Merge branch 'cgroup/for-3.7-fixes' into cgroup/for-3.8
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
21 {
22 unsigned long data, text, lib, swap;
23 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24
25 /*
26 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 * hiwater_rss only when about to *lower* total_vm or rss. Any
28 * collector of these hiwater stats must therefore get total_vm
29 * and rss too, which will usually be the higher. Barriers? not
30 * worth the effort, such snapshots can always be inconsistent.
31 */
32 hiwater_vm = total_vm = mm->total_vm;
33 if (hiwater_vm < mm->hiwater_vm)
34 hiwater_vm = mm->hiwater_vm;
35 hiwater_rss = total_rss = get_mm_rss(mm);
36 if (hiwater_rss < mm->hiwater_rss)
37 hiwater_rss = mm->hiwater_rss;
38
39 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 swap = get_mm_counter(mm, MM_SWAPENTS);
43 seq_printf(m,
44 "VmPeak:\t%8lu kB\n"
45 "VmSize:\t%8lu kB\n"
46 "VmLck:\t%8lu kB\n"
47 "VmPin:\t%8lu kB\n"
48 "VmHWM:\t%8lu kB\n"
49 "VmRSS:\t%8lu kB\n"
50 "VmData:\t%8lu kB\n"
51 "VmStk:\t%8lu kB\n"
52 "VmExe:\t%8lu kB\n"
53 "VmLib:\t%8lu kB\n"
54 "VmPTE:\t%8lu kB\n"
55 "VmSwap:\t%8lu kB\n",
56 hiwater_vm << (PAGE_SHIFT-10),
57 total_vm << (PAGE_SHIFT-10),
58 mm->locked_vm << (PAGE_SHIFT-10),
59 mm->pinned_vm << (PAGE_SHIFT-10),
60 hiwater_rss << (PAGE_SHIFT-10),
61 total_rss << (PAGE_SHIFT-10),
62 data << (PAGE_SHIFT-10),
63 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
64 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
65 swap << (PAGE_SHIFT-10));
66 }
67
68 unsigned long task_vsize(struct mm_struct *mm)
69 {
70 return PAGE_SIZE * mm->total_vm;
71 }
72
73 unsigned long task_statm(struct mm_struct *mm,
74 unsigned long *shared, unsigned long *text,
75 unsigned long *data, unsigned long *resident)
76 {
77 *shared = get_mm_counter(mm, MM_FILEPAGES);
78 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
79 >> PAGE_SHIFT;
80 *data = mm->total_vm - mm->shared_vm;
81 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
82 return mm->total_vm;
83 }
84
85 static void pad_len_spaces(struct seq_file *m, int len)
86 {
87 len = 25 + sizeof(void*) * 6 - len;
88 if (len < 1)
89 len = 1;
90 seq_printf(m, "%*c", len, ' ');
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95 * These functions are for numa_maps but called in generic **maps seq_file
96 * ->start(), ->stop() ops.
97 *
98 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
99 * Each mempolicy object is controlled by reference counting. The problem here
100 * is how to avoid accessing dead mempolicy object.
101 *
102 * Because we're holding mmap_sem while reading seq_file, it's safe to access
103 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
104 *
105 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
106 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
107 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
108 * gurantee the task never exits under us. But taking task_lock() around
109 * get_vma_plicy() causes lock order problem.
110 *
111 * To access task->mempolicy without lock, we hold a reference count of an
112 * object pointed by task->mempolicy and remember it. This will guarantee
113 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
114 */
115 static void hold_task_mempolicy(struct proc_maps_private *priv)
116 {
117 struct task_struct *task = priv->task;
118
119 task_lock(task);
120 priv->task_mempolicy = task->mempolicy;
121 mpol_get(priv->task_mempolicy);
122 task_unlock(task);
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 mpol_put(priv->task_mempolicy);
127 }
128 #else
129 static void hold_task_mempolicy(struct proc_maps_private *priv)
130 {
131 }
132 static void release_task_mempolicy(struct proc_maps_private *priv)
133 {
134 }
135 #endif
136
137 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
138 {
139 if (vma && vma != priv->tail_vma) {
140 struct mm_struct *mm = vma->vm_mm;
141 release_task_mempolicy(priv);
142 up_read(&mm->mmap_sem);
143 mmput(mm);
144 }
145 }
146
147 static void *m_start(struct seq_file *m, loff_t *pos)
148 {
149 struct proc_maps_private *priv = m->private;
150 unsigned long last_addr = m->version;
151 struct mm_struct *mm;
152 struct vm_area_struct *vma, *tail_vma = NULL;
153 loff_t l = *pos;
154
155 /* Clear the per syscall fields in priv */
156 priv->task = NULL;
157 priv->tail_vma = NULL;
158
159 /*
160 * We remember last_addr rather than next_addr to hit with
161 * mmap_cache most of the time. We have zero last_addr at
162 * the beginning and also after lseek. We will have -1 last_addr
163 * after the end of the vmas.
164 */
165
166 if (last_addr == -1UL)
167 return NULL;
168
169 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
170 if (!priv->task)
171 return ERR_PTR(-ESRCH);
172
173 mm = mm_access(priv->task, PTRACE_MODE_READ);
174 if (!mm || IS_ERR(mm))
175 return mm;
176 down_read(&mm->mmap_sem);
177
178 tail_vma = get_gate_vma(priv->task->mm);
179 priv->tail_vma = tail_vma;
180 hold_task_mempolicy(priv);
181 /* Start with last addr hint */
182 vma = find_vma(mm, last_addr);
183 if (last_addr && vma) {
184 vma = vma->vm_next;
185 goto out;
186 }
187
188 /*
189 * Check the vma index is within the range and do
190 * sequential scan until m_index.
191 */
192 vma = NULL;
193 if ((unsigned long)l < mm->map_count) {
194 vma = mm->mmap;
195 while (l-- && vma)
196 vma = vma->vm_next;
197 goto out;
198 }
199
200 if (l != mm->map_count)
201 tail_vma = NULL; /* After gate vma */
202
203 out:
204 if (vma)
205 return vma;
206
207 release_task_mempolicy(priv);
208 /* End of vmas has been reached */
209 m->version = (tail_vma != NULL)? 0: -1UL;
210 up_read(&mm->mmap_sem);
211 mmput(mm);
212 return tail_vma;
213 }
214
215 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
216 {
217 struct proc_maps_private *priv = m->private;
218 struct vm_area_struct *vma = v;
219 struct vm_area_struct *tail_vma = priv->tail_vma;
220
221 (*pos)++;
222 if (vma && (vma != tail_vma) && vma->vm_next)
223 return vma->vm_next;
224 vma_stop(priv, vma);
225 return (vma != tail_vma)? tail_vma: NULL;
226 }
227
228 static void m_stop(struct seq_file *m, void *v)
229 {
230 struct proc_maps_private *priv = m->private;
231 struct vm_area_struct *vma = v;
232
233 if (!IS_ERR(vma))
234 vma_stop(priv, vma);
235 if (priv->task)
236 put_task_struct(priv->task);
237 }
238
239 static int do_maps_open(struct inode *inode, struct file *file,
240 const struct seq_operations *ops)
241 {
242 struct proc_maps_private *priv;
243 int ret = -ENOMEM;
244 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
245 if (priv) {
246 priv->pid = proc_pid(inode);
247 ret = seq_open(file, ops);
248 if (!ret) {
249 struct seq_file *m = file->private_data;
250 m->private = priv;
251 } else {
252 kfree(priv);
253 }
254 }
255 return ret;
256 }
257
258 static void
259 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
260 {
261 struct mm_struct *mm = vma->vm_mm;
262 struct file *file = vma->vm_file;
263 struct proc_maps_private *priv = m->private;
264 struct task_struct *task = priv->task;
265 vm_flags_t flags = vma->vm_flags;
266 unsigned long ino = 0;
267 unsigned long long pgoff = 0;
268 unsigned long start, end;
269 dev_t dev = 0;
270 int len;
271 const char *name = NULL;
272
273 if (file) {
274 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
275 dev = inode->i_sb->s_dev;
276 ino = inode->i_ino;
277 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
278 }
279
280 /* We don't show the stack guard page in /proc/maps */
281 start = vma->vm_start;
282 if (stack_guard_page_start(vma, start))
283 start += PAGE_SIZE;
284 end = vma->vm_end;
285 if (stack_guard_page_end(vma, end))
286 end -= PAGE_SIZE;
287
288 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
289 start,
290 end,
291 flags & VM_READ ? 'r' : '-',
292 flags & VM_WRITE ? 'w' : '-',
293 flags & VM_EXEC ? 'x' : '-',
294 flags & VM_MAYSHARE ? 's' : 'p',
295 pgoff,
296 MAJOR(dev), MINOR(dev), ino, &len);
297
298 /*
299 * Print the dentry name for named mappings, and a
300 * special [heap] marker for the heap:
301 */
302 if (file) {
303 pad_len_spaces(m, len);
304 seq_path(m, &file->f_path, "\n");
305 goto done;
306 }
307
308 name = arch_vma_name(vma);
309 if (!name) {
310 pid_t tid;
311
312 if (!mm) {
313 name = "[vdso]";
314 goto done;
315 }
316
317 if (vma->vm_start <= mm->brk &&
318 vma->vm_end >= mm->start_brk) {
319 name = "[heap]";
320 goto done;
321 }
322
323 tid = vm_is_stack(task, vma, is_pid);
324
325 if (tid != 0) {
326 /*
327 * Thread stack in /proc/PID/task/TID/maps or
328 * the main process stack.
329 */
330 if (!is_pid || (vma->vm_start <= mm->start_stack &&
331 vma->vm_end >= mm->start_stack)) {
332 name = "[stack]";
333 } else {
334 /* Thread stack in /proc/PID/maps */
335 pad_len_spaces(m, len);
336 seq_printf(m, "[stack:%d]", tid);
337 }
338 }
339 }
340
341 done:
342 if (name) {
343 pad_len_spaces(m, len);
344 seq_puts(m, name);
345 }
346 seq_putc(m, '\n');
347 }
348
349 static int show_map(struct seq_file *m, void *v, int is_pid)
350 {
351 struct vm_area_struct *vma = v;
352 struct proc_maps_private *priv = m->private;
353 struct task_struct *task = priv->task;
354
355 show_map_vma(m, vma, is_pid);
356
357 if (m->count < m->size) /* vma is copied successfully */
358 m->version = (vma != get_gate_vma(task->mm))
359 ? vma->vm_start : 0;
360 return 0;
361 }
362
363 static int show_pid_map(struct seq_file *m, void *v)
364 {
365 return show_map(m, v, 1);
366 }
367
368 static int show_tid_map(struct seq_file *m, void *v)
369 {
370 return show_map(m, v, 0);
371 }
372
373 static const struct seq_operations proc_pid_maps_op = {
374 .start = m_start,
375 .next = m_next,
376 .stop = m_stop,
377 .show = show_pid_map
378 };
379
380 static const struct seq_operations proc_tid_maps_op = {
381 .start = m_start,
382 .next = m_next,
383 .stop = m_stop,
384 .show = show_tid_map
385 };
386
387 static int pid_maps_open(struct inode *inode, struct file *file)
388 {
389 return do_maps_open(inode, file, &proc_pid_maps_op);
390 }
391
392 static int tid_maps_open(struct inode *inode, struct file *file)
393 {
394 return do_maps_open(inode, file, &proc_tid_maps_op);
395 }
396
397 const struct file_operations proc_pid_maps_operations = {
398 .open = pid_maps_open,
399 .read = seq_read,
400 .llseek = seq_lseek,
401 .release = seq_release_private,
402 };
403
404 const struct file_operations proc_tid_maps_operations = {
405 .open = tid_maps_open,
406 .read = seq_read,
407 .llseek = seq_lseek,
408 .release = seq_release_private,
409 };
410
411 /*
412 * Proportional Set Size(PSS): my share of RSS.
413 *
414 * PSS of a process is the count of pages it has in memory, where each
415 * page is divided by the number of processes sharing it. So if a
416 * process has 1000 pages all to itself, and 1000 shared with one other
417 * process, its PSS will be 1500.
418 *
419 * To keep (accumulated) division errors low, we adopt a 64bit
420 * fixed-point pss counter to minimize division errors. So (pss >>
421 * PSS_SHIFT) would be the real byte count.
422 *
423 * A shift of 12 before division means (assuming 4K page size):
424 * - 1M 3-user-pages add up to 8KB errors;
425 * - supports mapcount up to 2^24, or 16M;
426 * - supports PSS up to 2^52 bytes, or 4PB.
427 */
428 #define PSS_SHIFT 12
429
430 #ifdef CONFIG_PROC_PAGE_MONITOR
431 struct mem_size_stats {
432 struct vm_area_struct *vma;
433 unsigned long resident;
434 unsigned long shared_clean;
435 unsigned long shared_dirty;
436 unsigned long private_clean;
437 unsigned long private_dirty;
438 unsigned long referenced;
439 unsigned long anonymous;
440 unsigned long anonymous_thp;
441 unsigned long swap;
442 unsigned long nonlinear;
443 u64 pss;
444 };
445
446
447 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
448 unsigned long ptent_size, struct mm_walk *walk)
449 {
450 struct mem_size_stats *mss = walk->private;
451 struct vm_area_struct *vma = mss->vma;
452 pgoff_t pgoff = linear_page_index(vma, addr);
453 struct page *page = NULL;
454 int mapcount;
455
456 if (pte_present(ptent)) {
457 page = vm_normal_page(vma, addr, ptent);
458 } else if (is_swap_pte(ptent)) {
459 swp_entry_t swpent = pte_to_swp_entry(ptent);
460
461 if (!non_swap_entry(swpent))
462 mss->swap += ptent_size;
463 else if (is_migration_entry(swpent))
464 page = migration_entry_to_page(swpent);
465 } else if (pte_file(ptent)) {
466 if (pte_to_pgoff(ptent) != pgoff)
467 mss->nonlinear += ptent_size;
468 }
469
470 if (!page)
471 return;
472
473 if (PageAnon(page))
474 mss->anonymous += ptent_size;
475
476 if (page->index != pgoff)
477 mss->nonlinear += ptent_size;
478
479 mss->resident += ptent_size;
480 /* Accumulate the size in pages that have been accessed. */
481 if (pte_young(ptent) || PageReferenced(page))
482 mss->referenced += ptent_size;
483 mapcount = page_mapcount(page);
484 if (mapcount >= 2) {
485 if (pte_dirty(ptent) || PageDirty(page))
486 mss->shared_dirty += ptent_size;
487 else
488 mss->shared_clean += ptent_size;
489 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
490 } else {
491 if (pte_dirty(ptent) || PageDirty(page))
492 mss->private_dirty += ptent_size;
493 else
494 mss->private_clean += ptent_size;
495 mss->pss += (ptent_size << PSS_SHIFT);
496 }
497 }
498
499 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
500 struct mm_walk *walk)
501 {
502 struct mem_size_stats *mss = walk->private;
503 struct vm_area_struct *vma = mss->vma;
504 pte_t *pte;
505 spinlock_t *ptl;
506
507 if (pmd_trans_huge_lock(pmd, vma) == 1) {
508 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
509 spin_unlock(&walk->mm->page_table_lock);
510 mss->anonymous_thp += HPAGE_PMD_SIZE;
511 return 0;
512 }
513
514 if (pmd_trans_unstable(pmd))
515 return 0;
516 /*
517 * The mmap_sem held all the way back in m_start() is what
518 * keeps khugepaged out of here and from collapsing things
519 * in here.
520 */
521 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
522 for (; addr != end; pte++, addr += PAGE_SIZE)
523 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
524 pte_unmap_unlock(pte - 1, ptl);
525 cond_resched();
526 return 0;
527 }
528
529 static int show_smap(struct seq_file *m, void *v, int is_pid)
530 {
531 struct proc_maps_private *priv = m->private;
532 struct task_struct *task = priv->task;
533 struct vm_area_struct *vma = v;
534 struct mem_size_stats mss;
535 struct mm_walk smaps_walk = {
536 .pmd_entry = smaps_pte_range,
537 .mm = vma->vm_mm,
538 .private = &mss,
539 };
540
541 memset(&mss, 0, sizeof mss);
542 mss.vma = vma;
543 /* mmap_sem is held in m_start */
544 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
545 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
546
547 show_map_vma(m, vma, is_pid);
548
549 seq_printf(m,
550 "Size: %8lu kB\n"
551 "Rss: %8lu kB\n"
552 "Pss: %8lu kB\n"
553 "Shared_Clean: %8lu kB\n"
554 "Shared_Dirty: %8lu kB\n"
555 "Private_Clean: %8lu kB\n"
556 "Private_Dirty: %8lu kB\n"
557 "Referenced: %8lu kB\n"
558 "Anonymous: %8lu kB\n"
559 "AnonHugePages: %8lu kB\n"
560 "Swap: %8lu kB\n"
561 "KernelPageSize: %8lu kB\n"
562 "MMUPageSize: %8lu kB\n"
563 "Locked: %8lu kB\n",
564 (vma->vm_end - vma->vm_start) >> 10,
565 mss.resident >> 10,
566 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
567 mss.shared_clean >> 10,
568 mss.shared_dirty >> 10,
569 mss.private_clean >> 10,
570 mss.private_dirty >> 10,
571 mss.referenced >> 10,
572 mss.anonymous >> 10,
573 mss.anonymous_thp >> 10,
574 mss.swap >> 10,
575 vma_kernel_pagesize(vma) >> 10,
576 vma_mmu_pagesize(vma) >> 10,
577 (vma->vm_flags & VM_LOCKED) ?
578 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
579
580 if (vma->vm_flags & VM_NONLINEAR)
581 seq_printf(m, "Nonlinear: %8lu kB\n",
582 mss.nonlinear >> 10);
583
584 if (m->count < m->size) /* vma is copied successfully */
585 m->version = (vma != get_gate_vma(task->mm))
586 ? vma->vm_start : 0;
587 return 0;
588 }
589
590 static int show_pid_smap(struct seq_file *m, void *v)
591 {
592 return show_smap(m, v, 1);
593 }
594
595 static int show_tid_smap(struct seq_file *m, void *v)
596 {
597 return show_smap(m, v, 0);
598 }
599
600 static const struct seq_operations proc_pid_smaps_op = {
601 .start = m_start,
602 .next = m_next,
603 .stop = m_stop,
604 .show = show_pid_smap
605 };
606
607 static const struct seq_operations proc_tid_smaps_op = {
608 .start = m_start,
609 .next = m_next,
610 .stop = m_stop,
611 .show = show_tid_smap
612 };
613
614 static int pid_smaps_open(struct inode *inode, struct file *file)
615 {
616 return do_maps_open(inode, file, &proc_pid_smaps_op);
617 }
618
619 static int tid_smaps_open(struct inode *inode, struct file *file)
620 {
621 return do_maps_open(inode, file, &proc_tid_smaps_op);
622 }
623
624 const struct file_operations proc_pid_smaps_operations = {
625 .open = pid_smaps_open,
626 .read = seq_read,
627 .llseek = seq_lseek,
628 .release = seq_release_private,
629 };
630
631 const struct file_operations proc_tid_smaps_operations = {
632 .open = tid_smaps_open,
633 .read = seq_read,
634 .llseek = seq_lseek,
635 .release = seq_release_private,
636 };
637
638 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
639 unsigned long end, struct mm_walk *walk)
640 {
641 struct vm_area_struct *vma = walk->private;
642 pte_t *pte, ptent;
643 spinlock_t *ptl;
644 struct page *page;
645
646 split_huge_page_pmd(walk->mm, pmd);
647 if (pmd_trans_unstable(pmd))
648 return 0;
649
650 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
651 for (; addr != end; pte++, addr += PAGE_SIZE) {
652 ptent = *pte;
653 if (!pte_present(ptent))
654 continue;
655
656 page = vm_normal_page(vma, addr, ptent);
657 if (!page)
658 continue;
659
660 /* Clear accessed and referenced bits. */
661 ptep_test_and_clear_young(vma, addr, pte);
662 ClearPageReferenced(page);
663 }
664 pte_unmap_unlock(pte - 1, ptl);
665 cond_resched();
666 return 0;
667 }
668
669 #define CLEAR_REFS_ALL 1
670 #define CLEAR_REFS_ANON 2
671 #define CLEAR_REFS_MAPPED 3
672
673 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
674 size_t count, loff_t *ppos)
675 {
676 struct task_struct *task;
677 char buffer[PROC_NUMBUF];
678 struct mm_struct *mm;
679 struct vm_area_struct *vma;
680 int type;
681 int rv;
682
683 memset(buffer, 0, sizeof(buffer));
684 if (count > sizeof(buffer) - 1)
685 count = sizeof(buffer) - 1;
686 if (copy_from_user(buffer, buf, count))
687 return -EFAULT;
688 rv = kstrtoint(strstrip(buffer), 10, &type);
689 if (rv < 0)
690 return rv;
691 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
692 return -EINVAL;
693 task = get_proc_task(file->f_path.dentry->d_inode);
694 if (!task)
695 return -ESRCH;
696 mm = get_task_mm(task);
697 if (mm) {
698 struct mm_walk clear_refs_walk = {
699 .pmd_entry = clear_refs_pte_range,
700 .mm = mm,
701 };
702 down_read(&mm->mmap_sem);
703 for (vma = mm->mmap; vma; vma = vma->vm_next) {
704 clear_refs_walk.private = vma;
705 if (is_vm_hugetlb_page(vma))
706 continue;
707 /*
708 * Writing 1 to /proc/pid/clear_refs affects all pages.
709 *
710 * Writing 2 to /proc/pid/clear_refs only affects
711 * Anonymous pages.
712 *
713 * Writing 3 to /proc/pid/clear_refs only affects file
714 * mapped pages.
715 */
716 if (type == CLEAR_REFS_ANON && vma->vm_file)
717 continue;
718 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
719 continue;
720 walk_page_range(vma->vm_start, vma->vm_end,
721 &clear_refs_walk);
722 }
723 flush_tlb_mm(mm);
724 up_read(&mm->mmap_sem);
725 mmput(mm);
726 }
727 put_task_struct(task);
728
729 return count;
730 }
731
732 const struct file_operations proc_clear_refs_operations = {
733 .write = clear_refs_write,
734 .llseek = noop_llseek,
735 };
736
737 typedef struct {
738 u64 pme;
739 } pagemap_entry_t;
740
741 struct pagemapread {
742 int pos, len;
743 pagemap_entry_t *buffer;
744 };
745
746 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
747 #define PAGEMAP_WALK_MASK (PMD_MASK)
748
749 #define PM_ENTRY_BYTES sizeof(u64)
750 #define PM_STATUS_BITS 3
751 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
752 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
753 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
754 #define PM_PSHIFT_BITS 6
755 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
756 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
757 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
758 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
759 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
760
761 #define PM_PRESENT PM_STATUS(4LL)
762 #define PM_SWAP PM_STATUS(2LL)
763 #define PM_FILE PM_STATUS(1LL)
764 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
765 #define PM_END_OF_BUFFER 1
766
767 static inline pagemap_entry_t make_pme(u64 val)
768 {
769 return (pagemap_entry_t) { .pme = val };
770 }
771
772 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
773 struct pagemapread *pm)
774 {
775 pm->buffer[pm->pos++] = *pme;
776 if (pm->pos >= pm->len)
777 return PM_END_OF_BUFFER;
778 return 0;
779 }
780
781 static int pagemap_pte_hole(unsigned long start, unsigned long end,
782 struct mm_walk *walk)
783 {
784 struct pagemapread *pm = walk->private;
785 unsigned long addr;
786 int err = 0;
787 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
788
789 for (addr = start; addr < end; addr += PAGE_SIZE) {
790 err = add_to_pagemap(addr, &pme, pm);
791 if (err)
792 break;
793 }
794 return err;
795 }
796
797 static void pte_to_pagemap_entry(pagemap_entry_t *pme,
798 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
799 {
800 u64 frame, flags;
801 struct page *page = NULL;
802
803 if (pte_present(pte)) {
804 frame = pte_pfn(pte);
805 flags = PM_PRESENT;
806 page = vm_normal_page(vma, addr, pte);
807 } else if (is_swap_pte(pte)) {
808 swp_entry_t entry = pte_to_swp_entry(pte);
809
810 frame = swp_type(entry) |
811 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
812 flags = PM_SWAP;
813 if (is_migration_entry(entry))
814 page = migration_entry_to_page(entry);
815 } else {
816 *pme = make_pme(PM_NOT_PRESENT);
817 return;
818 }
819
820 if (page && !PageAnon(page))
821 flags |= PM_FILE;
822
823 *pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
824 }
825
826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
827 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
828 pmd_t pmd, int offset)
829 {
830 /*
831 * Currently pmd for thp is always present because thp can not be
832 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
833 * This if-check is just to prepare for future implementation.
834 */
835 if (pmd_present(pmd))
836 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
837 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
838 else
839 *pme = make_pme(PM_NOT_PRESENT);
840 }
841 #else
842 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
843 pmd_t pmd, int offset)
844 {
845 }
846 #endif
847
848 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
849 struct mm_walk *walk)
850 {
851 struct vm_area_struct *vma;
852 struct pagemapread *pm = walk->private;
853 pte_t *pte;
854 int err = 0;
855 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
856
857 /* find the first VMA at or above 'addr' */
858 vma = find_vma(walk->mm, addr);
859 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
860 for (; addr != end; addr += PAGE_SIZE) {
861 unsigned long offset;
862
863 offset = (addr & ~PAGEMAP_WALK_MASK) >>
864 PAGE_SHIFT;
865 thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
866 err = add_to_pagemap(addr, &pme, pm);
867 if (err)
868 break;
869 }
870 spin_unlock(&walk->mm->page_table_lock);
871 return err;
872 }
873
874 if (pmd_trans_unstable(pmd))
875 return 0;
876 for (; addr != end; addr += PAGE_SIZE) {
877
878 /* check to see if we've left 'vma' behind
879 * and need a new, higher one */
880 if (vma && (addr >= vma->vm_end)) {
881 vma = find_vma(walk->mm, addr);
882 pme = make_pme(PM_NOT_PRESENT);
883 }
884
885 /* check that 'vma' actually covers this address,
886 * and that it isn't a huge page vma */
887 if (vma && (vma->vm_start <= addr) &&
888 !is_vm_hugetlb_page(vma)) {
889 pte = pte_offset_map(pmd, addr);
890 pte_to_pagemap_entry(&pme, vma, addr, *pte);
891 /* unmap before userspace copy */
892 pte_unmap(pte);
893 }
894 err = add_to_pagemap(addr, &pme, pm);
895 if (err)
896 return err;
897 }
898
899 cond_resched();
900
901 return err;
902 }
903
904 #ifdef CONFIG_HUGETLB_PAGE
905 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
906 pte_t pte, int offset)
907 {
908 if (pte_present(pte))
909 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
910 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
911 else
912 *pme = make_pme(PM_NOT_PRESENT);
913 }
914
915 /* This function walks within one hugetlb entry in the single call */
916 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
917 unsigned long addr, unsigned long end,
918 struct mm_walk *walk)
919 {
920 struct pagemapread *pm = walk->private;
921 int err = 0;
922 pagemap_entry_t pme;
923
924 for (; addr != end; addr += PAGE_SIZE) {
925 int offset = (addr & ~hmask) >> PAGE_SHIFT;
926 huge_pte_to_pagemap_entry(&pme, *pte, offset);
927 err = add_to_pagemap(addr, &pme, pm);
928 if (err)
929 return err;
930 }
931
932 cond_resched();
933
934 return err;
935 }
936 #endif /* HUGETLB_PAGE */
937
938 /*
939 * /proc/pid/pagemap - an array mapping virtual pages to pfns
940 *
941 * For each page in the address space, this file contains one 64-bit entry
942 * consisting of the following:
943 *
944 * Bits 0-54 page frame number (PFN) if present
945 * Bits 0-4 swap type if swapped
946 * Bits 5-54 swap offset if swapped
947 * Bits 55-60 page shift (page size = 1<<page shift)
948 * Bit 61 page is file-page or shared-anon
949 * Bit 62 page swapped
950 * Bit 63 page present
951 *
952 * If the page is not present but in swap, then the PFN contains an
953 * encoding of the swap file number and the page's offset into the
954 * swap. Unmapped pages return a null PFN. This allows determining
955 * precisely which pages are mapped (or in swap) and comparing mapped
956 * pages between processes.
957 *
958 * Efficient users of this interface will use /proc/pid/maps to
959 * determine which areas of memory are actually mapped and llseek to
960 * skip over unmapped regions.
961 */
962 static ssize_t pagemap_read(struct file *file, char __user *buf,
963 size_t count, loff_t *ppos)
964 {
965 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
966 struct mm_struct *mm;
967 struct pagemapread pm;
968 int ret = -ESRCH;
969 struct mm_walk pagemap_walk = {};
970 unsigned long src;
971 unsigned long svpfn;
972 unsigned long start_vaddr;
973 unsigned long end_vaddr;
974 int copied = 0;
975
976 if (!task)
977 goto out;
978
979 ret = -EINVAL;
980 /* file position must be aligned */
981 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
982 goto out_task;
983
984 ret = 0;
985 if (!count)
986 goto out_task;
987
988 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
989 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
990 ret = -ENOMEM;
991 if (!pm.buffer)
992 goto out_task;
993
994 mm = mm_access(task, PTRACE_MODE_READ);
995 ret = PTR_ERR(mm);
996 if (!mm || IS_ERR(mm))
997 goto out_free;
998
999 pagemap_walk.pmd_entry = pagemap_pte_range;
1000 pagemap_walk.pte_hole = pagemap_pte_hole;
1001 #ifdef CONFIG_HUGETLB_PAGE
1002 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1003 #endif
1004 pagemap_walk.mm = mm;
1005 pagemap_walk.private = &pm;
1006
1007 src = *ppos;
1008 svpfn = src / PM_ENTRY_BYTES;
1009 start_vaddr = svpfn << PAGE_SHIFT;
1010 end_vaddr = TASK_SIZE_OF(task);
1011
1012 /* watch out for wraparound */
1013 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1014 start_vaddr = end_vaddr;
1015
1016 /*
1017 * The odds are that this will stop walking way
1018 * before end_vaddr, because the length of the
1019 * user buffer is tracked in "pm", and the walk
1020 * will stop when we hit the end of the buffer.
1021 */
1022 ret = 0;
1023 while (count && (start_vaddr < end_vaddr)) {
1024 int len;
1025 unsigned long end;
1026
1027 pm.pos = 0;
1028 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1029 /* overflow ? */
1030 if (end < start_vaddr || end > end_vaddr)
1031 end = end_vaddr;
1032 down_read(&mm->mmap_sem);
1033 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1034 up_read(&mm->mmap_sem);
1035 start_vaddr = end;
1036
1037 len = min(count, PM_ENTRY_BYTES * pm.pos);
1038 if (copy_to_user(buf, pm.buffer, len)) {
1039 ret = -EFAULT;
1040 goto out_mm;
1041 }
1042 copied += len;
1043 buf += len;
1044 count -= len;
1045 }
1046 *ppos += copied;
1047 if (!ret || ret == PM_END_OF_BUFFER)
1048 ret = copied;
1049
1050 out_mm:
1051 mmput(mm);
1052 out_free:
1053 kfree(pm.buffer);
1054 out_task:
1055 put_task_struct(task);
1056 out:
1057 return ret;
1058 }
1059
1060 const struct file_operations proc_pagemap_operations = {
1061 .llseek = mem_lseek, /* borrow this */
1062 .read = pagemap_read,
1063 };
1064 #endif /* CONFIG_PROC_PAGE_MONITOR */
1065
1066 #ifdef CONFIG_NUMA
1067
1068 struct numa_maps {
1069 struct vm_area_struct *vma;
1070 unsigned long pages;
1071 unsigned long anon;
1072 unsigned long active;
1073 unsigned long writeback;
1074 unsigned long mapcount_max;
1075 unsigned long dirty;
1076 unsigned long swapcache;
1077 unsigned long node[MAX_NUMNODES];
1078 };
1079
1080 struct numa_maps_private {
1081 struct proc_maps_private proc_maps;
1082 struct numa_maps md;
1083 };
1084
1085 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1086 unsigned long nr_pages)
1087 {
1088 int count = page_mapcount(page);
1089
1090 md->pages += nr_pages;
1091 if (pte_dirty || PageDirty(page))
1092 md->dirty += nr_pages;
1093
1094 if (PageSwapCache(page))
1095 md->swapcache += nr_pages;
1096
1097 if (PageActive(page) || PageUnevictable(page))
1098 md->active += nr_pages;
1099
1100 if (PageWriteback(page))
1101 md->writeback += nr_pages;
1102
1103 if (PageAnon(page))
1104 md->anon += nr_pages;
1105
1106 if (count > md->mapcount_max)
1107 md->mapcount_max = count;
1108
1109 md->node[page_to_nid(page)] += nr_pages;
1110 }
1111
1112 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1113 unsigned long addr)
1114 {
1115 struct page *page;
1116 int nid;
1117
1118 if (!pte_present(pte))
1119 return NULL;
1120
1121 page = vm_normal_page(vma, addr, pte);
1122 if (!page)
1123 return NULL;
1124
1125 if (PageReserved(page))
1126 return NULL;
1127
1128 nid = page_to_nid(page);
1129 if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
1130 return NULL;
1131
1132 return page;
1133 }
1134
1135 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1136 unsigned long end, struct mm_walk *walk)
1137 {
1138 struct numa_maps *md;
1139 spinlock_t *ptl;
1140 pte_t *orig_pte;
1141 pte_t *pte;
1142
1143 md = walk->private;
1144
1145 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1146 pte_t huge_pte = *(pte_t *)pmd;
1147 struct page *page;
1148
1149 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1150 if (page)
1151 gather_stats(page, md, pte_dirty(huge_pte),
1152 HPAGE_PMD_SIZE/PAGE_SIZE);
1153 spin_unlock(&walk->mm->page_table_lock);
1154 return 0;
1155 }
1156
1157 if (pmd_trans_unstable(pmd))
1158 return 0;
1159 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1160 do {
1161 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1162 if (!page)
1163 continue;
1164 gather_stats(page, md, pte_dirty(*pte), 1);
1165
1166 } while (pte++, addr += PAGE_SIZE, addr != end);
1167 pte_unmap_unlock(orig_pte, ptl);
1168 return 0;
1169 }
1170 #ifdef CONFIG_HUGETLB_PAGE
1171 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1172 unsigned long addr, unsigned long end, struct mm_walk *walk)
1173 {
1174 struct numa_maps *md;
1175 struct page *page;
1176
1177 if (pte_none(*pte))
1178 return 0;
1179
1180 page = pte_page(*pte);
1181 if (!page)
1182 return 0;
1183
1184 md = walk->private;
1185 gather_stats(page, md, pte_dirty(*pte), 1);
1186 return 0;
1187 }
1188
1189 #else
1190 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1191 unsigned long addr, unsigned long end, struct mm_walk *walk)
1192 {
1193 return 0;
1194 }
1195 #endif
1196
1197 /*
1198 * Display pages allocated per node and memory policy via /proc.
1199 */
1200 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1201 {
1202 struct numa_maps_private *numa_priv = m->private;
1203 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1204 struct vm_area_struct *vma = v;
1205 struct numa_maps *md = &numa_priv->md;
1206 struct file *file = vma->vm_file;
1207 struct task_struct *task = proc_priv->task;
1208 struct mm_struct *mm = vma->vm_mm;
1209 struct mm_walk walk = {};
1210 struct mempolicy *pol;
1211 int n;
1212 char buffer[50];
1213
1214 if (!mm)
1215 return 0;
1216
1217 /* Ensure we start with an empty set of numa_maps statistics. */
1218 memset(md, 0, sizeof(*md));
1219
1220 md->vma = vma;
1221
1222 walk.hugetlb_entry = gather_hugetbl_stats;
1223 walk.pmd_entry = gather_pte_stats;
1224 walk.private = md;
1225 walk.mm = mm;
1226
1227 pol = get_vma_policy(task, vma, vma->vm_start);
1228 mpol_to_str(buffer, sizeof(buffer), pol, 0);
1229 mpol_cond_put(pol);
1230
1231 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1232
1233 if (file) {
1234 seq_printf(m, " file=");
1235 seq_path(m, &file->f_path, "\n\t= ");
1236 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1237 seq_printf(m, " heap");
1238 } else {
1239 pid_t tid = vm_is_stack(task, vma, is_pid);
1240 if (tid != 0) {
1241 /*
1242 * Thread stack in /proc/PID/task/TID/maps or
1243 * the main process stack.
1244 */
1245 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1246 vma->vm_end >= mm->start_stack))
1247 seq_printf(m, " stack");
1248 else
1249 seq_printf(m, " stack:%d", tid);
1250 }
1251 }
1252
1253 if (is_vm_hugetlb_page(vma))
1254 seq_printf(m, " huge");
1255
1256 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1257
1258 if (!md->pages)
1259 goto out;
1260
1261 if (md->anon)
1262 seq_printf(m, " anon=%lu", md->anon);
1263
1264 if (md->dirty)
1265 seq_printf(m, " dirty=%lu", md->dirty);
1266
1267 if (md->pages != md->anon && md->pages != md->dirty)
1268 seq_printf(m, " mapped=%lu", md->pages);
1269
1270 if (md->mapcount_max > 1)
1271 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1272
1273 if (md->swapcache)
1274 seq_printf(m, " swapcache=%lu", md->swapcache);
1275
1276 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1277 seq_printf(m, " active=%lu", md->active);
1278
1279 if (md->writeback)
1280 seq_printf(m, " writeback=%lu", md->writeback);
1281
1282 for_each_node_state(n, N_HIGH_MEMORY)
1283 if (md->node[n])
1284 seq_printf(m, " N%d=%lu", n, md->node[n]);
1285 out:
1286 seq_putc(m, '\n');
1287
1288 if (m->count < m->size)
1289 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1290 return 0;
1291 }
1292
1293 static int show_pid_numa_map(struct seq_file *m, void *v)
1294 {
1295 return show_numa_map(m, v, 1);
1296 }
1297
1298 static int show_tid_numa_map(struct seq_file *m, void *v)
1299 {
1300 return show_numa_map(m, v, 0);
1301 }
1302
1303 static const struct seq_operations proc_pid_numa_maps_op = {
1304 .start = m_start,
1305 .next = m_next,
1306 .stop = m_stop,
1307 .show = show_pid_numa_map,
1308 };
1309
1310 static const struct seq_operations proc_tid_numa_maps_op = {
1311 .start = m_start,
1312 .next = m_next,
1313 .stop = m_stop,
1314 .show = show_tid_numa_map,
1315 };
1316
1317 static int numa_maps_open(struct inode *inode, struct file *file,
1318 const struct seq_operations *ops)
1319 {
1320 struct numa_maps_private *priv;
1321 int ret = -ENOMEM;
1322 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1323 if (priv) {
1324 priv->proc_maps.pid = proc_pid(inode);
1325 ret = seq_open(file, ops);
1326 if (!ret) {
1327 struct seq_file *m = file->private_data;
1328 m->private = priv;
1329 } else {
1330 kfree(priv);
1331 }
1332 }
1333 return ret;
1334 }
1335
1336 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1337 {
1338 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1339 }
1340
1341 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1342 {
1343 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1344 }
1345
1346 const struct file_operations proc_pid_numa_maps_operations = {
1347 .open = pid_numa_maps_open,
1348 .read = seq_read,
1349 .llseek = seq_lseek,
1350 .release = seq_release_private,
1351 };
1352
1353 const struct file_operations proc_tid_numa_maps_operations = {
1354 .open = tid_numa_maps_open,
1355 .read = seq_read,
1356 .llseek = seq_lseek,
1357 .release = seq_release_private,
1358 };
1359 #endif /* CONFIG_NUMA */