Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 struct ocfs2_file_private *fp;
70
71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 if (!fp)
73 return -ENOMEM;
74
75 fp->fp_file = file;
76 mutex_init(&fp->fp_mutex);
77 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 file->private_data = fp;
79
80 return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 struct ocfs2_file_private *fp = file->private_data;
86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88 if (fp) {
89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 ocfs2_lock_res_free(&fp->fp_flock);
91 kfree(fp);
92 file->private_data = NULL;
93 }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 int status;
99 int mode = file->f_flags;
100 struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 file->f_path.dentry->d_name.len,
105 file->f_path.dentry->d_name.name, mode);
106
107 if (file->f_mode & FMODE_WRITE)
108 dquot_initialize(inode);
109
110 spin_lock(&oi->ip_lock);
111
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 spin_unlock(&oi->ip_lock);
117
118 status = -ENOENT;
119 goto leave;
120 }
121
122 if (mode & O_DIRECT)
123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125 oi->ip_open_count++;
126 spin_unlock(&oi->ip_lock);
127
128 status = ocfs2_init_file_private(inode, file);
129 if (status) {
130 /*
131 * We want to set open count back if we're failing the
132 * open.
133 */
134 spin_lock(&oi->ip_lock);
135 oi->ip_open_count--;
136 spin_unlock(&oi->ip_lock);
137 }
138
139 leave:
140 return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147 spin_lock(&oi->ip_lock);
148 if (!--oi->ip_open_count)
149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 oi->ip_blkno,
153 file->f_path.dentry->d_name.len,
154 file->f_path.dentry->d_name.name,
155 oi->ip_open_count);
156 spin_unlock(&oi->ip_lock);
157
158 ocfs2_free_file_private(inode, file);
159
160 return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 ocfs2_free_file_private(inode, file);
171 return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 int datasync)
176 {
177 int err = 0;
178 journal_t *journal;
179 struct inode *inode = file->f_mapping->host;
180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181
182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 OCFS2_I(inode)->ip_blkno,
184 file->f_path.dentry->d_name.len,
185 file->f_path.dentry->d_name.name,
186 (unsigned long long)datasync);
187
188 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189 if (err)
190 return err;
191
192 /*
193 * Probably don't need the i_mutex at all in here, just putting it here
194 * to be consistent with how fsync used to be called, someone more
195 * familiar with the fs could possibly remove it.
196 */
197 mutex_lock(&inode->i_mutex);
198 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199 /*
200 * We still have to flush drive's caches to get data to the
201 * platter
202 */
203 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205 goto bail;
206 }
207
208 journal = osb->journal->j_journal;
209 err = jbd2_journal_force_commit(journal);
210
211 bail:
212 if (err)
213 mlog_errno(err);
214 mutex_unlock(&inode->i_mutex);
215
216 return (err < 0) ? -EIO : 0;
217 }
218
219 int ocfs2_should_update_atime(struct inode *inode,
220 struct vfsmount *vfsmnt)
221 {
222 struct timespec now;
223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224
225 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226 return 0;
227
228 if ((inode->i_flags & S_NOATIME) ||
229 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 return 0;
231
232 /*
233 * We can be called with no vfsmnt structure - NFSD will
234 * sometimes do this.
235 *
236 * Note that our action here is different than touch_atime() -
237 * if we can't tell whether this is a noatime mount, then we
238 * don't know whether to trust the value of s_atime_quantum.
239 */
240 if (vfsmnt == NULL)
241 return 0;
242
243 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245 return 0;
246
247 if (vfsmnt->mnt_flags & MNT_RELATIME) {
248 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250 return 1;
251
252 return 0;
253 }
254
255 now = CURRENT_TIME;
256 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257 return 0;
258 else
259 return 1;
260 }
261
262 int ocfs2_update_inode_atime(struct inode *inode,
263 struct buffer_head *bh)
264 {
265 int ret;
266 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267 handle_t *handle;
268 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269
270 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271 if (IS_ERR(handle)) {
272 ret = PTR_ERR(handle);
273 mlog_errno(ret);
274 goto out;
275 }
276
277 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278 OCFS2_JOURNAL_ACCESS_WRITE);
279 if (ret) {
280 mlog_errno(ret);
281 goto out_commit;
282 }
283
284 /*
285 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 * have i_mutex to guard against concurrent changes to other
287 * inode fields.
288 */
289 inode->i_atime = CURRENT_TIME;
290 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292 ocfs2_journal_dirty(handle, bh);
293
294 out_commit:
295 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297 return ret;
298 }
299
300 static int ocfs2_set_inode_size(handle_t *handle,
301 struct inode *inode,
302 struct buffer_head *fe_bh,
303 u64 new_i_size)
304 {
305 int status;
306
307 i_size_write(inode, new_i_size);
308 inode->i_blocks = ocfs2_inode_sector_count(inode);
309 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310
311 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 if (status < 0) {
313 mlog_errno(status);
314 goto bail;
315 }
316
317 bail:
318 return status;
319 }
320
321 int ocfs2_simple_size_update(struct inode *inode,
322 struct buffer_head *di_bh,
323 u64 new_i_size)
324 {
325 int ret;
326 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327 handle_t *handle = NULL;
328
329 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330 if (IS_ERR(handle)) {
331 ret = PTR_ERR(handle);
332 mlog_errno(ret);
333 goto out;
334 }
335
336 ret = ocfs2_set_inode_size(handle, inode, di_bh,
337 new_i_size);
338 if (ret < 0)
339 mlog_errno(ret);
340
341 ocfs2_commit_trans(osb, handle);
342 out:
343 return ret;
344 }
345
346 static int ocfs2_cow_file_pos(struct inode *inode,
347 struct buffer_head *fe_bh,
348 u64 offset)
349 {
350 int status;
351 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352 unsigned int num_clusters = 0;
353 unsigned int ext_flags = 0;
354
355 /*
356 * If the new offset is aligned to the range of the cluster, there is
357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358 * CoW either.
359 */
360 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361 return 0;
362
363 status = ocfs2_get_clusters(inode, cpos, &phys,
364 &num_clusters, &ext_flags);
365 if (status) {
366 mlog_errno(status);
367 goto out;
368 }
369
370 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371 goto out;
372
373 return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
374
375 out:
376 return status;
377 }
378
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 struct inode *inode,
381 struct buffer_head *fe_bh,
382 u64 new_i_size)
383 {
384 int status;
385 handle_t *handle;
386 struct ocfs2_dinode *di;
387 u64 cluster_bytes;
388
389 /*
390 * We need to CoW the cluster contains the offset if it is reflinked
391 * since we will call ocfs2_zero_range_for_truncate later which will
392 * write "0" from offset to the end of the cluster.
393 */
394 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395 if (status) {
396 mlog_errno(status);
397 return status;
398 }
399
400 /* TODO: This needs to actually orphan the inode in this
401 * transaction. */
402
403 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404 if (IS_ERR(handle)) {
405 status = PTR_ERR(handle);
406 mlog_errno(status);
407 goto out;
408 }
409
410 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411 OCFS2_JOURNAL_ACCESS_WRITE);
412 if (status < 0) {
413 mlog_errno(status);
414 goto out_commit;
415 }
416
417 /*
418 * Do this before setting i_size.
419 */
420 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422 cluster_bytes);
423 if (status) {
424 mlog_errno(status);
425 goto out_commit;
426 }
427
428 i_size_write(inode, new_i_size);
429 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430
431 di = (struct ocfs2_dinode *) fe_bh->b_data;
432 di->i_size = cpu_to_le64(new_i_size);
433 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435
436 ocfs2_journal_dirty(handle, fe_bh);
437
438 out_commit:
439 ocfs2_commit_trans(osb, handle);
440 out:
441 return status;
442 }
443
444 static int ocfs2_truncate_file(struct inode *inode,
445 struct buffer_head *di_bh,
446 u64 new_i_size)
447 {
448 int status = 0;
449 struct ocfs2_dinode *fe = NULL;
450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 * already validated it */
454 fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 (unsigned long long)new_i_size);
459
460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 "Inode %llu, inode i_size = %lld != di "
462 "i_size = %llu, i_flags = 0x%x\n",
463 (unsigned long long)OCFS2_I(inode)->ip_blkno,
464 i_size_read(inode),
465 (unsigned long long)le64_to_cpu(fe->i_size),
466 le32_to_cpu(fe->i_flags));
467
468 if (new_i_size > le64_to_cpu(fe->i_size)) {
469 trace_ocfs2_truncate_file_error(
470 (unsigned long long)le64_to_cpu(fe->i_size),
471 (unsigned long long)new_i_size);
472 status = -EINVAL;
473 mlog_errno(status);
474 goto bail;
475 }
476
477 /* lets handle the simple truncate cases before doing any more
478 * cluster locking. */
479 if (new_i_size == le64_to_cpu(fe->i_size))
480 goto bail;
481
482 down_write(&OCFS2_I(inode)->ip_alloc_sem);
483
484 ocfs2_resv_discard(&osb->osb_la_resmap,
485 &OCFS2_I(inode)->ip_la_data_resv);
486
487 /*
488 * The inode lock forced other nodes to sync and drop their
489 * pages, which (correctly) happens even if we have a truncate
490 * without allocation change - ocfs2 cluster sizes can be much
491 * greater than page size, so we have to truncate them
492 * anyway.
493 */
494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 truncate_inode_pages(inode->i_mapping, new_i_size);
496
497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 i_size_read(inode), 1);
500 if (status)
501 mlog_errno(status);
502
503 goto bail_unlock_sem;
504 }
505
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
509 * i_size. */
510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 if (status < 0) {
512 mlog_errno(status);
513 goto bail_unlock_sem;
514 }
515
516 status = ocfs2_commit_truncate(osb, inode, di_bh);
517 if (status < 0) {
518 mlog_errno(status);
519 goto bail_unlock_sem;
520 }
521
522 /* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524 up_write(&OCFS2_I(inode)->ip_alloc_sem);
525
526 bail:
527 if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529
530 return status;
531 }
532
533 /*
534 * extend file allocation only here.
535 * we'll update all the disk stuff, and oip->alloc_size
536 *
537 * expect stuff to be locked, a transaction started and enough data /
538 * metadata reservations in the contexts.
539 *
540 * Will return -EAGAIN, and a reason if a restart is needed.
541 * If passed in, *reason will always be set, even in error.
542 */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 struct inode *inode,
545 u32 *logical_offset,
546 u32 clusters_to_add,
547 int mark_unwritten,
548 struct buffer_head *fe_bh,
549 handle_t *handle,
550 struct ocfs2_alloc_context *data_ac,
551 struct ocfs2_alloc_context *meta_ac,
552 enum ocfs2_alloc_restarted *reason_ret)
553 {
554 int ret;
555 struct ocfs2_extent_tree et;
556
557 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 clusters_to_add, mark_unwritten,
560 data_ac, meta_ac, reason_ret);
561
562 return ret;
563 }
564
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 u32 clusters_to_add, int mark_unwritten)
567 {
568 int status = 0;
569 int restart_func = 0;
570 int credits;
571 u32 prev_clusters;
572 struct buffer_head *bh = NULL;
573 struct ocfs2_dinode *fe = NULL;
574 handle_t *handle = NULL;
575 struct ocfs2_alloc_context *data_ac = NULL;
576 struct ocfs2_alloc_context *meta_ac = NULL;
577 enum ocfs2_alloc_restarted why;
578 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 struct ocfs2_extent_tree et;
580 int did_quota = 0;
581
582 /*
583 * This function only exists for file systems which don't
584 * support holes.
585 */
586 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587
588 status = ocfs2_read_inode_block(inode, &bh);
589 if (status < 0) {
590 mlog_errno(status);
591 goto leave;
592 }
593 fe = (struct ocfs2_dinode *) bh->b_data;
594
595 restart_all:
596 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597
598 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600 &data_ac, &meta_ac);
601 if (status) {
602 mlog_errno(status);
603 goto leave;
604 }
605
606 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
607 clusters_to_add);
608 handle = ocfs2_start_trans(osb, credits);
609 if (IS_ERR(handle)) {
610 status = PTR_ERR(handle);
611 handle = NULL;
612 mlog_errno(status);
613 goto leave;
614 }
615
616 restarted_transaction:
617 trace_ocfs2_extend_allocation(
618 (unsigned long long)OCFS2_I(inode)->ip_blkno,
619 (unsigned long long)i_size_read(inode),
620 le32_to_cpu(fe->i_clusters), clusters_to_add,
621 why, restart_func);
622
623 status = dquot_alloc_space_nodirty(inode,
624 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 if (status)
626 goto leave;
627 did_quota = 1;
628
629 /* reserve a write to the file entry early on - that we if we
630 * run out of credits in the allocation path, we can still
631 * update i_size. */
632 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 OCFS2_JOURNAL_ACCESS_WRITE);
634 if (status < 0) {
635 mlog_errno(status);
636 goto leave;
637 }
638
639 prev_clusters = OCFS2_I(inode)->ip_clusters;
640
641 status = ocfs2_add_inode_data(osb,
642 inode,
643 &logical_start,
644 clusters_to_add,
645 mark_unwritten,
646 bh,
647 handle,
648 data_ac,
649 meta_ac,
650 &why);
651 if ((status < 0) && (status != -EAGAIN)) {
652 if (status != -ENOSPC)
653 mlog_errno(status);
654 goto leave;
655 }
656
657 ocfs2_journal_dirty(handle, bh);
658
659 spin_lock(&OCFS2_I(inode)->ip_lock);
660 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 spin_unlock(&OCFS2_I(inode)->ip_lock);
662 /* Release unused quota reservation */
663 dquot_free_space(inode,
664 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 did_quota = 0;
666
667 if (why != RESTART_NONE && clusters_to_add) {
668 if (why == RESTART_META) {
669 restart_func = 1;
670 status = 0;
671 } else {
672 BUG_ON(why != RESTART_TRANS);
673
674 /* TODO: This can be more intelligent. */
675 credits = ocfs2_calc_extend_credits(osb->sb,
676 &fe->id2.i_list,
677 clusters_to_add);
678 status = ocfs2_extend_trans(handle, credits);
679 if (status < 0) {
680 /* handle still has to be committed at
681 * this point. */
682 status = -ENOMEM;
683 mlog_errno(status);
684 goto leave;
685 }
686 goto restarted_transaction;
687 }
688 }
689
690 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691 le32_to_cpu(fe->i_clusters),
692 (unsigned long long)le64_to_cpu(fe->i_size),
693 OCFS2_I(inode)->ip_clusters,
694 (unsigned long long)i_size_read(inode));
695
696 leave:
697 if (status < 0 && did_quota)
698 dquot_free_space(inode,
699 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700 if (handle) {
701 ocfs2_commit_trans(osb, handle);
702 handle = NULL;
703 }
704 if (data_ac) {
705 ocfs2_free_alloc_context(data_ac);
706 data_ac = NULL;
707 }
708 if (meta_ac) {
709 ocfs2_free_alloc_context(meta_ac);
710 meta_ac = NULL;
711 }
712 if ((!status) && restart_func) {
713 restart_func = 0;
714 goto restart_all;
715 }
716 brelse(bh);
717 bh = NULL;
718
719 return status;
720 }
721
722 /*
723 * While a write will already be ordering the data, a truncate will not.
724 * Thus, we need to explicitly order the zeroed pages.
725 */
726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
727 {
728 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
729 handle_t *handle = NULL;
730 int ret = 0;
731
732 if (!ocfs2_should_order_data(inode))
733 goto out;
734
735 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
736 if (IS_ERR(handle)) {
737 ret = -ENOMEM;
738 mlog_errno(ret);
739 goto out;
740 }
741
742 ret = ocfs2_jbd2_file_inode(handle, inode);
743 if (ret < 0)
744 mlog_errno(ret);
745
746 out:
747 if (ret) {
748 if (!IS_ERR(handle))
749 ocfs2_commit_trans(osb, handle);
750 handle = ERR_PTR(ret);
751 }
752 return handle;
753 }
754
755 /* Some parts of this taken from generic_cont_expand, which turned out
756 * to be too fragile to do exactly what we need without us having to
757 * worry about recursive locking in ->write_begin() and ->write_end(). */
758 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
759 u64 abs_to)
760 {
761 struct address_space *mapping = inode->i_mapping;
762 struct page *page;
763 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
764 handle_t *handle = NULL;
765 int ret = 0;
766 unsigned zero_from, zero_to, block_start, block_end;
767
768 BUG_ON(abs_from >= abs_to);
769 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770 BUG_ON(abs_from & (inode->i_blkbits - 1));
771
772 page = find_or_create_page(mapping, index, GFP_NOFS);
773 if (!page) {
774 ret = -ENOMEM;
775 mlog_errno(ret);
776 goto out;
777 }
778
779 /* Get the offsets within the page that we want to zero */
780 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782 if (!zero_to)
783 zero_to = PAGE_CACHE_SIZE;
784
785 trace_ocfs2_write_zero_page(
786 (unsigned long long)OCFS2_I(inode)->ip_blkno,
787 (unsigned long long)abs_from,
788 (unsigned long long)abs_to,
789 index, zero_from, zero_to);
790
791 /* We know that zero_from is block aligned */
792 for (block_start = zero_from; block_start < zero_to;
793 block_start = block_end) {
794 block_end = block_start + (1 << inode->i_blkbits);
795
796 /*
797 * block_start is block-aligned. Bump it by one to force
798 * __block_write_begin and block_commit_write to zero the
799 * whole block.
800 */
801 ret = __block_write_begin(page, block_start + 1, 0,
802 ocfs2_get_block);
803 if (ret < 0) {
804 mlog_errno(ret);
805 goto out_unlock;
806 }
807
808 if (!handle) {
809 handle = ocfs2_zero_start_ordered_transaction(inode);
810 if (IS_ERR(handle)) {
811 ret = PTR_ERR(handle);
812 handle = NULL;
813 break;
814 }
815 }
816
817 /* must not update i_size! */
818 ret = block_commit_write(page, block_start + 1,
819 block_start + 1);
820 if (ret < 0)
821 mlog_errno(ret);
822 else
823 ret = 0;
824 }
825
826 if (handle)
827 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
828
829 out_unlock:
830 unlock_page(page);
831 page_cache_release(page);
832 out:
833 return ret;
834 }
835
836 /*
837 * Find the next range to zero. We do this in terms of bytes because
838 * that's what ocfs2_zero_extend() wants, and it is dealing with the
839 * pagecache. We may return multiple extents.
840 *
841 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842 * needs to be zeroed. range_start and range_end return the next zeroing
843 * range. A subsequent call should pass the previous range_end as its
844 * zero_start. If range_end is 0, there's nothing to do.
845 *
846 * Unwritten extents are skipped over. Refcounted extents are CoWd.
847 */
848 static int ocfs2_zero_extend_get_range(struct inode *inode,
849 struct buffer_head *di_bh,
850 u64 zero_start, u64 zero_end,
851 u64 *range_start, u64 *range_end)
852 {
853 int rc = 0, needs_cow = 0;
854 u32 p_cpos, zero_clusters = 0;
855 u32 zero_cpos =
856 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
857 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
858 unsigned int num_clusters = 0;
859 unsigned int ext_flags = 0;
860
861 while (zero_cpos < last_cpos) {
862 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
863 &num_clusters, &ext_flags);
864 if (rc) {
865 mlog_errno(rc);
866 goto out;
867 }
868
869 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
870 zero_clusters = num_clusters;
871 if (ext_flags & OCFS2_EXT_REFCOUNTED)
872 needs_cow = 1;
873 break;
874 }
875
876 zero_cpos += num_clusters;
877 }
878 if (!zero_clusters) {
879 *range_end = 0;
880 goto out;
881 }
882
883 while ((zero_cpos + zero_clusters) < last_cpos) {
884 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
885 &p_cpos, &num_clusters,
886 &ext_flags);
887 if (rc) {
888 mlog_errno(rc);
889 goto out;
890 }
891
892 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
893 break;
894 if (ext_flags & OCFS2_EXT_REFCOUNTED)
895 needs_cow = 1;
896 zero_clusters += num_clusters;
897 }
898 if ((zero_cpos + zero_clusters) > last_cpos)
899 zero_clusters = last_cpos - zero_cpos;
900
901 if (needs_cow) {
902 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
903 zero_clusters, UINT_MAX);
904 if (rc) {
905 mlog_errno(rc);
906 goto out;
907 }
908 }
909
910 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
911 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
912 zero_cpos + zero_clusters);
913
914 out:
915 return rc;
916 }
917
918 /*
919 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
920 * has made sure that the entire range needs zeroing.
921 */
922 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
923 u64 range_end)
924 {
925 int rc = 0;
926 u64 next_pos;
927 u64 zero_pos = range_start;
928
929 trace_ocfs2_zero_extend_range(
930 (unsigned long long)OCFS2_I(inode)->ip_blkno,
931 (unsigned long long)range_start,
932 (unsigned long long)range_end);
933 BUG_ON(range_start >= range_end);
934
935 while (zero_pos < range_end) {
936 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
937 if (next_pos > range_end)
938 next_pos = range_end;
939 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
940 if (rc < 0) {
941 mlog_errno(rc);
942 break;
943 }
944 zero_pos = next_pos;
945
946 /*
947 * Very large extends have the potential to lock up
948 * the cpu for extended periods of time.
949 */
950 cond_resched();
951 }
952
953 return rc;
954 }
955
956 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
957 loff_t zero_to_size)
958 {
959 int ret = 0;
960 u64 zero_start, range_start = 0, range_end = 0;
961 struct super_block *sb = inode->i_sb;
962
963 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
964 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
965 (unsigned long long)zero_start,
966 (unsigned long long)i_size_read(inode));
967 while (zero_start < zero_to_size) {
968 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
969 zero_to_size,
970 &range_start,
971 &range_end);
972 if (ret) {
973 mlog_errno(ret);
974 break;
975 }
976 if (!range_end)
977 break;
978 /* Trim the ends */
979 if (range_start < zero_start)
980 range_start = zero_start;
981 if (range_end > zero_to_size)
982 range_end = zero_to_size;
983
984 ret = ocfs2_zero_extend_range(inode, range_start,
985 range_end);
986 if (ret) {
987 mlog_errno(ret);
988 break;
989 }
990 zero_start = range_end;
991 }
992
993 return ret;
994 }
995
996 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
997 u64 new_i_size, u64 zero_to)
998 {
999 int ret;
1000 u32 clusters_to_add;
1001 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1002
1003 /*
1004 * Only quota files call this without a bh, and they can't be
1005 * refcounted.
1006 */
1007 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1008 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1009
1010 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1011 if (clusters_to_add < oi->ip_clusters)
1012 clusters_to_add = 0;
1013 else
1014 clusters_to_add -= oi->ip_clusters;
1015
1016 if (clusters_to_add) {
1017 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1018 clusters_to_add, 0);
1019 if (ret) {
1020 mlog_errno(ret);
1021 goto out;
1022 }
1023 }
1024
1025 /*
1026 * Call this even if we don't add any clusters to the tree. We
1027 * still need to zero the area between the old i_size and the
1028 * new i_size.
1029 */
1030 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1031 if (ret < 0)
1032 mlog_errno(ret);
1033
1034 out:
1035 return ret;
1036 }
1037
1038 static int ocfs2_extend_file(struct inode *inode,
1039 struct buffer_head *di_bh,
1040 u64 new_i_size)
1041 {
1042 int ret = 0;
1043 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1044
1045 BUG_ON(!di_bh);
1046
1047 /* setattr sometimes calls us like this. */
1048 if (new_i_size == 0)
1049 goto out;
1050
1051 if (i_size_read(inode) == new_i_size)
1052 goto out;
1053 BUG_ON(new_i_size < i_size_read(inode));
1054
1055 /*
1056 * The alloc sem blocks people in read/write from reading our
1057 * allocation until we're done changing it. We depend on
1058 * i_mutex to block other extend/truncate calls while we're
1059 * here. We even have to hold it for sparse files because there
1060 * might be some tail zeroing.
1061 */
1062 down_write(&oi->ip_alloc_sem);
1063
1064 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1065 /*
1066 * We can optimize small extends by keeping the inodes
1067 * inline data.
1068 */
1069 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1070 up_write(&oi->ip_alloc_sem);
1071 goto out_update_size;
1072 }
1073
1074 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1075 if (ret) {
1076 up_write(&oi->ip_alloc_sem);
1077 mlog_errno(ret);
1078 goto out;
1079 }
1080 }
1081
1082 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1084 else
1085 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1086 new_i_size);
1087
1088 up_write(&oi->ip_alloc_sem);
1089
1090 if (ret < 0) {
1091 mlog_errno(ret);
1092 goto out;
1093 }
1094
1095 out_update_size:
1096 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1097 if (ret < 0)
1098 mlog_errno(ret);
1099
1100 out:
1101 return ret;
1102 }
1103
1104 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1105 {
1106 int status = 0, size_change;
1107 struct inode *inode = dentry->d_inode;
1108 struct super_block *sb = inode->i_sb;
1109 struct ocfs2_super *osb = OCFS2_SB(sb);
1110 struct buffer_head *bh = NULL;
1111 handle_t *handle = NULL;
1112 struct dquot *transfer_to[MAXQUOTAS] = { };
1113 int qtype;
1114
1115 trace_ocfs2_setattr(inode, dentry,
1116 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1117 dentry->d_name.len, dentry->d_name.name,
1118 attr->ia_valid, attr->ia_mode,
1119 attr->ia_uid, attr->ia_gid);
1120
1121 /* ensuring we don't even attempt to truncate a symlink */
1122 if (S_ISLNK(inode->i_mode))
1123 attr->ia_valid &= ~ATTR_SIZE;
1124
1125 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126 | ATTR_GID | ATTR_UID | ATTR_MODE)
1127 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1128 return 0;
1129
1130 status = inode_change_ok(inode, attr);
1131 if (status)
1132 return status;
1133
1134 if (is_quota_modification(inode, attr))
1135 dquot_initialize(inode);
1136 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1137 if (size_change) {
1138 status = ocfs2_rw_lock(inode, 1);
1139 if (status < 0) {
1140 mlog_errno(status);
1141 goto bail;
1142 }
1143 }
1144
1145 status = ocfs2_inode_lock(inode, &bh, 1);
1146 if (status < 0) {
1147 if (status != -ENOENT)
1148 mlog_errno(status);
1149 goto bail_unlock_rw;
1150 }
1151
1152 if (size_change && attr->ia_size != i_size_read(inode)) {
1153 status = inode_newsize_ok(inode, attr->ia_size);
1154 if (status)
1155 goto bail_unlock;
1156
1157 inode_dio_wait(inode);
1158
1159 if (i_size_read(inode) > attr->ia_size) {
1160 if (ocfs2_should_order_data(inode)) {
1161 status = ocfs2_begin_ordered_truncate(inode,
1162 attr->ia_size);
1163 if (status)
1164 goto bail_unlock;
1165 }
1166 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1167 } else
1168 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1169 if (status < 0) {
1170 if (status != -ENOSPC)
1171 mlog_errno(status);
1172 status = -ENOSPC;
1173 goto bail_unlock;
1174 }
1175 }
1176
1177 if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1178 (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1179 /*
1180 * Gather pointers to quota structures so that allocation /
1181 * freeing of quota structures happens here and not inside
1182 * dquot_transfer() where we have problems with lock ordering
1183 */
1184 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1185 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1186 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1187 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1188 if (!transfer_to[USRQUOTA]) {
1189 status = -ESRCH;
1190 goto bail_unlock;
1191 }
1192 }
1193 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1194 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1195 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1196 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1197 if (!transfer_to[GRPQUOTA]) {
1198 status = -ESRCH;
1199 goto bail_unlock;
1200 }
1201 }
1202 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1203 2 * ocfs2_quota_trans_credits(sb));
1204 if (IS_ERR(handle)) {
1205 status = PTR_ERR(handle);
1206 mlog_errno(status);
1207 goto bail_unlock;
1208 }
1209 status = __dquot_transfer(inode, transfer_to);
1210 if (status < 0)
1211 goto bail_commit;
1212 } else {
1213 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1214 if (IS_ERR(handle)) {
1215 status = PTR_ERR(handle);
1216 mlog_errno(status);
1217 goto bail_unlock;
1218 }
1219 }
1220
1221 setattr_copy(inode, attr);
1222 mark_inode_dirty(inode);
1223
1224 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1225 if (status < 0)
1226 mlog_errno(status);
1227
1228 bail_commit:
1229 ocfs2_commit_trans(osb, handle);
1230 bail_unlock:
1231 ocfs2_inode_unlock(inode, 1);
1232 bail_unlock_rw:
1233 if (size_change)
1234 ocfs2_rw_unlock(inode, 1);
1235 bail:
1236 brelse(bh);
1237
1238 /* Release quota pointers in case we acquired them */
1239 for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1240 dqput(transfer_to[qtype]);
1241
1242 if (!status && attr->ia_valid & ATTR_MODE) {
1243 status = ocfs2_acl_chmod(inode);
1244 if (status < 0)
1245 mlog_errno(status);
1246 }
1247
1248 return status;
1249 }
1250
1251 int ocfs2_getattr(struct vfsmount *mnt,
1252 struct dentry *dentry,
1253 struct kstat *stat)
1254 {
1255 struct inode *inode = dentry->d_inode;
1256 struct super_block *sb = dentry->d_inode->i_sb;
1257 struct ocfs2_super *osb = sb->s_fs_info;
1258 int err;
1259
1260 err = ocfs2_inode_revalidate(dentry);
1261 if (err) {
1262 if (err != -ENOENT)
1263 mlog_errno(err);
1264 goto bail;
1265 }
1266
1267 generic_fillattr(inode, stat);
1268
1269 /* We set the blksize from the cluster size for performance */
1270 stat->blksize = osb->s_clustersize;
1271
1272 bail:
1273 return err;
1274 }
1275
1276 int ocfs2_permission(struct inode *inode, int mask)
1277 {
1278 int ret;
1279
1280 if (mask & MAY_NOT_BLOCK)
1281 return -ECHILD;
1282
1283 ret = ocfs2_inode_lock(inode, NULL, 0);
1284 if (ret) {
1285 if (ret != -ENOENT)
1286 mlog_errno(ret);
1287 goto out;
1288 }
1289
1290 ret = generic_permission(inode, mask);
1291
1292 ocfs2_inode_unlock(inode, 0);
1293 out:
1294 return ret;
1295 }
1296
1297 static int __ocfs2_write_remove_suid(struct inode *inode,
1298 struct buffer_head *bh)
1299 {
1300 int ret;
1301 handle_t *handle;
1302 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1303 struct ocfs2_dinode *di;
1304
1305 trace_ocfs2_write_remove_suid(
1306 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1307 inode->i_mode);
1308
1309 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1310 if (IS_ERR(handle)) {
1311 ret = PTR_ERR(handle);
1312 mlog_errno(ret);
1313 goto out;
1314 }
1315
1316 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1317 OCFS2_JOURNAL_ACCESS_WRITE);
1318 if (ret < 0) {
1319 mlog_errno(ret);
1320 goto out_trans;
1321 }
1322
1323 inode->i_mode &= ~S_ISUID;
1324 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1325 inode->i_mode &= ~S_ISGID;
1326
1327 di = (struct ocfs2_dinode *) bh->b_data;
1328 di->i_mode = cpu_to_le16(inode->i_mode);
1329
1330 ocfs2_journal_dirty(handle, bh);
1331
1332 out_trans:
1333 ocfs2_commit_trans(osb, handle);
1334 out:
1335 return ret;
1336 }
1337
1338 /*
1339 * Will look for holes and unwritten extents in the range starting at
1340 * pos for count bytes (inclusive).
1341 */
1342 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1343 size_t count)
1344 {
1345 int ret = 0;
1346 unsigned int extent_flags;
1347 u32 cpos, clusters, extent_len, phys_cpos;
1348 struct super_block *sb = inode->i_sb;
1349
1350 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1351 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1352
1353 while (clusters) {
1354 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1355 &extent_flags);
1356 if (ret < 0) {
1357 mlog_errno(ret);
1358 goto out;
1359 }
1360
1361 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1362 ret = 1;
1363 break;
1364 }
1365
1366 if (extent_len > clusters)
1367 extent_len = clusters;
1368
1369 clusters -= extent_len;
1370 cpos += extent_len;
1371 }
1372 out:
1373 return ret;
1374 }
1375
1376 static int ocfs2_write_remove_suid(struct inode *inode)
1377 {
1378 int ret;
1379 struct buffer_head *bh = NULL;
1380
1381 ret = ocfs2_read_inode_block(inode, &bh);
1382 if (ret < 0) {
1383 mlog_errno(ret);
1384 goto out;
1385 }
1386
1387 ret = __ocfs2_write_remove_suid(inode, bh);
1388 out:
1389 brelse(bh);
1390 return ret;
1391 }
1392
1393 /*
1394 * Allocate enough extents to cover the region starting at byte offset
1395 * start for len bytes. Existing extents are skipped, any extents
1396 * added are marked as "unwritten".
1397 */
1398 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1399 u64 start, u64 len)
1400 {
1401 int ret;
1402 u32 cpos, phys_cpos, clusters, alloc_size;
1403 u64 end = start + len;
1404 struct buffer_head *di_bh = NULL;
1405
1406 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1407 ret = ocfs2_read_inode_block(inode, &di_bh);
1408 if (ret) {
1409 mlog_errno(ret);
1410 goto out;
1411 }
1412
1413 /*
1414 * Nothing to do if the requested reservation range
1415 * fits within the inode.
1416 */
1417 if (ocfs2_size_fits_inline_data(di_bh, end))
1418 goto out;
1419
1420 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1421 if (ret) {
1422 mlog_errno(ret);
1423 goto out;
1424 }
1425 }
1426
1427 /*
1428 * We consider both start and len to be inclusive.
1429 */
1430 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1431 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1432 clusters -= cpos;
1433
1434 while (clusters) {
1435 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1436 &alloc_size, NULL);
1437 if (ret) {
1438 mlog_errno(ret);
1439 goto out;
1440 }
1441
1442 /*
1443 * Hole or existing extent len can be arbitrary, so
1444 * cap it to our own allocation request.
1445 */
1446 if (alloc_size > clusters)
1447 alloc_size = clusters;
1448
1449 if (phys_cpos) {
1450 /*
1451 * We already have an allocation at this
1452 * region so we can safely skip it.
1453 */
1454 goto next;
1455 }
1456
1457 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1458 if (ret) {
1459 if (ret != -ENOSPC)
1460 mlog_errno(ret);
1461 goto out;
1462 }
1463
1464 next:
1465 cpos += alloc_size;
1466 clusters -= alloc_size;
1467 }
1468
1469 ret = 0;
1470 out:
1471
1472 brelse(di_bh);
1473 return ret;
1474 }
1475
1476 /*
1477 * Truncate a byte range, avoiding pages within partial clusters. This
1478 * preserves those pages for the zeroing code to write to.
1479 */
1480 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1481 u64 byte_len)
1482 {
1483 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1484 loff_t start, end;
1485 struct address_space *mapping = inode->i_mapping;
1486
1487 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1488 end = byte_start + byte_len;
1489 end = end & ~(osb->s_clustersize - 1);
1490
1491 if (start < end) {
1492 unmap_mapping_range(mapping, start, end - start, 0);
1493 truncate_inode_pages_range(mapping, start, end - 1);
1494 }
1495 }
1496
1497 static int ocfs2_zero_partial_clusters(struct inode *inode,
1498 u64 start, u64 len)
1499 {
1500 int ret = 0;
1501 u64 tmpend, end = start + len;
1502 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503 unsigned int csize = osb->s_clustersize;
1504 handle_t *handle;
1505
1506 /*
1507 * The "start" and "end" values are NOT necessarily part of
1508 * the range whose allocation is being deleted. Rather, this
1509 * is what the user passed in with the request. We must zero
1510 * partial clusters here. There's no need to worry about
1511 * physical allocation - the zeroing code knows to skip holes.
1512 */
1513 trace_ocfs2_zero_partial_clusters(
1514 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1515 (unsigned long long)start, (unsigned long long)end);
1516
1517 /*
1518 * If both edges are on a cluster boundary then there's no
1519 * zeroing required as the region is part of the allocation to
1520 * be truncated.
1521 */
1522 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1523 goto out;
1524
1525 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1526 if (IS_ERR(handle)) {
1527 ret = PTR_ERR(handle);
1528 mlog_errno(ret);
1529 goto out;
1530 }
1531
1532 /*
1533 * We want to get the byte offset of the end of the 1st cluster.
1534 */
1535 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1536 if (tmpend > end)
1537 tmpend = end;
1538
1539 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1540 (unsigned long long)tmpend);
1541
1542 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1543 if (ret)
1544 mlog_errno(ret);
1545
1546 if (tmpend < end) {
1547 /*
1548 * This may make start and end equal, but the zeroing
1549 * code will skip any work in that case so there's no
1550 * need to catch it up here.
1551 */
1552 start = end & ~(osb->s_clustersize - 1);
1553
1554 trace_ocfs2_zero_partial_clusters_range2(
1555 (unsigned long long)start, (unsigned long long)end);
1556
1557 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1558 if (ret)
1559 mlog_errno(ret);
1560 }
1561
1562 ocfs2_commit_trans(osb, handle);
1563 out:
1564 return ret;
1565 }
1566
1567 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1568 {
1569 int i;
1570 struct ocfs2_extent_rec *rec = NULL;
1571
1572 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1573
1574 rec = &el->l_recs[i];
1575
1576 if (le32_to_cpu(rec->e_cpos) < pos)
1577 break;
1578 }
1579
1580 return i;
1581 }
1582
1583 /*
1584 * Helper to calculate the punching pos and length in one run, we handle the
1585 * following three cases in order:
1586 *
1587 * - remove the entire record
1588 * - remove a partial record
1589 * - no record needs to be removed (hole-punching completed)
1590 */
1591 static void ocfs2_calc_trunc_pos(struct inode *inode,
1592 struct ocfs2_extent_list *el,
1593 struct ocfs2_extent_rec *rec,
1594 u32 trunc_start, u32 *trunc_cpos,
1595 u32 *trunc_len, u32 *trunc_end,
1596 u64 *blkno, int *done)
1597 {
1598 int ret = 0;
1599 u32 coff, range;
1600
1601 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1602
1603 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1604 /*
1605 * remove an entire extent record.
1606 */
1607 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1608 /*
1609 * Skip holes if any.
1610 */
1611 if (range < *trunc_end)
1612 *trunc_end = range;
1613 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1614 *blkno = le64_to_cpu(rec->e_blkno);
1615 *trunc_end = le32_to_cpu(rec->e_cpos);
1616 } else if (range > trunc_start) {
1617 /*
1618 * remove a partial extent record, which means we're
1619 * removing the last extent record.
1620 */
1621 *trunc_cpos = trunc_start;
1622 /*
1623 * skip hole if any.
1624 */
1625 if (range < *trunc_end)
1626 *trunc_end = range;
1627 *trunc_len = *trunc_end - trunc_start;
1628 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1629 *blkno = le64_to_cpu(rec->e_blkno) +
1630 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1631 *trunc_end = trunc_start;
1632 } else {
1633 /*
1634 * It may have two following possibilities:
1635 *
1636 * - last record has been removed
1637 * - trunc_start was within a hole
1638 *
1639 * both two cases mean the completion of hole punching.
1640 */
1641 ret = 1;
1642 }
1643
1644 *done = ret;
1645 }
1646
1647 static int ocfs2_remove_inode_range(struct inode *inode,
1648 struct buffer_head *di_bh, u64 byte_start,
1649 u64 byte_len)
1650 {
1651 int ret = 0, flags = 0, done = 0, i;
1652 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1653 u32 cluster_in_el;
1654 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1655 struct ocfs2_cached_dealloc_ctxt dealloc;
1656 struct address_space *mapping = inode->i_mapping;
1657 struct ocfs2_extent_tree et;
1658 struct ocfs2_path *path = NULL;
1659 struct ocfs2_extent_list *el = NULL;
1660 struct ocfs2_extent_rec *rec = NULL;
1661 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1662 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1663
1664 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1665 ocfs2_init_dealloc_ctxt(&dealloc);
1666
1667 trace_ocfs2_remove_inode_range(
1668 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1669 (unsigned long long)byte_start,
1670 (unsigned long long)byte_len);
1671
1672 if (byte_len == 0)
1673 return 0;
1674
1675 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1676 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1677 byte_start + byte_len, 0);
1678 if (ret) {
1679 mlog_errno(ret);
1680 goto out;
1681 }
1682 /*
1683 * There's no need to get fancy with the page cache
1684 * truncate of an inline-data inode. We're talking
1685 * about less than a page here, which will be cached
1686 * in the dinode buffer anyway.
1687 */
1688 unmap_mapping_range(mapping, 0, 0, 0);
1689 truncate_inode_pages(mapping, 0);
1690 goto out;
1691 }
1692
1693 /*
1694 * For reflinks, we may need to CoW 2 clusters which might be
1695 * partially zero'd later, if hole's start and end offset were
1696 * within one cluster(means is not exactly aligned to clustersize).
1697 */
1698
1699 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1700
1701 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1702 if (ret) {
1703 mlog_errno(ret);
1704 goto out;
1705 }
1706
1707 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1708 if (ret) {
1709 mlog_errno(ret);
1710 goto out;
1711 }
1712 }
1713
1714 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1715 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1716 cluster_in_el = trunc_end;
1717
1718 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1719 if (ret) {
1720 mlog_errno(ret);
1721 goto out;
1722 }
1723
1724 path = ocfs2_new_path_from_et(&et);
1725 if (!path) {
1726 ret = -ENOMEM;
1727 mlog_errno(ret);
1728 goto out;
1729 }
1730
1731 while (trunc_end > trunc_start) {
1732
1733 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1734 cluster_in_el);
1735 if (ret) {
1736 mlog_errno(ret);
1737 goto out;
1738 }
1739
1740 el = path_leaf_el(path);
1741
1742 i = ocfs2_find_rec(el, trunc_end);
1743 /*
1744 * Need to go to previous extent block.
1745 */
1746 if (i < 0) {
1747 if (path->p_tree_depth == 0)
1748 break;
1749
1750 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1751 path,
1752 &cluster_in_el);
1753 if (ret) {
1754 mlog_errno(ret);
1755 goto out;
1756 }
1757
1758 /*
1759 * We've reached the leftmost extent block,
1760 * it's safe to leave.
1761 */
1762 if (cluster_in_el == 0)
1763 break;
1764
1765 /*
1766 * The 'pos' searched for previous extent block is
1767 * always one cluster less than actual trunc_end.
1768 */
1769 trunc_end = cluster_in_el + 1;
1770
1771 ocfs2_reinit_path(path, 1);
1772
1773 continue;
1774
1775 } else
1776 rec = &el->l_recs[i];
1777
1778 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1779 &trunc_len, &trunc_end, &blkno, &done);
1780 if (done)
1781 break;
1782
1783 flags = rec->e_flags;
1784 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1785
1786 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1787 phys_cpos, trunc_len, flags,
1788 &dealloc, refcount_loc);
1789 if (ret < 0) {
1790 mlog_errno(ret);
1791 goto out;
1792 }
1793
1794 cluster_in_el = trunc_end;
1795
1796 ocfs2_reinit_path(path, 1);
1797 }
1798
1799 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1800
1801 out:
1802 ocfs2_schedule_truncate_log_flush(osb, 1);
1803 ocfs2_run_deallocs(osb, &dealloc);
1804
1805 return ret;
1806 }
1807
1808 /*
1809 * Parts of this function taken from xfs_change_file_space()
1810 */
1811 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1812 loff_t f_pos, unsigned int cmd,
1813 struct ocfs2_space_resv *sr,
1814 int change_size)
1815 {
1816 int ret;
1817 s64 llen;
1818 loff_t size;
1819 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1820 struct buffer_head *di_bh = NULL;
1821 handle_t *handle;
1822 unsigned long long max_off = inode->i_sb->s_maxbytes;
1823
1824 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1825 return -EROFS;
1826
1827 mutex_lock(&inode->i_mutex);
1828
1829 /*
1830 * This prevents concurrent writes on other nodes
1831 */
1832 ret = ocfs2_rw_lock(inode, 1);
1833 if (ret) {
1834 mlog_errno(ret);
1835 goto out;
1836 }
1837
1838 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1839 if (ret) {
1840 mlog_errno(ret);
1841 goto out_rw_unlock;
1842 }
1843
1844 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1845 ret = -EPERM;
1846 goto out_inode_unlock;
1847 }
1848
1849 switch (sr->l_whence) {
1850 case 0: /*SEEK_SET*/
1851 break;
1852 case 1: /*SEEK_CUR*/
1853 sr->l_start += f_pos;
1854 break;
1855 case 2: /*SEEK_END*/
1856 sr->l_start += i_size_read(inode);
1857 break;
1858 default:
1859 ret = -EINVAL;
1860 goto out_inode_unlock;
1861 }
1862 sr->l_whence = 0;
1863
1864 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1865
1866 if (sr->l_start < 0
1867 || sr->l_start > max_off
1868 || (sr->l_start + llen) < 0
1869 || (sr->l_start + llen) > max_off) {
1870 ret = -EINVAL;
1871 goto out_inode_unlock;
1872 }
1873 size = sr->l_start + sr->l_len;
1874
1875 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1876 if (sr->l_len <= 0) {
1877 ret = -EINVAL;
1878 goto out_inode_unlock;
1879 }
1880 }
1881
1882 if (file && should_remove_suid(file->f_path.dentry)) {
1883 ret = __ocfs2_write_remove_suid(inode, di_bh);
1884 if (ret) {
1885 mlog_errno(ret);
1886 goto out_inode_unlock;
1887 }
1888 }
1889
1890 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1891 switch (cmd) {
1892 case OCFS2_IOC_RESVSP:
1893 case OCFS2_IOC_RESVSP64:
1894 /*
1895 * This takes unsigned offsets, but the signed ones we
1896 * pass have been checked against overflow above.
1897 */
1898 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1899 sr->l_len);
1900 break;
1901 case OCFS2_IOC_UNRESVSP:
1902 case OCFS2_IOC_UNRESVSP64:
1903 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1904 sr->l_len);
1905 break;
1906 default:
1907 ret = -EINVAL;
1908 }
1909 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1910 if (ret) {
1911 mlog_errno(ret);
1912 goto out_inode_unlock;
1913 }
1914
1915 /*
1916 * We update c/mtime for these changes
1917 */
1918 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1919 if (IS_ERR(handle)) {
1920 ret = PTR_ERR(handle);
1921 mlog_errno(ret);
1922 goto out_inode_unlock;
1923 }
1924
1925 if (change_size && i_size_read(inode) < size)
1926 i_size_write(inode, size);
1927
1928 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1929 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1930 if (ret < 0)
1931 mlog_errno(ret);
1932
1933 if (file && (file->f_flags & O_SYNC))
1934 handle->h_sync = 1;
1935
1936 ocfs2_commit_trans(osb, handle);
1937
1938 out_inode_unlock:
1939 brelse(di_bh);
1940 ocfs2_inode_unlock(inode, 1);
1941 out_rw_unlock:
1942 ocfs2_rw_unlock(inode, 1);
1943
1944 out:
1945 mutex_unlock(&inode->i_mutex);
1946 return ret;
1947 }
1948
1949 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1950 struct ocfs2_space_resv *sr)
1951 {
1952 struct inode *inode = file->f_path.dentry->d_inode;
1953 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1954 int ret;
1955
1956 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1957 !ocfs2_writes_unwritten_extents(osb))
1958 return -ENOTTY;
1959 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1960 !ocfs2_sparse_alloc(osb))
1961 return -ENOTTY;
1962
1963 if (!S_ISREG(inode->i_mode))
1964 return -EINVAL;
1965
1966 if (!(file->f_mode & FMODE_WRITE))
1967 return -EBADF;
1968
1969 ret = mnt_want_write_file(file);
1970 if (ret)
1971 return ret;
1972 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1973 mnt_drop_write_file(file);
1974 return ret;
1975 }
1976
1977 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1978 loff_t len)
1979 {
1980 struct inode *inode = file->f_path.dentry->d_inode;
1981 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1982 struct ocfs2_space_resv sr;
1983 int change_size = 1;
1984 int cmd = OCFS2_IOC_RESVSP64;
1985
1986 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1987 return -EOPNOTSUPP;
1988 if (!ocfs2_writes_unwritten_extents(osb))
1989 return -EOPNOTSUPP;
1990
1991 if (mode & FALLOC_FL_KEEP_SIZE)
1992 change_size = 0;
1993
1994 if (mode & FALLOC_FL_PUNCH_HOLE)
1995 cmd = OCFS2_IOC_UNRESVSP64;
1996
1997 sr.l_whence = 0;
1998 sr.l_start = (s64)offset;
1999 sr.l_len = (s64)len;
2000
2001 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2002 change_size);
2003 }
2004
2005 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2006 size_t count)
2007 {
2008 int ret = 0;
2009 unsigned int extent_flags;
2010 u32 cpos, clusters, extent_len, phys_cpos;
2011 struct super_block *sb = inode->i_sb;
2012
2013 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2014 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2015 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2016 return 0;
2017
2018 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2019 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2020
2021 while (clusters) {
2022 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2023 &extent_flags);
2024 if (ret < 0) {
2025 mlog_errno(ret);
2026 goto out;
2027 }
2028
2029 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2030 ret = 1;
2031 break;
2032 }
2033
2034 if (extent_len > clusters)
2035 extent_len = clusters;
2036
2037 clusters -= extent_len;
2038 cpos += extent_len;
2039 }
2040 out:
2041 return ret;
2042 }
2043
2044 static void ocfs2_aiodio_wait(struct inode *inode)
2045 {
2046 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2047
2048 wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2049 }
2050
2051 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2052 {
2053 int blockmask = inode->i_sb->s_blocksize - 1;
2054 loff_t final_size = pos + count;
2055
2056 if ((pos & blockmask) || (final_size & blockmask))
2057 return 1;
2058 return 0;
2059 }
2060
2061 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2062 struct file *file,
2063 loff_t pos, size_t count,
2064 int *meta_level)
2065 {
2066 int ret;
2067 struct buffer_head *di_bh = NULL;
2068 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2069 u32 clusters =
2070 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2071
2072 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2073 if (ret) {
2074 mlog_errno(ret);
2075 goto out;
2076 }
2077
2078 *meta_level = 1;
2079
2080 ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2081 if (ret)
2082 mlog_errno(ret);
2083 out:
2084 brelse(di_bh);
2085 return ret;
2086 }
2087
2088 static int ocfs2_prepare_inode_for_write(struct file *file,
2089 loff_t *ppos,
2090 size_t count,
2091 int appending,
2092 int *direct_io,
2093 int *has_refcount)
2094 {
2095 int ret = 0, meta_level = 0;
2096 struct dentry *dentry = file->f_path.dentry;
2097 struct inode *inode = dentry->d_inode;
2098 loff_t saved_pos = 0, end;
2099
2100 /*
2101 * We start with a read level meta lock and only jump to an ex
2102 * if we need to make modifications here.
2103 */
2104 for(;;) {
2105 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2106 if (ret < 0) {
2107 meta_level = -1;
2108 mlog_errno(ret);
2109 goto out;
2110 }
2111
2112 /* Clear suid / sgid if necessary. We do this here
2113 * instead of later in the write path because
2114 * remove_suid() calls ->setattr without any hint that
2115 * we may have already done our cluster locking. Since
2116 * ocfs2_setattr() *must* take cluster locks to
2117 * proceed, this will lead us to recursively lock the
2118 * inode. There's also the dinode i_size state which
2119 * can be lost via setattr during extending writes (we
2120 * set inode->i_size at the end of a write. */
2121 if (should_remove_suid(dentry)) {
2122 if (meta_level == 0) {
2123 ocfs2_inode_unlock(inode, meta_level);
2124 meta_level = 1;
2125 continue;
2126 }
2127
2128 ret = ocfs2_write_remove_suid(inode);
2129 if (ret < 0) {
2130 mlog_errno(ret);
2131 goto out_unlock;
2132 }
2133 }
2134
2135 /* work on a copy of ppos until we're sure that we won't have
2136 * to recalculate it due to relocking. */
2137 if (appending)
2138 saved_pos = i_size_read(inode);
2139 else
2140 saved_pos = *ppos;
2141
2142 end = saved_pos + count;
2143
2144 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2145 if (ret == 1) {
2146 ocfs2_inode_unlock(inode, meta_level);
2147 meta_level = -1;
2148
2149 ret = ocfs2_prepare_inode_for_refcount(inode,
2150 file,
2151 saved_pos,
2152 count,
2153 &meta_level);
2154 if (has_refcount)
2155 *has_refcount = 1;
2156 if (direct_io)
2157 *direct_io = 0;
2158 }
2159
2160 if (ret < 0) {
2161 mlog_errno(ret);
2162 goto out_unlock;
2163 }
2164
2165 /*
2166 * Skip the O_DIRECT checks if we don't need
2167 * them.
2168 */
2169 if (!direct_io || !(*direct_io))
2170 break;
2171
2172 /*
2173 * There's no sane way to do direct writes to an inode
2174 * with inline data.
2175 */
2176 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2177 *direct_io = 0;
2178 break;
2179 }
2180
2181 /*
2182 * Allowing concurrent direct writes means
2183 * i_size changes wouldn't be synchronized, so
2184 * one node could wind up truncating another
2185 * nodes writes.
2186 */
2187 if (end > i_size_read(inode)) {
2188 *direct_io = 0;
2189 break;
2190 }
2191
2192 /*
2193 * We don't fill holes during direct io, so
2194 * check for them here. If any are found, the
2195 * caller will have to retake some cluster
2196 * locks and initiate the io as buffered.
2197 */
2198 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2199 if (ret == 1) {
2200 *direct_io = 0;
2201 ret = 0;
2202 } else if (ret < 0)
2203 mlog_errno(ret);
2204 break;
2205 }
2206
2207 if (appending)
2208 *ppos = saved_pos;
2209
2210 out_unlock:
2211 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2212 saved_pos, appending, count,
2213 direct_io, has_refcount);
2214
2215 if (meta_level >= 0)
2216 ocfs2_inode_unlock(inode, meta_level);
2217
2218 out:
2219 return ret;
2220 }
2221
2222 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2223 const struct iovec *iov,
2224 unsigned long nr_segs,
2225 loff_t pos)
2226 {
2227 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
2228 int can_do_direct, has_refcount = 0;
2229 ssize_t written = 0;
2230 size_t ocount; /* original count */
2231 size_t count; /* after file limit checks */
2232 loff_t old_size, *ppos = &iocb->ki_pos;
2233 u32 old_clusters;
2234 struct file *file = iocb->ki_filp;
2235 struct inode *inode = file->f_path.dentry->d_inode;
2236 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2237 int full_coherency = !(osb->s_mount_opt &
2238 OCFS2_MOUNT_COHERENCY_BUFFERED);
2239 int unaligned_dio = 0;
2240
2241 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2242 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2243 file->f_path.dentry->d_name.len,
2244 file->f_path.dentry->d_name.name,
2245 (unsigned int)nr_segs);
2246
2247 if (iocb->ki_left == 0)
2248 return 0;
2249
2250 sb_start_write(inode->i_sb);
2251
2252 appending = file->f_flags & O_APPEND ? 1 : 0;
2253 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2254
2255 mutex_lock(&inode->i_mutex);
2256
2257 ocfs2_iocb_clear_sem_locked(iocb);
2258
2259 relock:
2260 /* to match setattr's i_mutex -> rw_lock ordering */
2261 if (direct_io) {
2262 have_alloc_sem = 1;
2263 /* communicate with ocfs2_dio_end_io */
2264 ocfs2_iocb_set_sem_locked(iocb);
2265 }
2266
2267 /*
2268 * Concurrent O_DIRECT writes are allowed with
2269 * mount_option "coherency=buffered".
2270 */
2271 rw_level = (!direct_io || full_coherency);
2272
2273 ret = ocfs2_rw_lock(inode, rw_level);
2274 if (ret < 0) {
2275 mlog_errno(ret);
2276 goto out_sems;
2277 }
2278
2279 /*
2280 * O_DIRECT writes with "coherency=full" need to take EX cluster
2281 * inode_lock to guarantee coherency.
2282 */
2283 if (direct_io && full_coherency) {
2284 /*
2285 * We need to take and drop the inode lock to force
2286 * other nodes to drop their caches. Buffered I/O
2287 * already does this in write_begin().
2288 */
2289 ret = ocfs2_inode_lock(inode, NULL, 1);
2290 if (ret < 0) {
2291 mlog_errno(ret);
2292 goto out_sems;
2293 }
2294
2295 ocfs2_inode_unlock(inode, 1);
2296 }
2297
2298 can_do_direct = direct_io;
2299 ret = ocfs2_prepare_inode_for_write(file, ppos,
2300 iocb->ki_left, appending,
2301 &can_do_direct, &has_refcount);
2302 if (ret < 0) {
2303 mlog_errno(ret);
2304 goto out;
2305 }
2306
2307 if (direct_io && !is_sync_kiocb(iocb))
2308 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_left,
2309 *ppos);
2310
2311 /*
2312 * We can't complete the direct I/O as requested, fall back to
2313 * buffered I/O.
2314 */
2315 if (direct_io && !can_do_direct) {
2316 ocfs2_rw_unlock(inode, rw_level);
2317
2318 have_alloc_sem = 0;
2319 rw_level = -1;
2320
2321 direct_io = 0;
2322 goto relock;
2323 }
2324
2325 if (unaligned_dio) {
2326 /*
2327 * Wait on previous unaligned aio to complete before
2328 * proceeding.
2329 */
2330 ocfs2_aiodio_wait(inode);
2331
2332 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2333 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2334 ocfs2_iocb_set_unaligned_aio(iocb);
2335 }
2336
2337 /*
2338 * To later detect whether a journal commit for sync writes is
2339 * necessary, we sample i_size, and cluster count here.
2340 */
2341 old_size = i_size_read(inode);
2342 old_clusters = OCFS2_I(inode)->ip_clusters;
2343
2344 /* communicate with ocfs2_dio_end_io */
2345 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2346
2347 ret = generic_segment_checks(iov, &nr_segs, &ocount,
2348 VERIFY_READ);
2349 if (ret)
2350 goto out_dio;
2351
2352 count = ocount;
2353 ret = generic_write_checks(file, ppos, &count,
2354 S_ISBLK(inode->i_mode));
2355 if (ret)
2356 goto out_dio;
2357
2358 if (direct_io) {
2359 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2360 ppos, count, ocount);
2361 if (written < 0) {
2362 ret = written;
2363 goto out_dio;
2364 }
2365 } else {
2366 current->backing_dev_info = file->f_mapping->backing_dev_info;
2367 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2368 ppos, count, 0);
2369 current->backing_dev_info = NULL;
2370 }
2371
2372 out_dio:
2373 /* buffered aio wouldn't have proper lock coverage today */
2374 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2375
2376 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2377 ((file->f_flags & O_DIRECT) && !direct_io)) {
2378 ret = filemap_fdatawrite_range(file->f_mapping, pos,
2379 pos + count - 1);
2380 if (ret < 0)
2381 written = ret;
2382
2383 if (!ret && ((old_size != i_size_read(inode)) ||
2384 (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2385 has_refcount)) {
2386 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2387 if (ret < 0)
2388 written = ret;
2389 }
2390
2391 if (!ret)
2392 ret = filemap_fdatawait_range(file->f_mapping, pos,
2393 pos + count - 1);
2394 }
2395
2396 /*
2397 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2398 * function pointer which is called when o_direct io completes so that
2399 * it can unlock our rw lock.
2400 * Unfortunately there are error cases which call end_io and others
2401 * that don't. so we don't have to unlock the rw_lock if either an
2402 * async dio is going to do it in the future or an end_io after an
2403 * error has already done it.
2404 */
2405 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2406 rw_level = -1;
2407 have_alloc_sem = 0;
2408 unaligned_dio = 0;
2409 }
2410
2411 if (unaligned_dio) {
2412 ocfs2_iocb_clear_unaligned_aio(iocb);
2413 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2414 }
2415
2416 out:
2417 if (rw_level != -1)
2418 ocfs2_rw_unlock(inode, rw_level);
2419
2420 out_sems:
2421 if (have_alloc_sem)
2422 ocfs2_iocb_clear_sem_locked(iocb);
2423
2424 mutex_unlock(&inode->i_mutex);
2425 sb_end_write(inode->i_sb);
2426
2427 if (written)
2428 ret = written;
2429 return ret;
2430 }
2431
2432 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2433 struct file *out,
2434 struct splice_desc *sd)
2435 {
2436 int ret;
2437
2438 ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2439 sd->total_len, 0, NULL, NULL);
2440 if (ret < 0) {
2441 mlog_errno(ret);
2442 return ret;
2443 }
2444
2445 return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2446 }
2447
2448 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2449 struct file *out,
2450 loff_t *ppos,
2451 size_t len,
2452 unsigned int flags)
2453 {
2454 int ret;
2455 struct address_space *mapping = out->f_mapping;
2456 struct inode *inode = mapping->host;
2457 struct splice_desc sd = {
2458 .total_len = len,
2459 .flags = flags,
2460 .pos = *ppos,
2461 .u.file = out,
2462 };
2463
2464
2465 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2466 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2467 out->f_path.dentry->d_name.len,
2468 out->f_path.dentry->d_name.name, len);
2469
2470 if (pipe->inode)
2471 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2472
2473 splice_from_pipe_begin(&sd);
2474 do {
2475 ret = splice_from_pipe_next(pipe, &sd);
2476 if (ret <= 0)
2477 break;
2478
2479 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2480 ret = ocfs2_rw_lock(inode, 1);
2481 if (ret < 0)
2482 mlog_errno(ret);
2483 else {
2484 ret = ocfs2_splice_to_file(pipe, out, &sd);
2485 ocfs2_rw_unlock(inode, 1);
2486 }
2487 mutex_unlock(&inode->i_mutex);
2488 } while (ret > 0);
2489 splice_from_pipe_end(pipe, &sd);
2490
2491 if (pipe->inode)
2492 mutex_unlock(&pipe->inode->i_mutex);
2493
2494 if (sd.num_spliced)
2495 ret = sd.num_spliced;
2496
2497 if (ret > 0) {
2498 int err;
2499
2500 err = generic_write_sync(out, *ppos, ret);
2501 if (err)
2502 ret = err;
2503 else
2504 *ppos += ret;
2505
2506 balance_dirty_pages_ratelimited(mapping);
2507 }
2508
2509 return ret;
2510 }
2511
2512 static ssize_t ocfs2_file_splice_read(struct file *in,
2513 loff_t *ppos,
2514 struct pipe_inode_info *pipe,
2515 size_t len,
2516 unsigned int flags)
2517 {
2518 int ret = 0, lock_level = 0;
2519 struct inode *inode = in->f_path.dentry->d_inode;
2520
2521 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2522 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2523 in->f_path.dentry->d_name.len,
2524 in->f_path.dentry->d_name.name, len);
2525
2526 /*
2527 * See the comment in ocfs2_file_aio_read()
2528 */
2529 ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2530 if (ret < 0) {
2531 mlog_errno(ret);
2532 goto bail;
2533 }
2534 ocfs2_inode_unlock(inode, lock_level);
2535
2536 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2537
2538 bail:
2539 return ret;
2540 }
2541
2542 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2543 const struct iovec *iov,
2544 unsigned long nr_segs,
2545 loff_t pos)
2546 {
2547 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2548 struct file *filp = iocb->ki_filp;
2549 struct inode *inode = filp->f_path.dentry->d_inode;
2550
2551 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2552 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2553 filp->f_path.dentry->d_name.len,
2554 filp->f_path.dentry->d_name.name, nr_segs);
2555
2556
2557 if (!inode) {
2558 ret = -EINVAL;
2559 mlog_errno(ret);
2560 goto bail;
2561 }
2562
2563 ocfs2_iocb_clear_sem_locked(iocb);
2564
2565 /*
2566 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2567 * need locks to protect pending reads from racing with truncate.
2568 */
2569 if (filp->f_flags & O_DIRECT) {
2570 have_alloc_sem = 1;
2571 ocfs2_iocb_set_sem_locked(iocb);
2572
2573 ret = ocfs2_rw_lock(inode, 0);
2574 if (ret < 0) {
2575 mlog_errno(ret);
2576 goto bail;
2577 }
2578 rw_level = 0;
2579 /* communicate with ocfs2_dio_end_io */
2580 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2581 }
2582
2583 /*
2584 * We're fine letting folks race truncates and extending
2585 * writes with read across the cluster, just like they can
2586 * locally. Hence no rw_lock during read.
2587 *
2588 * Take and drop the meta data lock to update inode fields
2589 * like i_size. This allows the checks down below
2590 * generic_file_aio_read() a chance of actually working.
2591 */
2592 ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2593 if (ret < 0) {
2594 mlog_errno(ret);
2595 goto bail;
2596 }
2597 ocfs2_inode_unlock(inode, lock_level);
2598
2599 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2600 trace_generic_file_aio_read_ret(ret);
2601
2602 /* buffered aio wouldn't have proper lock coverage today */
2603 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2604
2605 /* see ocfs2_file_aio_write */
2606 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2607 rw_level = -1;
2608 have_alloc_sem = 0;
2609 }
2610
2611 bail:
2612 if (have_alloc_sem)
2613 ocfs2_iocb_clear_sem_locked(iocb);
2614
2615 if (rw_level != -1)
2616 ocfs2_rw_unlock(inode, rw_level);
2617
2618 return ret;
2619 }
2620
2621 /* Refer generic_file_llseek_unlocked() */
2622 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2623 {
2624 struct inode *inode = file->f_mapping->host;
2625 int ret = 0;
2626
2627 mutex_lock(&inode->i_mutex);
2628
2629 switch (whence) {
2630 case SEEK_SET:
2631 break;
2632 case SEEK_END:
2633 offset += inode->i_size;
2634 break;
2635 case SEEK_CUR:
2636 if (offset == 0) {
2637 offset = file->f_pos;
2638 goto out;
2639 }
2640 offset += file->f_pos;
2641 break;
2642 case SEEK_DATA:
2643 case SEEK_HOLE:
2644 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2645 if (ret)
2646 goto out;
2647 break;
2648 default:
2649 ret = -EINVAL;
2650 goto out;
2651 }
2652
2653 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
2654 ret = -EINVAL;
2655 if (!ret && offset > inode->i_sb->s_maxbytes)
2656 ret = -EINVAL;
2657 if (ret)
2658 goto out;
2659
2660 if (offset != file->f_pos) {
2661 file->f_pos = offset;
2662 file->f_version = 0;
2663 }
2664
2665 out:
2666 mutex_unlock(&inode->i_mutex);
2667 if (ret)
2668 return ret;
2669 return offset;
2670 }
2671
2672 const struct inode_operations ocfs2_file_iops = {
2673 .setattr = ocfs2_setattr,
2674 .getattr = ocfs2_getattr,
2675 .permission = ocfs2_permission,
2676 .setxattr = generic_setxattr,
2677 .getxattr = generic_getxattr,
2678 .listxattr = ocfs2_listxattr,
2679 .removexattr = generic_removexattr,
2680 .fiemap = ocfs2_fiemap,
2681 .get_acl = ocfs2_iop_get_acl,
2682 };
2683
2684 const struct inode_operations ocfs2_special_file_iops = {
2685 .setattr = ocfs2_setattr,
2686 .getattr = ocfs2_getattr,
2687 .permission = ocfs2_permission,
2688 .get_acl = ocfs2_iop_get_acl,
2689 };
2690
2691 /*
2692 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2693 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2694 */
2695 const struct file_operations ocfs2_fops = {
2696 .llseek = ocfs2_file_llseek,
2697 .read = do_sync_read,
2698 .write = do_sync_write,
2699 .mmap = ocfs2_mmap,
2700 .fsync = ocfs2_sync_file,
2701 .release = ocfs2_file_release,
2702 .open = ocfs2_file_open,
2703 .aio_read = ocfs2_file_aio_read,
2704 .aio_write = ocfs2_file_aio_write,
2705 .unlocked_ioctl = ocfs2_ioctl,
2706 #ifdef CONFIG_COMPAT
2707 .compat_ioctl = ocfs2_compat_ioctl,
2708 #endif
2709 .lock = ocfs2_lock,
2710 .flock = ocfs2_flock,
2711 .splice_read = ocfs2_file_splice_read,
2712 .splice_write = ocfs2_file_splice_write,
2713 .fallocate = ocfs2_fallocate,
2714 };
2715
2716 const struct file_operations ocfs2_dops = {
2717 .llseek = generic_file_llseek,
2718 .read = generic_read_dir,
2719 .readdir = ocfs2_readdir,
2720 .fsync = ocfs2_sync_file,
2721 .release = ocfs2_dir_release,
2722 .open = ocfs2_dir_open,
2723 .unlocked_ioctl = ocfs2_ioctl,
2724 #ifdef CONFIG_COMPAT
2725 .compat_ioctl = ocfs2_compat_ioctl,
2726 #endif
2727 .lock = ocfs2_lock,
2728 .flock = ocfs2_flock,
2729 };
2730
2731 /*
2732 * POSIX-lockless variants of our file_operations.
2733 *
2734 * These will be used if the underlying cluster stack does not support
2735 * posix file locking, if the user passes the "localflocks" mount
2736 * option, or if we have a local-only fs.
2737 *
2738 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2739 * so we still want it in the case of no stack support for
2740 * plocks. Internally, it will do the right thing when asked to ignore
2741 * the cluster.
2742 */
2743 const struct file_operations ocfs2_fops_no_plocks = {
2744 .llseek = ocfs2_file_llseek,
2745 .read = do_sync_read,
2746 .write = do_sync_write,
2747 .mmap = ocfs2_mmap,
2748 .fsync = ocfs2_sync_file,
2749 .release = ocfs2_file_release,
2750 .open = ocfs2_file_open,
2751 .aio_read = ocfs2_file_aio_read,
2752 .aio_write = ocfs2_file_aio_write,
2753 .unlocked_ioctl = ocfs2_ioctl,
2754 #ifdef CONFIG_COMPAT
2755 .compat_ioctl = ocfs2_compat_ioctl,
2756 #endif
2757 .flock = ocfs2_flock,
2758 .splice_read = ocfs2_file_splice_read,
2759 .splice_write = ocfs2_file_splice_write,
2760 .fallocate = ocfs2_fallocate,
2761 };
2762
2763 const struct file_operations ocfs2_dops_no_plocks = {
2764 .llseek = generic_file_llseek,
2765 .read = generic_read_dir,
2766 .readdir = ocfs2_readdir,
2767 .fsync = ocfs2_sync_file,
2768 .release = ocfs2_dir_release,
2769 .open = ocfs2_dir_open,
2770 .unlocked_ioctl = ocfs2_ioctl,
2771 #ifdef CONFIG_COMPAT
2772 .compat_ioctl = ocfs2_compat_ioctl,
2773 #endif
2774 .flock = ocfs2_flock,
2775 };