253 }
2254 }
2255
2256 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2257
2258 if (fs_changed(fs_gen, inode->i_sb)
2259 && item_moved(&tmp_ih, &path)) {
2260 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2261 goto research;
2262 }
2263
2264 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2265 copy_size);
2266
2267 journal_mark_dirty(&th, inode->i_sb, bh);
2268 bytes_copied += copy_size;
2269 set_block_dev_mapped(bh_result, 0, inode);
2270
2271 /* are there still bytes left? */
2272 if (bytes_copied < bh_result->b_size &&
2273 (byte_offset + bytes_copied) < inode->i_size) {
2274 set_cpu_key_k_offset(&key,
2275 cpu_key_k_offset(&key) +
2276 copy_size);
2277 goto research;
2278 }
2279 } else {
2280 reiserfs_warning(inode->i_sb,
2281 "clm-6003: bad item inode %lu, device %s",
2282 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2283 retval = -EIO;
2284 goto out;
2285 }
2286 retval = 0;
2287
2288 out:
2289 pathrelse(&path);
2290 if (trans_running) {
2291 int err = journal_end(&th, inode->i_sb, jbegin_count);
2292 if (err)
2293 retval = err;
2294 trans_running = 0;
2295 }
2296 reiserfs_write_unlock(inode->i_sb);
2297
2298 /* this is where we fill in holes in the file. */
2299 if (use_get_block) {
2300 retval = reiserfs_get_block(inode, block, bh_result,
2301 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2302 | GET_BLOCK_NO_DANGLE);
2303 if (!retval) {
2304 if (!buffer_mapped(bh_result)
2305 || bh_result->b_blocknr == 0) {
2306 /* get_block failed to find a mapped unformatted node. */
2307 use_get_block = 0;
2308 goto start_over;
2309 }
2310 }
2311 }
2312 kunmap(bh_result->b_page);
2313
2314 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2315 /* we've copied data from the page into the direct item, so the
2316 * buffer in the page is now clean, mark it to reflect that.
2317 */
2318 lock_buffer(bh_result);
2319 clear_buffer_dirty(bh_result);
2320 unlock_buffer(bh_result);
2321 }
2322 return retval;
2323 }
2324
2325 /*
2326 * mason@suse.com: updated in 2.5.54 to follow the same general io
2327 * start/recovery path as __block_write_full_page, along with special
2328 * code to handle reiserfs tails.
2329 */
2330 static int reiserfs_write_full_page(struct page *page,
2331 struct writeback_control *wbc)
2332 {
2333 struct inode *inode = page->mapping->host;
2334 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2335 int error = 0;
2336 unsigned long block;
2337 sector_t last_block;
2338 struct buffer_head *head, *bh;
2339 int partial = 0;
2340 int nr = 0;
2341 int checked = PageChecked(page);
2342 struct reiserfs_transaction_handle th;
2343 struct super_block *s = inode->i_sb;
2344 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2345 th.t_trans_id = 0;
2346
2347 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2348 if (checked && (current->flags & PF_MEMALLOC)) {
2349 redirty_page_for_writepage(wbc, page);
2350 unlock_page(page);
2351 return 0;
2352 }
2353
2354 /* The page dirty bit is cleared before writepage is called, which
2355 * means we have to tell create_empty_buffers to make dirty buffers
2356 * The page really should be up to date at this point, so tossing
2357 * in the BH_Uptodate is just a sanity check.
2358 */
2359 if (!page_has_buffers(page)) {
2360 create_empty_buffers(page, s->s_blocksize,
2361 (1 << BH_Dirty) | (1 << BH_Uptodate));
2362 }
2363 head = page_buffers(page);
2364
2365 /* last page in the file, zero out any contents past the
2366 ** last byte in the file
2367 */
2368 if (page->index >= end_index) {
2369 unsigned last_offset;
2370
2371 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2372 /* no file contents in this page */
2373 if (page->index >= end_index + 1 || !last_offset) {
2374 unlock_page(page);
2375 return 0;
2376 }
2377 zero_user_page(page, last_offset, PAGE_CACHE_SIZE - last_offset, KM_USER0);
2378 }
2379 bh = head;
2380 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2381 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2382 /* first map all the buffers, logging any direct items we find */
2383 do {
2384 if (block > last_block) {
2385 /*
2386 * This can happen when the block size is less than
2387 * the page size. The corresponding bytes in the page
2388 * were zero filled above
2389 */
2390 clear_buffer_dirty(bh);
2391 set_buffer_uptodate(bh);
2392 } else if ((checked || buffer_dirty(bh)) &&
2393 (!buffer_mapped(bh) || (buffer_mapped(bh)
2394 && bh->b_blocknr ==
2395 0))) {
2396 /* not mapped yet, or it points to a direct item, search
2397 * the btree for the mapping info, and log any direct
2398 * items found
2399 */
2400 if ((error = map_block_for_writepage(inode, bh, block))) {
2401 goto fail;
2402 }
2403 }
2404 bh = bh->b_this_page;
2405 block++;
2406 } while (bh != head);
2407
2408 /*
2409 * we start the transaction after map_block_for_writepage,
2410 * because it can create holes in the file (an unbounded operation).
2411 * starting it here, we can make a reliable estimate for how many
2412 * blocks we're going to log
2413 */
2414 if (checked) {
2415 ClearPageChecked(page);
2416 reiserfs_write_lock(s);
2417 error = journal_begin(&th, s, bh_per_page + 1);
2418 if (error) {
2419 reiserfs_write_unlock(s);
2420 goto fail;
2421 }
2422 reiserfs_update_inode_transaction(inode);
2423 }
2424 /* now go through and lock any dirty buffers on the page */
2425 do {
2426 get_bh(bh);
2427 if (!buffer_mapped(bh))
2428 continue;
2429 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2430 continue;
2431
2432 if (checked) {
2433 reiserfs_prepare_for_journal(s, bh, 1);
2434 journal_mark_dirty(&th, s, bh);
2435 continue;
2436 }
2437 /* from this point on, we know the buffer is mapped to a
2438 * real block and not a direct item
2439 */
2440 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2441 lock_buffer(bh);
2442 } else {
2443 if (test_set_buffer_locked(bh)) {
2444 redirty_page_for_writepage(wbc, page);
2445 continue;
2446 }
2447 }
2448 if (test_clear_buffer_dirty(bh)) {
2449 mark_buffer_async_write(bh);
2450 } else {
2451 unlock_buffer(bh);
2452 }
2453 } while ((bh = bh->b_this_page) != head);
2454
2455 if (checked) {
2456 error = journal_end(&th, s, bh_per_page + 1);
2457 reiserfs_write_unlock(s);
2458 if (error)
2459 goto fail;
2460 }
2461 BUG_ON(PageWriteback(page));
2462 set_page_writeback(page);
2463 unlock_page(page);
2464
2465 /*
2466 * since any buffer might be the only dirty buffer on the page,
2467 * the first submit_bh can bring the page out of writeback.
2468 * be careful with the buffers.
2469 */
2470 do {
2471 struct buffer_head *next = bh->b_this_page;
2472 if (buffer_async_write(bh)) {
2473 submit_bh(WRITE, bh);
2474 nr++;
2475 }
2476 put_bh(bh);
2477 bh = next;
2478 } while (bh != head);
2479
2480 error = 0;
2481 done:
2482 if (nr == 0) {
2483 /*
2484 * if this page only had a direct item, it is very possible for
2485 * no io to be required without there being an error. Or,
2486 * someone else could have locked them and sent them down the
2487 * pipe without locking the page
2488 */
2489 bh = head;
2490 do {
2491 if (!buffer_uptodate(bh)) {
2492 partial = 1;
2493 break;
2494 }
2495 bh = bh->b_this_page;
2496 } while (bh != head);
2497 if (!partial)
2498 SetPageUptodate(page);
2499 end_page_writeback(page);
2500 }
2501 return error;
2502
2503 fail:
2504 /* catches various errors, we need to make sure any valid dirty blocks
2505 * get to the media. The page is currently locked and not marked for
2506 * writeback
2507 */
2508 ClearPageUptodate(page);
2509 bh = head;
2510 do {
2511 get_bh(bh);
2512 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2513 lock_buffer(bh);
2514 mark_buffer_async_write(bh);
2515 } else {
2516 /*
2517 * clear any dirty bits that might have come from getting
2518 * attached to a dirty page
2519 */
2520 clear_buffer_dirty(bh);
2521 }
2522 bh = bh->b_this_page;
2523 } while (bh != head);
2524 SetPageError(page);
2525 BUG_ON(PageWriteback(page));
2526 set_page_writeback(page);
2527 unlock_page(page);
2528 do {
2529 struct buffer_head *next = bh->b_this_page;
2530 if (buffer_async_write(bh)) {
2531 clear_buffer_dirty(bh);
2532 submit_bh(WRITE, bh);
2533 nr++;
2534 }
2535 put_bh(bh);
2536 bh = next;
2537 } while (bh != head);
2538 goto done;
2539 }
2540
2541 static int reiserfs_readpage(struct file *f, struct page *page)
2542 {
2543 return block_read_full_page(page, reiserfs_get_block);
2544 }
2545
2546 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2547 {
2548 struct inode *inode = page->mapping->host;
2549 reiserfs_wait_on_write_block(inode->i_sb);
2550 return reiserfs_write_full_page(page, wbc);
2551 }
2552
2553 static int reiserfs_prepare_write(struct file *f, struct page *page,
2554 unsigned from, unsigned to)
2555 {
2556 struct inode *inode = page->mapping->host;
2557 int ret;
2558 int old_ref = 0;
2559
2560 reiserfs_wait_on_write_block(inode->i_sb);
2561 fix_tail_page_for_writing(page);
2562 if (reiserfs_transaction_running(inode->i_sb)) {
2563 struct reiserfs_transaction_handle *th;
2564 th = (struct reiserfs_transaction_handle *)current->
2565 journal_info;
2566 BUG_ON(!th->t_refcount);
2567 BUG_ON(!th->t_trans_id);
2568 old_ref = th->t_refcount;
2569 th->t_refcount++;
2570 }
2571
2572 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2573 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2574 struct reiserfs_transaction_handle *th = current->journal_info;
2575 /* this gets a little ugly. If reiserfs_get_block returned an
2576 * error and left a transacstion running, we've got to close it,
2577 * and we've got to free handle if it was a persistent transaction.
2578 *
2579 * But, if we had nested into an existing transaction, we need
2580 * to just drop the ref count on the handle.
2581 *
2582 * If old_ref == 0, the transaction is from reiserfs_get_block,
2583 * and it was a persistent trans. Otherwise, it was nested above.
2584 */
2585 if (th->t_refcount > old_ref) {
2586 if (old_ref)
2587 th->t_refcount--;
2588 else {
2589 int err;
2590 reiserfs_write_lock(inode->i_sb);
2591 err = reiserfs_end_persistent_transaction(th);
2592 reiserfs_write_unlock(inode->i_sb);
2593 if (err)
2594 ret = err;
2595 }
2596 }
2597 }
2598 return ret;
2599
2600 }
2601
2602 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2603 {
2604 return generic_block_bmap(as, block, reiserfs_bmap);
2605 }
2606
2607 static int reiserfs_commit_write(struct file *f, struct page *page,
2608 unsigned from, unsigned to)
2609 {
2610 struct inode *inode = page->mapping->host;
2611 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2612 int ret = 0;
2613 int update_sd = 0;
2614 struct reiserfs_transaction_handle *th = NULL;
2615
2616 reiserfs_wait_on_write_block(inode->i_sb);
2617 if (reiserfs_transaction_running(inode->i_sb)) {
2618 th = current->journal_info;
2619 }
2620 reiserfs_commit_page(inode, page, from, to);
2621
2622 /* generic_commit_write does this for us, but does not update the
2623 ** transaction tracking stuff when the size changes. So, we have
2624 ** to do the i_size updates here.
2625 */
2626 if (pos > inode->i_size) {
2627 struct reiserfs_transaction_handle myth;
2628 reiserfs_write_lock(inode->i_sb);
2629 /* If the file have grown beyond the border where it
2630 can have a tail, unmark it as needing a tail
2631 packing */
2632 if ((have_large_tails(inode->i_sb)
2633 && inode->i_size > i_block_size(inode) * 4)
2634 || (have_small_tails(inode->i_sb)
2635 && inode->i_size > i_block_size(inode)))
2636 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2637
2638 ret = journal_begin(&myth, inode->i_sb, 1);
2639 if (ret) {
2640 reiserfs_write_unlock(inode->i_sb);
2641 goto journal_error;
2642 }
2643 reiserfs_update_inode_transaction(inode);
2644 inode->i_size = pos;
2645 /*
2646 * this will just nest into our transaction. It's important
2647 * to use mark_inode_dirty so the inode gets pushed around on the
2648 * dirty lists, and so that O_SYNC works as expected
2649 */
2650 mark_inode_dirty(inode);
2651 reiserfs_update_sd(&myth, inode);
2652 update_sd = 1;
2653 ret = journal_end(&myth, inode->i_sb, 1);
2654 reiserfs_write_unlock(inode->i_sb);
2655 if (ret)
2656 goto journal_error;
2657 }
2658 if (th) {
2659 reiserfs_write_lock(inode->i_sb);
2660 if (!update_sd)
2661 mark_inode_dirty(inode);
2662 ret = reiserfs_end_persistent_transaction(th);
2663 reiserfs_write_unlock(inode->i_sb);
2664 if (ret)
2665 goto out;
2666 }
2667
2668 out:
2669 return ret;
2670
2671 journal_error:
2672 if (th) {
2673 reiserfs_write_lock(inode->i_sb);
2674 if (!update_sd)
2675 reiserfs_update_sd(th, inode);
2676 ret = reiserfs_end_persistent_transaction(th);
2677 reiserfs_write_unlock(inode->i_sb);
2678 }
2679
2680 return ret;
2681 }
2682
2683 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2684 {
2685 if (reiserfs_attrs(inode->i_sb)) {
2686 if (sd_attrs & REISERFS_SYNC_FL)
2687 inode->i_flags |= S_SYNC;
2688 else
2689 inode->i_flags &= ~S_SYNC;
2690 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2691 inode->i_flags |= S_IMMUTABLE;
2692 else
2693 inode->i_flags &= ~S_IMMUTABLE;
2694 if (sd_attrs & REISERFS_APPEND_FL)
2695 inode->i_flags |= S_APPEND;
2696 else
2697 inode->i_flags &= ~S_APPEND;
2698 if (sd_attrs & REISERFS_NOATIME_FL)
2699 inode->i_flags |= S_NOATIME;
2700 else
2701 inode->i_flags &= ~S_NOATIME;
2702 if (sd_attrs & REISERFS_NOTAIL_FL)
2703 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2704 else
2705 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2706 }
2707 }
2708
2709 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2710 {
2711 if (reiserfs_attrs(inode->i_sb)) {
2712 if (inode->i_flags & S_IMMUTABLE)
2713 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2714 else
2715 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2716 if (inode->i_flags & S_SYNC)
2717 *sd_attrs |= REISERFS_SYNC_FL;
2718 else
2719 *sd_attrs &= ~REISERFS_SYNC_FL;
2720 if (inode->i_flags & S_NOATIME)
2721 *sd_attrs |= REISERFS_NOATIME_FL;
2722 else
2723 *sd_attrs &= ~REISERFS_NOATIME_FL;
2724 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2725 *sd_attrs |= REISERFS_NOTAIL_FL;
2726 else
2727 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2728 }
2729 }
2730
2731 /* decide if this buffer needs to stay around for data logging or ordered
2732 ** write purposes
2733 */
2734 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2735 {
2736 int ret = 1;
2737 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2738
2739 lock_buffer(bh);
2740 spin_lock(&j->j_dirty_buffers_lock);
2741 if (!buffer_mapped(bh)) {
2742 goto free_jh;
2743 }
2744 /* the page is locked, and the only places that log a data buffer
2745 * also lock the page.
2746 */
2747 if (reiserfs_file_data_log(inode)) {
2748 /*
2749 * very conservative, leave the buffer pinned if
2750 * anyone might need it.
2751 */
2752 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2753 ret = 0;
2754 }
2755 } else if (buffer_dirty(bh)) {
2756 struct reiserfs_journal_list *jl;
2757 struct reiserfs_jh *jh = bh->b_private;
2758
2759 /* why is this safe?
2760 * reiserfs_setattr updates i_size in the on disk
2761 * stat data before allowing vmtruncate to be called.
2762 *
2763 * If buffer was put onto the ordered list for this
2764 * transaction, we know for sure either this transaction
2765 * or an older one already has updated i_size on disk,
2766 * and this ordered data won't be referenced in the file
2767 * if we crash.
2768 *
2769 * if the buffer was put onto the ordered list for an older
2770 * transaction, we need to leave it around
2771 */
2772 if (jh && (jl = jh->jl)
2773 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2774 ret = 0;
2775 }
2776 free_jh:
2777 if (ret && bh->b_private) {
2778 reiserfs_free_jh(bh);
2779 }
2780 spin_unlock(&j->j_dirty_buffers_lock);
2781 unlock_buffer(bh);
2782 return ret;
2783 }
2784
2785 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2786 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2787 {
2788 struct buffer_head *head, *bh, *next;
2789 struct inode *inode = page->mapping->host;
2790 unsigned int curr_off = 0;
2791 int ret = 1;
2792
2793 BUG_ON(!PageLocked(page));
2794
2795 if (offset == 0)
2796 ClearPageChecked(page);
2797
2798 if (!page_has_buffers(page))
2799 goto out;
2800
2801 head = page_buffers(page);
2802 bh = head;
2803 do {
2804 unsigned int next_off = curr_off + bh->b_size;
2805 next = bh->b_this_page;
2806
2807 /*
2808 * is this block fully invalidated?
2809 */
2810 if (offset <= curr_off) {
2811 if (invalidatepage_can_drop(inode, bh))
2812 reiserfs_unmap_buffer(bh);
2813 else
2814 ret = 0;
2815 }
2816 curr_off = next_off;
2817 bh = next;
2818 } while (bh != head);
2819
2820 /*
2821 * We release buffers only if the entire page is being invalidated.
2822 * The get_block cached value has been unconditionally invalidated,
2823 * so real IO is not possible anymore.
2824 */
2825 if (!offset && ret) {
2826 ret = try_to_release_page(page, 0);
2827 /* maybe should BUG_ON(!ret); - neilb */
2828 }
2829 out:
2830 return;
2831 }
2832
2833 static int reiserfs_set_page_dirty(struct page *page)
2834 {
2835 struct inode *inode = page->mapping->host;
2836 if (reiserfs_file_data_log(inode)) {
2837 SetPageChecked(page);
2838 return __set_page_dirty_nobuffers(page);
2839 }
2840 return __set_page_dirty_buffers(page);
2841 }
2842
2843 /*
2844 * Returns 1 if the page's buffers were dropped. The page is locked.
2845 *
2846 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2847 * in the buffers at page_buffers(page).
2848 *
2849 * even in -o notail mode, we can't be sure an old mount without -o notail
2850 * didn't create files with tails.
2851 */
2852 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2853 {
2854 struct inode *inode = page->mapping->host;
2855 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2856 struct buffer_head *head;
2857 struct buffer_head *bh;
2858 int ret = 1;
2859
2860 WARN_ON(PageChecked(page));
2861 spin_lock(&j->j_dirty_buffers_lock);
2862 head = page_buffers(page);
2863 bh = head;
2864 do {
2865 if (bh->b_private) {
2866 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2867 reiserfs_free_jh(bh);
2868 } else {
2869 ret = 0;
2870 break;
2871 }
2872 }
2873 bh = bh->b_this_page;
2874 } while (bh != head);
2875 if (ret)
2876 ret = try_to_free_buffers(page);
2877 spin_unlock(&j->j_dirty_buffers_lock);
2878 return ret;
2879 }
2880
2881 /* We thank Mingming Cao for helping us understand in great detail what
2882 to do in this section of the code. */
2883 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2884 const struct iovec *iov, loff_t offset,
2885 unsigned long nr_segs)
2886 {
2887 struct file *file = iocb->ki_filp;
2888 struct inode *inode = file->f_mapping->host;
2889
2890 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2891 offset, nr_segs,
2892 reiserfs_get_blocks_direct_io, NULL);
2893 }
2894
2895 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2896 {
2897 struct inode *inode = dentry->d_inode;
2898 int error;
2899 unsigned int ia_valid = attr->ia_valid;
2900 reiserfs_write_lock(inode->i_sb);
2901 if (attr->ia_valid & ATTR_SIZE) {
2902 /* version 2 items will be caught by the s_maxbytes check
2903 ** done for us in vmtruncate
2904 */
2905 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2906 attr->ia_size > MAX_NON_LFS) {
2907 error = -EFBIG;
2908 goto out;
2909 }
2910 /* fill in hole pointers in the expanding truncate case. */
2911 if (attr->ia_size > inode->i_size) {
2912 error = generic_cont_expand(inode, attr->ia_size);
2913 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2914 int err;
2915 struct reiserfs_transaction_handle th;
2916 /* we're changing at most 2 bitmaps, inode + super */
2917 err = journal_begin(&th, inode->i_sb, 4);
2918 if (!err) {
2919 reiserfs_discard_prealloc(&th, inode);
2920 err = journal_end(&th, inode->i_sb, 4);
2921 }
2922 if (err)
2923 error = err;
2924 }
2925 if (error)
2926 goto out;
2927 /*
2928 * file size is changed, ctime and mtime are
2929 * to be updated
2930 */
2931 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2932 }
2933 }
2934
2935 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2936 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2937 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2938 /* stat data of format v3.5 has 16 bit uid and gid */
2939 error = -EINVAL;
2940 goto out;
2941 }
2942
2943 error = inode_change_ok(inode, attr);
2944 if (!error) {
2945 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2946 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2947 error = reiserfs_chown_xattrs(inode, attr);
2948
2949 if (!error) {
2950 struct reiserfs_transaction_handle th;
2951 int jbegin_count =
2952 2 *
2953 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2954 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2955 2;
2956
2957 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2958 error =
2959 journal_begin(&th, inode->i_sb,
2960 jbegin_count);
2961 if (error)
2962 goto out;
2963 error =
2964 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2965 if (error) {
2966 journal_end(&th, inode->i_sb,
2967 jbegin_count);
2968 goto out;
2969 }
2970 /* Update corresponding info in inode so that everything is in
2971 * one transaction */
2972 if (attr->ia_valid & ATTR_UID)
2973 inode->i_uid = attr->ia_uid;
2974 if (attr->ia_valid & ATTR_GID)
2975 inode->i_gid = attr->ia_gid;
2976 mark_inode_dirty(inode);
2977 error =
2978 journal_end(&th, inode->i_sb, jbegin_count);
2979 }
2980 }
2981 if (!error)
2982 error = inode_setattr(inode, attr);
2983 }
2984
2985 if (!error && reiserfs_posixacl(inode->i_sb)) {
2986 if (attr->ia_valid & ATTR_MODE)
2987 error = reiserfs_acl_chmod(inode);
2988 }
2989
2990 out:
2991 reiserfs_write_unlock(inode->i_sb);
2992 return error;
2993 }
2994
2995 const struct address_space_operations reiserfs_address_space_operations = {
2996 .writepage = reiserfs_writepage,
2997 .readpage = reiserfs_readpage,
2998 .readpages = reiserfs_readpages,
2999 .releasepage = reiserfs_releasepage,
3000 .invalidatepage = reiserfs_invalidatepage,
3001 .sync_page = block_sync_page,
3002 .prepare_write = reiserfs_prepare_write,
3003 .commit_write = reiserfs_commit_write,
3004 .bmap = reiserfs_aop_bmap,
3005 .direct_IO = reiserfs_direct_IO,
3006 .set_page_dirty = reiserfs_set_page_dirty,
3007 };