Merge tag 'ecryptfs-3.10-rc1-ablkcipher' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / pstore / ram_core.c
1 /*
2 * Copyright (C) 2012 Google, Inc.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 */
14
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/list.h>
22 #include <linux/memblock.h>
23 #include <linux/rslib.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/pstore_ram.h>
27 #include <asm/page.h>
28
29 struct persistent_ram_buffer {
30 uint32_t sig;
31 atomic_t start;
32 atomic_t size;
33 uint8_t data[0];
34 };
35
36 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
37
38 static inline size_t buffer_size(struct persistent_ram_zone *prz)
39 {
40 return atomic_read(&prz->buffer->size);
41 }
42
43 static inline size_t buffer_start(struct persistent_ram_zone *prz)
44 {
45 return atomic_read(&prz->buffer->start);
46 }
47
48 /* increase and wrap the start pointer, returning the old value */
49 static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
50 {
51 int old;
52 int new;
53
54 do {
55 old = atomic_read(&prz->buffer->start);
56 new = old + a;
57 while (unlikely(new > prz->buffer_size))
58 new -= prz->buffer_size;
59 } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
60
61 return old;
62 }
63
64 /* increase the size counter until it hits the max size */
65 static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
66 {
67 size_t old;
68 size_t new;
69
70 if (atomic_read(&prz->buffer->size) == prz->buffer_size)
71 return;
72
73 do {
74 old = atomic_read(&prz->buffer->size);
75 new = old + a;
76 if (new > prz->buffer_size)
77 new = prz->buffer_size;
78 } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
79 }
80
81 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
82 uint8_t *data, size_t len, uint8_t *ecc)
83 {
84 int i;
85 uint16_t par[prz->ecc_info.ecc_size];
86
87 /* Initialize the parity buffer */
88 memset(par, 0, sizeof(par));
89 encode_rs8(prz->rs_decoder, data, len, par, 0);
90 for (i = 0; i < prz->ecc_info.ecc_size; i++)
91 ecc[i] = par[i];
92 }
93
94 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
95 void *data, size_t len, uint8_t *ecc)
96 {
97 int i;
98 uint16_t par[prz->ecc_info.ecc_size];
99
100 for (i = 0; i < prz->ecc_info.ecc_size; i++)
101 par[i] = ecc[i];
102 return decode_rs8(prz->rs_decoder, data, par, len,
103 NULL, 0, NULL, 0, NULL);
104 }
105
106 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
107 unsigned int start, unsigned int count)
108 {
109 struct persistent_ram_buffer *buffer = prz->buffer;
110 uint8_t *buffer_end = buffer->data + prz->buffer_size;
111 uint8_t *block;
112 uint8_t *par;
113 int ecc_block_size = prz->ecc_info.block_size;
114 int ecc_size = prz->ecc_info.ecc_size;
115 int size = ecc_block_size;
116
117 if (!ecc_size)
118 return;
119
120 block = buffer->data + (start & ~(ecc_block_size - 1));
121 par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
122
123 do {
124 if (block + ecc_block_size > buffer_end)
125 size = buffer_end - block;
126 persistent_ram_encode_rs8(prz, block, size, par);
127 block += ecc_block_size;
128 par += ecc_size;
129 } while (block < buffer->data + start + count);
130 }
131
132 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
133 {
134 struct persistent_ram_buffer *buffer = prz->buffer;
135
136 if (!prz->ecc_info.ecc_size)
137 return;
138
139 persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
140 prz->par_header);
141 }
142
143 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
144 {
145 struct persistent_ram_buffer *buffer = prz->buffer;
146 uint8_t *block;
147 uint8_t *par;
148
149 if (!prz->ecc_info.ecc_size)
150 return;
151
152 block = buffer->data;
153 par = prz->par_buffer;
154 while (block < buffer->data + buffer_size(prz)) {
155 int numerr;
156 int size = prz->ecc_info.block_size;
157 if (block + size > buffer->data + prz->buffer_size)
158 size = buffer->data + prz->buffer_size - block;
159 numerr = persistent_ram_decode_rs8(prz, block, size, par);
160 if (numerr > 0) {
161 pr_devel("persistent_ram: error in block %p, %d\n",
162 block, numerr);
163 prz->corrected_bytes += numerr;
164 } else if (numerr < 0) {
165 pr_devel("persistent_ram: uncorrectable error in block %p\n",
166 block);
167 prz->bad_blocks++;
168 }
169 block += prz->ecc_info.block_size;
170 par += prz->ecc_info.ecc_size;
171 }
172 }
173
174 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
175 struct persistent_ram_ecc_info *ecc_info)
176 {
177 int numerr;
178 struct persistent_ram_buffer *buffer = prz->buffer;
179 int ecc_blocks;
180 size_t ecc_total;
181
182 if (!ecc_info || !ecc_info->ecc_size)
183 return 0;
184
185 prz->ecc_info.block_size = ecc_info->block_size ?: 128;
186 prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
187 prz->ecc_info.symsize = ecc_info->symsize ?: 8;
188 prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
189
190 ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
191 prz->ecc_info.block_size +
192 prz->ecc_info.ecc_size);
193 ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
194 if (ecc_total >= prz->buffer_size) {
195 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
196 __func__, prz->ecc_info.ecc_size,
197 ecc_total, prz->buffer_size);
198 return -EINVAL;
199 }
200
201 prz->buffer_size -= ecc_total;
202 prz->par_buffer = buffer->data + prz->buffer_size;
203 prz->par_header = prz->par_buffer +
204 ecc_blocks * prz->ecc_info.ecc_size;
205
206 /*
207 * first consecutive root is 0
208 * primitive element to generate roots = 1
209 */
210 prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
211 0, 1, prz->ecc_info.ecc_size);
212 if (prz->rs_decoder == NULL) {
213 pr_info("persistent_ram: init_rs failed\n");
214 return -EINVAL;
215 }
216
217 prz->corrected_bytes = 0;
218 prz->bad_blocks = 0;
219
220 numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
221 prz->par_header);
222 if (numerr > 0) {
223 pr_info("persistent_ram: error in header, %d\n", numerr);
224 prz->corrected_bytes += numerr;
225 } else if (numerr < 0) {
226 pr_info("persistent_ram: uncorrectable error in header\n");
227 prz->bad_blocks++;
228 }
229
230 return 0;
231 }
232
233 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
234 char *str, size_t len)
235 {
236 ssize_t ret;
237
238 if (!prz->ecc_info.ecc_size)
239 return 0;
240
241 if (prz->corrected_bytes || prz->bad_blocks)
242 ret = snprintf(str, len, ""
243 "\n%d Corrected bytes, %d unrecoverable blocks\n",
244 prz->corrected_bytes, prz->bad_blocks);
245 else
246 ret = snprintf(str, len, "\nNo errors detected\n");
247
248 return ret;
249 }
250
251 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
252 const void *s, unsigned int start, unsigned int count)
253 {
254 struct persistent_ram_buffer *buffer = prz->buffer;
255 memcpy(buffer->data + start, s, count);
256 persistent_ram_update_ecc(prz, start, count);
257 }
258
259 void persistent_ram_save_old(struct persistent_ram_zone *prz)
260 {
261 struct persistent_ram_buffer *buffer = prz->buffer;
262 size_t size = buffer_size(prz);
263 size_t start = buffer_start(prz);
264
265 if (!size)
266 return;
267
268 if (!prz->old_log) {
269 persistent_ram_ecc_old(prz);
270 prz->old_log = kmalloc(size, GFP_KERNEL);
271 }
272 if (!prz->old_log) {
273 pr_err("persistent_ram: failed to allocate buffer\n");
274 return;
275 }
276
277 prz->old_log_size = size;
278 memcpy(prz->old_log, &buffer->data[start], size - start);
279 memcpy(prz->old_log + size - start, &buffer->data[0], start);
280 }
281
282 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
283 const void *s, unsigned int count)
284 {
285 int rem;
286 int c = count;
287 size_t start;
288
289 if (unlikely(c > prz->buffer_size)) {
290 s += c - prz->buffer_size;
291 c = prz->buffer_size;
292 }
293
294 buffer_size_add(prz, c);
295
296 start = buffer_start_add(prz, c);
297
298 rem = prz->buffer_size - start;
299 if (unlikely(rem < c)) {
300 persistent_ram_update(prz, s, start, rem);
301 s += rem;
302 c -= rem;
303 start = 0;
304 }
305 persistent_ram_update(prz, s, start, c);
306
307 persistent_ram_update_header_ecc(prz);
308
309 return count;
310 }
311
312 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
313 {
314 return prz->old_log_size;
315 }
316
317 void *persistent_ram_old(struct persistent_ram_zone *prz)
318 {
319 return prz->old_log;
320 }
321
322 void persistent_ram_free_old(struct persistent_ram_zone *prz)
323 {
324 kfree(prz->old_log);
325 prz->old_log = NULL;
326 prz->old_log_size = 0;
327 }
328
329 void persistent_ram_zap(struct persistent_ram_zone *prz)
330 {
331 atomic_set(&prz->buffer->start, 0);
332 atomic_set(&prz->buffer->size, 0);
333 persistent_ram_update_header_ecc(prz);
334 }
335
336 static void *persistent_ram_vmap(phys_addr_t start, size_t size)
337 {
338 struct page **pages;
339 phys_addr_t page_start;
340 unsigned int page_count;
341 pgprot_t prot;
342 unsigned int i;
343 void *vaddr;
344
345 page_start = start - offset_in_page(start);
346 page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
347
348 prot = pgprot_noncached(PAGE_KERNEL);
349
350 pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
351 if (!pages) {
352 pr_err("%s: Failed to allocate array for %u pages\n", __func__,
353 page_count);
354 return NULL;
355 }
356
357 for (i = 0; i < page_count; i++) {
358 phys_addr_t addr = page_start + i * PAGE_SIZE;
359 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
360 }
361 vaddr = vmap(pages, page_count, VM_MAP, prot);
362 kfree(pages);
363
364 return vaddr;
365 }
366
367 static void *persistent_ram_iomap(phys_addr_t start, size_t size)
368 {
369 if (!request_mem_region(start, size, "persistent_ram")) {
370 pr_err("request mem region (0x%llx@0x%llx) failed\n",
371 (unsigned long long)size, (unsigned long long)start);
372 return NULL;
373 }
374
375 return ioremap(start, size);
376 }
377
378 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
379 struct persistent_ram_zone *prz)
380 {
381 prz->paddr = start;
382 prz->size = size;
383
384 if (pfn_valid(start >> PAGE_SHIFT))
385 prz->vaddr = persistent_ram_vmap(start, size);
386 else
387 prz->vaddr = persistent_ram_iomap(start, size);
388
389 if (!prz->vaddr) {
390 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
391 (unsigned long long)size, (unsigned long long)start);
392 return -ENOMEM;
393 }
394
395 prz->buffer = prz->vaddr + offset_in_page(start);
396 prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
397
398 return 0;
399 }
400
401 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
402 struct persistent_ram_ecc_info *ecc_info)
403 {
404 int ret;
405
406 ret = persistent_ram_init_ecc(prz, ecc_info);
407 if (ret)
408 return ret;
409
410 sig ^= PERSISTENT_RAM_SIG;
411
412 if (prz->buffer->sig == sig) {
413 if (buffer_size(prz) > prz->buffer_size ||
414 buffer_start(prz) > buffer_size(prz))
415 pr_info("persistent_ram: found existing invalid buffer,"
416 " size %zu, start %zu\n",
417 buffer_size(prz), buffer_start(prz));
418 else {
419 pr_debug("persistent_ram: found existing buffer,"
420 " size %zu, start %zu\n",
421 buffer_size(prz), buffer_start(prz));
422 persistent_ram_save_old(prz);
423 return 0;
424 }
425 } else {
426 pr_debug("persistent_ram: no valid data in buffer"
427 " (sig = 0x%08x)\n", prz->buffer->sig);
428 }
429
430 prz->buffer->sig = sig;
431 persistent_ram_zap(prz);
432
433 return 0;
434 }
435
436 void persistent_ram_free(struct persistent_ram_zone *prz)
437 {
438 if (!prz)
439 return;
440
441 if (prz->vaddr) {
442 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
443 vunmap(prz->vaddr);
444 } else {
445 iounmap(prz->vaddr);
446 release_mem_region(prz->paddr, prz->size);
447 }
448 prz->vaddr = NULL;
449 }
450 persistent_ram_free_old(prz);
451 kfree(prz);
452 }
453
454 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
455 u32 sig, struct persistent_ram_ecc_info *ecc_info)
456 {
457 struct persistent_ram_zone *prz;
458 int ret = -ENOMEM;
459
460 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
461 if (!prz) {
462 pr_err("persistent_ram: failed to allocate persistent ram zone\n");
463 goto err;
464 }
465
466 ret = persistent_ram_buffer_map(start, size, prz);
467 if (ret)
468 goto err;
469
470 ret = persistent_ram_post_init(prz, sig, ecc_info);
471 if (ret)
472 goto err;
473
474 return prz;
475 err:
476 persistent_ram_free(prz);
477 return ERR_PTR(ret);
478 }