ALSA: hda - Use LPIB for ATI/AMD chipsets as default
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
21 {
22 unsigned long data, text, lib, swap;
23 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24
25 /*
26 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 * hiwater_rss only when about to *lower* total_vm or rss. Any
28 * collector of these hiwater stats must therefore get total_vm
29 * and rss too, which will usually be the higher. Barriers? not
30 * worth the effort, such snapshots can always be inconsistent.
31 */
32 hiwater_vm = total_vm = mm->total_vm;
33 if (hiwater_vm < mm->hiwater_vm)
34 hiwater_vm = mm->hiwater_vm;
35 hiwater_rss = total_rss = get_mm_rss(mm);
36 if (hiwater_rss < mm->hiwater_rss)
37 hiwater_rss = mm->hiwater_rss;
38
39 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 swap = get_mm_counter(mm, MM_SWAPENTS);
43 seq_printf(m,
44 "VmPeak:\t%8lu kB\n"
45 "VmSize:\t%8lu kB\n"
46 "VmLck:\t%8lu kB\n"
47 "VmHWM:\t%8lu kB\n"
48 "VmRSS:\t%8lu kB\n"
49 "VmData:\t%8lu kB\n"
50 "VmStk:\t%8lu kB\n"
51 "VmExe:\t%8lu kB\n"
52 "VmLib:\t%8lu kB\n"
53 "VmPTE:\t%8lu kB\n"
54 "VmSwap:\t%8lu kB\n",
55 hiwater_vm << (PAGE_SHIFT-10),
56 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
57 mm->locked_vm << (PAGE_SHIFT-10),
58 hiwater_rss << (PAGE_SHIFT-10),
59 total_rss << (PAGE_SHIFT-10),
60 data << (PAGE_SHIFT-10),
61 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
62 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
63 swap << (PAGE_SHIFT-10));
64 }
65
66 unsigned long task_vsize(struct mm_struct *mm)
67 {
68 return PAGE_SIZE * mm->total_vm;
69 }
70
71 unsigned long task_statm(struct mm_struct *mm,
72 unsigned long *shared, unsigned long *text,
73 unsigned long *data, unsigned long *resident)
74 {
75 *shared = get_mm_counter(mm, MM_FILEPAGES);
76 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
77 >> PAGE_SHIFT;
78 *data = mm->total_vm - mm->shared_vm;
79 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
80 return mm->total_vm;
81 }
82
83 static void pad_len_spaces(struct seq_file *m, int len)
84 {
85 len = 25 + sizeof(void*) * 6 - len;
86 if (len < 1)
87 len = 1;
88 seq_printf(m, "%*c", len, ' ');
89 }
90
91 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
92 {
93 if (vma && vma != priv->tail_vma) {
94 struct mm_struct *mm = vma->vm_mm;
95 up_read(&mm->mmap_sem);
96 mmput(mm);
97 }
98 }
99
100 static void *m_start(struct seq_file *m, loff_t *pos)
101 {
102 struct proc_maps_private *priv = m->private;
103 unsigned long last_addr = m->version;
104 struct mm_struct *mm;
105 struct vm_area_struct *vma, *tail_vma = NULL;
106 loff_t l = *pos;
107
108 /* Clear the per syscall fields in priv */
109 priv->task = NULL;
110 priv->tail_vma = NULL;
111
112 /*
113 * We remember last_addr rather than next_addr to hit with
114 * mmap_cache most of the time. We have zero last_addr at
115 * the beginning and also after lseek. We will have -1 last_addr
116 * after the end of the vmas.
117 */
118
119 if (last_addr == -1UL)
120 return NULL;
121
122 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
123 if (!priv->task)
124 return ERR_PTR(-ESRCH);
125
126 mm = mm_for_maps(priv->task);
127 if (!mm || IS_ERR(mm))
128 return mm;
129 down_read(&mm->mmap_sem);
130
131 tail_vma = get_gate_vma(priv->task->mm);
132 priv->tail_vma = tail_vma;
133
134 /* Start with last addr hint */
135 vma = find_vma(mm, last_addr);
136 if (last_addr && vma) {
137 vma = vma->vm_next;
138 goto out;
139 }
140
141 /*
142 * Check the vma index is within the range and do
143 * sequential scan until m_index.
144 */
145 vma = NULL;
146 if ((unsigned long)l < mm->map_count) {
147 vma = mm->mmap;
148 while (l-- && vma)
149 vma = vma->vm_next;
150 goto out;
151 }
152
153 if (l != mm->map_count)
154 tail_vma = NULL; /* After gate vma */
155
156 out:
157 if (vma)
158 return vma;
159
160 /* End of vmas has been reached */
161 m->version = (tail_vma != NULL)? 0: -1UL;
162 up_read(&mm->mmap_sem);
163 mmput(mm);
164 return tail_vma;
165 }
166
167 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
168 {
169 struct proc_maps_private *priv = m->private;
170 struct vm_area_struct *vma = v;
171 struct vm_area_struct *tail_vma = priv->tail_vma;
172
173 (*pos)++;
174 if (vma && (vma != tail_vma) && vma->vm_next)
175 return vma->vm_next;
176 vma_stop(priv, vma);
177 return (vma != tail_vma)? tail_vma: NULL;
178 }
179
180 static void m_stop(struct seq_file *m, void *v)
181 {
182 struct proc_maps_private *priv = m->private;
183 struct vm_area_struct *vma = v;
184
185 if (!IS_ERR(vma))
186 vma_stop(priv, vma);
187 if (priv->task)
188 put_task_struct(priv->task);
189 }
190
191 static int do_maps_open(struct inode *inode, struct file *file,
192 const struct seq_operations *ops)
193 {
194 struct proc_maps_private *priv;
195 int ret = -ENOMEM;
196 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
197 if (priv) {
198 priv->pid = proc_pid(inode);
199 ret = seq_open(file, ops);
200 if (!ret) {
201 struct seq_file *m = file->private_data;
202 m->private = priv;
203 } else {
204 kfree(priv);
205 }
206 }
207 return ret;
208 }
209
210 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
211 {
212 struct mm_struct *mm = vma->vm_mm;
213 struct file *file = vma->vm_file;
214 int flags = vma->vm_flags;
215 unsigned long ino = 0;
216 unsigned long long pgoff = 0;
217 unsigned long start;
218 dev_t dev = 0;
219 int len;
220
221 if (file) {
222 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
223 dev = inode->i_sb->s_dev;
224 ino = inode->i_ino;
225 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
226 }
227
228 /* We don't show the stack guard page in /proc/maps */
229 start = vma->vm_start;
230 if (vma->vm_flags & VM_GROWSDOWN)
231 if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
232 start += PAGE_SIZE;
233
234 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
235 start,
236 vma->vm_end,
237 flags & VM_READ ? 'r' : '-',
238 flags & VM_WRITE ? 'w' : '-',
239 flags & VM_EXEC ? 'x' : '-',
240 flags & VM_MAYSHARE ? 's' : 'p',
241 pgoff,
242 MAJOR(dev), MINOR(dev), ino, &len);
243
244 /*
245 * Print the dentry name for named mappings, and a
246 * special [heap] marker for the heap:
247 */
248 if (file) {
249 pad_len_spaces(m, len);
250 seq_path(m, &file->f_path, "\n");
251 } else {
252 const char *name = arch_vma_name(vma);
253 if (!name) {
254 if (mm) {
255 if (vma->vm_start <= mm->brk &&
256 vma->vm_end >= mm->start_brk) {
257 name = "[heap]";
258 } else if (vma->vm_start <= mm->start_stack &&
259 vma->vm_end >= mm->start_stack) {
260 name = "[stack]";
261 }
262 } else {
263 name = "[vdso]";
264 }
265 }
266 if (name) {
267 pad_len_spaces(m, len);
268 seq_puts(m, name);
269 }
270 }
271 seq_putc(m, '\n');
272 }
273
274 static int show_map(struct seq_file *m, void *v)
275 {
276 struct vm_area_struct *vma = v;
277 struct proc_maps_private *priv = m->private;
278 struct task_struct *task = priv->task;
279
280 show_map_vma(m, vma);
281
282 if (m->count < m->size) /* vma is copied successfully */
283 m->version = (vma != get_gate_vma(task->mm))
284 ? vma->vm_start : 0;
285 return 0;
286 }
287
288 static const struct seq_operations proc_pid_maps_op = {
289 .start = m_start,
290 .next = m_next,
291 .stop = m_stop,
292 .show = show_map
293 };
294
295 static int maps_open(struct inode *inode, struct file *file)
296 {
297 return do_maps_open(inode, file, &proc_pid_maps_op);
298 }
299
300 const struct file_operations proc_maps_operations = {
301 .open = maps_open,
302 .read = seq_read,
303 .llseek = seq_lseek,
304 .release = seq_release_private,
305 };
306
307 /*
308 * Proportional Set Size(PSS): my share of RSS.
309 *
310 * PSS of a process is the count of pages it has in memory, where each
311 * page is divided by the number of processes sharing it. So if a
312 * process has 1000 pages all to itself, and 1000 shared with one other
313 * process, its PSS will be 1500.
314 *
315 * To keep (accumulated) division errors low, we adopt a 64bit
316 * fixed-point pss counter to minimize division errors. So (pss >>
317 * PSS_SHIFT) would be the real byte count.
318 *
319 * A shift of 12 before division means (assuming 4K page size):
320 * - 1M 3-user-pages add up to 8KB errors;
321 * - supports mapcount up to 2^24, or 16M;
322 * - supports PSS up to 2^52 bytes, or 4PB.
323 */
324 #define PSS_SHIFT 12
325
326 #ifdef CONFIG_PROC_PAGE_MONITOR
327 struct mem_size_stats {
328 struct vm_area_struct *vma;
329 unsigned long resident;
330 unsigned long shared_clean;
331 unsigned long shared_dirty;
332 unsigned long private_clean;
333 unsigned long private_dirty;
334 unsigned long referenced;
335 unsigned long anonymous;
336 unsigned long anonymous_thp;
337 unsigned long swap;
338 u64 pss;
339 };
340
341
342 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
343 unsigned long ptent_size, struct mm_walk *walk)
344 {
345 struct mem_size_stats *mss = walk->private;
346 struct vm_area_struct *vma = mss->vma;
347 struct page *page;
348 int mapcount;
349
350 if (is_swap_pte(ptent)) {
351 mss->swap += ptent_size;
352 return;
353 }
354
355 if (!pte_present(ptent))
356 return;
357
358 page = vm_normal_page(vma, addr, ptent);
359 if (!page)
360 return;
361
362 if (PageAnon(page))
363 mss->anonymous += ptent_size;
364
365 mss->resident += ptent_size;
366 /* Accumulate the size in pages that have been accessed. */
367 if (pte_young(ptent) || PageReferenced(page))
368 mss->referenced += ptent_size;
369 mapcount = page_mapcount(page);
370 if (mapcount >= 2) {
371 if (pte_dirty(ptent) || PageDirty(page))
372 mss->shared_dirty += ptent_size;
373 else
374 mss->shared_clean += ptent_size;
375 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
376 } else {
377 if (pte_dirty(ptent) || PageDirty(page))
378 mss->private_dirty += ptent_size;
379 else
380 mss->private_clean += ptent_size;
381 mss->pss += (ptent_size << PSS_SHIFT);
382 }
383 }
384
385 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
386 struct mm_walk *walk)
387 {
388 struct mem_size_stats *mss = walk->private;
389 struct vm_area_struct *vma = mss->vma;
390 pte_t *pte;
391 spinlock_t *ptl;
392
393 spin_lock(&walk->mm->page_table_lock);
394 if (pmd_trans_huge(*pmd)) {
395 if (pmd_trans_splitting(*pmd)) {
396 spin_unlock(&walk->mm->page_table_lock);
397 wait_split_huge_page(vma->anon_vma, pmd);
398 } else {
399 smaps_pte_entry(*(pte_t *)pmd, addr,
400 HPAGE_PMD_SIZE, walk);
401 spin_unlock(&walk->mm->page_table_lock);
402 mss->anonymous_thp += HPAGE_PMD_SIZE;
403 return 0;
404 }
405 } else {
406 spin_unlock(&walk->mm->page_table_lock);
407 }
408 /*
409 * The mmap_sem held all the way back in m_start() is what
410 * keeps khugepaged out of here and from collapsing things
411 * in here.
412 */
413 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
414 for (; addr != end; pte++, addr += PAGE_SIZE)
415 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
416 pte_unmap_unlock(pte - 1, ptl);
417 cond_resched();
418 return 0;
419 }
420
421 static int show_smap(struct seq_file *m, void *v)
422 {
423 struct proc_maps_private *priv = m->private;
424 struct task_struct *task = priv->task;
425 struct vm_area_struct *vma = v;
426 struct mem_size_stats mss;
427 struct mm_walk smaps_walk = {
428 .pmd_entry = smaps_pte_range,
429 .mm = vma->vm_mm,
430 .private = &mss,
431 };
432
433 memset(&mss, 0, sizeof mss);
434 mss.vma = vma;
435 /* mmap_sem is held in m_start */
436 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
437 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
438
439 show_map_vma(m, vma);
440
441 seq_printf(m,
442 "Size: %8lu kB\n"
443 "Rss: %8lu kB\n"
444 "Pss: %8lu kB\n"
445 "Shared_Clean: %8lu kB\n"
446 "Shared_Dirty: %8lu kB\n"
447 "Private_Clean: %8lu kB\n"
448 "Private_Dirty: %8lu kB\n"
449 "Referenced: %8lu kB\n"
450 "Anonymous: %8lu kB\n"
451 "AnonHugePages: %8lu kB\n"
452 "Swap: %8lu kB\n"
453 "KernelPageSize: %8lu kB\n"
454 "MMUPageSize: %8lu kB\n"
455 "Locked: %8lu kB\n",
456 (vma->vm_end - vma->vm_start) >> 10,
457 mss.resident >> 10,
458 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
459 mss.shared_clean >> 10,
460 mss.shared_dirty >> 10,
461 mss.private_clean >> 10,
462 mss.private_dirty >> 10,
463 mss.referenced >> 10,
464 mss.anonymous >> 10,
465 mss.anonymous_thp >> 10,
466 mss.swap >> 10,
467 vma_kernel_pagesize(vma) >> 10,
468 vma_mmu_pagesize(vma) >> 10,
469 (vma->vm_flags & VM_LOCKED) ?
470 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
471
472 if (m->count < m->size) /* vma is copied successfully */
473 m->version = (vma != get_gate_vma(task->mm))
474 ? vma->vm_start : 0;
475 return 0;
476 }
477
478 static const struct seq_operations proc_pid_smaps_op = {
479 .start = m_start,
480 .next = m_next,
481 .stop = m_stop,
482 .show = show_smap
483 };
484
485 static int smaps_open(struct inode *inode, struct file *file)
486 {
487 return do_maps_open(inode, file, &proc_pid_smaps_op);
488 }
489
490 const struct file_operations proc_smaps_operations = {
491 .open = smaps_open,
492 .read = seq_read,
493 .llseek = seq_lseek,
494 .release = seq_release_private,
495 };
496
497 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
498 unsigned long end, struct mm_walk *walk)
499 {
500 struct vm_area_struct *vma = walk->private;
501 pte_t *pte, ptent;
502 spinlock_t *ptl;
503 struct page *page;
504
505 split_huge_page_pmd(walk->mm, pmd);
506
507 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
508 for (; addr != end; pte++, addr += PAGE_SIZE) {
509 ptent = *pte;
510 if (!pte_present(ptent))
511 continue;
512
513 page = vm_normal_page(vma, addr, ptent);
514 if (!page)
515 continue;
516
517 /* Clear accessed and referenced bits. */
518 ptep_test_and_clear_young(vma, addr, pte);
519 ClearPageReferenced(page);
520 }
521 pte_unmap_unlock(pte - 1, ptl);
522 cond_resched();
523 return 0;
524 }
525
526 #define CLEAR_REFS_ALL 1
527 #define CLEAR_REFS_ANON 2
528 #define CLEAR_REFS_MAPPED 3
529
530 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
531 size_t count, loff_t *ppos)
532 {
533 struct task_struct *task;
534 char buffer[PROC_NUMBUF];
535 struct mm_struct *mm;
536 struct vm_area_struct *vma;
537 long type;
538
539 memset(buffer, 0, sizeof(buffer));
540 if (count > sizeof(buffer) - 1)
541 count = sizeof(buffer) - 1;
542 if (copy_from_user(buffer, buf, count))
543 return -EFAULT;
544 if (strict_strtol(strstrip(buffer), 10, &type))
545 return -EINVAL;
546 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
547 return -EINVAL;
548 task = get_proc_task(file->f_path.dentry->d_inode);
549 if (!task)
550 return -ESRCH;
551 mm = get_task_mm(task);
552 if (mm) {
553 struct mm_walk clear_refs_walk = {
554 .pmd_entry = clear_refs_pte_range,
555 .mm = mm,
556 };
557 down_read(&mm->mmap_sem);
558 for (vma = mm->mmap; vma; vma = vma->vm_next) {
559 clear_refs_walk.private = vma;
560 if (is_vm_hugetlb_page(vma))
561 continue;
562 /*
563 * Writing 1 to /proc/pid/clear_refs affects all pages.
564 *
565 * Writing 2 to /proc/pid/clear_refs only affects
566 * Anonymous pages.
567 *
568 * Writing 3 to /proc/pid/clear_refs only affects file
569 * mapped pages.
570 */
571 if (type == CLEAR_REFS_ANON && vma->vm_file)
572 continue;
573 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
574 continue;
575 walk_page_range(vma->vm_start, vma->vm_end,
576 &clear_refs_walk);
577 }
578 flush_tlb_mm(mm);
579 up_read(&mm->mmap_sem);
580 mmput(mm);
581 }
582 put_task_struct(task);
583
584 return count;
585 }
586
587 const struct file_operations proc_clear_refs_operations = {
588 .write = clear_refs_write,
589 .llseek = noop_llseek,
590 };
591
592 struct pagemapread {
593 int pos, len;
594 u64 *buffer;
595 };
596
597 #define PM_ENTRY_BYTES sizeof(u64)
598 #define PM_STATUS_BITS 3
599 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
600 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
601 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
602 #define PM_PSHIFT_BITS 6
603 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
604 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
605 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
606 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
607 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
608
609 #define PM_PRESENT PM_STATUS(4LL)
610 #define PM_SWAP PM_STATUS(2LL)
611 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
612 #define PM_END_OF_BUFFER 1
613
614 static int add_to_pagemap(unsigned long addr, u64 pfn,
615 struct pagemapread *pm)
616 {
617 pm->buffer[pm->pos++] = pfn;
618 if (pm->pos >= pm->len)
619 return PM_END_OF_BUFFER;
620 return 0;
621 }
622
623 static int pagemap_pte_hole(unsigned long start, unsigned long end,
624 struct mm_walk *walk)
625 {
626 struct pagemapread *pm = walk->private;
627 unsigned long addr;
628 int err = 0;
629 for (addr = start; addr < end; addr += PAGE_SIZE) {
630 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
631 if (err)
632 break;
633 }
634 return err;
635 }
636
637 static u64 swap_pte_to_pagemap_entry(pte_t pte)
638 {
639 swp_entry_t e = pte_to_swp_entry(pte);
640 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
641 }
642
643 static u64 pte_to_pagemap_entry(pte_t pte)
644 {
645 u64 pme = 0;
646 if (is_swap_pte(pte))
647 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
648 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
649 else if (pte_present(pte))
650 pme = PM_PFRAME(pte_pfn(pte))
651 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
652 return pme;
653 }
654
655 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
656 struct mm_walk *walk)
657 {
658 struct vm_area_struct *vma;
659 struct pagemapread *pm = walk->private;
660 pte_t *pte;
661 int err = 0;
662
663 split_huge_page_pmd(walk->mm, pmd);
664
665 /* find the first VMA at or above 'addr' */
666 vma = find_vma(walk->mm, addr);
667 for (; addr != end; addr += PAGE_SIZE) {
668 u64 pfn = PM_NOT_PRESENT;
669
670 /* check to see if we've left 'vma' behind
671 * and need a new, higher one */
672 if (vma && (addr >= vma->vm_end))
673 vma = find_vma(walk->mm, addr);
674
675 /* check that 'vma' actually covers this address,
676 * and that it isn't a huge page vma */
677 if (vma && (vma->vm_start <= addr) &&
678 !is_vm_hugetlb_page(vma)) {
679 pte = pte_offset_map(pmd, addr);
680 pfn = pte_to_pagemap_entry(*pte);
681 /* unmap before userspace copy */
682 pte_unmap(pte);
683 }
684 err = add_to_pagemap(addr, pfn, pm);
685 if (err)
686 return err;
687 }
688
689 cond_resched();
690
691 return err;
692 }
693
694 #ifdef CONFIG_HUGETLB_PAGE
695 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
696 {
697 u64 pme = 0;
698 if (pte_present(pte))
699 pme = PM_PFRAME(pte_pfn(pte) + offset)
700 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
701 return pme;
702 }
703
704 /* This function walks within one hugetlb entry in the single call */
705 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
706 unsigned long addr, unsigned long end,
707 struct mm_walk *walk)
708 {
709 struct pagemapread *pm = walk->private;
710 int err = 0;
711 u64 pfn;
712
713 for (; addr != end; addr += PAGE_SIZE) {
714 int offset = (addr & ~hmask) >> PAGE_SHIFT;
715 pfn = huge_pte_to_pagemap_entry(*pte, offset);
716 err = add_to_pagemap(addr, pfn, pm);
717 if (err)
718 return err;
719 }
720
721 cond_resched();
722
723 return err;
724 }
725 #endif /* HUGETLB_PAGE */
726
727 /*
728 * /proc/pid/pagemap - an array mapping virtual pages to pfns
729 *
730 * For each page in the address space, this file contains one 64-bit entry
731 * consisting of the following:
732 *
733 * Bits 0-55 page frame number (PFN) if present
734 * Bits 0-4 swap type if swapped
735 * Bits 5-55 swap offset if swapped
736 * Bits 55-60 page shift (page size = 1<<page shift)
737 * Bit 61 reserved for future use
738 * Bit 62 page swapped
739 * Bit 63 page present
740 *
741 * If the page is not present but in swap, then the PFN contains an
742 * encoding of the swap file number and the page's offset into the
743 * swap. Unmapped pages return a null PFN. This allows determining
744 * precisely which pages are mapped (or in swap) and comparing mapped
745 * pages between processes.
746 *
747 * Efficient users of this interface will use /proc/pid/maps to
748 * determine which areas of memory are actually mapped and llseek to
749 * skip over unmapped regions.
750 */
751 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
752 #define PAGEMAP_WALK_MASK (PMD_MASK)
753 static ssize_t pagemap_read(struct file *file, char __user *buf,
754 size_t count, loff_t *ppos)
755 {
756 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
757 struct mm_struct *mm;
758 struct pagemapread pm;
759 int ret = -ESRCH;
760 struct mm_walk pagemap_walk = {};
761 unsigned long src;
762 unsigned long svpfn;
763 unsigned long start_vaddr;
764 unsigned long end_vaddr;
765 int copied = 0;
766
767 if (!task)
768 goto out;
769
770 mm = mm_for_maps(task);
771 ret = PTR_ERR(mm);
772 if (!mm || IS_ERR(mm))
773 goto out_task;
774
775 ret = -EINVAL;
776 /* file position must be aligned */
777 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
778 goto out_task;
779
780 ret = 0;
781
782 if (!count)
783 goto out_task;
784
785 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
786 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
787 ret = -ENOMEM;
788 if (!pm.buffer)
789 goto out_mm;
790
791 pagemap_walk.pmd_entry = pagemap_pte_range;
792 pagemap_walk.pte_hole = pagemap_pte_hole;
793 #ifdef CONFIG_HUGETLB_PAGE
794 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
795 #endif
796 pagemap_walk.mm = mm;
797 pagemap_walk.private = &pm;
798
799 src = *ppos;
800 svpfn = src / PM_ENTRY_BYTES;
801 start_vaddr = svpfn << PAGE_SHIFT;
802 end_vaddr = TASK_SIZE_OF(task);
803
804 /* watch out for wraparound */
805 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
806 start_vaddr = end_vaddr;
807
808 /*
809 * The odds are that this will stop walking way
810 * before end_vaddr, because the length of the
811 * user buffer is tracked in "pm", and the walk
812 * will stop when we hit the end of the buffer.
813 */
814 ret = 0;
815 while (count && (start_vaddr < end_vaddr)) {
816 int len;
817 unsigned long end;
818
819 pm.pos = 0;
820 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
821 /* overflow ? */
822 if (end < start_vaddr || end > end_vaddr)
823 end = end_vaddr;
824 down_read(&mm->mmap_sem);
825 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
826 up_read(&mm->mmap_sem);
827 start_vaddr = end;
828
829 len = min(count, PM_ENTRY_BYTES * pm.pos);
830 if (copy_to_user(buf, pm.buffer, len)) {
831 ret = -EFAULT;
832 goto out_free;
833 }
834 copied += len;
835 buf += len;
836 count -= len;
837 }
838 *ppos += copied;
839 if (!ret || ret == PM_END_OF_BUFFER)
840 ret = copied;
841
842 out_free:
843 kfree(pm.buffer);
844 out_mm:
845 mmput(mm);
846 out_task:
847 put_task_struct(task);
848 out:
849 return ret;
850 }
851
852 const struct file_operations proc_pagemap_operations = {
853 .llseek = mem_lseek, /* borrow this */
854 .read = pagemap_read,
855 };
856 #endif /* CONFIG_PROC_PAGE_MONITOR */
857
858 #ifdef CONFIG_NUMA
859 extern int show_numa_map(struct seq_file *m, void *v);
860
861 static const struct seq_operations proc_pid_numa_maps_op = {
862 .start = m_start,
863 .next = m_next,
864 .stop = m_stop,
865 .show = show_numa_map,
866 };
867
868 static int numa_maps_open(struct inode *inode, struct file *file)
869 {
870 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
871 }
872
873 const struct file_operations proc_numa_maps_operations = {
874 .open = numa_maps_open,
875 .read = seq_read,
876 .llseek = seq_lseek,
877 .release = seq_release_private,
878 };
879 #endif