Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/smp_lock.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <asm/uaccess.h>
14 #include <asm/unaligned.h>
15 #include <linux/buffer_head.h>
16 #include <linux/mpage.h>
17 #include <linux/writeback.h>
18 #include <linux/quotaops.h>
19
20 static int reiserfs_commit_write(struct file *f, struct page *page,
21 unsigned from, unsigned to);
22 static int reiserfs_prepare_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24
25 void reiserfs_delete_inode(struct inode *inode)
26 {
27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 int jbegin_count =
29 JOURNAL_PER_BALANCE_CNT * 2 +
30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 struct reiserfs_transaction_handle th;
32 int err;
33
34 truncate_inode_pages(&inode->i_data, 0);
35
36 reiserfs_write_lock(inode->i_sb);
37
38 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
39 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
40 reiserfs_delete_xattrs(inode);
41
42 if (journal_begin(&th, inode->i_sb, jbegin_count))
43 goto out;
44 reiserfs_update_inode_transaction(inode);
45
46 err = reiserfs_delete_object(&th, inode);
47
48 /* Do quota update inside a transaction for journaled quotas. We must do that
49 * after delete_object so that quota updates go into the same transaction as
50 * stat data deletion */
51 if (!err)
52 DQUOT_FREE_INODE(inode);
53
54 if (journal_end(&th, inode->i_sb, jbegin_count))
55 goto out;
56
57 /* check return value from reiserfs_delete_object after
58 * ending the transaction
59 */
60 if (err)
61 goto out;
62
63 /* all items of file are deleted, so we can remove "save" link */
64 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
65 * about an error here */
66 } else {
67 /* no object items are in the tree */
68 ;
69 }
70 out:
71 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
72 inode->i_blocks = 0;
73 reiserfs_write_unlock(inode->i_sb);
74 }
75
76 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
77 __u32 objectid, loff_t offset, int type, int length)
78 {
79 key->version = version;
80
81 key->on_disk_key.k_dir_id = dirid;
82 key->on_disk_key.k_objectid = objectid;
83 set_cpu_key_k_offset(key, offset);
84 set_cpu_key_k_type(key, type);
85 key->key_length = length;
86 }
87
88 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
89 offset and type of key */
90 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
91 int type, int length)
92 {
93 _make_cpu_key(key, get_inode_item_key_version(inode),
94 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
95 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
96 length);
97 }
98
99 //
100 // when key is 0, do not set version and short key
101 //
102 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
103 int version,
104 loff_t offset, int type, int length,
105 int entry_count /*or ih_free_space */ )
106 {
107 if (key) {
108 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
109 ih->ih_key.k_objectid =
110 cpu_to_le32(key->on_disk_key.k_objectid);
111 }
112 put_ih_version(ih, version);
113 set_le_ih_k_offset(ih, offset);
114 set_le_ih_k_type(ih, type);
115 put_ih_item_len(ih, length);
116 /* set_ih_free_space (ih, 0); */
117 // for directory items it is entry count, for directs and stat
118 // datas - 0xffff, for indirects - 0
119 put_ih_entry_count(ih, entry_count);
120 }
121
122 //
123 // FIXME: we might cache recently accessed indirect item
124
125 // Ugh. Not too eager for that....
126 // I cut the code until such time as I see a convincing argument (benchmark).
127 // I don't want a bloated inode struct..., and I don't like code complexity....
128
129 /* cutting the code is fine, since it really isn't in use yet and is easy
130 ** to add back in. But, Vladimir has a really good idea here. Think
131 ** about what happens for reading a file. For each page,
132 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
133 ** an indirect item. This indirect item has X number of pointers, where
134 ** X is a big number if we've done the block allocation right. But,
135 ** we only use one or two of these pointers during each call to readpage,
136 ** needlessly researching again later on.
137 **
138 ** The size of the cache could be dynamic based on the size of the file.
139 **
140 ** I'd also like to see us cache the location the stat data item, since
141 ** we are needlessly researching for that frequently.
142 **
143 ** --chris
144 */
145
146 /* If this page has a file tail in it, and
147 ** it was read in by get_block_create_0, the page data is valid,
148 ** but tail is still sitting in a direct item, and we can't write to
149 ** it. So, look through this page, and check all the mapped buffers
150 ** to make sure they have valid block numbers. Any that don't need
151 ** to be unmapped, so that block_prepare_write will correctly call
152 ** reiserfs_get_block to convert the tail into an unformatted node
153 */
154 static inline void fix_tail_page_for_writing(struct page *page)
155 {
156 struct buffer_head *head, *next, *bh;
157
158 if (page && page_has_buffers(page)) {
159 head = page_buffers(page);
160 bh = head;
161 do {
162 next = bh->b_this_page;
163 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
164 reiserfs_unmap_buffer(bh);
165 }
166 bh = next;
167 } while (bh != head);
168 }
169 }
170
171 /* reiserfs_get_block does not need to allocate a block only if it has been
172 done already or non-hole position has been found in the indirect item */
173 static inline int allocation_needed(int retval, b_blocknr_t allocated,
174 struct item_head *ih,
175 __le32 * item, int pos_in_item)
176 {
177 if (allocated)
178 return 0;
179 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
180 get_block_num(item, pos_in_item))
181 return 0;
182 return 1;
183 }
184
185 static inline int indirect_item_found(int retval, struct item_head *ih)
186 {
187 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
188 }
189
190 static inline void set_block_dev_mapped(struct buffer_head *bh,
191 b_blocknr_t block, struct inode *inode)
192 {
193 map_bh(bh, inode->i_sb, block);
194 }
195
196 //
197 // files which were created in the earlier version can not be longer,
198 // than 2 gb
199 //
200 static int file_capable(struct inode *inode, long block)
201 {
202 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
203 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
204 return 1;
205
206 return 0;
207 }
208
209 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
210 struct inode *inode, struct path *path)
211 {
212 struct super_block *s = th->t_super;
213 int len = th->t_blocks_allocated;
214 int err;
215
216 BUG_ON(!th->t_trans_id);
217 BUG_ON(!th->t_refcount);
218
219 /* we cannot restart while nested */
220 if (th->t_refcount > 1) {
221 return 0;
222 }
223 pathrelse(path);
224 reiserfs_update_sd(th, inode);
225 err = journal_end(th, s, len);
226 if (!err) {
227 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
228 if (!err)
229 reiserfs_update_inode_transaction(inode);
230 }
231 return err;
232 }
233
234 // it is called by get_block when create == 0. Returns block number
235 // for 'block'-th logical block of file. When it hits direct item it
236 // returns 0 (being called from bmap) or read direct item into piece
237 // of page (bh_result)
238
239 // Please improve the english/clarity in the comment above, as it is
240 // hard to understand.
241
242 static int _get_block_create_0(struct inode *inode, long block,
243 struct buffer_head *bh_result, int args)
244 {
245 INITIALIZE_PATH(path);
246 struct cpu_key key;
247 struct buffer_head *bh;
248 struct item_head *ih, tmp_ih;
249 int fs_gen;
250 int blocknr;
251 char *p = NULL;
252 int chars;
253 int ret;
254 int result;
255 int done = 0;
256 unsigned long offset;
257
258 // prepare the key to look for the 'block'-th block of file
259 make_cpu_key(&key, inode,
260 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
261 3);
262
263 research:
264 result = search_for_position_by_key(inode->i_sb, &key, &path);
265 if (result != POSITION_FOUND) {
266 pathrelse(&path);
267 if (p)
268 kunmap(bh_result->b_page);
269 if (result == IO_ERROR)
270 return -EIO;
271 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
272 // That there is some MMAPED data associated with it that is yet to be written to disk.
273 if ((args & GET_BLOCK_NO_HOLE)
274 && !PageUptodate(bh_result->b_page)) {
275 return -ENOENT;
276 }
277 return 0;
278 }
279 //
280 bh = get_last_bh(&path);
281 ih = get_ih(&path);
282 if (is_indirect_le_ih(ih)) {
283 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
284
285 /* FIXME: here we could cache indirect item or part of it in
286 the inode to avoid search_by_key in case of subsequent
287 access to file */
288 blocknr = get_block_num(ind_item, path.pos_in_item);
289 ret = 0;
290 if (blocknr) {
291 map_bh(bh_result, inode->i_sb, blocknr);
292 if (path.pos_in_item ==
293 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
294 set_buffer_boundary(bh_result);
295 }
296 } else
297 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
298 // That there is some MMAPED data associated with it that is yet to be written to disk.
299 if ((args & GET_BLOCK_NO_HOLE)
300 && !PageUptodate(bh_result->b_page)) {
301 ret = -ENOENT;
302 }
303
304 pathrelse(&path);
305 if (p)
306 kunmap(bh_result->b_page);
307 return ret;
308 }
309 // requested data are in direct item(s)
310 if (!(args & GET_BLOCK_READ_DIRECT)) {
311 // we are called by bmap. FIXME: we can not map block of file
312 // when it is stored in direct item(s)
313 pathrelse(&path);
314 if (p)
315 kunmap(bh_result->b_page);
316 return -ENOENT;
317 }
318
319 /* if we've got a direct item, and the buffer or page was uptodate,
320 ** we don't want to pull data off disk again. skip to the
321 ** end, where we map the buffer and return
322 */
323 if (buffer_uptodate(bh_result)) {
324 goto finished;
325 } else
326 /*
327 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
328 ** pages without any buffers. If the page is up to date, we don't want
329 ** read old data off disk. Set the up to date bit on the buffer instead
330 ** and jump to the end
331 */
332 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
333 set_buffer_uptodate(bh_result);
334 goto finished;
335 }
336 // read file tail into part of page
337 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
338 fs_gen = get_generation(inode->i_sb);
339 copy_item_head(&tmp_ih, ih);
340
341 /* we only want to kmap if we are reading the tail into the page.
342 ** this is not the common case, so we don't kmap until we are
343 ** sure we need to. But, this means the item might move if
344 ** kmap schedules
345 */
346 if (!p) {
347 p = (char *)kmap(bh_result->b_page);
348 if (fs_changed(fs_gen, inode->i_sb)
349 && item_moved(&tmp_ih, &path)) {
350 goto research;
351 }
352 }
353 p += offset;
354 memset(p, 0, inode->i_sb->s_blocksize);
355 do {
356 if (!is_direct_le_ih(ih)) {
357 BUG();
358 }
359 /* make sure we don't read more bytes than actually exist in
360 ** the file. This can happen in odd cases where i_size isn't
361 ** correct, and when direct item padding results in a few
362 ** extra bytes at the end of the direct item
363 */
364 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
365 break;
366 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
367 chars =
368 inode->i_size - (le_ih_k_offset(ih) - 1) -
369 path.pos_in_item;
370 done = 1;
371 } else {
372 chars = ih_item_len(ih) - path.pos_in_item;
373 }
374 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
375
376 if (done)
377 break;
378
379 p += chars;
380
381 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
382 // we done, if read direct item is not the last item of
383 // node FIXME: we could try to check right delimiting key
384 // to see whether direct item continues in the right
385 // neighbor or rely on i_size
386 break;
387
388 // update key to look for the next piece
389 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
390 result = search_for_position_by_key(inode->i_sb, &key, &path);
391 if (result != POSITION_FOUND)
392 // i/o error most likely
393 break;
394 bh = get_last_bh(&path);
395 ih = get_ih(&path);
396 } while (1);
397
398 flush_dcache_page(bh_result->b_page);
399 kunmap(bh_result->b_page);
400
401 finished:
402 pathrelse(&path);
403
404 if (result == IO_ERROR)
405 return -EIO;
406
407 /* this buffer has valid data, but isn't valid for io. mapping it to
408 * block #0 tells the rest of reiserfs it just has a tail in it
409 */
410 map_bh(bh_result, inode->i_sb, 0);
411 set_buffer_uptodate(bh_result);
412 return 0;
413 }
414
415 // this is called to create file map. So, _get_block_create_0 will not
416 // read direct item
417 static int reiserfs_bmap(struct inode *inode, sector_t block,
418 struct buffer_head *bh_result, int create)
419 {
420 if (!file_capable(inode, block))
421 return -EFBIG;
422
423 reiserfs_write_lock(inode->i_sb);
424 /* do not read the direct item */
425 _get_block_create_0(inode, block, bh_result, 0);
426 reiserfs_write_unlock(inode->i_sb);
427 return 0;
428 }
429
430 /* special version of get_block that is only used by grab_tail_page right
431 ** now. It is sent to block_prepare_write, and when you try to get a
432 ** block past the end of the file (or a block from a hole) it returns
433 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
434 ** be able to do i/o on the buffers returned, unless an error value
435 ** is also returned.
436 **
437 ** So, this allows block_prepare_write to be used for reading a single block
438 ** in a page. Where it does not produce a valid page for holes, or past the
439 ** end of the file. This turns out to be exactly what we need for reading
440 ** tails for conversion.
441 **
442 ** The point of the wrapper is forcing a certain value for create, even
443 ** though the VFS layer is calling this function with create==1. If you
444 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
445 ** don't use this function.
446 */
447 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
448 struct buffer_head *bh_result,
449 int create)
450 {
451 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
452 }
453
454 /* This is special helper for reiserfs_get_block in case we are executing
455 direct_IO request. */
456 static int reiserfs_get_blocks_direct_io(struct inode *inode,
457 sector_t iblock,
458 struct buffer_head *bh_result,
459 int create)
460 {
461 int ret;
462
463 bh_result->b_page = NULL;
464
465 /* We set the b_size before reiserfs_get_block call since it is
466 referenced in convert_tail_for_hole() that may be called from
467 reiserfs_get_block() */
468 bh_result->b_size = (1 << inode->i_blkbits);
469
470 ret = reiserfs_get_block(inode, iblock, bh_result,
471 create | GET_BLOCK_NO_DANGLE);
472 if (ret)
473 goto out;
474
475 /* don't allow direct io onto tail pages */
476 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
477 /* make sure future calls to the direct io funcs for this offset
478 ** in the file fail by unmapping the buffer
479 */
480 clear_buffer_mapped(bh_result);
481 ret = -EINVAL;
482 }
483 /* Possible unpacked tail. Flush the data before pages have
484 disappeared */
485 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
486 int err;
487 lock_kernel();
488 err = reiserfs_commit_for_inode(inode);
489 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
490 unlock_kernel();
491 if (err < 0)
492 ret = err;
493 }
494 out:
495 return ret;
496 }
497
498 /*
499 ** helper function for when reiserfs_get_block is called for a hole
500 ** but the file tail is still in a direct item
501 ** bh_result is the buffer head for the hole
502 ** tail_offset is the offset of the start of the tail in the file
503 **
504 ** This calls prepare_write, which will start a new transaction
505 ** you should not be in a transaction, or have any paths held when you
506 ** call this.
507 */
508 static int convert_tail_for_hole(struct inode *inode,
509 struct buffer_head *bh_result,
510 loff_t tail_offset)
511 {
512 unsigned long index;
513 unsigned long tail_end;
514 unsigned long tail_start;
515 struct page *tail_page;
516 struct page *hole_page = bh_result->b_page;
517 int retval = 0;
518
519 if ((tail_offset & (bh_result->b_size - 1)) != 1)
520 return -EIO;
521
522 /* always try to read until the end of the block */
523 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
524 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
525
526 index = tail_offset >> PAGE_CACHE_SHIFT;
527 /* hole_page can be zero in case of direct_io, we are sure
528 that we cannot get here if we write with O_DIRECT into
529 tail page */
530 if (!hole_page || index != hole_page->index) {
531 tail_page = grab_cache_page(inode->i_mapping, index);
532 retval = -ENOMEM;
533 if (!tail_page) {
534 goto out;
535 }
536 } else {
537 tail_page = hole_page;
538 }
539
540 /* we don't have to make sure the conversion did not happen while
541 ** we were locking the page because anyone that could convert
542 ** must first take i_mutex.
543 **
544 ** We must fix the tail page for writing because it might have buffers
545 ** that are mapped, but have a block number of 0. This indicates tail
546 ** data that has been read directly into the page, and block_prepare_write
547 ** won't trigger a get_block in this case.
548 */
549 fix_tail_page_for_writing(tail_page);
550 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
551 if (retval)
552 goto unlock;
553
554 /* tail conversion might change the data in the page */
555 flush_dcache_page(tail_page);
556
557 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
558
559 unlock:
560 if (tail_page != hole_page) {
561 unlock_page(tail_page);
562 page_cache_release(tail_page);
563 }
564 out:
565 return retval;
566 }
567
568 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
569 long block,
570 struct inode *inode,
571 b_blocknr_t * allocated_block_nr,
572 struct path *path, int flags)
573 {
574 BUG_ON(!th->t_trans_id);
575
576 #ifdef REISERFS_PREALLOCATE
577 if (!(flags & GET_BLOCK_NO_IMUX)) {
578 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
579 path, block);
580 }
581 #endif
582 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
583 block);
584 }
585
586 int reiserfs_get_block(struct inode *inode, sector_t block,
587 struct buffer_head *bh_result, int create)
588 {
589 int repeat, retval = 0;
590 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
591 INITIALIZE_PATH(path);
592 int pos_in_item;
593 struct cpu_key key;
594 struct buffer_head *bh, *unbh = NULL;
595 struct item_head *ih, tmp_ih;
596 __le32 *item;
597 int done;
598 int fs_gen;
599 struct reiserfs_transaction_handle *th = NULL;
600 /* space reserved in transaction batch:
601 . 3 balancings in direct->indirect conversion
602 . 1 block involved into reiserfs_update_sd()
603 XXX in practically impossible worst case direct2indirect()
604 can incur (much) more than 3 balancings.
605 quota update for user, group */
606 int jbegin_count =
607 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
608 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
609 int version;
610 int dangle = 1;
611 loff_t new_offset =
612 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
613
614 /* bad.... */
615 reiserfs_write_lock(inode->i_sb);
616 version = get_inode_item_key_version(inode);
617
618 if (!file_capable(inode, block)) {
619 reiserfs_write_unlock(inode->i_sb);
620 return -EFBIG;
621 }
622
623 /* if !create, we aren't changing the FS, so we don't need to
624 ** log anything, so we don't need to start a transaction
625 */
626 if (!(create & GET_BLOCK_CREATE)) {
627 int ret;
628 /* find number of block-th logical block of the file */
629 ret = _get_block_create_0(inode, block, bh_result,
630 create | GET_BLOCK_READ_DIRECT);
631 reiserfs_write_unlock(inode->i_sb);
632 return ret;
633 }
634 /*
635 * if we're already in a transaction, make sure to close
636 * any new transactions we start in this func
637 */
638 if ((create & GET_BLOCK_NO_DANGLE) ||
639 reiserfs_transaction_running(inode->i_sb))
640 dangle = 0;
641
642 /* If file is of such a size, that it might have a tail and tails are enabled
643 ** we should mark it as possibly needing tail packing on close
644 */
645 if ((have_large_tails(inode->i_sb)
646 && inode->i_size < i_block_size(inode) * 4)
647 || (have_small_tails(inode->i_sb)
648 && inode->i_size < i_block_size(inode)))
649 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
650
651 /* set the key of the first byte in the 'block'-th block of file */
652 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
653 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
654 start_trans:
655 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
656 if (!th) {
657 retval = -ENOMEM;
658 goto failure;
659 }
660 reiserfs_update_inode_transaction(inode);
661 }
662 research:
663
664 retval = search_for_position_by_key(inode->i_sb, &key, &path);
665 if (retval == IO_ERROR) {
666 retval = -EIO;
667 goto failure;
668 }
669
670 bh = get_last_bh(&path);
671 ih = get_ih(&path);
672 item = get_item(&path);
673 pos_in_item = path.pos_in_item;
674
675 fs_gen = get_generation(inode->i_sb);
676 copy_item_head(&tmp_ih, ih);
677
678 if (allocation_needed
679 (retval, allocated_block_nr, ih, item, pos_in_item)) {
680 /* we have to allocate block for the unformatted node */
681 if (!th) {
682 pathrelse(&path);
683 goto start_trans;
684 }
685
686 repeat =
687 _allocate_block(th, block, inode, &allocated_block_nr,
688 &path, create);
689
690 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
691 /* restart the transaction to give the journal a chance to free
692 ** some blocks. releases the path, so we have to go back to
693 ** research if we succeed on the second try
694 */
695 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
696 retval = restart_transaction(th, inode, &path);
697 if (retval)
698 goto failure;
699 repeat =
700 _allocate_block(th, block, inode,
701 &allocated_block_nr, NULL, create);
702
703 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
704 goto research;
705 }
706 if (repeat == QUOTA_EXCEEDED)
707 retval = -EDQUOT;
708 else
709 retval = -ENOSPC;
710 goto failure;
711 }
712
713 if (fs_changed(fs_gen, inode->i_sb)
714 && item_moved(&tmp_ih, &path)) {
715 goto research;
716 }
717 }
718
719 if (indirect_item_found(retval, ih)) {
720 b_blocknr_t unfm_ptr;
721 /* 'block'-th block is in the file already (there is
722 corresponding cell in some indirect item). But it may be
723 zero unformatted node pointer (hole) */
724 unfm_ptr = get_block_num(item, pos_in_item);
725 if (unfm_ptr == 0) {
726 /* use allocated block to plug the hole */
727 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
728 if (fs_changed(fs_gen, inode->i_sb)
729 && item_moved(&tmp_ih, &path)) {
730 reiserfs_restore_prepared_buffer(inode->i_sb,
731 bh);
732 goto research;
733 }
734 set_buffer_new(bh_result);
735 if (buffer_dirty(bh_result)
736 && reiserfs_data_ordered(inode->i_sb))
737 reiserfs_add_ordered_list(inode, bh_result);
738 put_block_num(item, pos_in_item, allocated_block_nr);
739 unfm_ptr = allocated_block_nr;
740 journal_mark_dirty(th, inode->i_sb, bh);
741 reiserfs_update_sd(th, inode);
742 }
743 set_block_dev_mapped(bh_result, unfm_ptr, inode);
744 pathrelse(&path);
745 retval = 0;
746 if (!dangle && th)
747 retval = reiserfs_end_persistent_transaction(th);
748
749 reiserfs_write_unlock(inode->i_sb);
750
751 /* the item was found, so new blocks were not added to the file
752 ** there is no need to make sure the inode is updated with this
753 ** transaction
754 */
755 return retval;
756 }
757
758 if (!th) {
759 pathrelse(&path);
760 goto start_trans;
761 }
762
763 /* desired position is not found or is in the direct item. We have
764 to append file with holes up to 'block'-th block converting
765 direct items to indirect one if necessary */
766 done = 0;
767 do {
768 if (is_statdata_le_ih(ih)) {
769 __le32 unp = 0;
770 struct cpu_key tmp_key;
771
772 /* indirect item has to be inserted */
773 make_le_item_head(&tmp_ih, &key, version, 1,
774 TYPE_INDIRECT, UNFM_P_SIZE,
775 0 /* free_space */ );
776
777 if (cpu_key_k_offset(&key) == 1) {
778 /* we are going to add 'block'-th block to the file. Use
779 allocated block for that */
780 unp = cpu_to_le32(allocated_block_nr);
781 set_block_dev_mapped(bh_result,
782 allocated_block_nr, inode);
783 set_buffer_new(bh_result);
784 done = 1;
785 }
786 tmp_key = key; // ;)
787 set_cpu_key_k_offset(&tmp_key, 1);
788 PATH_LAST_POSITION(&path)++;
789
790 retval =
791 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
792 inode, (char *)&unp);
793 if (retval) {
794 reiserfs_free_block(th, inode,
795 allocated_block_nr, 1);
796 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
797 }
798 //mark_tail_converted (inode);
799 } else if (is_direct_le_ih(ih)) {
800 /* direct item has to be converted */
801 loff_t tail_offset;
802
803 tail_offset =
804 ((le_ih_k_offset(ih) -
805 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
806 if (tail_offset == cpu_key_k_offset(&key)) {
807 /* direct item we just found fits into block we have
808 to map. Convert it into unformatted node: use
809 bh_result for the conversion */
810 set_block_dev_mapped(bh_result,
811 allocated_block_nr, inode);
812 unbh = bh_result;
813 done = 1;
814 } else {
815 /* we have to padd file tail stored in direct item(s)
816 up to block size and convert it to unformatted
817 node. FIXME: this should also get into page cache */
818
819 pathrelse(&path);
820 /*
821 * ugly, but we can only end the transaction if
822 * we aren't nested
823 */
824 BUG_ON(!th->t_refcount);
825 if (th->t_refcount == 1) {
826 retval =
827 reiserfs_end_persistent_transaction
828 (th);
829 th = NULL;
830 if (retval)
831 goto failure;
832 }
833
834 retval =
835 convert_tail_for_hole(inode, bh_result,
836 tail_offset);
837 if (retval) {
838 if (retval != -ENOSPC)
839 reiserfs_warning(inode->i_sb,
840 "clm-6004: convert tail failed inode %lu, error %d",
841 inode->i_ino,
842 retval);
843 if (allocated_block_nr) {
844 /* the bitmap, the super, and the stat data == 3 */
845 if (!th)
846 th = reiserfs_persistent_transaction(inode->i_sb, 3);
847 if (th)
848 reiserfs_free_block(th,
849 inode,
850 allocated_block_nr,
851 1);
852 }
853 goto failure;
854 }
855 goto research;
856 }
857 retval =
858 direct2indirect(th, inode, &path, unbh,
859 tail_offset);
860 if (retval) {
861 reiserfs_unmap_buffer(unbh);
862 reiserfs_free_block(th, inode,
863 allocated_block_nr, 1);
864 goto failure;
865 }
866 /* it is important the set_buffer_uptodate is done after
867 ** the direct2indirect. The buffer might contain valid
868 ** data newer than the data on disk (read by readpage, changed,
869 ** and then sent here by writepage). direct2indirect needs
870 ** to know if unbh was already up to date, so it can decide
871 ** if the data in unbh needs to be replaced with data from
872 ** the disk
873 */
874 set_buffer_uptodate(unbh);
875
876 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
877 buffer will disappear shortly, so it should not be added to
878 */
879 if (unbh->b_page) {
880 /* we've converted the tail, so we must
881 ** flush unbh before the transaction commits
882 */
883 reiserfs_add_tail_list(inode, unbh);
884
885 /* mark it dirty now to prevent commit_write from adding
886 ** this buffer to the inode's dirty buffer list
887 */
888 /*
889 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
890 * It's still atomic, but it sets the page dirty too,
891 * which makes it eligible for writeback at any time by the
892 * VM (which was also the case with __mark_buffer_dirty())
893 */
894 mark_buffer_dirty(unbh);
895 }
896 } else {
897 /* append indirect item with holes if needed, when appending
898 pointer to 'block'-th block use block, which is already
899 allocated */
900 struct cpu_key tmp_key;
901 unp_t unf_single = 0; // We use this in case we need to allocate only
902 // one block which is a fastpath
903 unp_t *un;
904 __u64 max_to_insert =
905 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
906 UNFM_P_SIZE;
907 __u64 blocks_needed;
908
909 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
910 "vs-804: invalid position for append");
911 /* indirect item has to be appended, set up key of that position */
912 make_cpu_key(&tmp_key, inode,
913 le_key_k_offset(version,
914 &(ih->ih_key)) +
915 op_bytes_number(ih,
916 inode->i_sb->s_blocksize),
917 //pos_in_item * inode->i_sb->s_blocksize,
918 TYPE_INDIRECT, 3); // key type is unimportant
919
920 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
921 "green-805: invalid offset");
922 blocks_needed =
923 1 +
924 ((cpu_key_k_offset(&key) -
925 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
926 s_blocksize_bits);
927
928 if (blocks_needed == 1) {
929 un = &unf_single;
930 } else {
931 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
932 if (!un) {
933 un = &unf_single;
934 blocks_needed = 1;
935 max_to_insert = 0;
936 } else
937 memset(un, 0,
938 UNFM_P_SIZE * min(blocks_needed,
939 max_to_insert));
940 }
941 if (blocks_needed <= max_to_insert) {
942 /* we are going to add target block to the file. Use allocated
943 block for that */
944 un[blocks_needed - 1] =
945 cpu_to_le32(allocated_block_nr);
946 set_block_dev_mapped(bh_result,
947 allocated_block_nr, inode);
948 set_buffer_new(bh_result);
949 done = 1;
950 } else {
951 /* paste hole to the indirect item */
952 /* If kmalloc failed, max_to_insert becomes zero and it means we
953 only have space for one block */
954 blocks_needed =
955 max_to_insert ? max_to_insert : 1;
956 }
957 retval =
958 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
959 (char *)un,
960 UNFM_P_SIZE *
961 blocks_needed);
962
963 if (blocks_needed != 1)
964 kfree(un);
965
966 if (retval) {
967 reiserfs_free_block(th, inode,
968 allocated_block_nr, 1);
969 goto failure;
970 }
971 if (!done) {
972 /* We need to mark new file size in case this function will be
973 interrupted/aborted later on. And we may do this only for
974 holes. */
975 inode->i_size +=
976 inode->i_sb->s_blocksize * blocks_needed;
977 }
978 }
979
980 if (done == 1)
981 break;
982
983 /* this loop could log more blocks than we had originally asked
984 ** for. So, we have to allow the transaction to end if it is
985 ** too big or too full. Update the inode so things are
986 ** consistent if we crash before the function returns
987 **
988 ** release the path so that anybody waiting on the path before
989 ** ending their transaction will be able to continue.
990 */
991 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
992 retval = restart_transaction(th, inode, &path);
993 if (retval)
994 goto failure;
995 }
996 /* inserting indirect pointers for a hole can take a
997 ** long time. reschedule if needed
998 */
999 cond_resched();
1000
1001 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1002 if (retval == IO_ERROR) {
1003 retval = -EIO;
1004 goto failure;
1005 }
1006 if (retval == POSITION_FOUND) {
1007 reiserfs_warning(inode->i_sb,
1008 "vs-825: reiserfs_get_block: "
1009 "%K should not be found", &key);
1010 retval = -EEXIST;
1011 if (allocated_block_nr)
1012 reiserfs_free_block(th, inode,
1013 allocated_block_nr, 1);
1014 pathrelse(&path);
1015 goto failure;
1016 }
1017 bh = get_last_bh(&path);
1018 ih = get_ih(&path);
1019 item = get_item(&path);
1020 pos_in_item = path.pos_in_item;
1021 } while (1);
1022
1023 retval = 0;
1024
1025 failure:
1026 if (th && (!dangle || (retval && !th->t_trans_id))) {
1027 int err;
1028 if (th->t_trans_id)
1029 reiserfs_update_sd(th, inode);
1030 err = reiserfs_end_persistent_transaction(th);
1031 if (err)
1032 retval = err;
1033 }
1034
1035 reiserfs_write_unlock(inode->i_sb);
1036 reiserfs_check_path(&path);
1037 return retval;
1038 }
1039
1040 static int
1041 reiserfs_readpages(struct file *file, struct address_space *mapping,
1042 struct list_head *pages, unsigned nr_pages)
1043 {
1044 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1045 }
1046
1047 /* Compute real number of used bytes by file
1048 * Following three functions can go away when we'll have enough space in stat item
1049 */
1050 static int real_space_diff(struct inode *inode, int sd_size)
1051 {
1052 int bytes;
1053 loff_t blocksize = inode->i_sb->s_blocksize;
1054
1055 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1056 return sd_size;
1057
1058 /* End of file is also in full block with indirect reference, so round
1059 ** up to the next block.
1060 **
1061 ** there is just no way to know if the tail is actually packed
1062 ** on the file, so we have to assume it isn't. When we pack the
1063 ** tail, we add 4 bytes to pretend there really is an unformatted
1064 ** node pointer
1065 */
1066 bytes =
1067 ((inode->i_size +
1068 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1069 sd_size;
1070 return bytes;
1071 }
1072
1073 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1074 int sd_size)
1075 {
1076 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1077 return inode->i_size +
1078 (loff_t) (real_space_diff(inode, sd_size));
1079 }
1080 return ((loff_t) real_space_diff(inode, sd_size)) +
1081 (((loff_t) blocks) << 9);
1082 }
1083
1084 /* Compute number of blocks used by file in ReiserFS counting */
1085 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1086 {
1087 loff_t bytes = inode_get_bytes(inode);
1088 loff_t real_space = real_space_diff(inode, sd_size);
1089
1090 /* keeps fsck and non-quota versions of reiserfs happy */
1091 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1092 bytes += (loff_t) 511;
1093 }
1094
1095 /* files from before the quota patch might i_blocks such that
1096 ** bytes < real_space. Deal with that here to prevent it from
1097 ** going negative.
1098 */
1099 if (bytes < real_space)
1100 return 0;
1101 return (bytes - real_space) >> 9;
1102 }
1103
1104 //
1105 // BAD: new directories have stat data of new type and all other items
1106 // of old type. Version stored in the inode says about body items, so
1107 // in update_stat_data we can not rely on inode, but have to check
1108 // item version directly
1109 //
1110
1111 // called by read_locked_inode
1112 static void init_inode(struct inode *inode, struct path *path)
1113 {
1114 struct buffer_head *bh;
1115 struct item_head *ih;
1116 __u32 rdev;
1117 //int version = ITEM_VERSION_1;
1118
1119 bh = PATH_PLAST_BUFFER(path);
1120 ih = PATH_PITEM_HEAD(path);
1121
1122 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1123
1124 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1125 REISERFS_I(inode)->i_flags = 0;
1126 REISERFS_I(inode)->i_prealloc_block = 0;
1127 REISERFS_I(inode)->i_prealloc_count = 0;
1128 REISERFS_I(inode)->i_trans_id = 0;
1129 REISERFS_I(inode)->i_jl = NULL;
1130 reiserfs_init_acl_access(inode);
1131 reiserfs_init_acl_default(inode);
1132 reiserfs_init_xattr_rwsem(inode);
1133
1134 if (stat_data_v1(ih)) {
1135 struct stat_data_v1 *sd =
1136 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1137 unsigned long blocks;
1138
1139 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1140 set_inode_sd_version(inode, STAT_DATA_V1);
1141 inode->i_mode = sd_v1_mode(sd);
1142 inode->i_nlink = sd_v1_nlink(sd);
1143 inode->i_uid = sd_v1_uid(sd);
1144 inode->i_gid = sd_v1_gid(sd);
1145 inode->i_size = sd_v1_size(sd);
1146 inode->i_atime.tv_sec = sd_v1_atime(sd);
1147 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1148 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1149 inode->i_atime.tv_nsec = 0;
1150 inode->i_ctime.tv_nsec = 0;
1151 inode->i_mtime.tv_nsec = 0;
1152
1153 inode->i_blocks = sd_v1_blocks(sd);
1154 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1155 blocks = (inode->i_size + 511) >> 9;
1156 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1157 if (inode->i_blocks > blocks) {
1158 // there was a bug in <=3.5.23 when i_blocks could take negative
1159 // values. Starting from 3.5.17 this value could even be stored in
1160 // stat data. For such files we set i_blocks based on file
1161 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1162 // only updated if file's inode will ever change
1163 inode->i_blocks = blocks;
1164 }
1165
1166 rdev = sd_v1_rdev(sd);
1167 REISERFS_I(inode)->i_first_direct_byte =
1168 sd_v1_first_direct_byte(sd);
1169 /* an early bug in the quota code can give us an odd number for the
1170 ** block count. This is incorrect, fix it here.
1171 */
1172 if (inode->i_blocks & 1) {
1173 inode->i_blocks++;
1174 }
1175 inode_set_bytes(inode,
1176 to_real_used_space(inode, inode->i_blocks,
1177 SD_V1_SIZE));
1178 /* nopack is initially zero for v1 objects. For v2 objects,
1179 nopack is initialised from sd_attrs */
1180 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1181 } else {
1182 // new stat data found, but object may have old items
1183 // (directories and symlinks)
1184 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1185
1186 inode->i_mode = sd_v2_mode(sd);
1187 inode->i_nlink = sd_v2_nlink(sd);
1188 inode->i_uid = sd_v2_uid(sd);
1189 inode->i_size = sd_v2_size(sd);
1190 inode->i_gid = sd_v2_gid(sd);
1191 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1192 inode->i_atime.tv_sec = sd_v2_atime(sd);
1193 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1194 inode->i_ctime.tv_nsec = 0;
1195 inode->i_mtime.tv_nsec = 0;
1196 inode->i_atime.tv_nsec = 0;
1197 inode->i_blocks = sd_v2_blocks(sd);
1198 rdev = sd_v2_rdev(sd);
1199 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1200 inode->i_generation =
1201 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1202 else
1203 inode->i_generation = sd_v2_generation(sd);
1204
1205 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1206 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1207 else
1208 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1209 REISERFS_I(inode)->i_first_direct_byte = 0;
1210 set_inode_sd_version(inode, STAT_DATA_V2);
1211 inode_set_bytes(inode,
1212 to_real_used_space(inode, inode->i_blocks,
1213 SD_V2_SIZE));
1214 /* read persistent inode attributes from sd and initalise
1215 generic inode flags from them */
1216 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1217 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1218 }
1219
1220 pathrelse(path);
1221 if (S_ISREG(inode->i_mode)) {
1222 inode->i_op = &reiserfs_file_inode_operations;
1223 inode->i_fop = &reiserfs_file_operations;
1224 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1225 } else if (S_ISDIR(inode->i_mode)) {
1226 inode->i_op = &reiserfs_dir_inode_operations;
1227 inode->i_fop = &reiserfs_dir_operations;
1228 } else if (S_ISLNK(inode->i_mode)) {
1229 inode->i_op = &reiserfs_symlink_inode_operations;
1230 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1231 } else {
1232 inode->i_blocks = 0;
1233 inode->i_op = &reiserfs_special_inode_operations;
1234 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1235 }
1236 }
1237
1238 // update new stat data with inode fields
1239 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1240 {
1241 struct stat_data *sd_v2 = (struct stat_data *)sd;
1242 __u16 flags;
1243
1244 set_sd_v2_mode(sd_v2, inode->i_mode);
1245 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1246 set_sd_v2_uid(sd_v2, inode->i_uid);
1247 set_sd_v2_size(sd_v2, size);
1248 set_sd_v2_gid(sd_v2, inode->i_gid);
1249 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1250 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1251 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1252 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1253 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1254 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1255 else
1256 set_sd_v2_generation(sd_v2, inode->i_generation);
1257 flags = REISERFS_I(inode)->i_attrs;
1258 i_attrs_to_sd_attrs(inode, &flags);
1259 set_sd_v2_attrs(sd_v2, flags);
1260 }
1261
1262 // used to copy inode's fields to old stat data
1263 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1264 {
1265 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1266
1267 set_sd_v1_mode(sd_v1, inode->i_mode);
1268 set_sd_v1_uid(sd_v1, inode->i_uid);
1269 set_sd_v1_gid(sd_v1, inode->i_gid);
1270 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1271 set_sd_v1_size(sd_v1, size);
1272 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1273 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1274 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1275
1276 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1277 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1278 else
1279 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1280
1281 // Sigh. i_first_direct_byte is back
1282 set_sd_v1_first_direct_byte(sd_v1,
1283 REISERFS_I(inode)->i_first_direct_byte);
1284 }
1285
1286 /* NOTE, you must prepare the buffer head before sending it here,
1287 ** and then log it after the call
1288 */
1289 static void update_stat_data(struct path *path, struct inode *inode,
1290 loff_t size)
1291 {
1292 struct buffer_head *bh;
1293 struct item_head *ih;
1294
1295 bh = PATH_PLAST_BUFFER(path);
1296 ih = PATH_PITEM_HEAD(path);
1297
1298 if (!is_statdata_le_ih(ih))
1299 reiserfs_panic(inode->i_sb,
1300 "vs-13065: update_stat_data: key %k, found item %h",
1301 INODE_PKEY(inode), ih);
1302
1303 if (stat_data_v1(ih)) {
1304 // path points to old stat data
1305 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1306 } else {
1307 inode2sd(B_I_PITEM(bh, ih), inode, size);
1308 }
1309
1310 return;
1311 }
1312
1313 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1314 struct inode *inode, loff_t size)
1315 {
1316 struct cpu_key key;
1317 INITIALIZE_PATH(path);
1318 struct buffer_head *bh;
1319 int fs_gen;
1320 struct item_head *ih, tmp_ih;
1321 int retval;
1322
1323 BUG_ON(!th->t_trans_id);
1324
1325 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1326
1327 for (;;) {
1328 int pos;
1329 /* look for the object's stat data */
1330 retval = search_item(inode->i_sb, &key, &path);
1331 if (retval == IO_ERROR) {
1332 reiserfs_warning(inode->i_sb,
1333 "vs-13050: reiserfs_update_sd: "
1334 "i/o failure occurred trying to update %K stat data",
1335 &key);
1336 return;
1337 }
1338 if (retval == ITEM_NOT_FOUND) {
1339 pos = PATH_LAST_POSITION(&path);
1340 pathrelse(&path);
1341 if (inode->i_nlink == 0) {
1342 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1343 return;
1344 }
1345 reiserfs_warning(inode->i_sb,
1346 "vs-13060: reiserfs_update_sd: "
1347 "stat data of object %k (nlink == %d) not found (pos %d)",
1348 INODE_PKEY(inode), inode->i_nlink,
1349 pos);
1350 reiserfs_check_path(&path);
1351 return;
1352 }
1353
1354 /* sigh, prepare_for_journal might schedule. When it schedules the
1355 ** FS might change. We have to detect that, and loop back to the
1356 ** search if the stat data item has moved
1357 */
1358 bh = get_last_bh(&path);
1359 ih = get_ih(&path);
1360 copy_item_head(&tmp_ih, ih);
1361 fs_gen = get_generation(inode->i_sb);
1362 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1363 if (fs_changed(fs_gen, inode->i_sb)
1364 && item_moved(&tmp_ih, &path)) {
1365 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1366 continue; /* Stat_data item has been moved after scheduling. */
1367 }
1368 break;
1369 }
1370 update_stat_data(&path, inode, size);
1371 journal_mark_dirty(th, th->t_super, bh);
1372 pathrelse(&path);
1373 return;
1374 }
1375
1376 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1377 ** does a make_bad_inode when things go wrong. But, we need to make sure
1378 ** and clear the key in the private portion of the inode, otherwise a
1379 ** corresponding iput might try to delete whatever object the inode last
1380 ** represented.
1381 */
1382 static void reiserfs_make_bad_inode(struct inode *inode)
1383 {
1384 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1385 make_bad_inode(inode);
1386 }
1387
1388 //
1389 // initially this function was derived from minix or ext2's analog and
1390 // evolved as the prototype did
1391 //
1392
1393 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1394 {
1395 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1396 inode->i_ino = args->objectid;
1397 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1398 return 0;
1399 }
1400
1401 /* looks for stat data in the tree, and fills up the fields of in-core
1402 inode stat data fields */
1403 void reiserfs_read_locked_inode(struct inode *inode,
1404 struct reiserfs_iget_args *args)
1405 {
1406 INITIALIZE_PATH(path_to_sd);
1407 struct cpu_key key;
1408 unsigned long dirino;
1409 int retval;
1410
1411 dirino = args->dirid;
1412
1413 /* set version 1, version 2 could be used too, because stat data
1414 key is the same in both versions */
1415 key.version = KEY_FORMAT_3_5;
1416 key.on_disk_key.k_dir_id = dirino;
1417 key.on_disk_key.k_objectid = inode->i_ino;
1418 key.on_disk_key.k_offset = 0;
1419 key.on_disk_key.k_type = 0;
1420
1421 /* look for the object's stat data */
1422 retval = search_item(inode->i_sb, &key, &path_to_sd);
1423 if (retval == IO_ERROR) {
1424 reiserfs_warning(inode->i_sb,
1425 "vs-13070: reiserfs_read_locked_inode: "
1426 "i/o failure occurred trying to find stat data of %K",
1427 &key);
1428 reiserfs_make_bad_inode(inode);
1429 return;
1430 }
1431 if (retval != ITEM_FOUND) {
1432 /* a stale NFS handle can trigger this without it being an error */
1433 pathrelse(&path_to_sd);
1434 reiserfs_make_bad_inode(inode);
1435 inode->i_nlink = 0;
1436 return;
1437 }
1438
1439 init_inode(inode, &path_to_sd);
1440
1441 /* It is possible that knfsd is trying to access inode of a file
1442 that is being removed from the disk by some other thread. As we
1443 update sd on unlink all that is required is to check for nlink
1444 here. This bug was first found by Sizif when debugging
1445 SquidNG/Butterfly, forgotten, and found again after Philippe
1446 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1447
1448 More logical fix would require changes in fs/inode.c:iput() to
1449 remove inode from hash-table _after_ fs cleaned disk stuff up and
1450 in iget() to return NULL if I_FREEING inode is found in
1451 hash-table. */
1452 /* Currently there is one place where it's ok to meet inode with
1453 nlink==0: processing of open-unlinked and half-truncated files
1454 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1455 if ((inode->i_nlink == 0) &&
1456 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1457 reiserfs_warning(inode->i_sb,
1458 "vs-13075: reiserfs_read_locked_inode: "
1459 "dead inode read from disk %K. "
1460 "This is likely to be race with knfsd. Ignore",
1461 &key);
1462 reiserfs_make_bad_inode(inode);
1463 }
1464
1465 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1466
1467 }
1468
1469 /**
1470 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1471 *
1472 * @inode: inode from hash table to check
1473 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1474 *
1475 * This function is called by iget5_locked() to distinguish reiserfs inodes
1476 * having the same inode numbers. Such inodes can only exist due to some
1477 * error condition. One of them should be bad. Inodes with identical
1478 * inode numbers (objectids) are distinguished by parent directory ids.
1479 *
1480 */
1481 int reiserfs_find_actor(struct inode *inode, void *opaque)
1482 {
1483 struct reiserfs_iget_args *args;
1484
1485 args = opaque;
1486 /* args is already in CPU order */
1487 return (inode->i_ino == args->objectid) &&
1488 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1489 }
1490
1491 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1492 {
1493 struct inode *inode;
1494 struct reiserfs_iget_args args;
1495
1496 args.objectid = key->on_disk_key.k_objectid;
1497 args.dirid = key->on_disk_key.k_dir_id;
1498 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1499 reiserfs_find_actor, reiserfs_init_locked_inode,
1500 (void *)(&args));
1501 if (!inode)
1502 return ERR_PTR(-ENOMEM);
1503
1504 if (inode->i_state & I_NEW) {
1505 reiserfs_read_locked_inode(inode, &args);
1506 unlock_new_inode(inode);
1507 }
1508
1509 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1510 /* either due to i/o error or a stale NFS handle */
1511 iput(inode);
1512 inode = NULL;
1513 }
1514 return inode;
1515 }
1516
1517 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1518 {
1519 __u32 *data = vobjp;
1520 struct cpu_key key;
1521 struct dentry *result;
1522 struct inode *inode;
1523
1524 key.on_disk_key.k_objectid = data[0];
1525 key.on_disk_key.k_dir_id = data[1];
1526 reiserfs_write_lock(sb);
1527 inode = reiserfs_iget(sb, &key);
1528 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1529 data[2] != inode->i_generation) {
1530 iput(inode);
1531 inode = NULL;
1532 }
1533 reiserfs_write_unlock(sb);
1534 if (!inode)
1535 inode = ERR_PTR(-ESTALE);
1536 if (IS_ERR(inode))
1537 return ERR_PTR(PTR_ERR(inode));
1538 result = d_alloc_anon(inode);
1539 if (!result) {
1540 iput(inode);
1541 return ERR_PTR(-ENOMEM);
1542 }
1543 return result;
1544 }
1545
1546 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1547 int len, int fhtype,
1548 int (*acceptable) (void *contect,
1549 struct dentry * de),
1550 void *context)
1551 {
1552 __u32 obj[3], parent[3];
1553
1554 /* fhtype happens to reflect the number of u32s encoded.
1555 * due to a bug in earlier code, fhtype might indicate there
1556 * are more u32s then actually fitted.
1557 * so if fhtype seems to be more than len, reduce fhtype.
1558 * Valid types are:
1559 * 2 - objectid + dir_id - legacy support
1560 * 3 - objectid + dir_id + generation
1561 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1562 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1563 * 6 - as above plus generation of directory
1564 * 6 does not fit in NFSv2 handles
1565 */
1566 if (fhtype > len) {
1567 if (fhtype != 6 || len != 5)
1568 reiserfs_warning(sb,
1569 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570 fhtype, len);
1571 fhtype = 5;
1572 }
1573
1574 obj[0] = data[0];
1575 obj[1] = data[1];
1576 if (fhtype == 3 || fhtype >= 5)
1577 obj[2] = data[2];
1578 else
1579 obj[2] = 0; /* generation number */
1580
1581 if (fhtype >= 4) {
1582 parent[0] = data[fhtype >= 5 ? 3 : 2];
1583 parent[1] = data[fhtype >= 5 ? 4 : 3];
1584 if (fhtype == 6)
1585 parent[2] = data[5];
1586 else
1587 parent[2] = 0;
1588 }
1589 return sb->s_export_op->find_exported_dentry(sb, obj,
1590 fhtype < 4 ? NULL : parent,
1591 acceptable, context);
1592 }
1593
1594 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1595 int need_parent)
1596 {
1597 struct inode *inode = dentry->d_inode;
1598 int maxlen = *lenp;
1599
1600 if (maxlen < 3)
1601 return 255;
1602
1603 data[0] = inode->i_ino;
1604 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1605 data[2] = inode->i_generation;
1606 *lenp = 3;
1607 /* no room for directory info? return what we've stored so far */
1608 if (maxlen < 5 || !need_parent)
1609 return 3;
1610
1611 spin_lock(&dentry->d_lock);
1612 inode = dentry->d_parent->d_inode;
1613 data[3] = inode->i_ino;
1614 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 *lenp = 5;
1616 if (maxlen >= 6) {
1617 data[5] = inode->i_generation;
1618 *lenp = 6;
1619 }
1620 spin_unlock(&dentry->d_lock);
1621 return *lenp;
1622 }
1623
1624 /* looks for stat data, then copies fields to it, marks the buffer
1625 containing stat data as dirty */
1626 /* reiserfs inodes are never really dirty, since the dirty inode call
1627 ** always logs them. This call allows the VFS inode marking routines
1628 ** to properly mark inodes for datasync and such, but only actually
1629 ** does something when called for a synchronous update.
1630 */
1631 int reiserfs_write_inode(struct inode *inode, int do_sync)
1632 {
1633 struct reiserfs_transaction_handle th;
1634 int jbegin_count = 1;
1635
1636 if (inode->i_sb->s_flags & MS_RDONLY)
1637 return -EROFS;
1638 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1639 ** these cases are just when the system needs ram, not when the
1640 ** inode needs to reach disk for safety, and they can safely be
1641 ** ignored because the altered inode has already been logged.
1642 */
1643 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1644 reiserfs_write_lock(inode->i_sb);
1645 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1646 reiserfs_update_sd(&th, inode);
1647 journal_end_sync(&th, inode->i_sb, jbegin_count);
1648 }
1649 reiserfs_write_unlock(inode->i_sb);
1650 }
1651 return 0;
1652 }
1653
1654 /* stat data of new object is inserted already, this inserts the item
1655 containing "." and ".." entries */
1656 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1657 struct inode *inode,
1658 struct item_head *ih, struct path *path,
1659 struct inode *dir)
1660 {
1661 struct super_block *sb = th->t_super;
1662 char empty_dir[EMPTY_DIR_SIZE];
1663 char *body = empty_dir;
1664 struct cpu_key key;
1665 int retval;
1666
1667 BUG_ON(!th->t_trans_id);
1668
1669 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1670 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1671 TYPE_DIRENTRY, 3 /*key length */ );
1672
1673 /* compose item head for new item. Directories consist of items of
1674 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1675 is done by reiserfs_new_inode */
1676 if (old_format_only(sb)) {
1677 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1679
1680 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1681 ih->ih_key.k_objectid,
1682 INODE_PKEY(dir)->k_dir_id,
1683 INODE_PKEY(dir)->k_objectid);
1684 } else {
1685 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1686 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1687
1688 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1689 ih->ih_key.k_objectid,
1690 INODE_PKEY(dir)->k_dir_id,
1691 INODE_PKEY(dir)->k_objectid);
1692 }
1693
1694 /* look for place in the tree for new item */
1695 retval = search_item(sb, &key, path);
1696 if (retval == IO_ERROR) {
1697 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1698 "i/o failure occurred creating new directory");
1699 return -EIO;
1700 }
1701 if (retval == ITEM_FOUND) {
1702 pathrelse(path);
1703 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1704 "object with this key exists (%k)",
1705 &(ih->ih_key));
1706 return -EEXIST;
1707 }
1708
1709 /* insert item, that is empty directory item */
1710 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1711 }
1712
1713 /* stat data of object has been inserted, this inserts the item
1714 containing the body of symlink */
1715 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1716 struct item_head *ih,
1717 struct path *path, const char *symname,
1718 int item_len)
1719 {
1720 struct super_block *sb = th->t_super;
1721 struct cpu_key key;
1722 int retval;
1723
1724 BUG_ON(!th->t_trans_id);
1725
1726 _make_cpu_key(&key, KEY_FORMAT_3_5,
1727 le32_to_cpu(ih->ih_key.k_dir_id),
1728 le32_to_cpu(ih->ih_key.k_objectid),
1729 1, TYPE_DIRECT, 3 /*key length */ );
1730
1731 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1732 0 /*free_space */ );
1733
1734 /* look for place in the tree for new item */
1735 retval = search_item(sb, &key, path);
1736 if (retval == IO_ERROR) {
1737 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1738 "i/o failure occurred creating new symlink");
1739 return -EIO;
1740 }
1741 if (retval == ITEM_FOUND) {
1742 pathrelse(path);
1743 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1744 "object with this key exists (%k)",
1745 &(ih->ih_key));
1746 return -EEXIST;
1747 }
1748
1749 /* insert item, that is body of symlink */
1750 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1751 }
1752
1753 /* inserts the stat data into the tree, and then calls
1754 reiserfs_new_directory (to insert ".", ".." item if new object is
1755 directory) or reiserfs_new_symlink (to insert symlink body if new
1756 object is symlink) or nothing (if new object is regular file)
1757
1758 NOTE! uid and gid must already be set in the inode. If we return
1759 non-zero due to an error, we have to drop the quota previously allocated
1760 for the fresh inode. This can only be done outside a transaction, so
1761 if we return non-zero, we also end the transaction. */
1762 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1763 struct inode *dir, int mode, const char *symname,
1764 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1765 strlen (symname) for symlinks) */
1766 loff_t i_size, struct dentry *dentry,
1767 struct inode *inode)
1768 {
1769 struct super_block *sb;
1770 INITIALIZE_PATH(path_to_key);
1771 struct cpu_key key;
1772 struct item_head ih;
1773 struct stat_data sd;
1774 int retval;
1775 int err;
1776
1777 BUG_ON(!th->t_trans_id);
1778
1779 if (DQUOT_ALLOC_INODE(inode)) {
1780 err = -EDQUOT;
1781 goto out_end_trans;
1782 }
1783 if (!dir->i_nlink) {
1784 err = -EPERM;
1785 goto out_bad_inode;
1786 }
1787
1788 sb = dir->i_sb;
1789
1790 /* item head of new item */
1791 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1792 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1793 if (!ih.ih_key.k_objectid) {
1794 err = -ENOMEM;
1795 goto out_bad_inode;
1796 }
1797 if (old_format_only(sb))
1798 /* not a perfect generation count, as object ids can be reused, but
1799 ** this is as good as reiserfs can do right now.
1800 ** note that the private part of inode isn't filled in yet, we have
1801 ** to use the directory.
1802 */
1803 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1804 else
1805 #if defined( USE_INODE_GENERATION_COUNTER )
1806 inode->i_generation =
1807 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1808 #else
1809 inode->i_generation = ++event;
1810 #endif
1811
1812 /* fill stat data */
1813 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1814
1815 /* uid and gid must already be set by the caller for quota init */
1816
1817 /* symlink cannot be immutable or append only, right? */
1818 if (S_ISLNK(inode->i_mode))
1819 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1820
1821 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1822 inode->i_size = i_size;
1823 inode->i_blocks = 0;
1824 inode->i_bytes = 0;
1825 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1826 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1827
1828 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1829 REISERFS_I(inode)->i_flags = 0;
1830 REISERFS_I(inode)->i_prealloc_block = 0;
1831 REISERFS_I(inode)->i_prealloc_count = 0;
1832 REISERFS_I(inode)->i_trans_id = 0;
1833 REISERFS_I(inode)->i_jl = NULL;
1834 REISERFS_I(inode)->i_attrs =
1835 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1836 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1837 reiserfs_init_acl_access(inode);
1838 reiserfs_init_acl_default(inode);
1839 reiserfs_init_xattr_rwsem(inode);
1840
1841 if (old_format_only(sb))
1842 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1843 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1844 else
1845 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1846 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1847
1848 /* key to search for correct place for new stat data */
1849 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1850 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1851 TYPE_STAT_DATA, 3 /*key length */ );
1852
1853 /* find proper place for inserting of stat data */
1854 retval = search_item(sb, &key, &path_to_key);
1855 if (retval == IO_ERROR) {
1856 err = -EIO;
1857 goto out_bad_inode;
1858 }
1859 if (retval == ITEM_FOUND) {
1860 pathrelse(&path_to_key);
1861 err = -EEXIST;
1862 goto out_bad_inode;
1863 }
1864 if (old_format_only(sb)) {
1865 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1866 pathrelse(&path_to_key);
1867 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1868 err = -EINVAL;
1869 goto out_bad_inode;
1870 }
1871 inode2sd_v1(&sd, inode, inode->i_size);
1872 } else {
1873 inode2sd(&sd, inode, inode->i_size);
1874 }
1875 // these do not go to on-disk stat data
1876 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1877
1878 // store in in-core inode the key of stat data and version all
1879 // object items will have (directory items will have old offset
1880 // format, other new objects will consist of new items)
1881 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1882 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1883 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1884 else
1885 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1886 if (old_format_only(sb))
1887 set_inode_sd_version(inode, STAT_DATA_V1);
1888 else
1889 set_inode_sd_version(inode, STAT_DATA_V2);
1890
1891 /* insert the stat data into the tree */
1892 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1893 if (REISERFS_I(dir)->new_packing_locality)
1894 th->displace_new_blocks = 1;
1895 #endif
1896 retval =
1897 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1898 (char *)(&sd));
1899 if (retval) {
1900 err = retval;
1901 reiserfs_check_path(&path_to_key);
1902 goto out_bad_inode;
1903 }
1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905 if (!th->displace_new_blocks)
1906 REISERFS_I(dir)->new_packing_locality = 0;
1907 #endif
1908 if (S_ISDIR(mode)) {
1909 /* insert item with "." and ".." */
1910 retval =
1911 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1912 }
1913
1914 if (S_ISLNK(mode)) {
1915 /* insert body of symlink */
1916 if (!old_format_only(sb))
1917 i_size = ROUND_UP(i_size);
1918 retval =
1919 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1920 i_size);
1921 }
1922 if (retval) {
1923 err = retval;
1924 reiserfs_check_path(&path_to_key);
1925 journal_end(th, th->t_super, th->t_blocks_allocated);
1926 goto out_inserted_sd;
1927 }
1928
1929 /* XXX CHECK THIS */
1930 if (reiserfs_posixacl(inode->i_sb)) {
1931 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1932 if (retval) {
1933 err = retval;
1934 reiserfs_check_path(&path_to_key);
1935 journal_end(th, th->t_super, th->t_blocks_allocated);
1936 goto out_inserted_sd;
1937 }
1938 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1939 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1940 "but vfs thinks they are!");
1941 } else if (is_reiserfs_priv_object(dir)) {
1942 reiserfs_mark_inode_private(inode);
1943 }
1944
1945 insert_inode_hash(inode);
1946 reiserfs_update_sd(th, inode);
1947 reiserfs_check_path(&path_to_key);
1948
1949 return 0;
1950
1951 /* it looks like you can easily compress these two goto targets into
1952 * one. Keeping it like this doesn't actually hurt anything, and they
1953 * are place holders for what the quota code actually needs.
1954 */
1955 out_bad_inode:
1956 /* Invalidate the object, nothing was inserted yet */
1957 INODE_PKEY(inode)->k_objectid = 0;
1958
1959 /* Quota change must be inside a transaction for journaling */
1960 DQUOT_FREE_INODE(inode);
1961
1962 out_end_trans:
1963 journal_end(th, th->t_super, th->t_blocks_allocated);
1964 /* Drop can be outside and it needs more credits so it's better to have it outside */
1965 DQUOT_DROP(inode);
1966 inode->i_flags |= S_NOQUOTA;
1967 make_bad_inode(inode);
1968
1969 out_inserted_sd:
1970 inode->i_nlink = 0;
1971 th->t_trans_id = 0; /* so the caller can't use this handle later */
1972
1973 /* If we were inheriting an ACL, we need to release the lock so that
1974 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1975 * code really needs to be reworked, but this will take care of it
1976 * for now. -jeffm */
1977 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1978 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1979 reiserfs_write_unlock_xattrs(dir->i_sb);
1980 iput(inode);
1981 reiserfs_write_lock_xattrs(dir->i_sb);
1982 } else
1983 #endif
1984 iput(inode);
1985 return err;
1986 }
1987
1988 /*
1989 ** finds the tail page in the page cache,
1990 ** reads the last block in.
1991 **
1992 ** On success, page_result is set to a locked, pinned page, and bh_result
1993 ** is set to an up to date buffer for the last block in the file. returns 0.
1994 **
1995 ** tail conversion is not done, so bh_result might not be valid for writing
1996 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1997 ** trying to write the block.
1998 **
1999 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2000 */
2001 static int grab_tail_page(struct inode *p_s_inode,
2002 struct page **page_result,
2003 struct buffer_head **bh_result)
2004 {
2005
2006 /* we want the page with the last byte in the file,
2007 ** not the page that will hold the next byte for appending
2008 */
2009 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2010 unsigned long pos = 0;
2011 unsigned long start = 0;
2012 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2013 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2014 struct buffer_head *bh;
2015 struct buffer_head *head;
2016 struct page *page;
2017 int error;
2018
2019 /* we know that we are only called with inode->i_size > 0.
2020 ** we also know that a file tail can never be as big as a block
2021 ** If i_size % blocksize == 0, our file is currently block aligned
2022 ** and it won't need converting or zeroing after a truncate.
2023 */
2024 if ((offset & (blocksize - 1)) == 0) {
2025 return -ENOENT;
2026 }
2027 page = grab_cache_page(p_s_inode->i_mapping, index);
2028 error = -ENOMEM;
2029 if (!page) {
2030 goto out;
2031 }
2032 /* start within the page of the last block in the file */
2033 start = (offset / blocksize) * blocksize;
2034
2035 error = block_prepare_write(page, start, offset,
2036 reiserfs_get_block_create_0);
2037 if (error)
2038 goto unlock;
2039
2040 head = page_buffers(page);
2041 bh = head;
2042 do {
2043 if (pos >= start) {
2044 break;
2045 }
2046 bh = bh->b_this_page;
2047 pos += blocksize;
2048 } while (bh != head);
2049
2050 if (!buffer_uptodate(bh)) {
2051 /* note, this should never happen, prepare_write should
2052 ** be taking care of this for us. If the buffer isn't up to date,
2053 ** I've screwed up the code to find the buffer, or the code to
2054 ** call prepare_write
2055 */
2056 reiserfs_warning(p_s_inode->i_sb,
2057 "clm-6000: error reading block %lu on dev %s",
2058 bh->b_blocknr,
2059 reiserfs_bdevname(p_s_inode->i_sb));
2060 error = -EIO;
2061 goto unlock;
2062 }
2063 *bh_result = bh;
2064 *page_result = page;
2065
2066 out:
2067 return error;
2068
2069 unlock:
2070 unlock_page(page);
2071 page_cache_release(page);
2072 return error;
2073 }
2074
2075 /*
2076 ** vfs version of truncate file. Must NOT be called with
2077 ** a transaction already started.
2078 **
2079 ** some code taken from block_truncate_page
2080 */
2081 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2082 {
2083 struct reiserfs_transaction_handle th;
2084 /* we want the offset for the first byte after the end of the file */
2085 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2086 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2087 unsigned length;
2088 struct page *page = NULL;
2089 int error;
2090 struct buffer_head *bh = NULL;
2091 int err2;
2092
2093 reiserfs_write_lock(p_s_inode->i_sb);
2094
2095 if (p_s_inode->i_size > 0) {
2096 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2097 // -ENOENT means we truncated past the end of the file,
2098 // and get_block_create_0 could not find a block to read in,
2099 // which is ok.
2100 if (error != -ENOENT)
2101 reiserfs_warning(p_s_inode->i_sb,
2102 "clm-6001: grab_tail_page failed %d",
2103 error);
2104 page = NULL;
2105 bh = NULL;
2106 }
2107 }
2108
2109 /* so, if page != NULL, we have a buffer head for the offset at
2110 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2111 ** then we have an unformatted node. Otherwise, we have a direct item,
2112 ** and no zeroing is required on disk. We zero after the truncate,
2113 ** because the truncate might pack the item anyway
2114 ** (it will unmap bh if it packs).
2115 */
2116 /* it is enough to reserve space in transaction for 2 balancings:
2117 one for "save" link adding and another for the first
2118 cut_from_item. 1 is for update_sd */
2119 error = journal_begin(&th, p_s_inode->i_sb,
2120 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2121 if (error)
2122 goto out;
2123 reiserfs_update_inode_transaction(p_s_inode);
2124 if (update_timestamps)
2125 /* we are doing real truncate: if the system crashes before the last
2126 transaction of truncating gets committed - on reboot the file
2127 either appears truncated properly or not truncated at all */
2128 add_save_link(&th, p_s_inode, 1);
2129 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2130 error =
2131 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2132 if (error)
2133 goto out;
2134
2135 /* check reiserfs_do_truncate after ending the transaction */
2136 if (err2) {
2137 error = err2;
2138 goto out;
2139 }
2140
2141 if (update_timestamps) {
2142 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2143 if (error)
2144 goto out;
2145 }
2146
2147 if (page) {
2148 length = offset & (blocksize - 1);
2149 /* if we are not on a block boundary */
2150 if (length) {
2151 char *kaddr;
2152
2153 length = blocksize - length;
2154 kaddr = kmap_atomic(page, KM_USER0);
2155 memset(kaddr + offset, 0, length);
2156 flush_dcache_page(page);
2157 kunmap_atomic(kaddr, KM_USER0);
2158 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2159 mark_buffer_dirty(bh);
2160 }
2161 }
2162 unlock_page(page);
2163 page_cache_release(page);
2164 }
2165
2166 reiserfs_write_unlock(p_s_inode->i_sb);
2167 return 0;
2168 out:
2169 if (page) {
2170 unlock_page(page);
2171 page_cache_release(page);
2172 }
2173 reiserfs_write_unlock(p_s_inode->i_sb);
2174 return error;
2175 }
2176
2177 static int map_block_for_writepage(struct inode *inode,
2178 struct buffer_head *bh_result,
2179 unsigned long block)
2180 {
2181 struct reiserfs_transaction_handle th;
2182 int fs_gen;
2183 struct item_head tmp_ih;
2184 struct item_head *ih;
2185 struct buffer_head *bh;
2186 __le32 *item;
2187 struct cpu_key key;
2188 INITIALIZE_PATH(path);
2189 int pos_in_item;
2190 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2191 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2192 int retval;
2193 int use_get_block = 0;
2194 int bytes_copied = 0;
2195 int copy_size;
2196 int trans_running = 0;
2197
2198 /* catch places below that try to log something without starting a trans */
2199 th.t_trans_id = 0;
2200
2201 if (!buffer_uptodate(bh_result)) {
2202 return -EIO;
2203 }
2204
2205 kmap(bh_result->b_page);
2206 start_over:
2207 reiserfs_write_lock(inode->i_sb);
2208 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2209
2210 research:
2211 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2212 if (retval != POSITION_FOUND) {
2213 use_get_block = 1;
2214 goto out;
2215 }
2216
2217 bh = get_last_bh(&path);
2218 ih = get_ih(&path);
2219 item = get_item(&path);
2220 pos_in_item = path.pos_in_item;
2221
2222 /* we've found an unformatted node */
2223 if (indirect_item_found(retval, ih)) {
2224 if (bytes_copied > 0) {
2225 reiserfs_warning(inode->i_sb,
2226 "clm-6002: bytes_copied %d",
2227 bytes_copied);
2228 }
2229 if (!get_block_num(item, pos_in_item)) {
2230 /* crap, we are writing to a hole */
2231 use_get_block = 1;
2232 goto out;
2233 }
2234 set_block_dev_mapped(bh_result,
2235 get_block_num(item, pos_in_item), inode);
2236 } else if (is_direct_le_ih(ih)) {
2237 char *p;
2238 p = page_address(bh_result->b_page);
2239 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2240 copy_size = ih_item_len(ih) - pos_in_item;
2241
2242 fs_gen = get_generation(inode->i_sb);
2243 copy_item_head(&tmp_ih, ih);
2244
2245 if (!trans_running) {
2246 /* vs-3050 is gone, no need to drop the path */
2247 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2248 if (retval)
2249 goto out;
2250 reiserfs_update_inode_transaction(inode);
2251 trans_running = 1;
2252 if (fs_changed(fs_gen, inode->i_sb)
2253 && item_moved(&tmp_ih, &path)) {
2254 reiserfs_restore_prepared_buffer(inode->i_sb,
2255 bh);
2256 goto research;
2257 }
2258 }
2259
2260 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2261
2262 if (fs_changed(fs_gen, inode->i_sb)
2263 && item_moved(&tmp_ih, &path)) {
2264 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2265 goto research;
2266 }
2267
2268 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2269 copy_size);
2270
2271 journal_mark_dirty(&th, inode->i_sb, bh);
2272 bytes_copied += copy_size;
2273 set_block_dev_mapped(bh_result, 0, inode);
2274
2275 /* are there still bytes left? */
2276 if (bytes_copied < bh_result->b_size &&
2277 (byte_offset + bytes_copied) < inode->i_size) {
2278 set_cpu_key_k_offset(&key,
2279 cpu_key_k_offset(&key) +
2280 copy_size);
2281 goto research;
2282 }
2283 } else {
2284 reiserfs_warning(inode->i_sb,
2285 "clm-6003: bad item inode %lu, device %s",
2286 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2287 retval = -EIO;
2288 goto out;
2289 }
2290 retval = 0;
2291
2292 out:
2293 pathrelse(&path);
2294 if (trans_running) {
2295 int err = journal_end(&th, inode->i_sb, jbegin_count);
2296 if (err)
2297 retval = err;
2298 trans_running = 0;
2299 }
2300 reiserfs_write_unlock(inode->i_sb);
2301
2302 /* this is where we fill in holes in the file. */
2303 if (use_get_block) {
2304 retval = reiserfs_get_block(inode, block, bh_result,
2305 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2306 | GET_BLOCK_NO_DANGLE);
2307 if (!retval) {
2308 if (!buffer_mapped(bh_result)
2309 || bh_result->b_blocknr == 0) {
2310 /* get_block failed to find a mapped unformatted node. */
2311 use_get_block = 0;
2312 goto start_over;
2313 }
2314 }
2315 }
2316 kunmap(bh_result->b_page);
2317
2318 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2319 /* we've copied data from the page into the direct item, so the
2320 * buffer in the page is now clean, mark it to reflect that.
2321 */
2322 lock_buffer(bh_result);
2323 clear_buffer_dirty(bh_result);
2324 unlock_buffer(bh_result);
2325 }
2326 return retval;
2327 }
2328
2329 /*
2330 * mason@suse.com: updated in 2.5.54 to follow the same general io
2331 * start/recovery path as __block_write_full_page, along with special
2332 * code to handle reiserfs tails.
2333 */
2334 static int reiserfs_write_full_page(struct page *page,
2335 struct writeback_control *wbc)
2336 {
2337 struct inode *inode = page->mapping->host;
2338 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2339 int error = 0;
2340 unsigned long block;
2341 sector_t last_block;
2342 struct buffer_head *head, *bh;
2343 int partial = 0;
2344 int nr = 0;
2345 int checked = PageChecked(page);
2346 struct reiserfs_transaction_handle th;
2347 struct super_block *s = inode->i_sb;
2348 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2349 th.t_trans_id = 0;
2350
2351 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2352 if (checked && (current->flags & PF_MEMALLOC)) {
2353 redirty_page_for_writepage(wbc, page);
2354 unlock_page(page);
2355 return 0;
2356 }
2357
2358 /* The page dirty bit is cleared before writepage is called, which
2359 * means we have to tell create_empty_buffers to make dirty buffers
2360 * The page really should be up to date at this point, so tossing
2361 * in the BH_Uptodate is just a sanity check.
2362 */
2363 if (!page_has_buffers(page)) {
2364 create_empty_buffers(page, s->s_blocksize,
2365 (1 << BH_Dirty) | (1 << BH_Uptodate));
2366 }
2367 head = page_buffers(page);
2368
2369 /* last page in the file, zero out any contents past the
2370 ** last byte in the file
2371 */
2372 if (page->index >= end_index) {
2373 char *kaddr;
2374 unsigned last_offset;
2375
2376 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2377 /* no file contents in this page */
2378 if (page->index >= end_index + 1 || !last_offset) {
2379 unlock_page(page);
2380 return 0;
2381 }
2382 kaddr = kmap_atomic(page, KM_USER0);
2383 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset);
2384 flush_dcache_page(page);
2385 kunmap_atomic(kaddr, KM_USER0);
2386 }
2387 bh = head;
2388 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2389 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2390 /* first map all the buffers, logging any direct items we find */
2391 do {
2392 if (block > last_block) {
2393 /*
2394 * This can happen when the block size is less than
2395 * the page size. The corresponding bytes in the page
2396 * were zero filled above
2397 */
2398 clear_buffer_dirty(bh);
2399 set_buffer_uptodate(bh);
2400 } else if ((checked || buffer_dirty(bh)) &&
2401 (!buffer_mapped(bh) || (buffer_mapped(bh)
2402 && bh->b_blocknr ==
2403 0))) {
2404 /* not mapped yet, or it points to a direct item, search
2405 * the btree for the mapping info, and log any direct
2406 * items found
2407 */
2408 if ((error = map_block_for_writepage(inode, bh, block))) {
2409 goto fail;
2410 }
2411 }
2412 bh = bh->b_this_page;
2413 block++;
2414 } while (bh != head);
2415
2416 /*
2417 * we start the transaction after map_block_for_writepage,
2418 * because it can create holes in the file (an unbounded operation).
2419 * starting it here, we can make a reliable estimate for how many
2420 * blocks we're going to log
2421 */
2422 if (checked) {
2423 ClearPageChecked(page);
2424 reiserfs_write_lock(s);
2425 error = journal_begin(&th, s, bh_per_page + 1);
2426 if (error) {
2427 reiserfs_write_unlock(s);
2428 goto fail;
2429 }
2430 reiserfs_update_inode_transaction(inode);
2431 }
2432 /* now go through and lock any dirty buffers on the page */
2433 do {
2434 get_bh(bh);
2435 if (!buffer_mapped(bh))
2436 continue;
2437 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2438 continue;
2439
2440 if (checked) {
2441 reiserfs_prepare_for_journal(s, bh, 1);
2442 journal_mark_dirty(&th, s, bh);
2443 continue;
2444 }
2445 /* from this point on, we know the buffer is mapped to a
2446 * real block and not a direct item
2447 */
2448 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2449 lock_buffer(bh);
2450 } else {
2451 if (test_set_buffer_locked(bh)) {
2452 redirty_page_for_writepage(wbc, page);
2453 continue;
2454 }
2455 }
2456 if (test_clear_buffer_dirty(bh)) {
2457 mark_buffer_async_write(bh);
2458 } else {
2459 unlock_buffer(bh);
2460 }
2461 } while ((bh = bh->b_this_page) != head);
2462
2463 if (checked) {
2464 error = journal_end(&th, s, bh_per_page + 1);
2465 reiserfs_write_unlock(s);
2466 if (error)
2467 goto fail;
2468 }
2469 BUG_ON(PageWriteback(page));
2470 set_page_writeback(page);
2471 unlock_page(page);
2472
2473 /*
2474 * since any buffer might be the only dirty buffer on the page,
2475 * the first submit_bh can bring the page out of writeback.
2476 * be careful with the buffers.
2477 */
2478 do {
2479 struct buffer_head *next = bh->b_this_page;
2480 if (buffer_async_write(bh)) {
2481 submit_bh(WRITE, bh);
2482 nr++;
2483 }
2484 put_bh(bh);
2485 bh = next;
2486 } while (bh != head);
2487
2488 error = 0;
2489 done:
2490 if (nr == 0) {
2491 /*
2492 * if this page only had a direct item, it is very possible for
2493 * no io to be required without there being an error. Or,
2494 * someone else could have locked them and sent them down the
2495 * pipe without locking the page
2496 */
2497 bh = head;
2498 do {
2499 if (!buffer_uptodate(bh)) {
2500 partial = 1;
2501 break;
2502 }
2503 bh = bh->b_this_page;
2504 } while (bh != head);
2505 if (!partial)
2506 SetPageUptodate(page);
2507 end_page_writeback(page);
2508 }
2509 return error;
2510
2511 fail:
2512 /* catches various errors, we need to make sure any valid dirty blocks
2513 * get to the media. The page is currently locked and not marked for
2514 * writeback
2515 */
2516 ClearPageUptodate(page);
2517 bh = head;
2518 do {
2519 get_bh(bh);
2520 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2521 lock_buffer(bh);
2522 mark_buffer_async_write(bh);
2523 } else {
2524 /*
2525 * clear any dirty bits that might have come from getting
2526 * attached to a dirty page
2527 */
2528 clear_buffer_dirty(bh);
2529 }
2530 bh = bh->b_this_page;
2531 } while (bh != head);
2532 SetPageError(page);
2533 BUG_ON(PageWriteback(page));
2534 set_page_writeback(page);
2535 unlock_page(page);
2536 do {
2537 struct buffer_head *next = bh->b_this_page;
2538 if (buffer_async_write(bh)) {
2539 clear_buffer_dirty(bh);
2540 submit_bh(WRITE, bh);
2541 nr++;
2542 }
2543 put_bh(bh);
2544 bh = next;
2545 } while (bh != head);
2546 goto done;
2547 }
2548
2549 static int reiserfs_readpage(struct file *f, struct page *page)
2550 {
2551 return block_read_full_page(page, reiserfs_get_block);
2552 }
2553
2554 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2555 {
2556 struct inode *inode = page->mapping->host;
2557 reiserfs_wait_on_write_block(inode->i_sb);
2558 return reiserfs_write_full_page(page, wbc);
2559 }
2560
2561 static int reiserfs_prepare_write(struct file *f, struct page *page,
2562 unsigned from, unsigned to)
2563 {
2564 struct inode *inode = page->mapping->host;
2565 int ret;
2566 int old_ref = 0;
2567
2568 reiserfs_wait_on_write_block(inode->i_sb);
2569 fix_tail_page_for_writing(page);
2570 if (reiserfs_transaction_running(inode->i_sb)) {
2571 struct reiserfs_transaction_handle *th;
2572 th = (struct reiserfs_transaction_handle *)current->
2573 journal_info;
2574 BUG_ON(!th->t_refcount);
2575 BUG_ON(!th->t_trans_id);
2576 old_ref = th->t_refcount;
2577 th->t_refcount++;
2578 }
2579
2580 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2581 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2582 struct reiserfs_transaction_handle *th = current->journal_info;
2583 /* this gets a little ugly. If reiserfs_get_block returned an
2584 * error and left a transacstion running, we've got to close it,
2585 * and we've got to free handle if it was a persistent transaction.
2586 *
2587 * But, if we had nested into an existing transaction, we need
2588 * to just drop the ref count on the handle.
2589 *
2590 * If old_ref == 0, the transaction is from reiserfs_get_block,
2591 * and it was a persistent trans. Otherwise, it was nested above.
2592 */
2593 if (th->t_refcount > old_ref) {
2594 if (old_ref)
2595 th->t_refcount--;
2596 else {
2597 int err;
2598 reiserfs_write_lock(inode->i_sb);
2599 err = reiserfs_end_persistent_transaction(th);
2600 reiserfs_write_unlock(inode->i_sb);
2601 if (err)
2602 ret = err;
2603 }
2604 }
2605 }
2606 return ret;
2607
2608 }
2609
2610 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2611 {
2612 return generic_block_bmap(as, block, reiserfs_bmap);
2613 }
2614
2615 static int reiserfs_commit_write(struct file *f, struct page *page,
2616 unsigned from, unsigned to)
2617 {
2618 struct inode *inode = page->mapping->host;
2619 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2620 int ret = 0;
2621 int update_sd = 0;
2622 struct reiserfs_transaction_handle *th = NULL;
2623
2624 reiserfs_wait_on_write_block(inode->i_sb);
2625 if (reiserfs_transaction_running(inode->i_sb)) {
2626 th = current->journal_info;
2627 }
2628 reiserfs_commit_page(inode, page, from, to);
2629
2630 /* generic_commit_write does this for us, but does not update the
2631 ** transaction tracking stuff when the size changes. So, we have
2632 ** to do the i_size updates here.
2633 */
2634 if (pos > inode->i_size) {
2635 struct reiserfs_transaction_handle myth;
2636 reiserfs_write_lock(inode->i_sb);
2637 /* If the file have grown beyond the border where it
2638 can have a tail, unmark it as needing a tail
2639 packing */
2640 if ((have_large_tails(inode->i_sb)
2641 && inode->i_size > i_block_size(inode) * 4)
2642 || (have_small_tails(inode->i_sb)
2643 && inode->i_size > i_block_size(inode)))
2644 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2645
2646 ret = journal_begin(&myth, inode->i_sb, 1);
2647 if (ret) {
2648 reiserfs_write_unlock(inode->i_sb);
2649 goto journal_error;
2650 }
2651 reiserfs_update_inode_transaction(inode);
2652 inode->i_size = pos;
2653 /*
2654 * this will just nest into our transaction. It's important
2655 * to use mark_inode_dirty so the inode gets pushed around on the
2656 * dirty lists, and so that O_SYNC works as expected
2657 */
2658 mark_inode_dirty(inode);
2659 reiserfs_update_sd(&myth, inode);
2660 update_sd = 1;
2661 ret = journal_end(&myth, inode->i_sb, 1);
2662 reiserfs_write_unlock(inode->i_sb);
2663 if (ret)
2664 goto journal_error;
2665 }
2666 if (th) {
2667 reiserfs_write_lock(inode->i_sb);
2668 if (!update_sd)
2669 mark_inode_dirty(inode);
2670 ret = reiserfs_end_persistent_transaction(th);
2671 reiserfs_write_unlock(inode->i_sb);
2672 if (ret)
2673 goto out;
2674 }
2675
2676 out:
2677 return ret;
2678
2679 journal_error:
2680 if (th) {
2681 reiserfs_write_lock(inode->i_sb);
2682 if (!update_sd)
2683 reiserfs_update_sd(th, inode);
2684 ret = reiserfs_end_persistent_transaction(th);
2685 reiserfs_write_unlock(inode->i_sb);
2686 }
2687
2688 return ret;
2689 }
2690
2691 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2692 {
2693 if (reiserfs_attrs(inode->i_sb)) {
2694 if (sd_attrs & REISERFS_SYNC_FL)
2695 inode->i_flags |= S_SYNC;
2696 else
2697 inode->i_flags &= ~S_SYNC;
2698 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2699 inode->i_flags |= S_IMMUTABLE;
2700 else
2701 inode->i_flags &= ~S_IMMUTABLE;
2702 if (sd_attrs & REISERFS_APPEND_FL)
2703 inode->i_flags |= S_APPEND;
2704 else
2705 inode->i_flags &= ~S_APPEND;
2706 if (sd_attrs & REISERFS_NOATIME_FL)
2707 inode->i_flags |= S_NOATIME;
2708 else
2709 inode->i_flags &= ~S_NOATIME;
2710 if (sd_attrs & REISERFS_NOTAIL_FL)
2711 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2712 else
2713 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2714 }
2715 }
2716
2717 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2718 {
2719 if (reiserfs_attrs(inode->i_sb)) {
2720 if (inode->i_flags & S_IMMUTABLE)
2721 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2722 else
2723 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2724 if (inode->i_flags & S_SYNC)
2725 *sd_attrs |= REISERFS_SYNC_FL;
2726 else
2727 *sd_attrs &= ~REISERFS_SYNC_FL;
2728 if (inode->i_flags & S_NOATIME)
2729 *sd_attrs |= REISERFS_NOATIME_FL;
2730 else
2731 *sd_attrs &= ~REISERFS_NOATIME_FL;
2732 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2733 *sd_attrs |= REISERFS_NOTAIL_FL;
2734 else
2735 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2736 }
2737 }
2738
2739 /* decide if this buffer needs to stay around for data logging or ordered
2740 ** write purposes
2741 */
2742 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2743 {
2744 int ret = 1;
2745 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2746
2747 lock_buffer(bh);
2748 spin_lock(&j->j_dirty_buffers_lock);
2749 if (!buffer_mapped(bh)) {
2750 goto free_jh;
2751 }
2752 /* the page is locked, and the only places that log a data buffer
2753 * also lock the page.
2754 */
2755 if (reiserfs_file_data_log(inode)) {
2756 /*
2757 * very conservative, leave the buffer pinned if
2758 * anyone might need it.
2759 */
2760 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2761 ret = 0;
2762 }
2763 } else if (buffer_dirty(bh)) {
2764 struct reiserfs_journal_list *jl;
2765 struct reiserfs_jh *jh = bh->b_private;
2766
2767 /* why is this safe?
2768 * reiserfs_setattr updates i_size in the on disk
2769 * stat data before allowing vmtruncate to be called.
2770 *
2771 * If buffer was put onto the ordered list for this
2772 * transaction, we know for sure either this transaction
2773 * or an older one already has updated i_size on disk,
2774 * and this ordered data won't be referenced in the file
2775 * if we crash.
2776 *
2777 * if the buffer was put onto the ordered list for an older
2778 * transaction, we need to leave it around
2779 */
2780 if (jh && (jl = jh->jl)
2781 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2782 ret = 0;
2783 }
2784 free_jh:
2785 if (ret && bh->b_private) {
2786 reiserfs_free_jh(bh);
2787 }
2788 spin_unlock(&j->j_dirty_buffers_lock);
2789 unlock_buffer(bh);
2790 return ret;
2791 }
2792
2793 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2794 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2795 {
2796 struct buffer_head *head, *bh, *next;
2797 struct inode *inode = page->mapping->host;
2798 unsigned int curr_off = 0;
2799 int ret = 1;
2800
2801 BUG_ON(!PageLocked(page));
2802
2803 if (offset == 0)
2804 ClearPageChecked(page);
2805
2806 if (!page_has_buffers(page))
2807 goto out;
2808
2809 head = page_buffers(page);
2810 bh = head;
2811 do {
2812 unsigned int next_off = curr_off + bh->b_size;
2813 next = bh->b_this_page;
2814
2815 /*
2816 * is this block fully invalidated?
2817 */
2818 if (offset <= curr_off) {
2819 if (invalidatepage_can_drop(inode, bh))
2820 reiserfs_unmap_buffer(bh);
2821 else
2822 ret = 0;
2823 }
2824 curr_off = next_off;
2825 bh = next;
2826 } while (bh != head);
2827
2828 /*
2829 * We release buffers only if the entire page is being invalidated.
2830 * The get_block cached value has been unconditionally invalidated,
2831 * so real IO is not possible anymore.
2832 */
2833 if (!offset && ret) {
2834 ret = try_to_release_page(page, 0);
2835 /* maybe should BUG_ON(!ret); - neilb */
2836 }
2837 out:
2838 return;
2839 }
2840
2841 static int reiserfs_set_page_dirty(struct page *page)
2842 {
2843 struct inode *inode = page->mapping->host;
2844 if (reiserfs_file_data_log(inode)) {
2845 SetPageChecked(page);
2846 return __set_page_dirty_nobuffers(page);
2847 }
2848 return __set_page_dirty_buffers(page);
2849 }
2850
2851 /*
2852 * Returns 1 if the page's buffers were dropped. The page is locked.
2853 *
2854 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2855 * in the buffers at page_buffers(page).
2856 *
2857 * even in -o notail mode, we can't be sure an old mount without -o notail
2858 * didn't create files with tails.
2859 */
2860 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2861 {
2862 struct inode *inode = page->mapping->host;
2863 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2864 struct buffer_head *head;
2865 struct buffer_head *bh;
2866 int ret = 1;
2867
2868 WARN_ON(PageChecked(page));
2869 spin_lock(&j->j_dirty_buffers_lock);
2870 head = page_buffers(page);
2871 bh = head;
2872 do {
2873 if (bh->b_private) {
2874 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2875 reiserfs_free_jh(bh);
2876 } else {
2877 ret = 0;
2878 break;
2879 }
2880 }
2881 bh = bh->b_this_page;
2882 } while (bh != head);
2883 if (ret)
2884 ret = try_to_free_buffers(page);
2885 spin_unlock(&j->j_dirty_buffers_lock);
2886 return ret;
2887 }
2888
2889 /* We thank Mingming Cao for helping us understand in great detail what
2890 to do in this section of the code. */
2891 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2892 const struct iovec *iov, loff_t offset,
2893 unsigned long nr_segs)
2894 {
2895 struct file *file = iocb->ki_filp;
2896 struct inode *inode = file->f_mapping->host;
2897
2898 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2899 offset, nr_segs,
2900 reiserfs_get_blocks_direct_io, NULL);
2901 }
2902
2903 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2904 {
2905 struct inode *inode = dentry->d_inode;
2906 int error;
2907 unsigned int ia_valid = attr->ia_valid;
2908 reiserfs_write_lock(inode->i_sb);
2909 if (attr->ia_valid & ATTR_SIZE) {
2910 /* version 2 items will be caught by the s_maxbytes check
2911 ** done for us in vmtruncate
2912 */
2913 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2914 attr->ia_size > MAX_NON_LFS) {
2915 error = -EFBIG;
2916 goto out;
2917 }
2918 /* fill in hole pointers in the expanding truncate case. */
2919 if (attr->ia_size > inode->i_size) {
2920 error = generic_cont_expand(inode, attr->ia_size);
2921 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2922 int err;
2923 struct reiserfs_transaction_handle th;
2924 /* we're changing at most 2 bitmaps, inode + super */
2925 err = journal_begin(&th, inode->i_sb, 4);
2926 if (!err) {
2927 reiserfs_discard_prealloc(&th, inode);
2928 err = journal_end(&th, inode->i_sb, 4);
2929 }
2930 if (err)
2931 error = err;
2932 }
2933 if (error)
2934 goto out;
2935 /*
2936 * file size is changed, ctime and mtime are
2937 * to be updated
2938 */
2939 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2940 }
2941 }
2942
2943 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2944 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2945 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2946 /* stat data of format v3.5 has 16 bit uid and gid */
2947 error = -EINVAL;
2948 goto out;
2949 }
2950
2951 error = inode_change_ok(inode, attr);
2952 if (!error) {
2953 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2954 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2955 error = reiserfs_chown_xattrs(inode, attr);
2956
2957 if (!error) {
2958 struct reiserfs_transaction_handle th;
2959 int jbegin_count =
2960 2 *
2961 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2962 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2963 2;
2964
2965 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2966 error =
2967 journal_begin(&th, inode->i_sb,
2968 jbegin_count);
2969 if (error)
2970 goto out;
2971 error =
2972 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2973 if (error) {
2974 journal_end(&th, inode->i_sb,
2975 jbegin_count);
2976 goto out;
2977 }
2978 /* Update corresponding info in inode so that everything is in
2979 * one transaction */
2980 if (attr->ia_valid & ATTR_UID)
2981 inode->i_uid = attr->ia_uid;
2982 if (attr->ia_valid & ATTR_GID)
2983 inode->i_gid = attr->ia_gid;
2984 mark_inode_dirty(inode);
2985 error =
2986 journal_end(&th, inode->i_sb, jbegin_count);
2987 }
2988 }
2989 if (!error)
2990 error = inode_setattr(inode, attr);
2991 }
2992
2993 if (!error && reiserfs_posixacl(inode->i_sb)) {
2994 if (attr->ia_valid & ATTR_MODE)
2995 error = reiserfs_acl_chmod(inode);
2996 }
2997
2998 out:
2999 reiserfs_write_unlock(inode->i_sb);
3000 return error;
3001 }
3002
3003 const struct address_space_operations reiserfs_address_space_operations = {
3004 .writepage = reiserfs_writepage,
3005 .readpage = reiserfs_readpage,
3006 .readpages = reiserfs_readpages,
3007 .releasepage = reiserfs_releasepage,
3008 .invalidatepage = reiserfs_invalidatepage,
3009 .sync_page = block_sync_page,
3010 .prepare_write = reiserfs_prepare_write,
3011 .commit_write = reiserfs_commit_write,
3012 .bmap = reiserfs_aop_bmap,
3013 .direct_IO = reiserfs_direct_IO,
3014 .set_page_dirty = reiserfs_set_page_dirty,
3015 };