Merge branch 'rmobile-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 struct ocfs2_file_private *fp;
70
71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 if (!fp)
73 return -ENOMEM;
74
75 fp->fp_file = file;
76 mutex_init(&fp->fp_mutex);
77 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 file->private_data = fp;
79
80 return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 struct ocfs2_file_private *fp = file->private_data;
86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88 if (fp) {
89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 ocfs2_lock_res_free(&fp->fp_flock);
91 kfree(fp);
92 file->private_data = NULL;
93 }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 int status;
99 int mode = file->f_flags;
100 struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 file->f_path.dentry->d_name.len,
105 file->f_path.dentry->d_name.name, mode);
106
107 if (file->f_mode & FMODE_WRITE)
108 dquot_initialize(inode);
109
110 spin_lock(&oi->ip_lock);
111
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 spin_unlock(&oi->ip_lock);
117
118 status = -ENOENT;
119 goto leave;
120 }
121
122 if (mode & O_DIRECT)
123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125 oi->ip_open_count++;
126 spin_unlock(&oi->ip_lock);
127
128 status = ocfs2_init_file_private(inode, file);
129 if (status) {
130 /*
131 * We want to set open count back if we're failing the
132 * open.
133 */
134 spin_lock(&oi->ip_lock);
135 oi->ip_open_count--;
136 spin_unlock(&oi->ip_lock);
137 }
138
139 leave:
140 return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147 spin_lock(&oi->ip_lock);
148 if (!--oi->ip_open_count)
149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 oi->ip_blkno,
153 file->f_path.dentry->d_name.len,
154 file->f_path.dentry->d_name.name,
155 oi->ip_open_count);
156 spin_unlock(&oi->ip_lock);
157
158 ocfs2_free_file_private(inode, file);
159
160 return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 ocfs2_free_file_private(inode, file);
171 return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, int datasync)
175 {
176 int err = 0;
177 journal_t *journal;
178 struct inode *inode = file->f_mapping->host;
179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
180
181 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
182 OCFS2_I(inode)->ip_blkno,
183 file->f_path.dentry->d_name.len,
184 file->f_path.dentry->d_name.name,
185 (unsigned long long)datasync);
186
187 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
188 /*
189 * We still have to flush drive's caches to get data to the
190 * platter
191 */
192 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
193 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
194 goto bail;
195 }
196
197 journal = osb->journal->j_journal;
198 err = jbd2_journal_force_commit(journal);
199
200 bail:
201 if (err)
202 mlog_errno(err);
203
204 return (err < 0) ? -EIO : 0;
205 }
206
207 int ocfs2_should_update_atime(struct inode *inode,
208 struct vfsmount *vfsmnt)
209 {
210 struct timespec now;
211 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
212
213 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
214 return 0;
215
216 if ((inode->i_flags & S_NOATIME) ||
217 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
218 return 0;
219
220 /*
221 * We can be called with no vfsmnt structure - NFSD will
222 * sometimes do this.
223 *
224 * Note that our action here is different than touch_atime() -
225 * if we can't tell whether this is a noatime mount, then we
226 * don't know whether to trust the value of s_atime_quantum.
227 */
228 if (vfsmnt == NULL)
229 return 0;
230
231 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
232 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 return 0;
234
235 if (vfsmnt->mnt_flags & MNT_RELATIME) {
236 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
237 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
238 return 1;
239
240 return 0;
241 }
242
243 now = CURRENT_TIME;
244 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
245 return 0;
246 else
247 return 1;
248 }
249
250 int ocfs2_update_inode_atime(struct inode *inode,
251 struct buffer_head *bh)
252 {
253 int ret;
254 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
255 handle_t *handle;
256 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
257
258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
259 if (IS_ERR(handle)) {
260 ret = PTR_ERR(handle);
261 mlog_errno(ret);
262 goto out;
263 }
264
265 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
266 OCFS2_JOURNAL_ACCESS_WRITE);
267 if (ret) {
268 mlog_errno(ret);
269 goto out_commit;
270 }
271
272 /*
273 * Don't use ocfs2_mark_inode_dirty() here as we don't always
274 * have i_mutex to guard against concurrent changes to other
275 * inode fields.
276 */
277 inode->i_atime = CURRENT_TIME;
278 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
279 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
280 ocfs2_journal_dirty(handle, bh);
281
282 out_commit:
283 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
284 out:
285 return ret;
286 }
287
288 static int ocfs2_set_inode_size(handle_t *handle,
289 struct inode *inode,
290 struct buffer_head *fe_bh,
291 u64 new_i_size)
292 {
293 int status;
294
295 i_size_write(inode, new_i_size);
296 inode->i_blocks = ocfs2_inode_sector_count(inode);
297 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
298
299 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 if (status < 0) {
301 mlog_errno(status);
302 goto bail;
303 }
304
305 bail:
306 return status;
307 }
308
309 int ocfs2_simple_size_update(struct inode *inode,
310 struct buffer_head *di_bh,
311 u64 new_i_size)
312 {
313 int ret;
314 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 handle_t *handle = NULL;
316
317 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 if (IS_ERR(handle)) {
319 ret = PTR_ERR(handle);
320 mlog_errno(ret);
321 goto out;
322 }
323
324 ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 new_i_size);
326 if (ret < 0)
327 mlog_errno(ret);
328
329 ocfs2_commit_trans(osb, handle);
330 out:
331 return ret;
332 }
333
334 static int ocfs2_cow_file_pos(struct inode *inode,
335 struct buffer_head *fe_bh,
336 u64 offset)
337 {
338 int status;
339 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
340 unsigned int num_clusters = 0;
341 unsigned int ext_flags = 0;
342
343 /*
344 * If the new offset is aligned to the range of the cluster, there is
345 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
346 * CoW either.
347 */
348 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
349 return 0;
350
351 status = ocfs2_get_clusters(inode, cpos, &phys,
352 &num_clusters, &ext_flags);
353 if (status) {
354 mlog_errno(status);
355 goto out;
356 }
357
358 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
359 goto out;
360
361 return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
362
363 out:
364 return status;
365 }
366
367 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
368 struct inode *inode,
369 struct buffer_head *fe_bh,
370 u64 new_i_size)
371 {
372 int status;
373 handle_t *handle;
374 struct ocfs2_dinode *di;
375 u64 cluster_bytes;
376
377 /*
378 * We need to CoW the cluster contains the offset if it is reflinked
379 * since we will call ocfs2_zero_range_for_truncate later which will
380 * write "0" from offset to the end of the cluster.
381 */
382 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
383 if (status) {
384 mlog_errno(status);
385 return status;
386 }
387
388 /* TODO: This needs to actually orphan the inode in this
389 * transaction. */
390
391 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
392 if (IS_ERR(handle)) {
393 status = PTR_ERR(handle);
394 mlog_errno(status);
395 goto out;
396 }
397
398 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
399 OCFS2_JOURNAL_ACCESS_WRITE);
400 if (status < 0) {
401 mlog_errno(status);
402 goto out_commit;
403 }
404
405 /*
406 * Do this before setting i_size.
407 */
408 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
409 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
410 cluster_bytes);
411 if (status) {
412 mlog_errno(status);
413 goto out_commit;
414 }
415
416 i_size_write(inode, new_i_size);
417 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
418
419 di = (struct ocfs2_dinode *) fe_bh->b_data;
420 di->i_size = cpu_to_le64(new_i_size);
421 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
422 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
423
424 ocfs2_journal_dirty(handle, fe_bh);
425
426 out_commit:
427 ocfs2_commit_trans(osb, handle);
428 out:
429 return status;
430 }
431
432 static int ocfs2_truncate_file(struct inode *inode,
433 struct buffer_head *di_bh,
434 u64 new_i_size)
435 {
436 int status = 0;
437 struct ocfs2_dinode *fe = NULL;
438 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
439
440 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
441 * already validated it */
442 fe = (struct ocfs2_dinode *) di_bh->b_data;
443
444 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
445 (unsigned long long)le64_to_cpu(fe->i_size),
446 (unsigned long long)new_i_size);
447
448 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
449 "Inode %llu, inode i_size = %lld != di "
450 "i_size = %llu, i_flags = 0x%x\n",
451 (unsigned long long)OCFS2_I(inode)->ip_blkno,
452 i_size_read(inode),
453 (unsigned long long)le64_to_cpu(fe->i_size),
454 le32_to_cpu(fe->i_flags));
455
456 if (new_i_size > le64_to_cpu(fe->i_size)) {
457 trace_ocfs2_truncate_file_error(
458 (unsigned long long)le64_to_cpu(fe->i_size),
459 (unsigned long long)new_i_size);
460 status = -EINVAL;
461 mlog_errno(status);
462 goto bail;
463 }
464
465 /* lets handle the simple truncate cases before doing any more
466 * cluster locking. */
467 if (new_i_size == le64_to_cpu(fe->i_size))
468 goto bail;
469
470 down_write(&OCFS2_I(inode)->ip_alloc_sem);
471
472 ocfs2_resv_discard(&osb->osb_la_resmap,
473 &OCFS2_I(inode)->ip_la_data_resv);
474
475 /*
476 * The inode lock forced other nodes to sync and drop their
477 * pages, which (correctly) happens even if we have a truncate
478 * without allocation change - ocfs2 cluster sizes can be much
479 * greater than page size, so we have to truncate them
480 * anyway.
481 */
482 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
483 truncate_inode_pages(inode->i_mapping, new_i_size);
484
485 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
486 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
487 i_size_read(inode), 1);
488 if (status)
489 mlog_errno(status);
490
491 goto bail_unlock_sem;
492 }
493
494 /* alright, we're going to need to do a full blown alloc size
495 * change. Orphan the inode so that recovery can complete the
496 * truncate if necessary. This does the task of marking
497 * i_size. */
498 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
499 if (status < 0) {
500 mlog_errno(status);
501 goto bail_unlock_sem;
502 }
503
504 status = ocfs2_commit_truncate(osb, inode, di_bh);
505 if (status < 0) {
506 mlog_errno(status);
507 goto bail_unlock_sem;
508 }
509
510 /* TODO: orphan dir cleanup here. */
511 bail_unlock_sem:
512 up_write(&OCFS2_I(inode)->ip_alloc_sem);
513
514 bail:
515 if (!status && OCFS2_I(inode)->ip_clusters == 0)
516 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
517
518 return status;
519 }
520
521 /*
522 * extend file allocation only here.
523 * we'll update all the disk stuff, and oip->alloc_size
524 *
525 * expect stuff to be locked, a transaction started and enough data /
526 * metadata reservations in the contexts.
527 *
528 * Will return -EAGAIN, and a reason if a restart is needed.
529 * If passed in, *reason will always be set, even in error.
530 */
531 int ocfs2_add_inode_data(struct ocfs2_super *osb,
532 struct inode *inode,
533 u32 *logical_offset,
534 u32 clusters_to_add,
535 int mark_unwritten,
536 struct buffer_head *fe_bh,
537 handle_t *handle,
538 struct ocfs2_alloc_context *data_ac,
539 struct ocfs2_alloc_context *meta_ac,
540 enum ocfs2_alloc_restarted *reason_ret)
541 {
542 int ret;
543 struct ocfs2_extent_tree et;
544
545 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
546 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
547 clusters_to_add, mark_unwritten,
548 data_ac, meta_ac, reason_ret);
549
550 return ret;
551 }
552
553 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
554 u32 clusters_to_add, int mark_unwritten)
555 {
556 int status = 0;
557 int restart_func = 0;
558 int credits;
559 u32 prev_clusters;
560 struct buffer_head *bh = NULL;
561 struct ocfs2_dinode *fe = NULL;
562 handle_t *handle = NULL;
563 struct ocfs2_alloc_context *data_ac = NULL;
564 struct ocfs2_alloc_context *meta_ac = NULL;
565 enum ocfs2_alloc_restarted why;
566 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
567 struct ocfs2_extent_tree et;
568 int did_quota = 0;
569
570 /*
571 * This function only exists for file systems which don't
572 * support holes.
573 */
574 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
575
576 status = ocfs2_read_inode_block(inode, &bh);
577 if (status < 0) {
578 mlog_errno(status);
579 goto leave;
580 }
581 fe = (struct ocfs2_dinode *) bh->b_data;
582
583 restart_all:
584 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
585
586 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
587 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
588 &data_ac, &meta_ac);
589 if (status) {
590 mlog_errno(status);
591 goto leave;
592 }
593
594 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
595 clusters_to_add);
596 handle = ocfs2_start_trans(osb, credits);
597 if (IS_ERR(handle)) {
598 status = PTR_ERR(handle);
599 handle = NULL;
600 mlog_errno(status);
601 goto leave;
602 }
603
604 restarted_transaction:
605 trace_ocfs2_extend_allocation(
606 (unsigned long long)OCFS2_I(inode)->ip_blkno,
607 (unsigned long long)i_size_read(inode),
608 le32_to_cpu(fe->i_clusters), clusters_to_add,
609 why, restart_func);
610
611 status = dquot_alloc_space_nodirty(inode,
612 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
613 if (status)
614 goto leave;
615 did_quota = 1;
616
617 /* reserve a write to the file entry early on - that we if we
618 * run out of credits in the allocation path, we can still
619 * update i_size. */
620 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
621 OCFS2_JOURNAL_ACCESS_WRITE);
622 if (status < 0) {
623 mlog_errno(status);
624 goto leave;
625 }
626
627 prev_clusters = OCFS2_I(inode)->ip_clusters;
628
629 status = ocfs2_add_inode_data(osb,
630 inode,
631 &logical_start,
632 clusters_to_add,
633 mark_unwritten,
634 bh,
635 handle,
636 data_ac,
637 meta_ac,
638 &why);
639 if ((status < 0) && (status != -EAGAIN)) {
640 if (status != -ENOSPC)
641 mlog_errno(status);
642 goto leave;
643 }
644
645 ocfs2_journal_dirty(handle, bh);
646
647 spin_lock(&OCFS2_I(inode)->ip_lock);
648 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
649 spin_unlock(&OCFS2_I(inode)->ip_lock);
650 /* Release unused quota reservation */
651 dquot_free_space(inode,
652 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
653 did_quota = 0;
654
655 if (why != RESTART_NONE && clusters_to_add) {
656 if (why == RESTART_META) {
657 restart_func = 1;
658 status = 0;
659 } else {
660 BUG_ON(why != RESTART_TRANS);
661
662 /* TODO: This can be more intelligent. */
663 credits = ocfs2_calc_extend_credits(osb->sb,
664 &fe->id2.i_list,
665 clusters_to_add);
666 status = ocfs2_extend_trans(handle, credits);
667 if (status < 0) {
668 /* handle still has to be committed at
669 * this point. */
670 status = -ENOMEM;
671 mlog_errno(status);
672 goto leave;
673 }
674 goto restarted_transaction;
675 }
676 }
677
678 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
679 le32_to_cpu(fe->i_clusters),
680 (unsigned long long)le64_to_cpu(fe->i_size),
681 OCFS2_I(inode)->ip_clusters,
682 (unsigned long long)i_size_read(inode));
683
684 leave:
685 if (status < 0 && did_quota)
686 dquot_free_space(inode,
687 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
688 if (handle) {
689 ocfs2_commit_trans(osb, handle);
690 handle = NULL;
691 }
692 if (data_ac) {
693 ocfs2_free_alloc_context(data_ac);
694 data_ac = NULL;
695 }
696 if (meta_ac) {
697 ocfs2_free_alloc_context(meta_ac);
698 meta_ac = NULL;
699 }
700 if ((!status) && restart_func) {
701 restart_func = 0;
702 goto restart_all;
703 }
704 brelse(bh);
705 bh = NULL;
706
707 return status;
708 }
709
710 /*
711 * While a write will already be ordering the data, a truncate will not.
712 * Thus, we need to explicitly order the zeroed pages.
713 */
714 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
715 {
716 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
717 handle_t *handle = NULL;
718 int ret = 0;
719
720 if (!ocfs2_should_order_data(inode))
721 goto out;
722
723 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
724 if (IS_ERR(handle)) {
725 ret = -ENOMEM;
726 mlog_errno(ret);
727 goto out;
728 }
729
730 ret = ocfs2_jbd2_file_inode(handle, inode);
731 if (ret < 0)
732 mlog_errno(ret);
733
734 out:
735 if (ret) {
736 if (!IS_ERR(handle))
737 ocfs2_commit_trans(osb, handle);
738 handle = ERR_PTR(ret);
739 }
740 return handle;
741 }
742
743 /* Some parts of this taken from generic_cont_expand, which turned out
744 * to be too fragile to do exactly what we need without us having to
745 * worry about recursive locking in ->write_begin() and ->write_end(). */
746 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
747 u64 abs_to)
748 {
749 struct address_space *mapping = inode->i_mapping;
750 struct page *page;
751 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
752 handle_t *handle = NULL;
753 int ret = 0;
754 unsigned zero_from, zero_to, block_start, block_end;
755
756 BUG_ON(abs_from >= abs_to);
757 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
758 BUG_ON(abs_from & (inode->i_blkbits - 1));
759
760 page = find_or_create_page(mapping, index, GFP_NOFS);
761 if (!page) {
762 ret = -ENOMEM;
763 mlog_errno(ret);
764 goto out;
765 }
766
767 /* Get the offsets within the page that we want to zero */
768 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
769 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
770 if (!zero_to)
771 zero_to = PAGE_CACHE_SIZE;
772
773 trace_ocfs2_write_zero_page(
774 (unsigned long long)OCFS2_I(inode)->ip_blkno,
775 (unsigned long long)abs_from,
776 (unsigned long long)abs_to,
777 index, zero_from, zero_to);
778
779 /* We know that zero_from is block aligned */
780 for (block_start = zero_from; block_start < zero_to;
781 block_start = block_end) {
782 block_end = block_start + (1 << inode->i_blkbits);
783
784 /*
785 * block_start is block-aligned. Bump it by one to force
786 * __block_write_begin and block_commit_write to zero the
787 * whole block.
788 */
789 ret = __block_write_begin(page, block_start + 1, 0,
790 ocfs2_get_block);
791 if (ret < 0) {
792 mlog_errno(ret);
793 goto out_unlock;
794 }
795
796 if (!handle) {
797 handle = ocfs2_zero_start_ordered_transaction(inode);
798 if (IS_ERR(handle)) {
799 ret = PTR_ERR(handle);
800 handle = NULL;
801 break;
802 }
803 }
804
805 /* must not update i_size! */
806 ret = block_commit_write(page, block_start + 1,
807 block_start + 1);
808 if (ret < 0)
809 mlog_errno(ret);
810 else
811 ret = 0;
812 }
813
814 if (handle)
815 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
816
817 out_unlock:
818 unlock_page(page);
819 page_cache_release(page);
820 out:
821 return ret;
822 }
823
824 /*
825 * Find the next range to zero. We do this in terms of bytes because
826 * that's what ocfs2_zero_extend() wants, and it is dealing with the
827 * pagecache. We may return multiple extents.
828 *
829 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
830 * needs to be zeroed. range_start and range_end return the next zeroing
831 * range. A subsequent call should pass the previous range_end as its
832 * zero_start. If range_end is 0, there's nothing to do.
833 *
834 * Unwritten extents are skipped over. Refcounted extents are CoWd.
835 */
836 static int ocfs2_zero_extend_get_range(struct inode *inode,
837 struct buffer_head *di_bh,
838 u64 zero_start, u64 zero_end,
839 u64 *range_start, u64 *range_end)
840 {
841 int rc = 0, needs_cow = 0;
842 u32 p_cpos, zero_clusters = 0;
843 u32 zero_cpos =
844 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
845 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
846 unsigned int num_clusters = 0;
847 unsigned int ext_flags = 0;
848
849 while (zero_cpos < last_cpos) {
850 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
851 &num_clusters, &ext_flags);
852 if (rc) {
853 mlog_errno(rc);
854 goto out;
855 }
856
857 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
858 zero_clusters = num_clusters;
859 if (ext_flags & OCFS2_EXT_REFCOUNTED)
860 needs_cow = 1;
861 break;
862 }
863
864 zero_cpos += num_clusters;
865 }
866 if (!zero_clusters) {
867 *range_end = 0;
868 goto out;
869 }
870
871 while ((zero_cpos + zero_clusters) < last_cpos) {
872 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
873 &p_cpos, &num_clusters,
874 &ext_flags);
875 if (rc) {
876 mlog_errno(rc);
877 goto out;
878 }
879
880 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
881 break;
882 if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 needs_cow = 1;
884 zero_clusters += num_clusters;
885 }
886 if ((zero_cpos + zero_clusters) > last_cpos)
887 zero_clusters = last_cpos - zero_cpos;
888
889 if (needs_cow) {
890 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
891 zero_clusters, UINT_MAX);
892 if (rc) {
893 mlog_errno(rc);
894 goto out;
895 }
896 }
897
898 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
899 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
900 zero_cpos + zero_clusters);
901
902 out:
903 return rc;
904 }
905
906 /*
907 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
908 * has made sure that the entire range needs zeroing.
909 */
910 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
911 u64 range_end)
912 {
913 int rc = 0;
914 u64 next_pos;
915 u64 zero_pos = range_start;
916
917 trace_ocfs2_zero_extend_range(
918 (unsigned long long)OCFS2_I(inode)->ip_blkno,
919 (unsigned long long)range_start,
920 (unsigned long long)range_end);
921 BUG_ON(range_start >= range_end);
922
923 while (zero_pos < range_end) {
924 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
925 if (next_pos > range_end)
926 next_pos = range_end;
927 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
928 if (rc < 0) {
929 mlog_errno(rc);
930 break;
931 }
932 zero_pos = next_pos;
933
934 /*
935 * Very large extends have the potential to lock up
936 * the cpu for extended periods of time.
937 */
938 cond_resched();
939 }
940
941 return rc;
942 }
943
944 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
945 loff_t zero_to_size)
946 {
947 int ret = 0;
948 u64 zero_start, range_start = 0, range_end = 0;
949 struct super_block *sb = inode->i_sb;
950
951 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
952 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
953 (unsigned long long)zero_start,
954 (unsigned long long)i_size_read(inode));
955 while (zero_start < zero_to_size) {
956 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
957 zero_to_size,
958 &range_start,
959 &range_end);
960 if (ret) {
961 mlog_errno(ret);
962 break;
963 }
964 if (!range_end)
965 break;
966 /* Trim the ends */
967 if (range_start < zero_start)
968 range_start = zero_start;
969 if (range_end > zero_to_size)
970 range_end = zero_to_size;
971
972 ret = ocfs2_zero_extend_range(inode, range_start,
973 range_end);
974 if (ret) {
975 mlog_errno(ret);
976 break;
977 }
978 zero_start = range_end;
979 }
980
981 return ret;
982 }
983
984 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
985 u64 new_i_size, u64 zero_to)
986 {
987 int ret;
988 u32 clusters_to_add;
989 struct ocfs2_inode_info *oi = OCFS2_I(inode);
990
991 /*
992 * Only quota files call this without a bh, and they can't be
993 * refcounted.
994 */
995 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
996 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
997
998 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
999 if (clusters_to_add < oi->ip_clusters)
1000 clusters_to_add = 0;
1001 else
1002 clusters_to_add -= oi->ip_clusters;
1003
1004 if (clusters_to_add) {
1005 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1006 clusters_to_add, 0);
1007 if (ret) {
1008 mlog_errno(ret);
1009 goto out;
1010 }
1011 }
1012
1013 /*
1014 * Call this even if we don't add any clusters to the tree. We
1015 * still need to zero the area between the old i_size and the
1016 * new i_size.
1017 */
1018 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1019 if (ret < 0)
1020 mlog_errno(ret);
1021
1022 out:
1023 return ret;
1024 }
1025
1026 static int ocfs2_extend_file(struct inode *inode,
1027 struct buffer_head *di_bh,
1028 u64 new_i_size)
1029 {
1030 int ret = 0;
1031 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1032
1033 BUG_ON(!di_bh);
1034
1035 /* setattr sometimes calls us like this. */
1036 if (new_i_size == 0)
1037 goto out;
1038
1039 if (i_size_read(inode) == new_i_size)
1040 goto out;
1041 BUG_ON(new_i_size < i_size_read(inode));
1042
1043 /*
1044 * The alloc sem blocks people in read/write from reading our
1045 * allocation until we're done changing it. We depend on
1046 * i_mutex to block other extend/truncate calls while we're
1047 * here. We even have to hold it for sparse files because there
1048 * might be some tail zeroing.
1049 */
1050 down_write(&oi->ip_alloc_sem);
1051
1052 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1053 /*
1054 * We can optimize small extends by keeping the inodes
1055 * inline data.
1056 */
1057 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1058 up_write(&oi->ip_alloc_sem);
1059 goto out_update_size;
1060 }
1061
1062 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1063 if (ret) {
1064 up_write(&oi->ip_alloc_sem);
1065 mlog_errno(ret);
1066 goto out;
1067 }
1068 }
1069
1070 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1071 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1072 else
1073 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1074 new_i_size);
1075
1076 up_write(&oi->ip_alloc_sem);
1077
1078 if (ret < 0) {
1079 mlog_errno(ret);
1080 goto out;
1081 }
1082
1083 out_update_size:
1084 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1085 if (ret < 0)
1086 mlog_errno(ret);
1087
1088 out:
1089 return ret;
1090 }
1091
1092 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1093 {
1094 int status = 0, size_change;
1095 struct inode *inode = dentry->d_inode;
1096 struct super_block *sb = inode->i_sb;
1097 struct ocfs2_super *osb = OCFS2_SB(sb);
1098 struct buffer_head *bh = NULL;
1099 handle_t *handle = NULL;
1100 struct dquot *transfer_to[MAXQUOTAS] = { };
1101 int qtype;
1102
1103 trace_ocfs2_setattr(inode, dentry,
1104 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1105 dentry->d_name.len, dentry->d_name.name,
1106 attr->ia_valid, attr->ia_mode,
1107 attr->ia_uid, attr->ia_gid);
1108
1109 /* ensuring we don't even attempt to truncate a symlink */
1110 if (S_ISLNK(inode->i_mode))
1111 attr->ia_valid &= ~ATTR_SIZE;
1112
1113 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1114 | ATTR_GID | ATTR_UID | ATTR_MODE)
1115 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1116 return 0;
1117
1118 status = inode_change_ok(inode, attr);
1119 if (status)
1120 return status;
1121
1122 if (is_quota_modification(inode, attr))
1123 dquot_initialize(inode);
1124 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1125 if (size_change) {
1126 status = ocfs2_rw_lock(inode, 1);
1127 if (status < 0) {
1128 mlog_errno(status);
1129 goto bail;
1130 }
1131 }
1132
1133 status = ocfs2_inode_lock(inode, &bh, 1);
1134 if (status < 0) {
1135 if (status != -ENOENT)
1136 mlog_errno(status);
1137 goto bail_unlock_rw;
1138 }
1139
1140 if (size_change && attr->ia_size != i_size_read(inode)) {
1141 status = inode_newsize_ok(inode, attr->ia_size);
1142 if (status)
1143 goto bail_unlock;
1144
1145 if (i_size_read(inode) > attr->ia_size) {
1146 if (ocfs2_should_order_data(inode)) {
1147 status = ocfs2_begin_ordered_truncate(inode,
1148 attr->ia_size);
1149 if (status)
1150 goto bail_unlock;
1151 }
1152 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1153 } else
1154 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1155 if (status < 0) {
1156 if (status != -ENOSPC)
1157 mlog_errno(status);
1158 status = -ENOSPC;
1159 goto bail_unlock;
1160 }
1161 }
1162
1163 if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1164 (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1165 /*
1166 * Gather pointers to quota structures so that allocation /
1167 * freeing of quota structures happens here and not inside
1168 * dquot_transfer() where we have problems with lock ordering
1169 */
1170 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1171 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1172 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1173 transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1174 USRQUOTA);
1175 if (!transfer_to[USRQUOTA]) {
1176 status = -ESRCH;
1177 goto bail_unlock;
1178 }
1179 }
1180 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1181 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1182 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1183 transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1184 GRPQUOTA);
1185 if (!transfer_to[GRPQUOTA]) {
1186 status = -ESRCH;
1187 goto bail_unlock;
1188 }
1189 }
1190 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1191 2 * ocfs2_quota_trans_credits(sb));
1192 if (IS_ERR(handle)) {
1193 status = PTR_ERR(handle);
1194 mlog_errno(status);
1195 goto bail_unlock;
1196 }
1197 status = __dquot_transfer(inode, transfer_to);
1198 if (status < 0)
1199 goto bail_commit;
1200 } else {
1201 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1202 if (IS_ERR(handle)) {
1203 status = PTR_ERR(handle);
1204 mlog_errno(status);
1205 goto bail_unlock;
1206 }
1207 }
1208
1209 /*
1210 * This will intentionally not wind up calling truncate_setsize(),
1211 * since all the work for a size change has been done above.
1212 * Otherwise, we could get into problems with truncate as
1213 * ip_alloc_sem is used there to protect against i_size
1214 * changes.
1215 *
1216 * XXX: this means the conditional below can probably be removed.
1217 */
1218 if ((attr->ia_valid & ATTR_SIZE) &&
1219 attr->ia_size != i_size_read(inode)) {
1220 status = vmtruncate(inode, attr->ia_size);
1221 if (status) {
1222 mlog_errno(status);
1223 goto bail_commit;
1224 }
1225 }
1226
1227 setattr_copy(inode, attr);
1228 mark_inode_dirty(inode);
1229
1230 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1231 if (status < 0)
1232 mlog_errno(status);
1233
1234 bail_commit:
1235 ocfs2_commit_trans(osb, handle);
1236 bail_unlock:
1237 ocfs2_inode_unlock(inode, 1);
1238 bail_unlock_rw:
1239 if (size_change)
1240 ocfs2_rw_unlock(inode, 1);
1241 bail:
1242 brelse(bh);
1243
1244 /* Release quota pointers in case we acquired them */
1245 for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1246 dqput(transfer_to[qtype]);
1247
1248 if (!status && attr->ia_valid & ATTR_MODE) {
1249 status = ocfs2_acl_chmod(inode);
1250 if (status < 0)
1251 mlog_errno(status);
1252 }
1253
1254 return status;
1255 }
1256
1257 int ocfs2_getattr(struct vfsmount *mnt,
1258 struct dentry *dentry,
1259 struct kstat *stat)
1260 {
1261 struct inode *inode = dentry->d_inode;
1262 struct super_block *sb = dentry->d_inode->i_sb;
1263 struct ocfs2_super *osb = sb->s_fs_info;
1264 int err;
1265
1266 err = ocfs2_inode_revalidate(dentry);
1267 if (err) {
1268 if (err != -ENOENT)
1269 mlog_errno(err);
1270 goto bail;
1271 }
1272
1273 generic_fillattr(inode, stat);
1274
1275 /* We set the blksize from the cluster size for performance */
1276 stat->blksize = osb->s_clustersize;
1277
1278 bail:
1279 return err;
1280 }
1281
1282 int ocfs2_permission(struct inode *inode, int mask, unsigned int flags)
1283 {
1284 int ret;
1285
1286 if (flags & IPERM_FLAG_RCU)
1287 return -ECHILD;
1288
1289 ret = ocfs2_inode_lock(inode, NULL, 0);
1290 if (ret) {
1291 if (ret != -ENOENT)
1292 mlog_errno(ret);
1293 goto out;
1294 }
1295
1296 ret = generic_permission(inode, mask, flags, ocfs2_check_acl);
1297
1298 ocfs2_inode_unlock(inode, 0);
1299 out:
1300 return ret;
1301 }
1302
1303 static int __ocfs2_write_remove_suid(struct inode *inode,
1304 struct buffer_head *bh)
1305 {
1306 int ret;
1307 handle_t *handle;
1308 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1309 struct ocfs2_dinode *di;
1310
1311 trace_ocfs2_write_remove_suid(
1312 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1313 inode->i_mode);
1314
1315 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1316 if (IS_ERR(handle)) {
1317 ret = PTR_ERR(handle);
1318 mlog_errno(ret);
1319 goto out;
1320 }
1321
1322 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1323 OCFS2_JOURNAL_ACCESS_WRITE);
1324 if (ret < 0) {
1325 mlog_errno(ret);
1326 goto out_trans;
1327 }
1328
1329 inode->i_mode &= ~S_ISUID;
1330 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1331 inode->i_mode &= ~S_ISGID;
1332
1333 di = (struct ocfs2_dinode *) bh->b_data;
1334 di->i_mode = cpu_to_le16(inode->i_mode);
1335
1336 ocfs2_journal_dirty(handle, bh);
1337
1338 out_trans:
1339 ocfs2_commit_trans(osb, handle);
1340 out:
1341 return ret;
1342 }
1343
1344 /*
1345 * Will look for holes and unwritten extents in the range starting at
1346 * pos for count bytes (inclusive).
1347 */
1348 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1349 size_t count)
1350 {
1351 int ret = 0;
1352 unsigned int extent_flags;
1353 u32 cpos, clusters, extent_len, phys_cpos;
1354 struct super_block *sb = inode->i_sb;
1355
1356 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1357 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1358
1359 while (clusters) {
1360 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1361 &extent_flags);
1362 if (ret < 0) {
1363 mlog_errno(ret);
1364 goto out;
1365 }
1366
1367 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1368 ret = 1;
1369 break;
1370 }
1371
1372 if (extent_len > clusters)
1373 extent_len = clusters;
1374
1375 clusters -= extent_len;
1376 cpos += extent_len;
1377 }
1378 out:
1379 return ret;
1380 }
1381
1382 static int ocfs2_write_remove_suid(struct inode *inode)
1383 {
1384 int ret;
1385 struct buffer_head *bh = NULL;
1386
1387 ret = ocfs2_read_inode_block(inode, &bh);
1388 if (ret < 0) {
1389 mlog_errno(ret);
1390 goto out;
1391 }
1392
1393 ret = __ocfs2_write_remove_suid(inode, bh);
1394 out:
1395 brelse(bh);
1396 return ret;
1397 }
1398
1399 /*
1400 * Allocate enough extents to cover the region starting at byte offset
1401 * start for len bytes. Existing extents are skipped, any extents
1402 * added are marked as "unwritten".
1403 */
1404 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1405 u64 start, u64 len)
1406 {
1407 int ret;
1408 u32 cpos, phys_cpos, clusters, alloc_size;
1409 u64 end = start + len;
1410 struct buffer_head *di_bh = NULL;
1411
1412 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1413 ret = ocfs2_read_inode_block(inode, &di_bh);
1414 if (ret) {
1415 mlog_errno(ret);
1416 goto out;
1417 }
1418
1419 /*
1420 * Nothing to do if the requested reservation range
1421 * fits within the inode.
1422 */
1423 if (ocfs2_size_fits_inline_data(di_bh, end))
1424 goto out;
1425
1426 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1427 if (ret) {
1428 mlog_errno(ret);
1429 goto out;
1430 }
1431 }
1432
1433 /*
1434 * We consider both start and len to be inclusive.
1435 */
1436 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1437 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1438 clusters -= cpos;
1439
1440 while (clusters) {
1441 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1442 &alloc_size, NULL);
1443 if (ret) {
1444 mlog_errno(ret);
1445 goto out;
1446 }
1447
1448 /*
1449 * Hole or existing extent len can be arbitrary, so
1450 * cap it to our own allocation request.
1451 */
1452 if (alloc_size > clusters)
1453 alloc_size = clusters;
1454
1455 if (phys_cpos) {
1456 /*
1457 * We already have an allocation at this
1458 * region so we can safely skip it.
1459 */
1460 goto next;
1461 }
1462
1463 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1464 if (ret) {
1465 if (ret != -ENOSPC)
1466 mlog_errno(ret);
1467 goto out;
1468 }
1469
1470 next:
1471 cpos += alloc_size;
1472 clusters -= alloc_size;
1473 }
1474
1475 ret = 0;
1476 out:
1477
1478 brelse(di_bh);
1479 return ret;
1480 }
1481
1482 /*
1483 * Truncate a byte range, avoiding pages within partial clusters. This
1484 * preserves those pages for the zeroing code to write to.
1485 */
1486 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1487 u64 byte_len)
1488 {
1489 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1490 loff_t start, end;
1491 struct address_space *mapping = inode->i_mapping;
1492
1493 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1494 end = byte_start + byte_len;
1495 end = end & ~(osb->s_clustersize - 1);
1496
1497 if (start < end) {
1498 unmap_mapping_range(mapping, start, end - start, 0);
1499 truncate_inode_pages_range(mapping, start, end - 1);
1500 }
1501 }
1502
1503 static int ocfs2_zero_partial_clusters(struct inode *inode,
1504 u64 start, u64 len)
1505 {
1506 int ret = 0;
1507 u64 tmpend, end = start + len;
1508 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1509 unsigned int csize = osb->s_clustersize;
1510 handle_t *handle;
1511
1512 /*
1513 * The "start" and "end" values are NOT necessarily part of
1514 * the range whose allocation is being deleted. Rather, this
1515 * is what the user passed in with the request. We must zero
1516 * partial clusters here. There's no need to worry about
1517 * physical allocation - the zeroing code knows to skip holes.
1518 */
1519 trace_ocfs2_zero_partial_clusters(
1520 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1521 (unsigned long long)start, (unsigned long long)end);
1522
1523 /*
1524 * If both edges are on a cluster boundary then there's no
1525 * zeroing required as the region is part of the allocation to
1526 * be truncated.
1527 */
1528 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1529 goto out;
1530
1531 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1532 if (IS_ERR(handle)) {
1533 ret = PTR_ERR(handle);
1534 mlog_errno(ret);
1535 goto out;
1536 }
1537
1538 /*
1539 * We want to get the byte offset of the end of the 1st cluster.
1540 */
1541 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1542 if (tmpend > end)
1543 tmpend = end;
1544
1545 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1546 (unsigned long long)tmpend);
1547
1548 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1549 if (ret)
1550 mlog_errno(ret);
1551
1552 if (tmpend < end) {
1553 /*
1554 * This may make start and end equal, but the zeroing
1555 * code will skip any work in that case so there's no
1556 * need to catch it up here.
1557 */
1558 start = end & ~(osb->s_clustersize - 1);
1559
1560 trace_ocfs2_zero_partial_clusters_range2(
1561 (unsigned long long)start, (unsigned long long)end);
1562
1563 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1564 if (ret)
1565 mlog_errno(ret);
1566 }
1567
1568 ocfs2_commit_trans(osb, handle);
1569 out:
1570 return ret;
1571 }
1572
1573 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1574 {
1575 int i;
1576 struct ocfs2_extent_rec *rec = NULL;
1577
1578 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1579
1580 rec = &el->l_recs[i];
1581
1582 if (le32_to_cpu(rec->e_cpos) < pos)
1583 break;
1584 }
1585
1586 return i;
1587 }
1588
1589 /*
1590 * Helper to calculate the punching pos and length in one run, we handle the
1591 * following three cases in order:
1592 *
1593 * - remove the entire record
1594 * - remove a partial record
1595 * - no record needs to be removed (hole-punching completed)
1596 */
1597 static void ocfs2_calc_trunc_pos(struct inode *inode,
1598 struct ocfs2_extent_list *el,
1599 struct ocfs2_extent_rec *rec,
1600 u32 trunc_start, u32 *trunc_cpos,
1601 u32 *trunc_len, u32 *trunc_end,
1602 u64 *blkno, int *done)
1603 {
1604 int ret = 0;
1605 u32 coff, range;
1606
1607 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1608
1609 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1610 /*
1611 * remove an entire extent record.
1612 */
1613 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1614 /*
1615 * Skip holes if any.
1616 */
1617 if (range < *trunc_end)
1618 *trunc_end = range;
1619 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1620 *blkno = le64_to_cpu(rec->e_blkno);
1621 *trunc_end = le32_to_cpu(rec->e_cpos);
1622 } else if (range > trunc_start) {
1623 /*
1624 * remove a partial extent record, which means we're
1625 * removing the last extent record.
1626 */
1627 *trunc_cpos = trunc_start;
1628 /*
1629 * skip hole if any.
1630 */
1631 if (range < *trunc_end)
1632 *trunc_end = range;
1633 *trunc_len = *trunc_end - trunc_start;
1634 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1635 *blkno = le64_to_cpu(rec->e_blkno) +
1636 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1637 *trunc_end = trunc_start;
1638 } else {
1639 /*
1640 * It may have two following possibilities:
1641 *
1642 * - last record has been removed
1643 * - trunc_start was within a hole
1644 *
1645 * both two cases mean the completion of hole punching.
1646 */
1647 ret = 1;
1648 }
1649
1650 *done = ret;
1651 }
1652
1653 static int ocfs2_remove_inode_range(struct inode *inode,
1654 struct buffer_head *di_bh, u64 byte_start,
1655 u64 byte_len)
1656 {
1657 int ret = 0, flags = 0, done = 0, i;
1658 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1659 u32 cluster_in_el;
1660 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1661 struct ocfs2_cached_dealloc_ctxt dealloc;
1662 struct address_space *mapping = inode->i_mapping;
1663 struct ocfs2_extent_tree et;
1664 struct ocfs2_path *path = NULL;
1665 struct ocfs2_extent_list *el = NULL;
1666 struct ocfs2_extent_rec *rec = NULL;
1667 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1668 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1669
1670 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1671 ocfs2_init_dealloc_ctxt(&dealloc);
1672
1673 trace_ocfs2_remove_inode_range(
1674 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1675 (unsigned long long)byte_start,
1676 (unsigned long long)byte_len);
1677
1678 if (byte_len == 0)
1679 return 0;
1680
1681 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1682 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1683 byte_start + byte_len, 0);
1684 if (ret) {
1685 mlog_errno(ret);
1686 goto out;
1687 }
1688 /*
1689 * There's no need to get fancy with the page cache
1690 * truncate of an inline-data inode. We're talking
1691 * about less than a page here, which will be cached
1692 * in the dinode buffer anyway.
1693 */
1694 unmap_mapping_range(mapping, 0, 0, 0);
1695 truncate_inode_pages(mapping, 0);
1696 goto out;
1697 }
1698
1699 /*
1700 * For reflinks, we may need to CoW 2 clusters which might be
1701 * partially zero'd later, if hole's start and end offset were
1702 * within one cluster(means is not exactly aligned to clustersize).
1703 */
1704
1705 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1706
1707 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1708 if (ret) {
1709 mlog_errno(ret);
1710 goto out;
1711 }
1712
1713 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1714 if (ret) {
1715 mlog_errno(ret);
1716 goto out;
1717 }
1718 }
1719
1720 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1721 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1722 cluster_in_el = trunc_end;
1723
1724 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1725 if (ret) {
1726 mlog_errno(ret);
1727 goto out;
1728 }
1729
1730 path = ocfs2_new_path_from_et(&et);
1731 if (!path) {
1732 ret = -ENOMEM;
1733 mlog_errno(ret);
1734 goto out;
1735 }
1736
1737 while (trunc_end > trunc_start) {
1738
1739 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1740 cluster_in_el);
1741 if (ret) {
1742 mlog_errno(ret);
1743 goto out;
1744 }
1745
1746 el = path_leaf_el(path);
1747
1748 i = ocfs2_find_rec(el, trunc_end);
1749 /*
1750 * Need to go to previous extent block.
1751 */
1752 if (i < 0) {
1753 if (path->p_tree_depth == 0)
1754 break;
1755
1756 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1757 path,
1758 &cluster_in_el);
1759 if (ret) {
1760 mlog_errno(ret);
1761 goto out;
1762 }
1763
1764 /*
1765 * We've reached the leftmost extent block,
1766 * it's safe to leave.
1767 */
1768 if (cluster_in_el == 0)
1769 break;
1770
1771 /*
1772 * The 'pos' searched for previous extent block is
1773 * always one cluster less than actual trunc_end.
1774 */
1775 trunc_end = cluster_in_el + 1;
1776
1777 ocfs2_reinit_path(path, 1);
1778
1779 continue;
1780
1781 } else
1782 rec = &el->l_recs[i];
1783
1784 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1785 &trunc_len, &trunc_end, &blkno, &done);
1786 if (done)
1787 break;
1788
1789 flags = rec->e_flags;
1790 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1791
1792 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1793 phys_cpos, trunc_len, flags,
1794 &dealloc, refcount_loc);
1795 if (ret < 0) {
1796 mlog_errno(ret);
1797 goto out;
1798 }
1799
1800 cluster_in_el = trunc_end;
1801
1802 ocfs2_reinit_path(path, 1);
1803 }
1804
1805 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1806
1807 out:
1808 ocfs2_schedule_truncate_log_flush(osb, 1);
1809 ocfs2_run_deallocs(osb, &dealloc);
1810
1811 return ret;
1812 }
1813
1814 /*
1815 * Parts of this function taken from xfs_change_file_space()
1816 */
1817 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1818 loff_t f_pos, unsigned int cmd,
1819 struct ocfs2_space_resv *sr,
1820 int change_size)
1821 {
1822 int ret;
1823 s64 llen;
1824 loff_t size;
1825 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1826 struct buffer_head *di_bh = NULL;
1827 handle_t *handle;
1828 unsigned long long max_off = inode->i_sb->s_maxbytes;
1829
1830 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1831 return -EROFS;
1832
1833 mutex_lock(&inode->i_mutex);
1834
1835 /*
1836 * This prevents concurrent writes on other nodes
1837 */
1838 ret = ocfs2_rw_lock(inode, 1);
1839 if (ret) {
1840 mlog_errno(ret);
1841 goto out;
1842 }
1843
1844 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1845 if (ret) {
1846 mlog_errno(ret);
1847 goto out_rw_unlock;
1848 }
1849
1850 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1851 ret = -EPERM;
1852 goto out_inode_unlock;
1853 }
1854
1855 switch (sr->l_whence) {
1856 case 0: /*SEEK_SET*/
1857 break;
1858 case 1: /*SEEK_CUR*/
1859 sr->l_start += f_pos;
1860 break;
1861 case 2: /*SEEK_END*/
1862 sr->l_start += i_size_read(inode);
1863 break;
1864 default:
1865 ret = -EINVAL;
1866 goto out_inode_unlock;
1867 }
1868 sr->l_whence = 0;
1869
1870 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1871
1872 if (sr->l_start < 0
1873 || sr->l_start > max_off
1874 || (sr->l_start + llen) < 0
1875 || (sr->l_start + llen) > max_off) {
1876 ret = -EINVAL;
1877 goto out_inode_unlock;
1878 }
1879 size = sr->l_start + sr->l_len;
1880
1881 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1882 if (sr->l_len <= 0) {
1883 ret = -EINVAL;
1884 goto out_inode_unlock;
1885 }
1886 }
1887
1888 if (file && should_remove_suid(file->f_path.dentry)) {
1889 ret = __ocfs2_write_remove_suid(inode, di_bh);
1890 if (ret) {
1891 mlog_errno(ret);
1892 goto out_inode_unlock;
1893 }
1894 }
1895
1896 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1897 switch (cmd) {
1898 case OCFS2_IOC_RESVSP:
1899 case OCFS2_IOC_RESVSP64:
1900 /*
1901 * This takes unsigned offsets, but the signed ones we
1902 * pass have been checked against overflow above.
1903 */
1904 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1905 sr->l_len);
1906 break;
1907 case OCFS2_IOC_UNRESVSP:
1908 case OCFS2_IOC_UNRESVSP64:
1909 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1910 sr->l_len);
1911 break;
1912 default:
1913 ret = -EINVAL;
1914 }
1915 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1916 if (ret) {
1917 mlog_errno(ret);
1918 goto out_inode_unlock;
1919 }
1920
1921 /*
1922 * We update c/mtime for these changes
1923 */
1924 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1925 if (IS_ERR(handle)) {
1926 ret = PTR_ERR(handle);
1927 mlog_errno(ret);
1928 goto out_inode_unlock;
1929 }
1930
1931 if (change_size && i_size_read(inode) < size)
1932 i_size_write(inode, size);
1933
1934 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1935 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1936 if (ret < 0)
1937 mlog_errno(ret);
1938
1939 ocfs2_commit_trans(osb, handle);
1940
1941 out_inode_unlock:
1942 brelse(di_bh);
1943 ocfs2_inode_unlock(inode, 1);
1944 out_rw_unlock:
1945 ocfs2_rw_unlock(inode, 1);
1946
1947 out:
1948 mutex_unlock(&inode->i_mutex);
1949 return ret;
1950 }
1951
1952 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1953 struct ocfs2_space_resv *sr)
1954 {
1955 struct inode *inode = file->f_path.dentry->d_inode;
1956 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957
1958 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1959 !ocfs2_writes_unwritten_extents(osb))
1960 return -ENOTTY;
1961 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1962 !ocfs2_sparse_alloc(osb))
1963 return -ENOTTY;
1964
1965 if (!S_ISREG(inode->i_mode))
1966 return -EINVAL;
1967
1968 if (!(file->f_mode & FMODE_WRITE))
1969 return -EBADF;
1970
1971 return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1972 }
1973
1974 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1975 loff_t len)
1976 {
1977 struct inode *inode = file->f_path.dentry->d_inode;
1978 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1979 struct ocfs2_space_resv sr;
1980 int change_size = 1;
1981 int cmd = OCFS2_IOC_RESVSP64;
1982
1983 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1984 return -EOPNOTSUPP;
1985 if (!ocfs2_writes_unwritten_extents(osb))
1986 return -EOPNOTSUPP;
1987
1988 if (mode & FALLOC_FL_KEEP_SIZE)
1989 change_size = 0;
1990
1991 if (mode & FALLOC_FL_PUNCH_HOLE)
1992 cmd = OCFS2_IOC_UNRESVSP64;
1993
1994 sr.l_whence = 0;
1995 sr.l_start = (s64)offset;
1996 sr.l_len = (s64)len;
1997
1998 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
1999 change_size);
2000 }
2001
2002 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2003 size_t count)
2004 {
2005 int ret = 0;
2006 unsigned int extent_flags;
2007 u32 cpos, clusters, extent_len, phys_cpos;
2008 struct super_block *sb = inode->i_sb;
2009
2010 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2011 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2012 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2013 return 0;
2014
2015 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2016 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2017
2018 while (clusters) {
2019 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2020 &extent_flags);
2021 if (ret < 0) {
2022 mlog_errno(ret);
2023 goto out;
2024 }
2025
2026 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2027 ret = 1;
2028 break;
2029 }
2030
2031 if (extent_len > clusters)
2032 extent_len = clusters;
2033
2034 clusters -= extent_len;
2035 cpos += extent_len;
2036 }
2037 out:
2038 return ret;
2039 }
2040
2041 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2042 struct file *file,
2043 loff_t pos, size_t count,
2044 int *meta_level)
2045 {
2046 int ret;
2047 struct buffer_head *di_bh = NULL;
2048 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2049 u32 clusters =
2050 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2051
2052 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2053 if (ret) {
2054 mlog_errno(ret);
2055 goto out;
2056 }
2057
2058 *meta_level = 1;
2059
2060 ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2061 if (ret)
2062 mlog_errno(ret);
2063 out:
2064 brelse(di_bh);
2065 return ret;
2066 }
2067
2068 static int ocfs2_prepare_inode_for_write(struct file *file,
2069 loff_t *ppos,
2070 size_t count,
2071 int appending,
2072 int *direct_io,
2073 int *has_refcount)
2074 {
2075 int ret = 0, meta_level = 0;
2076 struct dentry *dentry = file->f_path.dentry;
2077 struct inode *inode = dentry->d_inode;
2078 loff_t saved_pos = 0, end;
2079
2080 /*
2081 * We start with a read level meta lock and only jump to an ex
2082 * if we need to make modifications here.
2083 */
2084 for(;;) {
2085 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2086 if (ret < 0) {
2087 meta_level = -1;
2088 mlog_errno(ret);
2089 goto out;
2090 }
2091
2092 /* Clear suid / sgid if necessary. We do this here
2093 * instead of later in the write path because
2094 * remove_suid() calls ->setattr without any hint that
2095 * we may have already done our cluster locking. Since
2096 * ocfs2_setattr() *must* take cluster locks to
2097 * proceeed, this will lead us to recursively lock the
2098 * inode. There's also the dinode i_size state which
2099 * can be lost via setattr during extending writes (we
2100 * set inode->i_size at the end of a write. */
2101 if (should_remove_suid(dentry)) {
2102 if (meta_level == 0) {
2103 ocfs2_inode_unlock(inode, meta_level);
2104 meta_level = 1;
2105 continue;
2106 }
2107
2108 ret = ocfs2_write_remove_suid(inode);
2109 if (ret < 0) {
2110 mlog_errno(ret);
2111 goto out_unlock;
2112 }
2113 }
2114
2115 /* work on a copy of ppos until we're sure that we won't have
2116 * to recalculate it due to relocking. */
2117 if (appending)
2118 saved_pos = i_size_read(inode);
2119 else
2120 saved_pos = *ppos;
2121
2122 end = saved_pos + count;
2123
2124 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2125 if (ret == 1) {
2126 ocfs2_inode_unlock(inode, meta_level);
2127 meta_level = -1;
2128
2129 ret = ocfs2_prepare_inode_for_refcount(inode,
2130 file,
2131 saved_pos,
2132 count,
2133 &meta_level);
2134 if (has_refcount)
2135 *has_refcount = 1;
2136 if (direct_io)
2137 *direct_io = 0;
2138 }
2139
2140 if (ret < 0) {
2141 mlog_errno(ret);
2142 goto out_unlock;
2143 }
2144
2145 /*
2146 * Skip the O_DIRECT checks if we don't need
2147 * them.
2148 */
2149 if (!direct_io || !(*direct_io))
2150 break;
2151
2152 /*
2153 * There's no sane way to do direct writes to an inode
2154 * with inline data.
2155 */
2156 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2157 *direct_io = 0;
2158 break;
2159 }
2160
2161 /*
2162 * Allowing concurrent direct writes means
2163 * i_size changes wouldn't be synchronized, so
2164 * one node could wind up truncating another
2165 * nodes writes.
2166 */
2167 if (end > i_size_read(inode)) {
2168 *direct_io = 0;
2169 break;
2170 }
2171
2172 /*
2173 * We don't fill holes during direct io, so
2174 * check for them here. If any are found, the
2175 * caller will have to retake some cluster
2176 * locks and initiate the io as buffered.
2177 */
2178 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2179 if (ret == 1) {
2180 *direct_io = 0;
2181 ret = 0;
2182 } else if (ret < 0)
2183 mlog_errno(ret);
2184 break;
2185 }
2186
2187 if (appending)
2188 *ppos = saved_pos;
2189
2190 out_unlock:
2191 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2192 saved_pos, appending, count,
2193 direct_io, has_refcount);
2194
2195 if (meta_level >= 0)
2196 ocfs2_inode_unlock(inode, meta_level);
2197
2198 out:
2199 return ret;
2200 }
2201
2202 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2203 const struct iovec *iov,
2204 unsigned long nr_segs,
2205 loff_t pos)
2206 {
2207 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
2208 int can_do_direct, has_refcount = 0;
2209 ssize_t written = 0;
2210 size_t ocount; /* original count */
2211 size_t count; /* after file limit checks */
2212 loff_t old_size, *ppos = &iocb->ki_pos;
2213 u32 old_clusters;
2214 struct file *file = iocb->ki_filp;
2215 struct inode *inode = file->f_path.dentry->d_inode;
2216 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2217 int full_coherency = !(osb->s_mount_opt &
2218 OCFS2_MOUNT_COHERENCY_BUFFERED);
2219
2220 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2221 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2222 file->f_path.dentry->d_name.len,
2223 file->f_path.dentry->d_name.name,
2224 (unsigned int)nr_segs);
2225
2226 if (iocb->ki_left == 0)
2227 return 0;
2228
2229 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2230
2231 appending = file->f_flags & O_APPEND ? 1 : 0;
2232 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2233
2234 mutex_lock(&inode->i_mutex);
2235
2236 ocfs2_iocb_clear_sem_locked(iocb);
2237
2238 relock:
2239 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2240 if (direct_io) {
2241 down_read(&inode->i_alloc_sem);
2242 have_alloc_sem = 1;
2243 /* communicate with ocfs2_dio_end_io */
2244 ocfs2_iocb_set_sem_locked(iocb);
2245 }
2246
2247 /*
2248 * Concurrent O_DIRECT writes are allowed with
2249 * mount_option "coherency=buffered".
2250 */
2251 rw_level = (!direct_io || full_coherency);
2252
2253 ret = ocfs2_rw_lock(inode, rw_level);
2254 if (ret < 0) {
2255 mlog_errno(ret);
2256 goto out_sems;
2257 }
2258
2259 /*
2260 * O_DIRECT writes with "coherency=full" need to take EX cluster
2261 * inode_lock to guarantee coherency.
2262 */
2263 if (direct_io && full_coherency) {
2264 /*
2265 * We need to take and drop the inode lock to force
2266 * other nodes to drop their caches. Buffered I/O
2267 * already does this in write_begin().
2268 */
2269 ret = ocfs2_inode_lock(inode, NULL, 1);
2270 if (ret < 0) {
2271 mlog_errno(ret);
2272 goto out_sems;
2273 }
2274
2275 ocfs2_inode_unlock(inode, 1);
2276 }
2277
2278 can_do_direct = direct_io;
2279 ret = ocfs2_prepare_inode_for_write(file, ppos,
2280 iocb->ki_left, appending,
2281 &can_do_direct, &has_refcount);
2282 if (ret < 0) {
2283 mlog_errno(ret);
2284 goto out;
2285 }
2286
2287 /*
2288 * We can't complete the direct I/O as requested, fall back to
2289 * buffered I/O.
2290 */
2291 if (direct_io && !can_do_direct) {
2292 ocfs2_rw_unlock(inode, rw_level);
2293 up_read(&inode->i_alloc_sem);
2294
2295 have_alloc_sem = 0;
2296 rw_level = -1;
2297
2298 direct_io = 0;
2299 goto relock;
2300 }
2301
2302 /*
2303 * To later detect whether a journal commit for sync writes is
2304 * necessary, we sample i_size, and cluster count here.
2305 */
2306 old_size = i_size_read(inode);
2307 old_clusters = OCFS2_I(inode)->ip_clusters;
2308
2309 /* communicate with ocfs2_dio_end_io */
2310 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2311
2312 ret = generic_segment_checks(iov, &nr_segs, &ocount,
2313 VERIFY_READ);
2314 if (ret)
2315 goto out_dio;
2316
2317 count = ocount;
2318 ret = generic_write_checks(file, ppos, &count,
2319 S_ISBLK(inode->i_mode));
2320 if (ret)
2321 goto out_dio;
2322
2323 if (direct_io) {
2324 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2325 ppos, count, ocount);
2326 if (written < 0) {
2327 ret = written;
2328 goto out_dio;
2329 }
2330 } else {
2331 current->backing_dev_info = file->f_mapping->backing_dev_info;
2332 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2333 ppos, count, 0);
2334 current->backing_dev_info = NULL;
2335 }
2336
2337 out_dio:
2338 /* buffered aio wouldn't have proper lock coverage today */
2339 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2340
2341 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2342 ((file->f_flags & O_DIRECT) && !direct_io)) {
2343 ret = filemap_fdatawrite_range(file->f_mapping, pos,
2344 pos + count - 1);
2345 if (ret < 0)
2346 written = ret;
2347
2348 if (!ret && ((old_size != i_size_read(inode)) ||
2349 (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2350 has_refcount)) {
2351 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2352 if (ret < 0)
2353 written = ret;
2354 }
2355
2356 if (!ret)
2357 ret = filemap_fdatawait_range(file->f_mapping, pos,
2358 pos + count - 1);
2359 }
2360
2361 /*
2362 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2363 * function pointer which is called when o_direct io completes so that
2364 * it can unlock our rw lock. (it's the clustered equivalent of
2365 * i_alloc_sem; protects truncate from racing with pending ios).
2366 * Unfortunately there are error cases which call end_io and others
2367 * that don't. so we don't have to unlock the rw_lock if either an
2368 * async dio is going to do it in the future or an end_io after an
2369 * error has already done it.
2370 */
2371 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2372 rw_level = -1;
2373 have_alloc_sem = 0;
2374 }
2375
2376 out:
2377 if (rw_level != -1)
2378 ocfs2_rw_unlock(inode, rw_level);
2379
2380 out_sems:
2381 if (have_alloc_sem) {
2382 up_read(&inode->i_alloc_sem);
2383 ocfs2_iocb_clear_sem_locked(iocb);
2384 }
2385
2386 mutex_unlock(&inode->i_mutex);
2387
2388 if (written)
2389 ret = written;
2390 return ret;
2391 }
2392
2393 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2394 struct file *out,
2395 struct splice_desc *sd)
2396 {
2397 int ret;
2398
2399 ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2400 sd->total_len, 0, NULL, NULL);
2401 if (ret < 0) {
2402 mlog_errno(ret);
2403 return ret;
2404 }
2405
2406 return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2407 }
2408
2409 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2410 struct file *out,
2411 loff_t *ppos,
2412 size_t len,
2413 unsigned int flags)
2414 {
2415 int ret;
2416 struct address_space *mapping = out->f_mapping;
2417 struct inode *inode = mapping->host;
2418 struct splice_desc sd = {
2419 .total_len = len,
2420 .flags = flags,
2421 .pos = *ppos,
2422 .u.file = out,
2423 };
2424
2425
2426 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2427 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2428 out->f_path.dentry->d_name.len,
2429 out->f_path.dentry->d_name.name, len);
2430
2431 if (pipe->inode)
2432 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2433
2434 splice_from_pipe_begin(&sd);
2435 do {
2436 ret = splice_from_pipe_next(pipe, &sd);
2437 if (ret <= 0)
2438 break;
2439
2440 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2441 ret = ocfs2_rw_lock(inode, 1);
2442 if (ret < 0)
2443 mlog_errno(ret);
2444 else {
2445 ret = ocfs2_splice_to_file(pipe, out, &sd);
2446 ocfs2_rw_unlock(inode, 1);
2447 }
2448 mutex_unlock(&inode->i_mutex);
2449 } while (ret > 0);
2450 splice_from_pipe_end(pipe, &sd);
2451
2452 if (pipe->inode)
2453 mutex_unlock(&pipe->inode->i_mutex);
2454
2455 if (sd.num_spliced)
2456 ret = sd.num_spliced;
2457
2458 if (ret > 0) {
2459 unsigned long nr_pages;
2460 int err;
2461
2462 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2463
2464 err = generic_write_sync(out, *ppos, ret);
2465 if (err)
2466 ret = err;
2467 else
2468 *ppos += ret;
2469
2470 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2471 }
2472
2473 return ret;
2474 }
2475
2476 static ssize_t ocfs2_file_splice_read(struct file *in,
2477 loff_t *ppos,
2478 struct pipe_inode_info *pipe,
2479 size_t len,
2480 unsigned int flags)
2481 {
2482 int ret = 0, lock_level = 0;
2483 struct inode *inode = in->f_path.dentry->d_inode;
2484
2485 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2486 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2487 in->f_path.dentry->d_name.len,
2488 in->f_path.dentry->d_name.name, len);
2489
2490 /*
2491 * See the comment in ocfs2_file_aio_read()
2492 */
2493 ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2494 if (ret < 0) {
2495 mlog_errno(ret);
2496 goto bail;
2497 }
2498 ocfs2_inode_unlock(inode, lock_level);
2499
2500 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2501
2502 bail:
2503 return ret;
2504 }
2505
2506 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2507 const struct iovec *iov,
2508 unsigned long nr_segs,
2509 loff_t pos)
2510 {
2511 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2512 struct file *filp = iocb->ki_filp;
2513 struct inode *inode = filp->f_path.dentry->d_inode;
2514
2515 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2516 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2517 filp->f_path.dentry->d_name.len,
2518 filp->f_path.dentry->d_name.name, nr_segs);
2519
2520
2521 if (!inode) {
2522 ret = -EINVAL;
2523 mlog_errno(ret);
2524 goto bail;
2525 }
2526
2527 ocfs2_iocb_clear_sem_locked(iocb);
2528
2529 /*
2530 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2531 * need locks to protect pending reads from racing with truncate.
2532 */
2533 if (filp->f_flags & O_DIRECT) {
2534 down_read(&inode->i_alloc_sem);
2535 have_alloc_sem = 1;
2536 ocfs2_iocb_set_sem_locked(iocb);
2537
2538 ret = ocfs2_rw_lock(inode, 0);
2539 if (ret < 0) {
2540 mlog_errno(ret);
2541 goto bail;
2542 }
2543 rw_level = 0;
2544 /* communicate with ocfs2_dio_end_io */
2545 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2546 }
2547
2548 /*
2549 * We're fine letting folks race truncates and extending
2550 * writes with read across the cluster, just like they can
2551 * locally. Hence no rw_lock during read.
2552 *
2553 * Take and drop the meta data lock to update inode fields
2554 * like i_size. This allows the checks down below
2555 * generic_file_aio_read() a chance of actually working.
2556 */
2557 ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2558 if (ret < 0) {
2559 mlog_errno(ret);
2560 goto bail;
2561 }
2562 ocfs2_inode_unlock(inode, lock_level);
2563
2564 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2565 trace_generic_file_aio_read_ret(ret);
2566
2567 /* buffered aio wouldn't have proper lock coverage today */
2568 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2569
2570 /* see ocfs2_file_aio_write */
2571 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2572 rw_level = -1;
2573 have_alloc_sem = 0;
2574 }
2575
2576 bail:
2577 if (have_alloc_sem) {
2578 up_read(&inode->i_alloc_sem);
2579 ocfs2_iocb_clear_sem_locked(iocb);
2580 }
2581 if (rw_level != -1)
2582 ocfs2_rw_unlock(inode, rw_level);
2583
2584 return ret;
2585 }
2586
2587 const struct inode_operations ocfs2_file_iops = {
2588 .setattr = ocfs2_setattr,
2589 .getattr = ocfs2_getattr,
2590 .permission = ocfs2_permission,
2591 .setxattr = generic_setxattr,
2592 .getxattr = generic_getxattr,
2593 .listxattr = ocfs2_listxattr,
2594 .removexattr = generic_removexattr,
2595 .fiemap = ocfs2_fiemap,
2596 };
2597
2598 const struct inode_operations ocfs2_special_file_iops = {
2599 .setattr = ocfs2_setattr,
2600 .getattr = ocfs2_getattr,
2601 .permission = ocfs2_permission,
2602 };
2603
2604 /*
2605 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2606 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2607 */
2608 const struct file_operations ocfs2_fops = {
2609 .llseek = generic_file_llseek,
2610 .read = do_sync_read,
2611 .write = do_sync_write,
2612 .mmap = ocfs2_mmap,
2613 .fsync = ocfs2_sync_file,
2614 .release = ocfs2_file_release,
2615 .open = ocfs2_file_open,
2616 .aio_read = ocfs2_file_aio_read,
2617 .aio_write = ocfs2_file_aio_write,
2618 .unlocked_ioctl = ocfs2_ioctl,
2619 #ifdef CONFIG_COMPAT
2620 .compat_ioctl = ocfs2_compat_ioctl,
2621 #endif
2622 .lock = ocfs2_lock,
2623 .flock = ocfs2_flock,
2624 .splice_read = ocfs2_file_splice_read,
2625 .splice_write = ocfs2_file_splice_write,
2626 .fallocate = ocfs2_fallocate,
2627 };
2628
2629 const struct file_operations ocfs2_dops = {
2630 .llseek = generic_file_llseek,
2631 .read = generic_read_dir,
2632 .readdir = ocfs2_readdir,
2633 .fsync = ocfs2_sync_file,
2634 .release = ocfs2_dir_release,
2635 .open = ocfs2_dir_open,
2636 .unlocked_ioctl = ocfs2_ioctl,
2637 #ifdef CONFIG_COMPAT
2638 .compat_ioctl = ocfs2_compat_ioctl,
2639 #endif
2640 .lock = ocfs2_lock,
2641 .flock = ocfs2_flock,
2642 };
2643
2644 /*
2645 * POSIX-lockless variants of our file_operations.
2646 *
2647 * These will be used if the underlying cluster stack does not support
2648 * posix file locking, if the user passes the "localflocks" mount
2649 * option, or if we have a local-only fs.
2650 *
2651 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2652 * so we still want it in the case of no stack support for
2653 * plocks. Internally, it will do the right thing when asked to ignore
2654 * the cluster.
2655 */
2656 const struct file_operations ocfs2_fops_no_plocks = {
2657 .llseek = generic_file_llseek,
2658 .read = do_sync_read,
2659 .write = do_sync_write,
2660 .mmap = ocfs2_mmap,
2661 .fsync = ocfs2_sync_file,
2662 .release = ocfs2_file_release,
2663 .open = ocfs2_file_open,
2664 .aio_read = ocfs2_file_aio_read,
2665 .aio_write = ocfs2_file_aio_write,
2666 .unlocked_ioctl = ocfs2_ioctl,
2667 #ifdef CONFIG_COMPAT
2668 .compat_ioctl = ocfs2_compat_ioctl,
2669 #endif
2670 .flock = ocfs2_flock,
2671 .splice_read = ocfs2_file_splice_read,
2672 .splice_write = ocfs2_file_splice_write,
2673 .fallocate = ocfs2_fallocate,
2674 };
2675
2676 const struct file_operations ocfs2_dops_no_plocks = {
2677 .llseek = generic_file_llseek,
2678 .read = generic_read_dir,
2679 .readdir = ocfs2_readdir,
2680 .fsync = ocfs2_sync_file,
2681 .release = ocfs2_dir_release,
2682 .open = ocfs2_dir_open,
2683 .unlocked_ioctl = ocfs2_ioctl,
2684 #ifdef CONFIG_COMPAT
2685 .compat_ioctl = ocfs2_compat_ioctl,
2686 #endif
2687 .flock = ocfs2_flock,
2688 };