Merge /home/torvalds/linux-2.6-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/config.h>
6 #include <linux/time.h>
7 #include <linux/fs.h>
8 #include <linux/reiserfs_fs.h>
9 #include <linux/reiserfs_acl.h>
10 #include <linux/reiserfs_xattr.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20
21 extern int reiserfs_default_io_size; /* default io size devuned in super.c */
22
23 static int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25 static int reiserfs_prepare_write(struct file *f, struct page *page,
26 unsigned from, unsigned to);
27
28 void reiserfs_delete_inode(struct inode *inode)
29 {
30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
31 int jbegin_count =
32 JOURNAL_PER_BALANCE_CNT * 2 +
33 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
34 struct reiserfs_transaction_handle th;
35
36 reiserfs_write_lock(inode->i_sb);
37
38 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
39 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
40 down(&inode->i_sem);
41
42 reiserfs_delete_xattrs(inode);
43
44 if (journal_begin(&th, inode->i_sb, jbegin_count)) {
45 up(&inode->i_sem);
46 goto out;
47 }
48 reiserfs_update_inode_transaction(inode);
49
50 if (reiserfs_delete_object(&th, inode)) {
51 up(&inode->i_sem);
52 goto out;
53 }
54
55 /* Do quota update inside a transaction for journaled quotas. We must do that
56 * after delete_object so that quota updates go into the same transaction as
57 * stat data deletion */
58 DQUOT_FREE_INODE(inode);
59
60 if (journal_end(&th, inode->i_sb, jbegin_count)) {
61 up(&inode->i_sem);
62 goto out;
63 }
64
65 up(&inode->i_sem);
66
67 /* all items of file are deleted, so we can remove "save" link */
68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
69 * about an error here */
70 } else {
71 /* no object items are in the tree */
72 ;
73 }
74 out:
75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
76 inode->i_blocks = 0;
77 reiserfs_write_unlock(inode->i_sb);
78 }
79
80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
81 __u32 objectid, loff_t offset, int type, int length)
82 {
83 key->version = version;
84
85 key->on_disk_key.k_dir_id = dirid;
86 key->on_disk_key.k_objectid = objectid;
87 set_cpu_key_k_offset(key, offset);
88 set_cpu_key_k_type(key, type);
89 key->key_length = length;
90 }
91
92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
93 offset and type of key */
94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
95 int type, int length)
96 {
97 _make_cpu_key(key, get_inode_item_key_version(inode),
98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
100 length);
101 }
102
103 //
104 // when key is 0, do not set version and short key
105 //
106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
107 int version,
108 loff_t offset, int type, int length,
109 int entry_count /*or ih_free_space */ )
110 {
111 if (key) {
112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
113 ih->ih_key.k_objectid =
114 cpu_to_le32(key->on_disk_key.k_objectid);
115 }
116 put_ih_version(ih, version);
117 set_le_ih_k_offset(ih, offset);
118 set_le_ih_k_type(ih, type);
119 put_ih_item_len(ih, length);
120 /* set_ih_free_space (ih, 0); */
121 // for directory items it is entry count, for directs and stat
122 // datas - 0xffff, for indirects - 0
123 put_ih_entry_count(ih, entry_count);
124 }
125
126 //
127 // FIXME: we might cache recently accessed indirect item
128
129 // Ugh. Not too eager for that....
130 // I cut the code until such time as I see a convincing argument (benchmark).
131 // I don't want a bloated inode struct..., and I don't like code complexity....
132
133 /* cutting the code is fine, since it really isn't in use yet and is easy
134 ** to add back in. But, Vladimir has a really good idea here. Think
135 ** about what happens for reading a file. For each page,
136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
137 ** an indirect item. This indirect item has X number of pointers, where
138 ** X is a big number if we've done the block allocation right. But,
139 ** we only use one or two of these pointers during each call to readpage,
140 ** needlessly researching again later on.
141 **
142 ** The size of the cache could be dynamic based on the size of the file.
143 **
144 ** I'd also like to see us cache the location the stat data item, since
145 ** we are needlessly researching for that frequently.
146 **
147 ** --chris
148 */
149
150 /* If this page has a file tail in it, and
151 ** it was read in by get_block_create_0, the page data is valid,
152 ** but tail is still sitting in a direct item, and we can't write to
153 ** it. So, look through this page, and check all the mapped buffers
154 ** to make sure they have valid block numbers. Any that don't need
155 ** to be unmapped, so that block_prepare_write will correctly call
156 ** reiserfs_get_block to convert the tail into an unformatted node
157 */
158 static inline void fix_tail_page_for_writing(struct page *page)
159 {
160 struct buffer_head *head, *next, *bh;
161
162 if (page && page_has_buffers(page)) {
163 head = page_buffers(page);
164 bh = head;
165 do {
166 next = bh->b_this_page;
167 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
168 reiserfs_unmap_buffer(bh);
169 }
170 bh = next;
171 } while (bh != head);
172 }
173 }
174
175 /* reiserfs_get_block does not need to allocate a block only if it has been
176 done already or non-hole position has been found in the indirect item */
177 static inline int allocation_needed(int retval, b_blocknr_t allocated,
178 struct item_head *ih,
179 __le32 * item, int pos_in_item)
180 {
181 if (allocated)
182 return 0;
183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
184 get_block_num(item, pos_in_item))
185 return 0;
186 return 1;
187 }
188
189 static inline int indirect_item_found(int retval, struct item_head *ih)
190 {
191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
192 }
193
194 static inline void set_block_dev_mapped(struct buffer_head *bh,
195 b_blocknr_t block, struct inode *inode)
196 {
197 map_bh(bh, inode->i_sb, block);
198 }
199
200 //
201 // files which were created in the earlier version can not be longer,
202 // than 2 gb
203 //
204 static int file_capable(struct inode *inode, long block)
205 {
206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
208 return 1;
209
210 return 0;
211 }
212
213 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
214 struct inode *inode, struct path *path)
215 {
216 struct super_block *s = th->t_super;
217 int len = th->t_blocks_allocated;
218 int err;
219
220 BUG_ON(!th->t_trans_id);
221 BUG_ON(!th->t_refcount);
222
223 /* we cannot restart while nested */
224 if (th->t_refcount > 1) {
225 return 0;
226 }
227 pathrelse(path);
228 reiserfs_update_sd(th, inode);
229 err = journal_end(th, s, len);
230 if (!err) {
231 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
232 if (!err)
233 reiserfs_update_inode_transaction(inode);
234 }
235 return err;
236 }
237
238 // it is called by get_block when create == 0. Returns block number
239 // for 'block'-th logical block of file. When it hits direct item it
240 // returns 0 (being called from bmap) or read direct item into piece
241 // of page (bh_result)
242
243 // Please improve the english/clarity in the comment above, as it is
244 // hard to understand.
245
246 static int _get_block_create_0(struct inode *inode, long block,
247 struct buffer_head *bh_result, int args)
248 {
249 INITIALIZE_PATH(path);
250 struct cpu_key key;
251 struct buffer_head *bh;
252 struct item_head *ih, tmp_ih;
253 int fs_gen;
254 int blocknr;
255 char *p = NULL;
256 int chars;
257 int ret;
258 int result;
259 int done = 0;
260 unsigned long offset;
261
262 // prepare the key to look for the 'block'-th block of file
263 make_cpu_key(&key, inode,
264 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
265 3);
266
267 research:
268 result = search_for_position_by_key(inode->i_sb, &key, &path);
269 if (result != POSITION_FOUND) {
270 pathrelse(&path);
271 if (p)
272 kunmap(bh_result->b_page);
273 if (result == IO_ERROR)
274 return -EIO;
275 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
276 // That there is some MMAPED data associated with it that is yet to be written to disk.
277 if ((args & GET_BLOCK_NO_HOLE)
278 && !PageUptodate(bh_result->b_page)) {
279 return -ENOENT;
280 }
281 return 0;
282 }
283 //
284 bh = get_last_bh(&path);
285 ih = get_ih(&path);
286 if (is_indirect_le_ih(ih)) {
287 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
288
289 /* FIXME: here we could cache indirect item or part of it in
290 the inode to avoid search_by_key in case of subsequent
291 access to file */
292 blocknr = get_block_num(ind_item, path.pos_in_item);
293 ret = 0;
294 if (blocknr) {
295 map_bh(bh_result, inode->i_sb, blocknr);
296 if (path.pos_in_item ==
297 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
298 set_buffer_boundary(bh_result);
299 }
300 } else
301 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
302 // That there is some MMAPED data associated with it that is yet to be written to disk.
303 if ((args & GET_BLOCK_NO_HOLE)
304 && !PageUptodate(bh_result->b_page)) {
305 ret = -ENOENT;
306 }
307
308 pathrelse(&path);
309 if (p)
310 kunmap(bh_result->b_page);
311 return ret;
312 }
313 // requested data are in direct item(s)
314 if (!(args & GET_BLOCK_READ_DIRECT)) {
315 // we are called by bmap. FIXME: we can not map block of file
316 // when it is stored in direct item(s)
317 pathrelse(&path);
318 if (p)
319 kunmap(bh_result->b_page);
320 return -ENOENT;
321 }
322
323 /* if we've got a direct item, and the buffer or page was uptodate,
324 ** we don't want to pull data off disk again. skip to the
325 ** end, where we map the buffer and return
326 */
327 if (buffer_uptodate(bh_result)) {
328 goto finished;
329 } else
330 /*
331 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
332 ** pages without any buffers. If the page is up to date, we don't want
333 ** read old data off disk. Set the up to date bit on the buffer instead
334 ** and jump to the end
335 */
336 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
337 set_buffer_uptodate(bh_result);
338 goto finished;
339 }
340 // read file tail into part of page
341 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
342 fs_gen = get_generation(inode->i_sb);
343 copy_item_head(&tmp_ih, ih);
344
345 /* we only want to kmap if we are reading the tail into the page.
346 ** this is not the common case, so we don't kmap until we are
347 ** sure we need to. But, this means the item might move if
348 ** kmap schedules
349 */
350 if (!p) {
351 p = (char *)kmap(bh_result->b_page);
352 if (fs_changed(fs_gen, inode->i_sb)
353 && item_moved(&tmp_ih, &path)) {
354 goto research;
355 }
356 }
357 p += offset;
358 memset(p, 0, inode->i_sb->s_blocksize);
359 do {
360 if (!is_direct_le_ih(ih)) {
361 BUG();
362 }
363 /* make sure we don't read more bytes than actually exist in
364 ** the file. This can happen in odd cases where i_size isn't
365 ** correct, and when direct item padding results in a few
366 ** extra bytes at the end of the direct item
367 */
368 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
369 break;
370 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
371 chars =
372 inode->i_size - (le_ih_k_offset(ih) - 1) -
373 path.pos_in_item;
374 done = 1;
375 } else {
376 chars = ih_item_len(ih) - path.pos_in_item;
377 }
378 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
379
380 if (done)
381 break;
382
383 p += chars;
384
385 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
386 // we done, if read direct item is not the last item of
387 // node FIXME: we could try to check right delimiting key
388 // to see whether direct item continues in the right
389 // neighbor or rely on i_size
390 break;
391
392 // update key to look for the next piece
393 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
394 result = search_for_position_by_key(inode->i_sb, &key, &path);
395 if (result != POSITION_FOUND)
396 // i/o error most likely
397 break;
398 bh = get_last_bh(&path);
399 ih = get_ih(&path);
400 } while (1);
401
402 flush_dcache_page(bh_result->b_page);
403 kunmap(bh_result->b_page);
404
405 finished:
406 pathrelse(&path);
407
408 if (result == IO_ERROR)
409 return -EIO;
410
411 /* this buffer has valid data, but isn't valid for io. mapping it to
412 * block #0 tells the rest of reiserfs it just has a tail in it
413 */
414 map_bh(bh_result, inode->i_sb, 0);
415 set_buffer_uptodate(bh_result);
416 return 0;
417 }
418
419 // this is called to create file map. So, _get_block_create_0 will not
420 // read direct item
421 static int reiserfs_bmap(struct inode *inode, sector_t block,
422 struct buffer_head *bh_result, int create)
423 {
424 if (!file_capable(inode, block))
425 return -EFBIG;
426
427 reiserfs_write_lock(inode->i_sb);
428 /* do not read the direct item */
429 _get_block_create_0(inode, block, bh_result, 0);
430 reiserfs_write_unlock(inode->i_sb);
431 return 0;
432 }
433
434 /* special version of get_block that is only used by grab_tail_page right
435 ** now. It is sent to block_prepare_write, and when you try to get a
436 ** block past the end of the file (or a block from a hole) it returns
437 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
438 ** be able to do i/o on the buffers returned, unless an error value
439 ** is also returned.
440 **
441 ** So, this allows block_prepare_write to be used for reading a single block
442 ** in a page. Where it does not produce a valid page for holes, or past the
443 ** end of the file. This turns out to be exactly what we need for reading
444 ** tails for conversion.
445 **
446 ** The point of the wrapper is forcing a certain value for create, even
447 ** though the VFS layer is calling this function with create==1. If you
448 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
449 ** don't use this function.
450 */
451 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
452 struct buffer_head *bh_result,
453 int create)
454 {
455 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
456 }
457
458 /* This is special helper for reiserfs_get_block in case we are executing
459 direct_IO request. */
460 static int reiserfs_get_blocks_direct_io(struct inode *inode,
461 sector_t iblock,
462 unsigned long max_blocks,
463 struct buffer_head *bh_result,
464 int create)
465 {
466 int ret;
467
468 bh_result->b_page = NULL;
469
470 /* We set the b_size before reiserfs_get_block call since it is
471 referenced in convert_tail_for_hole() that may be called from
472 reiserfs_get_block() */
473 bh_result->b_size = (1 << inode->i_blkbits);
474
475 ret = reiserfs_get_block(inode, iblock, bh_result,
476 create | GET_BLOCK_NO_DANGLE);
477 if (ret)
478 goto out;
479
480 /* don't allow direct io onto tail pages */
481 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
482 /* make sure future calls to the direct io funcs for this offset
483 ** in the file fail by unmapping the buffer
484 */
485 clear_buffer_mapped(bh_result);
486 ret = -EINVAL;
487 }
488 /* Possible unpacked tail. Flush the data before pages have
489 disappeared */
490 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
491 int err;
492 lock_kernel();
493 err = reiserfs_commit_for_inode(inode);
494 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495 unlock_kernel();
496 if (err < 0)
497 ret = err;
498 }
499 out:
500 return ret;
501 }
502
503 /*
504 ** helper function for when reiserfs_get_block is called for a hole
505 ** but the file tail is still in a direct item
506 ** bh_result is the buffer head for the hole
507 ** tail_offset is the offset of the start of the tail in the file
508 **
509 ** This calls prepare_write, which will start a new transaction
510 ** you should not be in a transaction, or have any paths held when you
511 ** call this.
512 */
513 static int convert_tail_for_hole(struct inode *inode,
514 struct buffer_head *bh_result,
515 loff_t tail_offset)
516 {
517 unsigned long index;
518 unsigned long tail_end;
519 unsigned long tail_start;
520 struct page *tail_page;
521 struct page *hole_page = bh_result->b_page;
522 int retval = 0;
523
524 if ((tail_offset & (bh_result->b_size - 1)) != 1)
525 return -EIO;
526
527 /* always try to read until the end of the block */
528 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
529 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
530
531 index = tail_offset >> PAGE_CACHE_SHIFT;
532 /* hole_page can be zero in case of direct_io, we are sure
533 that we cannot get here if we write with O_DIRECT into
534 tail page */
535 if (!hole_page || index != hole_page->index) {
536 tail_page = grab_cache_page(inode->i_mapping, index);
537 retval = -ENOMEM;
538 if (!tail_page) {
539 goto out;
540 }
541 } else {
542 tail_page = hole_page;
543 }
544
545 /* we don't have to make sure the conversion did not happen while
546 ** we were locking the page because anyone that could convert
547 ** must first take i_sem.
548 **
549 ** We must fix the tail page for writing because it might have buffers
550 ** that are mapped, but have a block number of 0. This indicates tail
551 ** data that has been read directly into the page, and block_prepare_write
552 ** won't trigger a get_block in this case.
553 */
554 fix_tail_page_for_writing(tail_page);
555 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
556 if (retval)
557 goto unlock;
558
559 /* tail conversion might change the data in the page */
560 flush_dcache_page(tail_page);
561
562 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
563
564 unlock:
565 if (tail_page != hole_page) {
566 unlock_page(tail_page);
567 page_cache_release(tail_page);
568 }
569 out:
570 return retval;
571 }
572
573 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
574 long block,
575 struct inode *inode,
576 b_blocknr_t * allocated_block_nr,
577 struct path *path, int flags)
578 {
579 BUG_ON(!th->t_trans_id);
580
581 #ifdef REISERFS_PREALLOCATE
582 if (!(flags & GET_BLOCK_NO_ISEM)) {
583 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
584 path, block);
585 }
586 #endif
587 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
588 block);
589 }
590
591 int reiserfs_get_block(struct inode *inode, sector_t block,
592 struct buffer_head *bh_result, int create)
593 {
594 int repeat, retval = 0;
595 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
596 INITIALIZE_PATH(path);
597 int pos_in_item;
598 struct cpu_key key;
599 struct buffer_head *bh, *unbh = NULL;
600 struct item_head *ih, tmp_ih;
601 __le32 *item;
602 int done;
603 int fs_gen;
604 struct reiserfs_transaction_handle *th = NULL;
605 /* space reserved in transaction batch:
606 . 3 balancings in direct->indirect conversion
607 . 1 block involved into reiserfs_update_sd()
608 XXX in practically impossible worst case direct2indirect()
609 can incur (much) more than 3 balancings.
610 quota update for user, group */
611 int jbegin_count =
612 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
613 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
614 int version;
615 int dangle = 1;
616 loff_t new_offset =
617 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
618
619 /* bad.... */
620 reiserfs_write_lock(inode->i_sb);
621 version = get_inode_item_key_version(inode);
622
623 if (block < 0) {
624 reiserfs_write_unlock(inode->i_sb);
625 return -EIO;
626 }
627
628 if (!file_capable(inode, block)) {
629 reiserfs_write_unlock(inode->i_sb);
630 return -EFBIG;
631 }
632
633 /* if !create, we aren't changing the FS, so we don't need to
634 ** log anything, so we don't need to start a transaction
635 */
636 if (!(create & GET_BLOCK_CREATE)) {
637 int ret;
638 /* find number of block-th logical block of the file */
639 ret = _get_block_create_0(inode, block, bh_result,
640 create | GET_BLOCK_READ_DIRECT);
641 reiserfs_write_unlock(inode->i_sb);
642 return ret;
643 }
644 /*
645 * if we're already in a transaction, make sure to close
646 * any new transactions we start in this func
647 */
648 if ((create & GET_BLOCK_NO_DANGLE) ||
649 reiserfs_transaction_running(inode->i_sb))
650 dangle = 0;
651
652 /* If file is of such a size, that it might have a tail and tails are enabled
653 ** we should mark it as possibly needing tail packing on close
654 */
655 if ((have_large_tails(inode->i_sb)
656 && inode->i_size < i_block_size(inode) * 4)
657 || (have_small_tails(inode->i_sb)
658 && inode->i_size < i_block_size(inode)))
659 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
660
661 /* set the key of the first byte in the 'block'-th block of file */
662 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
663 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
664 start_trans:
665 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
666 if (!th) {
667 retval = -ENOMEM;
668 goto failure;
669 }
670 reiserfs_update_inode_transaction(inode);
671 }
672 research:
673
674 retval = search_for_position_by_key(inode->i_sb, &key, &path);
675 if (retval == IO_ERROR) {
676 retval = -EIO;
677 goto failure;
678 }
679
680 bh = get_last_bh(&path);
681 ih = get_ih(&path);
682 item = get_item(&path);
683 pos_in_item = path.pos_in_item;
684
685 fs_gen = get_generation(inode->i_sb);
686 copy_item_head(&tmp_ih, ih);
687
688 if (allocation_needed
689 (retval, allocated_block_nr, ih, item, pos_in_item)) {
690 /* we have to allocate block for the unformatted node */
691 if (!th) {
692 pathrelse(&path);
693 goto start_trans;
694 }
695
696 repeat =
697 _allocate_block(th, block, inode, &allocated_block_nr,
698 &path, create);
699
700 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
701 /* restart the transaction to give the journal a chance to free
702 ** some blocks. releases the path, so we have to go back to
703 ** research if we succeed on the second try
704 */
705 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
706 retval = restart_transaction(th, inode, &path);
707 if (retval)
708 goto failure;
709 repeat =
710 _allocate_block(th, block, inode,
711 &allocated_block_nr, NULL, create);
712
713 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
714 goto research;
715 }
716 if (repeat == QUOTA_EXCEEDED)
717 retval = -EDQUOT;
718 else
719 retval = -ENOSPC;
720 goto failure;
721 }
722
723 if (fs_changed(fs_gen, inode->i_sb)
724 && item_moved(&tmp_ih, &path)) {
725 goto research;
726 }
727 }
728
729 if (indirect_item_found(retval, ih)) {
730 b_blocknr_t unfm_ptr;
731 /* 'block'-th block is in the file already (there is
732 corresponding cell in some indirect item). But it may be
733 zero unformatted node pointer (hole) */
734 unfm_ptr = get_block_num(item, pos_in_item);
735 if (unfm_ptr == 0) {
736 /* use allocated block to plug the hole */
737 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
738 if (fs_changed(fs_gen, inode->i_sb)
739 && item_moved(&tmp_ih, &path)) {
740 reiserfs_restore_prepared_buffer(inode->i_sb,
741 bh);
742 goto research;
743 }
744 set_buffer_new(bh_result);
745 if (buffer_dirty(bh_result)
746 && reiserfs_data_ordered(inode->i_sb))
747 reiserfs_add_ordered_list(inode, bh_result);
748 put_block_num(item, pos_in_item, allocated_block_nr);
749 unfm_ptr = allocated_block_nr;
750 journal_mark_dirty(th, inode->i_sb, bh);
751 reiserfs_update_sd(th, inode);
752 }
753 set_block_dev_mapped(bh_result, unfm_ptr, inode);
754 pathrelse(&path);
755 retval = 0;
756 if (!dangle && th)
757 retval = reiserfs_end_persistent_transaction(th);
758
759 reiserfs_write_unlock(inode->i_sb);
760
761 /* the item was found, so new blocks were not added to the file
762 ** there is no need to make sure the inode is updated with this
763 ** transaction
764 */
765 return retval;
766 }
767
768 if (!th) {
769 pathrelse(&path);
770 goto start_trans;
771 }
772
773 /* desired position is not found or is in the direct item. We have
774 to append file with holes up to 'block'-th block converting
775 direct items to indirect one if necessary */
776 done = 0;
777 do {
778 if (is_statdata_le_ih(ih)) {
779 __le32 unp = 0;
780 struct cpu_key tmp_key;
781
782 /* indirect item has to be inserted */
783 make_le_item_head(&tmp_ih, &key, version, 1,
784 TYPE_INDIRECT, UNFM_P_SIZE,
785 0 /* free_space */ );
786
787 if (cpu_key_k_offset(&key) == 1) {
788 /* we are going to add 'block'-th block to the file. Use
789 allocated block for that */
790 unp = cpu_to_le32(allocated_block_nr);
791 set_block_dev_mapped(bh_result,
792 allocated_block_nr, inode);
793 set_buffer_new(bh_result);
794 done = 1;
795 }
796 tmp_key = key; // ;)
797 set_cpu_key_k_offset(&tmp_key, 1);
798 PATH_LAST_POSITION(&path)++;
799
800 retval =
801 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
802 inode, (char *)&unp);
803 if (retval) {
804 reiserfs_free_block(th, inode,
805 allocated_block_nr, 1);
806 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
807 }
808 //mark_tail_converted (inode);
809 } else if (is_direct_le_ih(ih)) {
810 /* direct item has to be converted */
811 loff_t tail_offset;
812
813 tail_offset =
814 ((le_ih_k_offset(ih) -
815 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
816 if (tail_offset == cpu_key_k_offset(&key)) {
817 /* direct item we just found fits into block we have
818 to map. Convert it into unformatted node: use
819 bh_result for the conversion */
820 set_block_dev_mapped(bh_result,
821 allocated_block_nr, inode);
822 unbh = bh_result;
823 done = 1;
824 } else {
825 /* we have to padd file tail stored in direct item(s)
826 up to block size and convert it to unformatted
827 node. FIXME: this should also get into page cache */
828
829 pathrelse(&path);
830 /*
831 * ugly, but we can only end the transaction if
832 * we aren't nested
833 */
834 BUG_ON(!th->t_refcount);
835 if (th->t_refcount == 1) {
836 retval =
837 reiserfs_end_persistent_transaction
838 (th);
839 th = NULL;
840 if (retval)
841 goto failure;
842 }
843
844 retval =
845 convert_tail_for_hole(inode, bh_result,
846 tail_offset);
847 if (retval) {
848 if (retval != -ENOSPC)
849 reiserfs_warning(inode->i_sb,
850 "clm-6004: convert tail failed inode %lu, error %d",
851 inode->i_ino,
852 retval);
853 if (allocated_block_nr) {
854 /* the bitmap, the super, and the stat data == 3 */
855 if (!th)
856 th = reiserfs_persistent_transaction(inode->i_sb, 3);
857 if (th)
858 reiserfs_free_block(th,
859 inode,
860 allocated_block_nr,
861 1);
862 }
863 goto failure;
864 }
865 goto research;
866 }
867 retval =
868 direct2indirect(th, inode, &path, unbh,
869 tail_offset);
870 if (retval) {
871 reiserfs_unmap_buffer(unbh);
872 reiserfs_free_block(th, inode,
873 allocated_block_nr, 1);
874 goto failure;
875 }
876 /* it is important the set_buffer_uptodate is done after
877 ** the direct2indirect. The buffer might contain valid
878 ** data newer than the data on disk (read by readpage, changed,
879 ** and then sent here by writepage). direct2indirect needs
880 ** to know if unbh was already up to date, so it can decide
881 ** if the data in unbh needs to be replaced with data from
882 ** the disk
883 */
884 set_buffer_uptodate(unbh);
885
886 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
887 buffer will disappear shortly, so it should not be added to
888 */
889 if (unbh->b_page) {
890 /* we've converted the tail, so we must
891 ** flush unbh before the transaction commits
892 */
893 reiserfs_add_tail_list(inode, unbh);
894
895 /* mark it dirty now to prevent commit_write from adding
896 ** this buffer to the inode's dirty buffer list
897 */
898 /*
899 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
900 * It's still atomic, but it sets the page dirty too,
901 * which makes it eligible for writeback at any time by the
902 * VM (which was also the case with __mark_buffer_dirty())
903 */
904 mark_buffer_dirty(unbh);
905 }
906 } else {
907 /* append indirect item with holes if needed, when appending
908 pointer to 'block'-th block use block, which is already
909 allocated */
910 struct cpu_key tmp_key;
911 unp_t unf_single = 0; // We use this in case we need to allocate only
912 // one block which is a fastpath
913 unp_t *un;
914 __u64 max_to_insert =
915 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
916 UNFM_P_SIZE;
917 __u64 blocks_needed;
918
919 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
920 "vs-804: invalid position for append");
921 /* indirect item has to be appended, set up key of that position */
922 make_cpu_key(&tmp_key, inode,
923 le_key_k_offset(version,
924 &(ih->ih_key)) +
925 op_bytes_number(ih,
926 inode->i_sb->s_blocksize),
927 //pos_in_item * inode->i_sb->s_blocksize,
928 TYPE_INDIRECT, 3); // key type is unimportant
929
930 blocks_needed =
931 1 +
932 ((cpu_key_k_offset(&key) -
933 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
934 s_blocksize_bits);
935 RFALSE(blocks_needed < 0, "green-805: invalid offset");
936
937 if (blocks_needed == 1) {
938 un = &unf_single;
939 } else {
940 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
941 if (!un) {
942 un = &unf_single;
943 blocks_needed = 1;
944 max_to_insert = 0;
945 } else
946 memset(un, 0,
947 UNFM_P_SIZE * min(blocks_needed,
948 max_to_insert));
949 }
950 if (blocks_needed <= max_to_insert) {
951 /* we are going to add target block to the file. Use allocated
952 block for that */
953 un[blocks_needed - 1] =
954 cpu_to_le32(allocated_block_nr);
955 set_block_dev_mapped(bh_result,
956 allocated_block_nr, inode);
957 set_buffer_new(bh_result);
958 done = 1;
959 } else {
960 /* paste hole to the indirect item */
961 /* If kmalloc failed, max_to_insert becomes zero and it means we
962 only have space for one block */
963 blocks_needed =
964 max_to_insert ? max_to_insert : 1;
965 }
966 retval =
967 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
968 (char *)un,
969 UNFM_P_SIZE *
970 blocks_needed);
971
972 if (blocks_needed != 1)
973 kfree(un);
974
975 if (retval) {
976 reiserfs_free_block(th, inode,
977 allocated_block_nr, 1);
978 goto failure;
979 }
980 if (!done) {
981 /* We need to mark new file size in case this function will be
982 interrupted/aborted later on. And we may do this only for
983 holes. */
984 inode->i_size +=
985 inode->i_sb->s_blocksize * blocks_needed;
986 }
987 }
988
989 if (done == 1)
990 break;
991
992 /* this loop could log more blocks than we had originally asked
993 ** for. So, we have to allow the transaction to end if it is
994 ** too big or too full. Update the inode so things are
995 ** consistent if we crash before the function returns
996 **
997 ** release the path so that anybody waiting on the path before
998 ** ending their transaction will be able to continue.
999 */
1000 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1001 retval = restart_transaction(th, inode, &path);
1002 if (retval)
1003 goto failure;
1004 }
1005 /* inserting indirect pointers for a hole can take a
1006 ** long time. reschedule if needed
1007 */
1008 cond_resched();
1009
1010 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1011 if (retval == IO_ERROR) {
1012 retval = -EIO;
1013 goto failure;
1014 }
1015 if (retval == POSITION_FOUND) {
1016 reiserfs_warning(inode->i_sb,
1017 "vs-825: reiserfs_get_block: "
1018 "%K should not be found", &key);
1019 retval = -EEXIST;
1020 if (allocated_block_nr)
1021 reiserfs_free_block(th, inode,
1022 allocated_block_nr, 1);
1023 pathrelse(&path);
1024 goto failure;
1025 }
1026 bh = get_last_bh(&path);
1027 ih = get_ih(&path);
1028 item = get_item(&path);
1029 pos_in_item = path.pos_in_item;
1030 } while (1);
1031
1032 retval = 0;
1033
1034 failure:
1035 if (th && (!dangle || (retval && !th->t_trans_id))) {
1036 int err;
1037 if (th->t_trans_id)
1038 reiserfs_update_sd(th, inode);
1039 err = reiserfs_end_persistent_transaction(th);
1040 if (err)
1041 retval = err;
1042 }
1043
1044 reiserfs_write_unlock(inode->i_sb);
1045 reiserfs_check_path(&path);
1046 return retval;
1047 }
1048
1049 static int
1050 reiserfs_readpages(struct file *file, struct address_space *mapping,
1051 struct list_head *pages, unsigned nr_pages)
1052 {
1053 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1054 }
1055
1056 /* Compute real number of used bytes by file
1057 * Following three functions can go away when we'll have enough space in stat item
1058 */
1059 static int real_space_diff(struct inode *inode, int sd_size)
1060 {
1061 int bytes;
1062 loff_t blocksize = inode->i_sb->s_blocksize;
1063
1064 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1065 return sd_size;
1066
1067 /* End of file is also in full block with indirect reference, so round
1068 ** up to the next block.
1069 **
1070 ** there is just no way to know if the tail is actually packed
1071 ** on the file, so we have to assume it isn't. When we pack the
1072 ** tail, we add 4 bytes to pretend there really is an unformatted
1073 ** node pointer
1074 */
1075 bytes =
1076 ((inode->i_size +
1077 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1078 sd_size;
1079 return bytes;
1080 }
1081
1082 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1083 int sd_size)
1084 {
1085 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1086 return inode->i_size +
1087 (loff_t) (real_space_diff(inode, sd_size));
1088 }
1089 return ((loff_t) real_space_diff(inode, sd_size)) +
1090 (((loff_t) blocks) << 9);
1091 }
1092
1093 /* Compute number of blocks used by file in ReiserFS counting */
1094 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1095 {
1096 loff_t bytes = inode_get_bytes(inode);
1097 loff_t real_space = real_space_diff(inode, sd_size);
1098
1099 /* keeps fsck and non-quota versions of reiserfs happy */
1100 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1101 bytes += (loff_t) 511;
1102 }
1103
1104 /* files from before the quota patch might i_blocks such that
1105 ** bytes < real_space. Deal with that here to prevent it from
1106 ** going negative.
1107 */
1108 if (bytes < real_space)
1109 return 0;
1110 return (bytes - real_space) >> 9;
1111 }
1112
1113 //
1114 // BAD: new directories have stat data of new type and all other items
1115 // of old type. Version stored in the inode says about body items, so
1116 // in update_stat_data we can not rely on inode, but have to check
1117 // item version directly
1118 //
1119
1120 // called by read_locked_inode
1121 static void init_inode(struct inode *inode, struct path *path)
1122 {
1123 struct buffer_head *bh;
1124 struct item_head *ih;
1125 __u32 rdev;
1126 //int version = ITEM_VERSION_1;
1127
1128 bh = PATH_PLAST_BUFFER(path);
1129 ih = PATH_PITEM_HEAD(path);
1130
1131 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1132 inode->i_blksize = reiserfs_default_io_size;
1133
1134 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1135 REISERFS_I(inode)->i_flags = 0;
1136 REISERFS_I(inode)->i_prealloc_block = 0;
1137 REISERFS_I(inode)->i_prealloc_count = 0;
1138 REISERFS_I(inode)->i_trans_id = 0;
1139 REISERFS_I(inode)->i_jl = NULL;
1140 REISERFS_I(inode)->i_acl_access = NULL;
1141 REISERFS_I(inode)->i_acl_default = NULL;
1142 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1143
1144 if (stat_data_v1(ih)) {
1145 struct stat_data_v1 *sd =
1146 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1147 unsigned long blocks;
1148
1149 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1150 set_inode_sd_version(inode, STAT_DATA_V1);
1151 inode->i_mode = sd_v1_mode(sd);
1152 inode->i_nlink = sd_v1_nlink(sd);
1153 inode->i_uid = sd_v1_uid(sd);
1154 inode->i_gid = sd_v1_gid(sd);
1155 inode->i_size = sd_v1_size(sd);
1156 inode->i_atime.tv_sec = sd_v1_atime(sd);
1157 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1158 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1159 inode->i_atime.tv_nsec = 0;
1160 inode->i_ctime.tv_nsec = 0;
1161 inode->i_mtime.tv_nsec = 0;
1162
1163 inode->i_blocks = sd_v1_blocks(sd);
1164 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1165 blocks = (inode->i_size + 511) >> 9;
1166 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1167 if (inode->i_blocks > blocks) {
1168 // there was a bug in <=3.5.23 when i_blocks could take negative
1169 // values. Starting from 3.5.17 this value could even be stored in
1170 // stat data. For such files we set i_blocks based on file
1171 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1172 // only updated if file's inode will ever change
1173 inode->i_blocks = blocks;
1174 }
1175
1176 rdev = sd_v1_rdev(sd);
1177 REISERFS_I(inode)->i_first_direct_byte =
1178 sd_v1_first_direct_byte(sd);
1179 /* an early bug in the quota code can give us an odd number for the
1180 ** block count. This is incorrect, fix it here.
1181 */
1182 if (inode->i_blocks & 1) {
1183 inode->i_blocks++;
1184 }
1185 inode_set_bytes(inode,
1186 to_real_used_space(inode, inode->i_blocks,
1187 SD_V1_SIZE));
1188 /* nopack is initially zero for v1 objects. For v2 objects,
1189 nopack is initialised from sd_attrs */
1190 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1191 } else {
1192 // new stat data found, but object may have old items
1193 // (directories and symlinks)
1194 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1195
1196 inode->i_mode = sd_v2_mode(sd);
1197 inode->i_nlink = sd_v2_nlink(sd);
1198 inode->i_uid = sd_v2_uid(sd);
1199 inode->i_size = sd_v2_size(sd);
1200 inode->i_gid = sd_v2_gid(sd);
1201 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1202 inode->i_atime.tv_sec = sd_v2_atime(sd);
1203 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1204 inode->i_ctime.tv_nsec = 0;
1205 inode->i_mtime.tv_nsec = 0;
1206 inode->i_atime.tv_nsec = 0;
1207 inode->i_blocks = sd_v2_blocks(sd);
1208 rdev = sd_v2_rdev(sd);
1209 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1210 inode->i_generation =
1211 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1212 else
1213 inode->i_generation = sd_v2_generation(sd);
1214
1215 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1216 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1217 else
1218 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1219 REISERFS_I(inode)->i_first_direct_byte = 0;
1220 set_inode_sd_version(inode, STAT_DATA_V2);
1221 inode_set_bytes(inode,
1222 to_real_used_space(inode, inode->i_blocks,
1223 SD_V2_SIZE));
1224 /* read persistent inode attributes from sd and initalise
1225 generic inode flags from them */
1226 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1227 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1228 }
1229
1230 pathrelse(path);
1231 if (S_ISREG(inode->i_mode)) {
1232 inode->i_op = &reiserfs_file_inode_operations;
1233 inode->i_fop = &reiserfs_file_operations;
1234 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1235 } else if (S_ISDIR(inode->i_mode)) {
1236 inode->i_op = &reiserfs_dir_inode_operations;
1237 inode->i_fop = &reiserfs_dir_operations;
1238 } else if (S_ISLNK(inode->i_mode)) {
1239 inode->i_op = &reiserfs_symlink_inode_operations;
1240 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 } else {
1242 inode->i_blocks = 0;
1243 inode->i_op = &reiserfs_special_inode_operations;
1244 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1245 }
1246 }
1247
1248 // update new stat data with inode fields
1249 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1250 {
1251 struct stat_data *sd_v2 = (struct stat_data *)sd;
1252 __u16 flags;
1253
1254 set_sd_v2_mode(sd_v2, inode->i_mode);
1255 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1256 set_sd_v2_uid(sd_v2, inode->i_uid);
1257 set_sd_v2_size(sd_v2, size);
1258 set_sd_v2_gid(sd_v2, inode->i_gid);
1259 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1260 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1261 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1262 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1263 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1264 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1265 else
1266 set_sd_v2_generation(sd_v2, inode->i_generation);
1267 flags = REISERFS_I(inode)->i_attrs;
1268 i_attrs_to_sd_attrs(inode, &flags);
1269 set_sd_v2_attrs(sd_v2, flags);
1270 }
1271
1272 // used to copy inode's fields to old stat data
1273 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1274 {
1275 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1276
1277 set_sd_v1_mode(sd_v1, inode->i_mode);
1278 set_sd_v1_uid(sd_v1, inode->i_uid);
1279 set_sd_v1_gid(sd_v1, inode->i_gid);
1280 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1281 set_sd_v1_size(sd_v1, size);
1282 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1283 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1284 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1285
1286 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1287 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1288 else
1289 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1290
1291 // Sigh. i_first_direct_byte is back
1292 set_sd_v1_first_direct_byte(sd_v1,
1293 REISERFS_I(inode)->i_first_direct_byte);
1294 }
1295
1296 /* NOTE, you must prepare the buffer head before sending it here,
1297 ** and then log it after the call
1298 */
1299 static void update_stat_data(struct path *path, struct inode *inode,
1300 loff_t size)
1301 {
1302 struct buffer_head *bh;
1303 struct item_head *ih;
1304
1305 bh = PATH_PLAST_BUFFER(path);
1306 ih = PATH_PITEM_HEAD(path);
1307
1308 if (!is_statdata_le_ih(ih))
1309 reiserfs_panic(inode->i_sb,
1310 "vs-13065: update_stat_data: key %k, found item %h",
1311 INODE_PKEY(inode), ih);
1312
1313 if (stat_data_v1(ih)) {
1314 // path points to old stat data
1315 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1316 } else {
1317 inode2sd(B_I_PITEM(bh, ih), inode, size);
1318 }
1319
1320 return;
1321 }
1322
1323 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1324 struct inode *inode, loff_t size)
1325 {
1326 struct cpu_key key;
1327 INITIALIZE_PATH(path);
1328 struct buffer_head *bh;
1329 int fs_gen;
1330 struct item_head *ih, tmp_ih;
1331 int retval;
1332
1333 BUG_ON(!th->t_trans_id);
1334
1335 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1336
1337 for (;;) {
1338 int pos;
1339 /* look for the object's stat data */
1340 retval = search_item(inode->i_sb, &key, &path);
1341 if (retval == IO_ERROR) {
1342 reiserfs_warning(inode->i_sb,
1343 "vs-13050: reiserfs_update_sd: "
1344 "i/o failure occurred trying to update %K stat data",
1345 &key);
1346 return;
1347 }
1348 if (retval == ITEM_NOT_FOUND) {
1349 pos = PATH_LAST_POSITION(&path);
1350 pathrelse(&path);
1351 if (inode->i_nlink == 0) {
1352 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1353 return;
1354 }
1355 reiserfs_warning(inode->i_sb,
1356 "vs-13060: reiserfs_update_sd: "
1357 "stat data of object %k (nlink == %d) not found (pos %d)",
1358 INODE_PKEY(inode), inode->i_nlink,
1359 pos);
1360 reiserfs_check_path(&path);
1361 return;
1362 }
1363
1364 /* sigh, prepare_for_journal might schedule. When it schedules the
1365 ** FS might change. We have to detect that, and loop back to the
1366 ** search if the stat data item has moved
1367 */
1368 bh = get_last_bh(&path);
1369 ih = get_ih(&path);
1370 copy_item_head(&tmp_ih, ih);
1371 fs_gen = get_generation(inode->i_sb);
1372 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1373 if (fs_changed(fs_gen, inode->i_sb)
1374 && item_moved(&tmp_ih, &path)) {
1375 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1376 continue; /* Stat_data item has been moved after scheduling. */
1377 }
1378 break;
1379 }
1380 update_stat_data(&path, inode, size);
1381 journal_mark_dirty(th, th->t_super, bh);
1382 pathrelse(&path);
1383 return;
1384 }
1385
1386 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1387 ** does a make_bad_inode when things go wrong. But, we need to make sure
1388 ** and clear the key in the private portion of the inode, otherwise a
1389 ** corresponding iput might try to delete whatever object the inode last
1390 ** represented.
1391 */
1392 static void reiserfs_make_bad_inode(struct inode *inode)
1393 {
1394 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1395 make_bad_inode(inode);
1396 }
1397
1398 //
1399 // initially this function was derived from minix or ext2's analog and
1400 // evolved as the prototype did
1401 //
1402
1403 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1404 {
1405 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1406 inode->i_ino = args->objectid;
1407 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1408 return 0;
1409 }
1410
1411 /* looks for stat data in the tree, and fills up the fields of in-core
1412 inode stat data fields */
1413 void reiserfs_read_locked_inode(struct inode *inode,
1414 struct reiserfs_iget_args *args)
1415 {
1416 INITIALIZE_PATH(path_to_sd);
1417 struct cpu_key key;
1418 unsigned long dirino;
1419 int retval;
1420
1421 dirino = args->dirid;
1422
1423 /* set version 1, version 2 could be used too, because stat data
1424 key is the same in both versions */
1425 key.version = KEY_FORMAT_3_5;
1426 key.on_disk_key.k_dir_id = dirino;
1427 key.on_disk_key.k_objectid = inode->i_ino;
1428 key.on_disk_key.k_offset = 0;
1429 key.on_disk_key.k_type = 0;
1430
1431 /* look for the object's stat data */
1432 retval = search_item(inode->i_sb, &key, &path_to_sd);
1433 if (retval == IO_ERROR) {
1434 reiserfs_warning(inode->i_sb,
1435 "vs-13070: reiserfs_read_locked_inode: "
1436 "i/o failure occurred trying to find stat data of %K",
1437 &key);
1438 reiserfs_make_bad_inode(inode);
1439 return;
1440 }
1441 if (retval != ITEM_FOUND) {
1442 /* a stale NFS handle can trigger this without it being an error */
1443 pathrelse(&path_to_sd);
1444 reiserfs_make_bad_inode(inode);
1445 inode->i_nlink = 0;
1446 return;
1447 }
1448
1449 init_inode(inode, &path_to_sd);
1450
1451 /* It is possible that knfsd is trying to access inode of a file
1452 that is being removed from the disk by some other thread. As we
1453 update sd on unlink all that is required is to check for nlink
1454 here. This bug was first found by Sizif when debugging
1455 SquidNG/Butterfly, forgotten, and found again after Philippe
1456 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1457
1458 More logical fix would require changes in fs/inode.c:iput() to
1459 remove inode from hash-table _after_ fs cleaned disk stuff up and
1460 in iget() to return NULL if I_FREEING inode is found in
1461 hash-table. */
1462 /* Currently there is one place where it's ok to meet inode with
1463 nlink==0: processing of open-unlinked and half-truncated files
1464 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1465 if ((inode->i_nlink == 0) &&
1466 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1467 reiserfs_warning(inode->i_sb,
1468 "vs-13075: reiserfs_read_locked_inode: "
1469 "dead inode read from disk %K. "
1470 "This is likely to be race with knfsd. Ignore",
1471 &key);
1472 reiserfs_make_bad_inode(inode);
1473 }
1474
1475 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1476
1477 }
1478
1479 /**
1480 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1481 *
1482 * @inode: inode from hash table to check
1483 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1484 *
1485 * This function is called by iget5_locked() to distinguish reiserfs inodes
1486 * having the same inode numbers. Such inodes can only exist due to some
1487 * error condition. One of them should be bad. Inodes with identical
1488 * inode numbers (objectids) are distinguished by parent directory ids.
1489 *
1490 */
1491 int reiserfs_find_actor(struct inode *inode, void *opaque)
1492 {
1493 struct reiserfs_iget_args *args;
1494
1495 args = opaque;
1496 /* args is already in CPU order */
1497 return (inode->i_ino == args->objectid) &&
1498 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1499 }
1500
1501 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1502 {
1503 struct inode *inode;
1504 struct reiserfs_iget_args args;
1505
1506 args.objectid = key->on_disk_key.k_objectid;
1507 args.dirid = key->on_disk_key.k_dir_id;
1508 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1509 reiserfs_find_actor, reiserfs_init_locked_inode,
1510 (void *)(&args));
1511 if (!inode)
1512 return ERR_PTR(-ENOMEM);
1513
1514 if (inode->i_state & I_NEW) {
1515 reiserfs_read_locked_inode(inode, &args);
1516 unlock_new_inode(inode);
1517 }
1518
1519 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1520 /* either due to i/o error or a stale NFS handle */
1521 iput(inode);
1522 inode = NULL;
1523 }
1524 return inode;
1525 }
1526
1527 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1528 {
1529 __u32 *data = vobjp;
1530 struct cpu_key key;
1531 struct dentry *result;
1532 struct inode *inode;
1533
1534 key.on_disk_key.k_objectid = data[0];
1535 key.on_disk_key.k_dir_id = data[1];
1536 reiserfs_write_lock(sb);
1537 inode = reiserfs_iget(sb, &key);
1538 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1539 data[2] != inode->i_generation) {
1540 iput(inode);
1541 inode = NULL;
1542 }
1543 reiserfs_write_unlock(sb);
1544 if (!inode)
1545 inode = ERR_PTR(-ESTALE);
1546 if (IS_ERR(inode))
1547 return ERR_PTR(PTR_ERR(inode));
1548 result = d_alloc_anon(inode);
1549 if (!result) {
1550 iput(inode);
1551 return ERR_PTR(-ENOMEM);
1552 }
1553 return result;
1554 }
1555
1556 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1557 int len, int fhtype,
1558 int (*acceptable) (void *contect,
1559 struct dentry * de),
1560 void *context)
1561 {
1562 __u32 obj[3], parent[3];
1563
1564 /* fhtype happens to reflect the number of u32s encoded.
1565 * due to a bug in earlier code, fhtype might indicate there
1566 * are more u32s then actually fitted.
1567 * so if fhtype seems to be more than len, reduce fhtype.
1568 * Valid types are:
1569 * 2 - objectid + dir_id - legacy support
1570 * 3 - objectid + dir_id + generation
1571 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1572 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1573 * 6 - as above plus generation of directory
1574 * 6 does not fit in NFSv2 handles
1575 */
1576 if (fhtype > len) {
1577 if (fhtype != 6 || len != 5)
1578 reiserfs_warning(sb,
1579 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1580 fhtype, len);
1581 fhtype = 5;
1582 }
1583
1584 obj[0] = data[0];
1585 obj[1] = data[1];
1586 if (fhtype == 3 || fhtype >= 5)
1587 obj[2] = data[2];
1588 else
1589 obj[2] = 0; /* generation number */
1590
1591 if (fhtype >= 4) {
1592 parent[0] = data[fhtype >= 5 ? 3 : 2];
1593 parent[1] = data[fhtype >= 5 ? 4 : 3];
1594 if (fhtype == 6)
1595 parent[2] = data[5];
1596 else
1597 parent[2] = 0;
1598 }
1599 return sb->s_export_op->find_exported_dentry(sb, obj,
1600 fhtype < 4 ? NULL : parent,
1601 acceptable, context);
1602 }
1603
1604 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1605 int need_parent)
1606 {
1607 struct inode *inode = dentry->d_inode;
1608 int maxlen = *lenp;
1609
1610 if (maxlen < 3)
1611 return 255;
1612
1613 data[0] = inode->i_ino;
1614 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 data[2] = inode->i_generation;
1616 *lenp = 3;
1617 /* no room for directory info? return what we've stored so far */
1618 if (maxlen < 5 || !need_parent)
1619 return 3;
1620
1621 spin_lock(&dentry->d_lock);
1622 inode = dentry->d_parent->d_inode;
1623 data[3] = inode->i_ino;
1624 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1625 *lenp = 5;
1626 if (maxlen >= 6) {
1627 data[5] = inode->i_generation;
1628 *lenp = 6;
1629 }
1630 spin_unlock(&dentry->d_lock);
1631 return *lenp;
1632 }
1633
1634 /* looks for stat data, then copies fields to it, marks the buffer
1635 containing stat data as dirty */
1636 /* reiserfs inodes are never really dirty, since the dirty inode call
1637 ** always logs them. This call allows the VFS inode marking routines
1638 ** to properly mark inodes for datasync and such, but only actually
1639 ** does something when called for a synchronous update.
1640 */
1641 int reiserfs_write_inode(struct inode *inode, int do_sync)
1642 {
1643 struct reiserfs_transaction_handle th;
1644 int jbegin_count = 1;
1645
1646 if (inode->i_sb->s_flags & MS_RDONLY)
1647 return -EROFS;
1648 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1649 ** these cases are just when the system needs ram, not when the
1650 ** inode needs to reach disk for safety, and they can safely be
1651 ** ignored because the altered inode has already been logged.
1652 */
1653 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1654 reiserfs_write_lock(inode->i_sb);
1655 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1656 reiserfs_update_sd(&th, inode);
1657 journal_end_sync(&th, inode->i_sb, jbegin_count);
1658 }
1659 reiserfs_write_unlock(inode->i_sb);
1660 }
1661 return 0;
1662 }
1663
1664 /* stat data of new object is inserted already, this inserts the item
1665 containing "." and ".." entries */
1666 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1667 struct inode *inode,
1668 struct item_head *ih, struct path *path,
1669 struct inode *dir)
1670 {
1671 struct super_block *sb = th->t_super;
1672 char empty_dir[EMPTY_DIR_SIZE];
1673 char *body = empty_dir;
1674 struct cpu_key key;
1675 int retval;
1676
1677 BUG_ON(!th->t_trans_id);
1678
1679 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1680 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1681 TYPE_DIRENTRY, 3 /*key length */ );
1682
1683 /* compose item head for new item. Directories consist of items of
1684 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1685 is done by reiserfs_new_inode */
1686 if (old_format_only(sb)) {
1687 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1688 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1689
1690 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1691 ih->ih_key.k_objectid,
1692 INODE_PKEY(dir)->k_dir_id,
1693 INODE_PKEY(dir)->k_objectid);
1694 } else {
1695 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1696 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1697
1698 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1699 ih->ih_key.k_objectid,
1700 INODE_PKEY(dir)->k_dir_id,
1701 INODE_PKEY(dir)->k_objectid);
1702 }
1703
1704 /* look for place in the tree for new item */
1705 retval = search_item(sb, &key, path);
1706 if (retval == IO_ERROR) {
1707 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1708 "i/o failure occurred creating new directory");
1709 return -EIO;
1710 }
1711 if (retval == ITEM_FOUND) {
1712 pathrelse(path);
1713 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1714 "object with this key exists (%k)",
1715 &(ih->ih_key));
1716 return -EEXIST;
1717 }
1718
1719 /* insert item, that is empty directory item */
1720 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1721 }
1722
1723 /* stat data of object has been inserted, this inserts the item
1724 containing the body of symlink */
1725 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1726 struct item_head *ih,
1727 struct path *path, const char *symname,
1728 int item_len)
1729 {
1730 struct super_block *sb = th->t_super;
1731 struct cpu_key key;
1732 int retval;
1733
1734 BUG_ON(!th->t_trans_id);
1735
1736 _make_cpu_key(&key, KEY_FORMAT_3_5,
1737 le32_to_cpu(ih->ih_key.k_dir_id),
1738 le32_to_cpu(ih->ih_key.k_objectid),
1739 1, TYPE_DIRECT, 3 /*key length */ );
1740
1741 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1742 0 /*free_space */ );
1743
1744 /* look for place in the tree for new item */
1745 retval = search_item(sb, &key, path);
1746 if (retval == IO_ERROR) {
1747 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1748 "i/o failure occurred creating new symlink");
1749 return -EIO;
1750 }
1751 if (retval == ITEM_FOUND) {
1752 pathrelse(path);
1753 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1754 "object with this key exists (%k)",
1755 &(ih->ih_key));
1756 return -EEXIST;
1757 }
1758
1759 /* insert item, that is body of symlink */
1760 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1761 }
1762
1763 /* inserts the stat data into the tree, and then calls
1764 reiserfs_new_directory (to insert ".", ".." item if new object is
1765 directory) or reiserfs_new_symlink (to insert symlink body if new
1766 object is symlink) or nothing (if new object is regular file)
1767
1768 NOTE! uid and gid must already be set in the inode. If we return
1769 non-zero due to an error, we have to drop the quota previously allocated
1770 for the fresh inode. This can only be done outside a transaction, so
1771 if we return non-zero, we also end the transaction. */
1772 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1773 struct inode *dir, int mode, const char *symname,
1774 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1775 strlen (symname) for symlinks) */
1776 loff_t i_size, struct dentry *dentry,
1777 struct inode *inode)
1778 {
1779 struct super_block *sb;
1780 INITIALIZE_PATH(path_to_key);
1781 struct cpu_key key;
1782 struct item_head ih;
1783 struct stat_data sd;
1784 int retval;
1785 int err;
1786
1787 BUG_ON(!th->t_trans_id);
1788
1789 if (DQUOT_ALLOC_INODE(inode)) {
1790 err = -EDQUOT;
1791 goto out_end_trans;
1792 }
1793 if (!dir || !dir->i_nlink) {
1794 err = -EPERM;
1795 goto out_bad_inode;
1796 }
1797
1798 sb = dir->i_sb;
1799
1800 /* item head of new item */
1801 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1802 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1803 if (!ih.ih_key.k_objectid) {
1804 err = -ENOMEM;
1805 goto out_bad_inode;
1806 }
1807 if (old_format_only(sb))
1808 /* not a perfect generation count, as object ids can be reused, but
1809 ** this is as good as reiserfs can do right now.
1810 ** note that the private part of inode isn't filled in yet, we have
1811 ** to use the directory.
1812 */
1813 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1814 else
1815 #if defined( USE_INODE_GENERATION_COUNTER )
1816 inode->i_generation =
1817 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1818 #else
1819 inode->i_generation = ++event;
1820 #endif
1821
1822 /* fill stat data */
1823 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1824
1825 /* uid and gid must already be set by the caller for quota init */
1826
1827 /* symlink cannot be immutable or append only, right? */
1828 if (S_ISLNK(inode->i_mode))
1829 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1830
1831 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1832 inode->i_size = i_size;
1833 inode->i_blocks = 0;
1834 inode->i_bytes = 0;
1835 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1836 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1837
1838 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1839 REISERFS_I(inode)->i_flags = 0;
1840 REISERFS_I(inode)->i_prealloc_block = 0;
1841 REISERFS_I(inode)->i_prealloc_count = 0;
1842 REISERFS_I(inode)->i_trans_id = 0;
1843 REISERFS_I(inode)->i_jl = NULL;
1844 REISERFS_I(inode)->i_attrs =
1845 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1846 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1847 REISERFS_I(inode)->i_acl_access = NULL;
1848 REISERFS_I(inode)->i_acl_default = NULL;
1849 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1850
1851 if (old_format_only(sb))
1852 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1853 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1854 else
1855 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1856 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1857
1858 /* key to search for correct place for new stat data */
1859 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1860 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1861 TYPE_STAT_DATA, 3 /*key length */ );
1862
1863 /* find proper place for inserting of stat data */
1864 retval = search_item(sb, &key, &path_to_key);
1865 if (retval == IO_ERROR) {
1866 err = -EIO;
1867 goto out_bad_inode;
1868 }
1869 if (retval == ITEM_FOUND) {
1870 pathrelse(&path_to_key);
1871 err = -EEXIST;
1872 goto out_bad_inode;
1873 }
1874 if (old_format_only(sb)) {
1875 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1876 pathrelse(&path_to_key);
1877 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1878 err = -EINVAL;
1879 goto out_bad_inode;
1880 }
1881 inode2sd_v1(&sd, inode, inode->i_size);
1882 } else {
1883 inode2sd(&sd, inode, inode->i_size);
1884 }
1885 // these do not go to on-disk stat data
1886 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1887 inode->i_blksize = reiserfs_default_io_size;
1888
1889 // store in in-core inode the key of stat data and version all
1890 // object items will have (directory items will have old offset
1891 // format, other new objects will consist of new items)
1892 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1893 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1894 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1895 else
1896 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1897 if (old_format_only(sb))
1898 set_inode_sd_version(inode, STAT_DATA_V1);
1899 else
1900 set_inode_sd_version(inode, STAT_DATA_V2);
1901
1902 /* insert the stat data into the tree */
1903 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1904 if (REISERFS_I(dir)->new_packing_locality)
1905 th->displace_new_blocks = 1;
1906 #endif
1907 retval =
1908 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1909 (char *)(&sd));
1910 if (retval) {
1911 err = retval;
1912 reiserfs_check_path(&path_to_key);
1913 goto out_bad_inode;
1914 }
1915 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1916 if (!th->displace_new_blocks)
1917 REISERFS_I(dir)->new_packing_locality = 0;
1918 #endif
1919 if (S_ISDIR(mode)) {
1920 /* insert item with "." and ".." */
1921 retval =
1922 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1923 }
1924
1925 if (S_ISLNK(mode)) {
1926 /* insert body of symlink */
1927 if (!old_format_only(sb))
1928 i_size = ROUND_UP(i_size);
1929 retval =
1930 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1931 i_size);
1932 }
1933 if (retval) {
1934 err = retval;
1935 reiserfs_check_path(&path_to_key);
1936 journal_end(th, th->t_super, th->t_blocks_allocated);
1937 goto out_inserted_sd;
1938 }
1939
1940 /* XXX CHECK THIS */
1941 if (reiserfs_posixacl(inode->i_sb)) {
1942 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1943 if (retval) {
1944 err = retval;
1945 reiserfs_check_path(&path_to_key);
1946 journal_end(th, th->t_super, th->t_blocks_allocated);
1947 goto out_inserted_sd;
1948 }
1949 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1950 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1951 "but vfs thinks they are!");
1952 } else if (is_reiserfs_priv_object(dir)) {
1953 reiserfs_mark_inode_private(inode);
1954 }
1955
1956 insert_inode_hash(inode);
1957 reiserfs_update_sd(th, inode);
1958 reiserfs_check_path(&path_to_key);
1959
1960 return 0;
1961
1962 /* it looks like you can easily compress these two goto targets into
1963 * one. Keeping it like this doesn't actually hurt anything, and they
1964 * are place holders for what the quota code actually needs.
1965 */
1966 out_bad_inode:
1967 /* Invalidate the object, nothing was inserted yet */
1968 INODE_PKEY(inode)->k_objectid = 0;
1969
1970 /* Quota change must be inside a transaction for journaling */
1971 DQUOT_FREE_INODE(inode);
1972
1973 out_end_trans:
1974 journal_end(th, th->t_super, th->t_blocks_allocated);
1975 /* Drop can be outside and it needs more credits so it's better to have it outside */
1976 DQUOT_DROP(inode);
1977 inode->i_flags |= S_NOQUOTA;
1978 make_bad_inode(inode);
1979
1980 out_inserted_sd:
1981 inode->i_nlink = 0;
1982 th->t_trans_id = 0; /* so the caller can't use this handle later */
1983 iput(inode);
1984 return err;
1985 }
1986
1987 /*
1988 ** finds the tail page in the page cache,
1989 ** reads the last block in.
1990 **
1991 ** On success, page_result is set to a locked, pinned page, and bh_result
1992 ** is set to an up to date buffer for the last block in the file. returns 0.
1993 **
1994 ** tail conversion is not done, so bh_result might not be valid for writing
1995 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1996 ** trying to write the block.
1997 **
1998 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1999 */
2000 static int grab_tail_page(struct inode *p_s_inode,
2001 struct page **page_result,
2002 struct buffer_head **bh_result)
2003 {
2004
2005 /* we want the page with the last byte in the file,
2006 ** not the page that will hold the next byte for appending
2007 */
2008 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2009 unsigned long pos = 0;
2010 unsigned long start = 0;
2011 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2012 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2013 struct buffer_head *bh;
2014 struct buffer_head *head;
2015 struct page *page;
2016 int error;
2017
2018 /* we know that we are only called with inode->i_size > 0.
2019 ** we also know that a file tail can never be as big as a block
2020 ** If i_size % blocksize == 0, our file is currently block aligned
2021 ** and it won't need converting or zeroing after a truncate.
2022 */
2023 if ((offset & (blocksize - 1)) == 0) {
2024 return -ENOENT;
2025 }
2026 page = grab_cache_page(p_s_inode->i_mapping, index);
2027 error = -ENOMEM;
2028 if (!page) {
2029 goto out;
2030 }
2031 /* start within the page of the last block in the file */
2032 start = (offset / blocksize) * blocksize;
2033
2034 error = block_prepare_write(page, start, offset,
2035 reiserfs_get_block_create_0);
2036 if (error)
2037 goto unlock;
2038
2039 head = page_buffers(page);
2040 bh = head;
2041 do {
2042 if (pos >= start) {
2043 break;
2044 }
2045 bh = bh->b_this_page;
2046 pos += blocksize;
2047 } while (bh != head);
2048
2049 if (!buffer_uptodate(bh)) {
2050 /* note, this should never happen, prepare_write should
2051 ** be taking care of this for us. If the buffer isn't up to date,
2052 ** I've screwed up the code to find the buffer, or the code to
2053 ** call prepare_write
2054 */
2055 reiserfs_warning(p_s_inode->i_sb,
2056 "clm-6000: error reading block %lu on dev %s",
2057 bh->b_blocknr,
2058 reiserfs_bdevname(p_s_inode->i_sb));
2059 error = -EIO;
2060 goto unlock;
2061 }
2062 *bh_result = bh;
2063 *page_result = page;
2064
2065 out:
2066 return error;
2067
2068 unlock:
2069 unlock_page(page);
2070 page_cache_release(page);
2071 return error;
2072 }
2073
2074 /*
2075 ** vfs version of truncate file. Must NOT be called with
2076 ** a transaction already started.
2077 **
2078 ** some code taken from block_truncate_page
2079 */
2080 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2081 {
2082 struct reiserfs_transaction_handle th;
2083 /* we want the offset for the first byte after the end of the file */
2084 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2085 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2086 unsigned length;
2087 struct page *page = NULL;
2088 int error;
2089 struct buffer_head *bh = NULL;
2090
2091 reiserfs_write_lock(p_s_inode->i_sb);
2092
2093 if (p_s_inode->i_size > 0) {
2094 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2095 // -ENOENT means we truncated past the end of the file,
2096 // and get_block_create_0 could not find a block to read in,
2097 // which is ok.
2098 if (error != -ENOENT)
2099 reiserfs_warning(p_s_inode->i_sb,
2100 "clm-6001: grab_tail_page failed %d",
2101 error);
2102 page = NULL;
2103 bh = NULL;
2104 }
2105 }
2106
2107 /* so, if page != NULL, we have a buffer head for the offset at
2108 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2109 ** then we have an unformatted node. Otherwise, we have a direct item,
2110 ** and no zeroing is required on disk. We zero after the truncate,
2111 ** because the truncate might pack the item anyway
2112 ** (it will unmap bh if it packs).
2113 */
2114 /* it is enough to reserve space in transaction for 2 balancings:
2115 one for "save" link adding and another for the first
2116 cut_from_item. 1 is for update_sd */
2117 error = journal_begin(&th, p_s_inode->i_sb,
2118 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2119 if (error)
2120 goto out;
2121 reiserfs_update_inode_transaction(p_s_inode);
2122 if (update_timestamps)
2123 /* we are doing real truncate: if the system crashes before the last
2124 transaction of truncating gets committed - on reboot the file
2125 either appears truncated properly or not truncated at all */
2126 add_save_link(&th, p_s_inode, 1);
2127 error = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2128 if (error)
2129 goto out;
2130 error =
2131 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2132 if (error)
2133 goto out;
2134
2135 if (update_timestamps) {
2136 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2137 if (error)
2138 goto out;
2139 }
2140
2141 if (page) {
2142 length = offset & (blocksize - 1);
2143 /* if we are not on a block boundary */
2144 if (length) {
2145 char *kaddr;
2146
2147 length = blocksize - length;
2148 kaddr = kmap_atomic(page, KM_USER0);
2149 memset(kaddr + offset, 0, length);
2150 flush_dcache_page(page);
2151 kunmap_atomic(kaddr, KM_USER0);
2152 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2153 mark_buffer_dirty(bh);
2154 }
2155 }
2156 unlock_page(page);
2157 page_cache_release(page);
2158 }
2159
2160 reiserfs_write_unlock(p_s_inode->i_sb);
2161 return 0;
2162 out:
2163 if (page) {
2164 unlock_page(page);
2165 page_cache_release(page);
2166 }
2167 reiserfs_write_unlock(p_s_inode->i_sb);
2168 return error;
2169 }
2170
2171 static int map_block_for_writepage(struct inode *inode,
2172 struct buffer_head *bh_result,
2173 unsigned long block)
2174 {
2175 struct reiserfs_transaction_handle th;
2176 int fs_gen;
2177 struct item_head tmp_ih;
2178 struct item_head *ih;
2179 struct buffer_head *bh;
2180 __le32 *item;
2181 struct cpu_key key;
2182 INITIALIZE_PATH(path);
2183 int pos_in_item;
2184 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2185 loff_t byte_offset = (block << inode->i_sb->s_blocksize_bits) + 1;
2186 int retval;
2187 int use_get_block = 0;
2188 int bytes_copied = 0;
2189 int copy_size;
2190 int trans_running = 0;
2191
2192 /* catch places below that try to log something without starting a trans */
2193 th.t_trans_id = 0;
2194
2195 if (!buffer_uptodate(bh_result)) {
2196 return -EIO;
2197 }
2198
2199 kmap(bh_result->b_page);
2200 start_over:
2201 reiserfs_write_lock(inode->i_sb);
2202 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2203
2204 research:
2205 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2206 if (retval != POSITION_FOUND) {
2207 use_get_block = 1;
2208 goto out;
2209 }
2210
2211 bh = get_last_bh(&path);
2212 ih = get_ih(&path);
2213 item = get_item(&path);
2214 pos_in_item = path.pos_in_item;
2215
2216 /* we've found an unformatted node */
2217 if (indirect_item_found(retval, ih)) {
2218 if (bytes_copied > 0) {
2219 reiserfs_warning(inode->i_sb,
2220 "clm-6002: bytes_copied %d",
2221 bytes_copied);
2222 }
2223 if (!get_block_num(item, pos_in_item)) {
2224 /* crap, we are writing to a hole */
2225 use_get_block = 1;
2226 goto out;
2227 }
2228 set_block_dev_mapped(bh_result,
2229 get_block_num(item, pos_in_item), inode);
2230 } else if (is_direct_le_ih(ih)) {
2231 char *p;
2232 p = page_address(bh_result->b_page);
2233 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2234 copy_size = ih_item_len(ih) - pos_in_item;
2235
2236 fs_gen = get_generation(inode->i_sb);
2237 copy_item_head(&tmp_ih, ih);
2238
2239 if (!trans_running) {
2240 /* vs-3050 is gone, no need to drop the path */
2241 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2242 if (retval)
2243 goto out;
2244 reiserfs_update_inode_transaction(inode);
2245 trans_running = 1;
2246 if (fs_changed(fs_gen, inode->i_sb)
2247 && item_moved(&tmp_ih, &path)) {
2248 reiserfs_restore_prepared_buffer(inode->i_sb,
2249 bh);
2250 goto research;
2251 }
2252 }
2253
2254 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2255
2256 if (fs_changed(fs_gen, inode->i_sb)
2257 && item_moved(&tmp_ih, &path)) {
2258 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2259 goto research;
2260 }
2261
2262 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2263 copy_size);
2264
2265 journal_mark_dirty(&th, inode->i_sb, bh);
2266 bytes_copied += copy_size;
2267 set_block_dev_mapped(bh_result, 0, inode);
2268
2269 /* are there still bytes left? */
2270 if (bytes_copied < bh_result->b_size &&
2271 (byte_offset + bytes_copied) < inode->i_size) {
2272 set_cpu_key_k_offset(&key,
2273 cpu_key_k_offset(&key) +
2274 copy_size);
2275 goto research;
2276 }
2277 } else {
2278 reiserfs_warning(inode->i_sb,
2279 "clm-6003: bad item inode %lu, device %s",
2280 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2281 retval = -EIO;
2282 goto out;
2283 }
2284 retval = 0;
2285
2286 out:
2287 pathrelse(&path);
2288 if (trans_running) {
2289 int err = journal_end(&th, inode->i_sb, jbegin_count);
2290 if (err)
2291 retval = err;
2292 trans_running = 0;
2293 }
2294 reiserfs_write_unlock(inode->i_sb);
2295
2296 /* this is where we fill in holes in the file. */
2297 if (use_get_block) {
2298 retval = reiserfs_get_block(inode, block, bh_result,
2299 GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM
2300 | GET_BLOCK_NO_DANGLE);
2301 if (!retval) {
2302 if (!buffer_mapped(bh_result)
2303 || bh_result->b_blocknr == 0) {
2304 /* get_block failed to find a mapped unformatted node. */
2305 use_get_block = 0;
2306 goto start_over;
2307 }
2308 }
2309 }
2310 kunmap(bh_result->b_page);
2311
2312 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2313 /* we've copied data from the page into the direct item, so the
2314 * buffer in the page is now clean, mark it to reflect that.
2315 */
2316 lock_buffer(bh_result);
2317 clear_buffer_dirty(bh_result);
2318 unlock_buffer(bh_result);
2319 }
2320 return retval;
2321 }
2322
2323 /*
2324 * mason@suse.com: updated in 2.5.54 to follow the same general io
2325 * start/recovery path as __block_write_full_page, along with special
2326 * code to handle reiserfs tails.
2327 */
2328 static int reiserfs_write_full_page(struct page *page,
2329 struct writeback_control *wbc)
2330 {
2331 struct inode *inode = page->mapping->host;
2332 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2333 int error = 0;
2334 unsigned long block;
2335 struct buffer_head *head, *bh;
2336 int partial = 0;
2337 int nr = 0;
2338 int checked = PageChecked(page);
2339 struct reiserfs_transaction_handle th;
2340 struct super_block *s = inode->i_sb;
2341 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2342 th.t_trans_id = 0;
2343
2344 /* The page dirty bit is cleared before writepage is called, which
2345 * means we have to tell create_empty_buffers to make dirty buffers
2346 * The page really should be up to date at this point, so tossing
2347 * in the BH_Uptodate is just a sanity check.
2348 */
2349 if (!page_has_buffers(page)) {
2350 create_empty_buffers(page, s->s_blocksize,
2351 (1 << BH_Dirty) | (1 << BH_Uptodate));
2352 }
2353 head = page_buffers(page);
2354
2355 /* last page in the file, zero out any contents past the
2356 ** last byte in the file
2357 */
2358 if (page->index >= end_index) {
2359 char *kaddr;
2360 unsigned last_offset;
2361
2362 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2363 /* no file contents in this page */
2364 if (page->index >= end_index + 1 || !last_offset) {
2365 unlock_page(page);
2366 return 0;
2367 }
2368 kaddr = kmap_atomic(page, KM_USER0);
2369 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset);
2370 flush_dcache_page(page);
2371 kunmap_atomic(kaddr, KM_USER0);
2372 }
2373 bh = head;
2374 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2375 /* first map all the buffers, logging any direct items we find */
2376 do {
2377 if ((checked || buffer_dirty(bh)) && (!buffer_mapped(bh) ||
2378 (buffer_mapped(bh)
2379 && bh->b_blocknr ==
2380 0))) {
2381 /* not mapped yet, or it points to a direct item, search
2382 * the btree for the mapping info, and log any direct
2383 * items found
2384 */
2385 if ((error = map_block_for_writepage(inode, bh, block))) {
2386 goto fail;
2387 }
2388 }
2389 bh = bh->b_this_page;
2390 block++;
2391 } while (bh != head);
2392
2393 /*
2394 * we start the transaction after map_block_for_writepage,
2395 * because it can create holes in the file (an unbounded operation).
2396 * starting it here, we can make a reliable estimate for how many
2397 * blocks we're going to log
2398 */
2399 if (checked) {
2400 ClearPageChecked(page);
2401 reiserfs_write_lock(s);
2402 error = journal_begin(&th, s, bh_per_page + 1);
2403 if (error) {
2404 reiserfs_write_unlock(s);
2405 goto fail;
2406 }
2407 reiserfs_update_inode_transaction(inode);
2408 }
2409 /* now go through and lock any dirty buffers on the page */
2410 do {
2411 get_bh(bh);
2412 if (!buffer_mapped(bh))
2413 continue;
2414 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2415 continue;
2416
2417 if (checked) {
2418 reiserfs_prepare_for_journal(s, bh, 1);
2419 journal_mark_dirty(&th, s, bh);
2420 continue;
2421 }
2422 /* from this point on, we know the buffer is mapped to a
2423 * real block and not a direct item
2424 */
2425 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2426 lock_buffer(bh);
2427 } else {
2428 if (test_set_buffer_locked(bh)) {
2429 redirty_page_for_writepage(wbc, page);
2430 continue;
2431 }
2432 }
2433 if (test_clear_buffer_dirty(bh)) {
2434 mark_buffer_async_write(bh);
2435 } else {
2436 unlock_buffer(bh);
2437 }
2438 } while ((bh = bh->b_this_page) != head);
2439
2440 if (checked) {
2441 error = journal_end(&th, s, bh_per_page + 1);
2442 reiserfs_write_unlock(s);
2443 if (error)
2444 goto fail;
2445 }
2446 BUG_ON(PageWriteback(page));
2447 set_page_writeback(page);
2448 unlock_page(page);
2449
2450 /*
2451 * since any buffer might be the only dirty buffer on the page,
2452 * the first submit_bh can bring the page out of writeback.
2453 * be careful with the buffers.
2454 */
2455 do {
2456 struct buffer_head *next = bh->b_this_page;
2457 if (buffer_async_write(bh)) {
2458 submit_bh(WRITE, bh);
2459 nr++;
2460 }
2461 put_bh(bh);
2462 bh = next;
2463 } while (bh != head);
2464
2465 error = 0;
2466 done:
2467 if (nr == 0) {
2468 /*
2469 * if this page only had a direct item, it is very possible for
2470 * no io to be required without there being an error. Or,
2471 * someone else could have locked them and sent them down the
2472 * pipe without locking the page
2473 */
2474 bh = head;
2475 do {
2476 if (!buffer_uptodate(bh)) {
2477 partial = 1;
2478 break;
2479 }
2480 bh = bh->b_this_page;
2481 } while (bh != head);
2482 if (!partial)
2483 SetPageUptodate(page);
2484 end_page_writeback(page);
2485 }
2486 return error;
2487
2488 fail:
2489 /* catches various errors, we need to make sure any valid dirty blocks
2490 * get to the media. The page is currently locked and not marked for
2491 * writeback
2492 */
2493 ClearPageUptodate(page);
2494 bh = head;
2495 do {
2496 get_bh(bh);
2497 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2498 lock_buffer(bh);
2499 mark_buffer_async_write(bh);
2500 } else {
2501 /*
2502 * clear any dirty bits that might have come from getting
2503 * attached to a dirty page
2504 */
2505 clear_buffer_dirty(bh);
2506 }
2507 bh = bh->b_this_page;
2508 } while (bh != head);
2509 SetPageError(page);
2510 BUG_ON(PageWriteback(page));
2511 set_page_writeback(page);
2512 unlock_page(page);
2513 do {
2514 struct buffer_head *next = bh->b_this_page;
2515 if (buffer_async_write(bh)) {
2516 clear_buffer_dirty(bh);
2517 submit_bh(WRITE, bh);
2518 nr++;
2519 }
2520 put_bh(bh);
2521 bh = next;
2522 } while (bh != head);
2523 goto done;
2524 }
2525
2526 static int reiserfs_readpage(struct file *f, struct page *page)
2527 {
2528 return block_read_full_page(page, reiserfs_get_block);
2529 }
2530
2531 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2532 {
2533 struct inode *inode = page->mapping->host;
2534 reiserfs_wait_on_write_block(inode->i_sb);
2535 return reiserfs_write_full_page(page, wbc);
2536 }
2537
2538 static int reiserfs_prepare_write(struct file *f, struct page *page,
2539 unsigned from, unsigned to)
2540 {
2541 struct inode *inode = page->mapping->host;
2542 int ret;
2543 int old_ref = 0;
2544
2545 reiserfs_wait_on_write_block(inode->i_sb);
2546 fix_tail_page_for_writing(page);
2547 if (reiserfs_transaction_running(inode->i_sb)) {
2548 struct reiserfs_transaction_handle *th;
2549 th = (struct reiserfs_transaction_handle *)current->
2550 journal_info;
2551 BUG_ON(!th->t_refcount);
2552 BUG_ON(!th->t_trans_id);
2553 old_ref = th->t_refcount;
2554 th->t_refcount++;
2555 }
2556
2557 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2558 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2559 struct reiserfs_transaction_handle *th = current->journal_info;
2560 /* this gets a little ugly. If reiserfs_get_block returned an
2561 * error and left a transacstion running, we've got to close it,
2562 * and we've got to free handle if it was a persistent transaction.
2563 *
2564 * But, if we had nested into an existing transaction, we need
2565 * to just drop the ref count on the handle.
2566 *
2567 * If old_ref == 0, the transaction is from reiserfs_get_block,
2568 * and it was a persistent trans. Otherwise, it was nested above.
2569 */
2570 if (th->t_refcount > old_ref) {
2571 if (old_ref)
2572 th->t_refcount--;
2573 else {
2574 int err;
2575 reiserfs_write_lock(inode->i_sb);
2576 err = reiserfs_end_persistent_transaction(th);
2577 reiserfs_write_unlock(inode->i_sb);
2578 if (err)
2579 ret = err;
2580 }
2581 }
2582 }
2583 return ret;
2584
2585 }
2586
2587 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2588 {
2589 return generic_block_bmap(as, block, reiserfs_bmap);
2590 }
2591
2592 static int reiserfs_commit_write(struct file *f, struct page *page,
2593 unsigned from, unsigned to)
2594 {
2595 struct inode *inode = page->mapping->host;
2596 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2597 int ret = 0;
2598 int update_sd = 0;
2599 struct reiserfs_transaction_handle *th = NULL;
2600
2601 reiserfs_wait_on_write_block(inode->i_sb);
2602 if (reiserfs_transaction_running(inode->i_sb)) {
2603 th = current->journal_info;
2604 }
2605 reiserfs_commit_page(inode, page, from, to);
2606
2607 /* generic_commit_write does this for us, but does not update the
2608 ** transaction tracking stuff when the size changes. So, we have
2609 ** to do the i_size updates here.
2610 */
2611 if (pos > inode->i_size) {
2612 struct reiserfs_transaction_handle myth;
2613 reiserfs_write_lock(inode->i_sb);
2614 /* If the file have grown beyond the border where it
2615 can have a tail, unmark it as needing a tail
2616 packing */
2617 if ((have_large_tails(inode->i_sb)
2618 && inode->i_size > i_block_size(inode) * 4)
2619 || (have_small_tails(inode->i_sb)
2620 && inode->i_size > i_block_size(inode)))
2621 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2622
2623 ret = journal_begin(&myth, inode->i_sb, 1);
2624 if (ret) {
2625 reiserfs_write_unlock(inode->i_sb);
2626 goto journal_error;
2627 }
2628 reiserfs_update_inode_transaction(inode);
2629 inode->i_size = pos;
2630 reiserfs_update_sd(&myth, inode);
2631 update_sd = 1;
2632 ret = journal_end(&myth, inode->i_sb, 1);
2633 reiserfs_write_unlock(inode->i_sb);
2634 if (ret)
2635 goto journal_error;
2636 }
2637 if (th) {
2638 reiserfs_write_lock(inode->i_sb);
2639 if (!update_sd)
2640 reiserfs_update_sd(th, inode);
2641 ret = reiserfs_end_persistent_transaction(th);
2642 reiserfs_write_unlock(inode->i_sb);
2643 if (ret)
2644 goto out;
2645 }
2646
2647 /* we test for O_SYNC here so we can commit the transaction
2648 ** for any packed tails the file might have had
2649 */
2650 if (f && (f->f_flags & O_SYNC)) {
2651 reiserfs_write_lock(inode->i_sb);
2652 ret = reiserfs_commit_for_inode(inode);
2653 reiserfs_write_unlock(inode->i_sb);
2654 }
2655 out:
2656 return ret;
2657
2658 journal_error:
2659 if (th) {
2660 reiserfs_write_lock(inode->i_sb);
2661 if (!update_sd)
2662 reiserfs_update_sd(th, inode);
2663 ret = reiserfs_end_persistent_transaction(th);
2664 reiserfs_write_unlock(inode->i_sb);
2665 }
2666
2667 return ret;
2668 }
2669
2670 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2671 {
2672 if (reiserfs_attrs(inode->i_sb)) {
2673 if (sd_attrs & REISERFS_SYNC_FL)
2674 inode->i_flags |= S_SYNC;
2675 else
2676 inode->i_flags &= ~S_SYNC;
2677 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2678 inode->i_flags |= S_IMMUTABLE;
2679 else
2680 inode->i_flags &= ~S_IMMUTABLE;
2681 if (sd_attrs & REISERFS_APPEND_FL)
2682 inode->i_flags |= S_APPEND;
2683 else
2684 inode->i_flags &= ~S_APPEND;
2685 if (sd_attrs & REISERFS_NOATIME_FL)
2686 inode->i_flags |= S_NOATIME;
2687 else
2688 inode->i_flags &= ~S_NOATIME;
2689 if (sd_attrs & REISERFS_NOTAIL_FL)
2690 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2691 else
2692 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2693 }
2694 }
2695
2696 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2697 {
2698 if (reiserfs_attrs(inode->i_sb)) {
2699 if (inode->i_flags & S_IMMUTABLE)
2700 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2701 else
2702 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2703 if (inode->i_flags & S_SYNC)
2704 *sd_attrs |= REISERFS_SYNC_FL;
2705 else
2706 *sd_attrs &= ~REISERFS_SYNC_FL;
2707 if (inode->i_flags & S_NOATIME)
2708 *sd_attrs |= REISERFS_NOATIME_FL;
2709 else
2710 *sd_attrs &= ~REISERFS_NOATIME_FL;
2711 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2712 *sd_attrs |= REISERFS_NOTAIL_FL;
2713 else
2714 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2715 }
2716 }
2717
2718 /* decide if this buffer needs to stay around for data logging or ordered
2719 ** write purposes
2720 */
2721 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2722 {
2723 int ret = 1;
2724 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2725
2726 spin_lock(&j->j_dirty_buffers_lock);
2727 if (!buffer_mapped(bh)) {
2728 goto free_jh;
2729 }
2730 /* the page is locked, and the only places that log a data buffer
2731 * also lock the page.
2732 */
2733 if (reiserfs_file_data_log(inode)) {
2734 /*
2735 * very conservative, leave the buffer pinned if
2736 * anyone might need it.
2737 */
2738 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2739 ret = 0;
2740 }
2741 } else if (buffer_dirty(bh) || buffer_locked(bh)) {
2742 struct reiserfs_journal_list *jl;
2743 struct reiserfs_jh *jh = bh->b_private;
2744
2745 /* why is this safe?
2746 * reiserfs_setattr updates i_size in the on disk
2747 * stat data before allowing vmtruncate to be called.
2748 *
2749 * If buffer was put onto the ordered list for this
2750 * transaction, we know for sure either this transaction
2751 * or an older one already has updated i_size on disk,
2752 * and this ordered data won't be referenced in the file
2753 * if we crash.
2754 *
2755 * if the buffer was put onto the ordered list for an older
2756 * transaction, we need to leave it around
2757 */
2758 if (jh && (jl = jh->jl)
2759 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2760 ret = 0;
2761 }
2762 free_jh:
2763 if (ret && bh->b_private) {
2764 reiserfs_free_jh(bh);
2765 }
2766 spin_unlock(&j->j_dirty_buffers_lock);
2767 return ret;
2768 }
2769
2770 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2771 static int reiserfs_invalidatepage(struct page *page, unsigned long offset)
2772 {
2773 struct buffer_head *head, *bh, *next;
2774 struct inode *inode = page->mapping->host;
2775 unsigned int curr_off = 0;
2776 int ret = 1;
2777
2778 BUG_ON(!PageLocked(page));
2779
2780 if (offset == 0)
2781 ClearPageChecked(page);
2782
2783 if (!page_has_buffers(page))
2784 goto out;
2785
2786 head = page_buffers(page);
2787 bh = head;
2788 do {
2789 unsigned int next_off = curr_off + bh->b_size;
2790 next = bh->b_this_page;
2791
2792 /*
2793 * is this block fully invalidated?
2794 */
2795 if (offset <= curr_off) {
2796 if (invalidatepage_can_drop(inode, bh))
2797 reiserfs_unmap_buffer(bh);
2798 else
2799 ret = 0;
2800 }
2801 curr_off = next_off;
2802 bh = next;
2803 } while (bh != head);
2804
2805 /*
2806 * We release buffers only if the entire page is being invalidated.
2807 * The get_block cached value has been unconditionally invalidated,
2808 * so real IO is not possible anymore.
2809 */
2810 if (!offset && ret)
2811 ret = try_to_release_page(page, 0);
2812 out:
2813 return ret;
2814 }
2815
2816 static int reiserfs_set_page_dirty(struct page *page)
2817 {
2818 struct inode *inode = page->mapping->host;
2819 if (reiserfs_file_data_log(inode)) {
2820 SetPageChecked(page);
2821 return __set_page_dirty_nobuffers(page);
2822 }
2823 return __set_page_dirty_buffers(page);
2824 }
2825
2826 /*
2827 * Returns 1 if the page's buffers were dropped. The page is locked.
2828 *
2829 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2830 * in the buffers at page_buffers(page).
2831 *
2832 * even in -o notail mode, we can't be sure an old mount without -o notail
2833 * didn't create files with tails.
2834 */
2835 static int reiserfs_releasepage(struct page *page, int unused_gfp_flags)
2836 {
2837 struct inode *inode = page->mapping->host;
2838 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2839 struct buffer_head *head;
2840 struct buffer_head *bh;
2841 int ret = 1;
2842
2843 WARN_ON(PageChecked(page));
2844 spin_lock(&j->j_dirty_buffers_lock);
2845 head = page_buffers(page);
2846 bh = head;
2847 do {
2848 if (bh->b_private) {
2849 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2850 reiserfs_free_jh(bh);
2851 } else {
2852 ret = 0;
2853 break;
2854 }
2855 }
2856 bh = bh->b_this_page;
2857 } while (bh != head);
2858 if (ret)
2859 ret = try_to_free_buffers(page);
2860 spin_unlock(&j->j_dirty_buffers_lock);
2861 return ret;
2862 }
2863
2864 /* We thank Mingming Cao for helping us understand in great detail what
2865 to do in this section of the code. */
2866 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2867 const struct iovec *iov, loff_t offset,
2868 unsigned long nr_segs)
2869 {
2870 struct file *file = iocb->ki_filp;
2871 struct inode *inode = file->f_mapping->host;
2872
2873 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2874 offset, nr_segs,
2875 reiserfs_get_blocks_direct_io, NULL);
2876 }
2877
2878 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2879 {
2880 struct inode *inode = dentry->d_inode;
2881 int error;
2882 unsigned int ia_valid = attr->ia_valid;
2883 reiserfs_write_lock(inode->i_sb);
2884 if (attr->ia_valid & ATTR_SIZE) {
2885 /* version 2 items will be caught by the s_maxbytes check
2886 ** done for us in vmtruncate
2887 */
2888 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2889 attr->ia_size > MAX_NON_LFS) {
2890 error = -EFBIG;
2891 goto out;
2892 }
2893 /* fill in hole pointers in the expanding truncate case. */
2894 if (attr->ia_size > inode->i_size) {
2895 error = generic_cont_expand(inode, attr->ia_size);
2896 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2897 int err;
2898 struct reiserfs_transaction_handle th;
2899 /* we're changing at most 2 bitmaps, inode + super */
2900 err = journal_begin(&th, inode->i_sb, 4);
2901 if (!err) {
2902 reiserfs_discard_prealloc(&th, inode);
2903 err = journal_end(&th, inode->i_sb, 4);
2904 }
2905 if (err)
2906 error = err;
2907 }
2908 if (error)
2909 goto out;
2910 }
2911 }
2912
2913 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2914 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2915 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2916 /* stat data of format v3.5 has 16 bit uid and gid */
2917 error = -EINVAL;
2918 goto out;
2919 }
2920
2921 error = inode_change_ok(inode, attr);
2922 if (!error) {
2923 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2924 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2925 error = reiserfs_chown_xattrs(inode, attr);
2926
2927 if (!error) {
2928 struct reiserfs_transaction_handle th;
2929 int jbegin_count =
2930 2 *
2931 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2932 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2933 2;
2934
2935 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2936 error =
2937 journal_begin(&th, inode->i_sb,
2938 jbegin_count);
2939 if (error)
2940 goto out;
2941 error =
2942 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2943 if (error) {
2944 journal_end(&th, inode->i_sb,
2945 jbegin_count);
2946 goto out;
2947 }
2948 /* Update corresponding info in inode so that everything is in
2949 * one transaction */
2950 if (attr->ia_valid & ATTR_UID)
2951 inode->i_uid = attr->ia_uid;
2952 if (attr->ia_valid & ATTR_GID)
2953 inode->i_gid = attr->ia_gid;
2954 mark_inode_dirty(inode);
2955 error =
2956 journal_end(&th, inode->i_sb, jbegin_count);
2957 }
2958 }
2959 if (!error)
2960 error = inode_setattr(inode, attr);
2961 }
2962
2963 if (!error && reiserfs_posixacl(inode->i_sb)) {
2964 if (attr->ia_valid & ATTR_MODE)
2965 error = reiserfs_acl_chmod(inode);
2966 }
2967
2968 out:
2969 reiserfs_write_unlock(inode->i_sb);
2970 return error;
2971 }
2972
2973 struct address_space_operations reiserfs_address_space_operations = {
2974 .writepage = reiserfs_writepage,
2975 .readpage = reiserfs_readpage,
2976 .readpages = reiserfs_readpages,
2977 .releasepage = reiserfs_releasepage,
2978 .invalidatepage = reiserfs_invalidatepage,
2979 .sync_page = block_sync_page,
2980 .prepare_write = reiserfs_prepare_write,
2981 .commit_write = reiserfs_commit_write,
2982 .bmap = reiserfs_aop_bmap,
2983 .direct_IO = reiserfs_direct_IO,
2984 .set_page_dirty = reiserfs_set_page_dirty,
2985 };