Merge branch 'for-jens' of git://git.drbd.org/linux-drbd into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 struct ocfs2_file_private *fp;
70
71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 if (!fp)
73 return -ENOMEM;
74
75 fp->fp_file = file;
76 mutex_init(&fp->fp_mutex);
77 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 file->private_data = fp;
79
80 return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 struct ocfs2_file_private *fp = file->private_data;
86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88 if (fp) {
89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 ocfs2_lock_res_free(&fp->fp_flock);
91 kfree(fp);
92 file->private_data = NULL;
93 }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 int status;
99 int mode = file->f_flags;
100 struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 file->f_path.dentry->d_name.len,
105 file->f_path.dentry->d_name.name, mode);
106
107 if (file->f_mode & FMODE_WRITE)
108 dquot_initialize(inode);
109
110 spin_lock(&oi->ip_lock);
111
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 spin_unlock(&oi->ip_lock);
117
118 status = -ENOENT;
119 goto leave;
120 }
121
122 if (mode & O_DIRECT)
123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125 oi->ip_open_count++;
126 spin_unlock(&oi->ip_lock);
127
128 status = ocfs2_init_file_private(inode, file);
129 if (status) {
130 /*
131 * We want to set open count back if we're failing the
132 * open.
133 */
134 spin_lock(&oi->ip_lock);
135 oi->ip_open_count--;
136 spin_unlock(&oi->ip_lock);
137 }
138
139 leave:
140 return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147 spin_lock(&oi->ip_lock);
148 if (!--oi->ip_open_count)
149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 oi->ip_blkno,
153 file->f_path.dentry->d_name.len,
154 file->f_path.dentry->d_name.name,
155 oi->ip_open_count);
156 spin_unlock(&oi->ip_lock);
157
158 ocfs2_free_file_private(inode, file);
159
160 return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 ocfs2_free_file_private(inode, file);
171 return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 int datasync)
176 {
177 int err = 0;
178 journal_t *journal;
179 struct inode *inode = file->f_mapping->host;
180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181
182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 OCFS2_I(inode)->ip_blkno,
184 file->f_path.dentry->d_name.len,
185 file->f_path.dentry->d_name.name,
186 (unsigned long long)datasync);
187
188 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189 if (err)
190 return err;
191
192 /*
193 * Probably don't need the i_mutex at all in here, just putting it here
194 * to be consistent with how fsync used to be called, someone more
195 * familiar with the fs could possibly remove it.
196 */
197 mutex_lock(&inode->i_mutex);
198 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199 /*
200 * We still have to flush drive's caches to get data to the
201 * platter
202 */
203 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205 goto bail;
206 }
207
208 journal = osb->journal->j_journal;
209 err = jbd2_journal_force_commit(journal);
210
211 bail:
212 if (err)
213 mlog_errno(err);
214 mutex_unlock(&inode->i_mutex);
215
216 return (err < 0) ? -EIO : 0;
217 }
218
219 int ocfs2_should_update_atime(struct inode *inode,
220 struct vfsmount *vfsmnt)
221 {
222 struct timespec now;
223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224
225 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226 return 0;
227
228 if ((inode->i_flags & S_NOATIME) ||
229 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 return 0;
231
232 /*
233 * We can be called with no vfsmnt structure - NFSD will
234 * sometimes do this.
235 *
236 * Note that our action here is different than touch_atime() -
237 * if we can't tell whether this is a noatime mount, then we
238 * don't know whether to trust the value of s_atime_quantum.
239 */
240 if (vfsmnt == NULL)
241 return 0;
242
243 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245 return 0;
246
247 if (vfsmnt->mnt_flags & MNT_RELATIME) {
248 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250 return 1;
251
252 return 0;
253 }
254
255 now = CURRENT_TIME;
256 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257 return 0;
258 else
259 return 1;
260 }
261
262 int ocfs2_update_inode_atime(struct inode *inode,
263 struct buffer_head *bh)
264 {
265 int ret;
266 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267 handle_t *handle;
268 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269
270 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271 if (IS_ERR(handle)) {
272 ret = PTR_ERR(handle);
273 mlog_errno(ret);
274 goto out;
275 }
276
277 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278 OCFS2_JOURNAL_ACCESS_WRITE);
279 if (ret) {
280 mlog_errno(ret);
281 goto out_commit;
282 }
283
284 /*
285 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 * have i_mutex to guard against concurrent changes to other
287 * inode fields.
288 */
289 inode->i_atime = CURRENT_TIME;
290 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292 ocfs2_journal_dirty(handle, bh);
293
294 out_commit:
295 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297 return ret;
298 }
299
300 static int ocfs2_set_inode_size(handle_t *handle,
301 struct inode *inode,
302 struct buffer_head *fe_bh,
303 u64 new_i_size)
304 {
305 int status;
306
307 i_size_write(inode, new_i_size);
308 inode->i_blocks = ocfs2_inode_sector_count(inode);
309 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310
311 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 if (status < 0) {
313 mlog_errno(status);
314 goto bail;
315 }
316
317 bail:
318 return status;
319 }
320
321 int ocfs2_simple_size_update(struct inode *inode,
322 struct buffer_head *di_bh,
323 u64 new_i_size)
324 {
325 int ret;
326 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327 handle_t *handle = NULL;
328
329 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330 if (IS_ERR(handle)) {
331 ret = PTR_ERR(handle);
332 mlog_errno(ret);
333 goto out;
334 }
335
336 ret = ocfs2_set_inode_size(handle, inode, di_bh,
337 new_i_size);
338 if (ret < 0)
339 mlog_errno(ret);
340
341 ocfs2_commit_trans(osb, handle);
342 out:
343 return ret;
344 }
345
346 static int ocfs2_cow_file_pos(struct inode *inode,
347 struct buffer_head *fe_bh,
348 u64 offset)
349 {
350 int status;
351 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352 unsigned int num_clusters = 0;
353 unsigned int ext_flags = 0;
354
355 /*
356 * If the new offset is aligned to the range of the cluster, there is
357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358 * CoW either.
359 */
360 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361 return 0;
362
363 status = ocfs2_get_clusters(inode, cpos, &phys,
364 &num_clusters, &ext_flags);
365 if (status) {
366 mlog_errno(status);
367 goto out;
368 }
369
370 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371 goto out;
372
373 return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
374
375 out:
376 return status;
377 }
378
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 struct inode *inode,
381 struct buffer_head *fe_bh,
382 u64 new_i_size)
383 {
384 int status;
385 handle_t *handle;
386 struct ocfs2_dinode *di;
387 u64 cluster_bytes;
388
389 /*
390 * We need to CoW the cluster contains the offset if it is reflinked
391 * since we will call ocfs2_zero_range_for_truncate later which will
392 * write "0" from offset to the end of the cluster.
393 */
394 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395 if (status) {
396 mlog_errno(status);
397 return status;
398 }
399
400 /* TODO: This needs to actually orphan the inode in this
401 * transaction. */
402
403 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404 if (IS_ERR(handle)) {
405 status = PTR_ERR(handle);
406 mlog_errno(status);
407 goto out;
408 }
409
410 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411 OCFS2_JOURNAL_ACCESS_WRITE);
412 if (status < 0) {
413 mlog_errno(status);
414 goto out_commit;
415 }
416
417 /*
418 * Do this before setting i_size.
419 */
420 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422 cluster_bytes);
423 if (status) {
424 mlog_errno(status);
425 goto out_commit;
426 }
427
428 i_size_write(inode, new_i_size);
429 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430
431 di = (struct ocfs2_dinode *) fe_bh->b_data;
432 di->i_size = cpu_to_le64(new_i_size);
433 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435
436 ocfs2_journal_dirty(handle, fe_bh);
437
438 out_commit:
439 ocfs2_commit_trans(osb, handle);
440 out:
441 return status;
442 }
443
444 static int ocfs2_truncate_file(struct inode *inode,
445 struct buffer_head *di_bh,
446 u64 new_i_size)
447 {
448 int status = 0;
449 struct ocfs2_dinode *fe = NULL;
450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 * already validated it */
454 fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 (unsigned long long)new_i_size);
459
460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 "Inode %llu, inode i_size = %lld != di "
462 "i_size = %llu, i_flags = 0x%x\n",
463 (unsigned long long)OCFS2_I(inode)->ip_blkno,
464 i_size_read(inode),
465 (unsigned long long)le64_to_cpu(fe->i_size),
466 le32_to_cpu(fe->i_flags));
467
468 if (new_i_size > le64_to_cpu(fe->i_size)) {
469 trace_ocfs2_truncate_file_error(
470 (unsigned long long)le64_to_cpu(fe->i_size),
471 (unsigned long long)new_i_size);
472 status = -EINVAL;
473 mlog_errno(status);
474 goto bail;
475 }
476
477 /* lets handle the simple truncate cases before doing any more
478 * cluster locking. */
479 if (new_i_size == le64_to_cpu(fe->i_size))
480 goto bail;
481
482 down_write(&OCFS2_I(inode)->ip_alloc_sem);
483
484 ocfs2_resv_discard(&osb->osb_la_resmap,
485 &OCFS2_I(inode)->ip_la_data_resv);
486
487 /*
488 * The inode lock forced other nodes to sync and drop their
489 * pages, which (correctly) happens even if we have a truncate
490 * without allocation change - ocfs2 cluster sizes can be much
491 * greater than page size, so we have to truncate them
492 * anyway.
493 */
494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 truncate_inode_pages(inode->i_mapping, new_i_size);
496
497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 i_size_read(inode), 1);
500 if (status)
501 mlog_errno(status);
502
503 goto bail_unlock_sem;
504 }
505
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
509 * i_size. */
510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 if (status < 0) {
512 mlog_errno(status);
513 goto bail_unlock_sem;
514 }
515
516 status = ocfs2_commit_truncate(osb, inode, di_bh);
517 if (status < 0) {
518 mlog_errno(status);
519 goto bail_unlock_sem;
520 }
521
522 /* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524 up_write(&OCFS2_I(inode)->ip_alloc_sem);
525
526 bail:
527 if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529
530 return status;
531 }
532
533 /*
534 * extend file allocation only here.
535 * we'll update all the disk stuff, and oip->alloc_size
536 *
537 * expect stuff to be locked, a transaction started and enough data /
538 * metadata reservations in the contexts.
539 *
540 * Will return -EAGAIN, and a reason if a restart is needed.
541 * If passed in, *reason will always be set, even in error.
542 */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 struct inode *inode,
545 u32 *logical_offset,
546 u32 clusters_to_add,
547 int mark_unwritten,
548 struct buffer_head *fe_bh,
549 handle_t *handle,
550 struct ocfs2_alloc_context *data_ac,
551 struct ocfs2_alloc_context *meta_ac,
552 enum ocfs2_alloc_restarted *reason_ret)
553 {
554 int ret;
555 struct ocfs2_extent_tree et;
556
557 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 clusters_to_add, mark_unwritten,
560 data_ac, meta_ac, reason_ret);
561
562 return ret;
563 }
564
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 u32 clusters_to_add, int mark_unwritten)
567 {
568 int status = 0;
569 int restart_func = 0;
570 int credits;
571 u32 prev_clusters;
572 struct buffer_head *bh = NULL;
573 struct ocfs2_dinode *fe = NULL;
574 handle_t *handle = NULL;
575 struct ocfs2_alloc_context *data_ac = NULL;
576 struct ocfs2_alloc_context *meta_ac = NULL;
577 enum ocfs2_alloc_restarted why;
578 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 struct ocfs2_extent_tree et;
580 int did_quota = 0;
581
582 /*
583 * This function only exists for file systems which don't
584 * support holes.
585 */
586 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587
588 status = ocfs2_read_inode_block(inode, &bh);
589 if (status < 0) {
590 mlog_errno(status);
591 goto leave;
592 }
593 fe = (struct ocfs2_dinode *) bh->b_data;
594
595 restart_all:
596 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597
598 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600 &data_ac, &meta_ac);
601 if (status) {
602 mlog_errno(status);
603 goto leave;
604 }
605
606 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
607 clusters_to_add);
608 handle = ocfs2_start_trans(osb, credits);
609 if (IS_ERR(handle)) {
610 status = PTR_ERR(handle);
611 handle = NULL;
612 mlog_errno(status);
613 goto leave;
614 }
615
616 restarted_transaction:
617 trace_ocfs2_extend_allocation(
618 (unsigned long long)OCFS2_I(inode)->ip_blkno,
619 (unsigned long long)i_size_read(inode),
620 le32_to_cpu(fe->i_clusters), clusters_to_add,
621 why, restart_func);
622
623 status = dquot_alloc_space_nodirty(inode,
624 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 if (status)
626 goto leave;
627 did_quota = 1;
628
629 /* reserve a write to the file entry early on - that we if we
630 * run out of credits in the allocation path, we can still
631 * update i_size. */
632 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 OCFS2_JOURNAL_ACCESS_WRITE);
634 if (status < 0) {
635 mlog_errno(status);
636 goto leave;
637 }
638
639 prev_clusters = OCFS2_I(inode)->ip_clusters;
640
641 status = ocfs2_add_inode_data(osb,
642 inode,
643 &logical_start,
644 clusters_to_add,
645 mark_unwritten,
646 bh,
647 handle,
648 data_ac,
649 meta_ac,
650 &why);
651 if ((status < 0) && (status != -EAGAIN)) {
652 if (status != -ENOSPC)
653 mlog_errno(status);
654 goto leave;
655 }
656
657 ocfs2_journal_dirty(handle, bh);
658
659 spin_lock(&OCFS2_I(inode)->ip_lock);
660 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 spin_unlock(&OCFS2_I(inode)->ip_lock);
662 /* Release unused quota reservation */
663 dquot_free_space(inode,
664 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 did_quota = 0;
666
667 if (why != RESTART_NONE && clusters_to_add) {
668 if (why == RESTART_META) {
669 restart_func = 1;
670 status = 0;
671 } else {
672 BUG_ON(why != RESTART_TRANS);
673
674 /* TODO: This can be more intelligent. */
675 credits = ocfs2_calc_extend_credits(osb->sb,
676 &fe->id2.i_list,
677 clusters_to_add);
678 status = ocfs2_extend_trans(handle, credits);
679 if (status < 0) {
680 /* handle still has to be committed at
681 * this point. */
682 status = -ENOMEM;
683 mlog_errno(status);
684 goto leave;
685 }
686 goto restarted_transaction;
687 }
688 }
689
690 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691 le32_to_cpu(fe->i_clusters),
692 (unsigned long long)le64_to_cpu(fe->i_size),
693 OCFS2_I(inode)->ip_clusters,
694 (unsigned long long)i_size_read(inode));
695
696 leave:
697 if (status < 0 && did_quota)
698 dquot_free_space(inode,
699 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700 if (handle) {
701 ocfs2_commit_trans(osb, handle);
702 handle = NULL;
703 }
704 if (data_ac) {
705 ocfs2_free_alloc_context(data_ac);
706 data_ac = NULL;
707 }
708 if (meta_ac) {
709 ocfs2_free_alloc_context(meta_ac);
710 meta_ac = NULL;
711 }
712 if ((!status) && restart_func) {
713 restart_func = 0;
714 goto restart_all;
715 }
716 brelse(bh);
717 bh = NULL;
718
719 return status;
720 }
721
722 /*
723 * While a write will already be ordering the data, a truncate will not.
724 * Thus, we need to explicitly order the zeroed pages.
725 */
726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
727 {
728 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
729 handle_t *handle = NULL;
730 int ret = 0;
731
732 if (!ocfs2_should_order_data(inode))
733 goto out;
734
735 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
736 if (IS_ERR(handle)) {
737 ret = -ENOMEM;
738 mlog_errno(ret);
739 goto out;
740 }
741
742 ret = ocfs2_jbd2_file_inode(handle, inode);
743 if (ret < 0)
744 mlog_errno(ret);
745
746 out:
747 if (ret) {
748 if (!IS_ERR(handle))
749 ocfs2_commit_trans(osb, handle);
750 handle = ERR_PTR(ret);
751 }
752 return handle;
753 }
754
755 /* Some parts of this taken from generic_cont_expand, which turned out
756 * to be too fragile to do exactly what we need without us having to
757 * worry about recursive locking in ->write_begin() and ->write_end(). */
758 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
759 u64 abs_to)
760 {
761 struct address_space *mapping = inode->i_mapping;
762 struct page *page;
763 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
764 handle_t *handle = NULL;
765 int ret = 0;
766 unsigned zero_from, zero_to, block_start, block_end;
767
768 BUG_ON(abs_from >= abs_to);
769 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770 BUG_ON(abs_from & (inode->i_blkbits - 1));
771
772 page = find_or_create_page(mapping, index, GFP_NOFS);
773 if (!page) {
774 ret = -ENOMEM;
775 mlog_errno(ret);
776 goto out;
777 }
778
779 /* Get the offsets within the page that we want to zero */
780 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782 if (!zero_to)
783 zero_to = PAGE_CACHE_SIZE;
784
785 trace_ocfs2_write_zero_page(
786 (unsigned long long)OCFS2_I(inode)->ip_blkno,
787 (unsigned long long)abs_from,
788 (unsigned long long)abs_to,
789 index, zero_from, zero_to);
790
791 /* We know that zero_from is block aligned */
792 for (block_start = zero_from; block_start < zero_to;
793 block_start = block_end) {
794 block_end = block_start + (1 << inode->i_blkbits);
795
796 /*
797 * block_start is block-aligned. Bump it by one to force
798 * __block_write_begin and block_commit_write to zero the
799 * whole block.
800 */
801 ret = __block_write_begin(page, block_start + 1, 0,
802 ocfs2_get_block);
803 if (ret < 0) {
804 mlog_errno(ret);
805 goto out_unlock;
806 }
807
808 if (!handle) {
809 handle = ocfs2_zero_start_ordered_transaction(inode);
810 if (IS_ERR(handle)) {
811 ret = PTR_ERR(handle);
812 handle = NULL;
813 break;
814 }
815 }
816
817 /* must not update i_size! */
818 ret = block_commit_write(page, block_start + 1,
819 block_start + 1);
820 if (ret < 0)
821 mlog_errno(ret);
822 else
823 ret = 0;
824 }
825
826 if (handle)
827 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
828
829 out_unlock:
830 unlock_page(page);
831 page_cache_release(page);
832 out:
833 return ret;
834 }
835
836 /*
837 * Find the next range to zero. We do this in terms of bytes because
838 * that's what ocfs2_zero_extend() wants, and it is dealing with the
839 * pagecache. We may return multiple extents.
840 *
841 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842 * needs to be zeroed. range_start and range_end return the next zeroing
843 * range. A subsequent call should pass the previous range_end as its
844 * zero_start. If range_end is 0, there's nothing to do.
845 *
846 * Unwritten extents are skipped over. Refcounted extents are CoWd.
847 */
848 static int ocfs2_zero_extend_get_range(struct inode *inode,
849 struct buffer_head *di_bh,
850 u64 zero_start, u64 zero_end,
851 u64 *range_start, u64 *range_end)
852 {
853 int rc = 0, needs_cow = 0;
854 u32 p_cpos, zero_clusters = 0;
855 u32 zero_cpos =
856 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
857 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
858 unsigned int num_clusters = 0;
859 unsigned int ext_flags = 0;
860
861 while (zero_cpos < last_cpos) {
862 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
863 &num_clusters, &ext_flags);
864 if (rc) {
865 mlog_errno(rc);
866 goto out;
867 }
868
869 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
870 zero_clusters = num_clusters;
871 if (ext_flags & OCFS2_EXT_REFCOUNTED)
872 needs_cow = 1;
873 break;
874 }
875
876 zero_cpos += num_clusters;
877 }
878 if (!zero_clusters) {
879 *range_end = 0;
880 goto out;
881 }
882
883 while ((zero_cpos + zero_clusters) < last_cpos) {
884 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
885 &p_cpos, &num_clusters,
886 &ext_flags);
887 if (rc) {
888 mlog_errno(rc);
889 goto out;
890 }
891
892 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
893 break;
894 if (ext_flags & OCFS2_EXT_REFCOUNTED)
895 needs_cow = 1;
896 zero_clusters += num_clusters;
897 }
898 if ((zero_cpos + zero_clusters) > last_cpos)
899 zero_clusters = last_cpos - zero_cpos;
900
901 if (needs_cow) {
902 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
903 zero_clusters, UINT_MAX);
904 if (rc) {
905 mlog_errno(rc);
906 goto out;
907 }
908 }
909
910 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
911 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
912 zero_cpos + zero_clusters);
913
914 out:
915 return rc;
916 }
917
918 /*
919 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
920 * has made sure that the entire range needs zeroing.
921 */
922 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
923 u64 range_end)
924 {
925 int rc = 0;
926 u64 next_pos;
927 u64 zero_pos = range_start;
928
929 trace_ocfs2_zero_extend_range(
930 (unsigned long long)OCFS2_I(inode)->ip_blkno,
931 (unsigned long long)range_start,
932 (unsigned long long)range_end);
933 BUG_ON(range_start >= range_end);
934
935 while (zero_pos < range_end) {
936 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
937 if (next_pos > range_end)
938 next_pos = range_end;
939 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
940 if (rc < 0) {
941 mlog_errno(rc);
942 break;
943 }
944 zero_pos = next_pos;
945
946 /*
947 * Very large extends have the potential to lock up
948 * the cpu for extended periods of time.
949 */
950 cond_resched();
951 }
952
953 return rc;
954 }
955
956 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
957 loff_t zero_to_size)
958 {
959 int ret = 0;
960 u64 zero_start, range_start = 0, range_end = 0;
961 struct super_block *sb = inode->i_sb;
962
963 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
964 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
965 (unsigned long long)zero_start,
966 (unsigned long long)i_size_read(inode));
967 while (zero_start < zero_to_size) {
968 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
969 zero_to_size,
970 &range_start,
971 &range_end);
972 if (ret) {
973 mlog_errno(ret);
974 break;
975 }
976 if (!range_end)
977 break;
978 /* Trim the ends */
979 if (range_start < zero_start)
980 range_start = zero_start;
981 if (range_end > zero_to_size)
982 range_end = zero_to_size;
983
984 ret = ocfs2_zero_extend_range(inode, range_start,
985 range_end);
986 if (ret) {
987 mlog_errno(ret);
988 break;
989 }
990 zero_start = range_end;
991 }
992
993 return ret;
994 }
995
996 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
997 u64 new_i_size, u64 zero_to)
998 {
999 int ret;
1000 u32 clusters_to_add;
1001 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1002
1003 /*
1004 * Only quota files call this without a bh, and they can't be
1005 * refcounted.
1006 */
1007 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1008 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1009
1010 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1011 if (clusters_to_add < oi->ip_clusters)
1012 clusters_to_add = 0;
1013 else
1014 clusters_to_add -= oi->ip_clusters;
1015
1016 if (clusters_to_add) {
1017 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1018 clusters_to_add, 0);
1019 if (ret) {
1020 mlog_errno(ret);
1021 goto out;
1022 }
1023 }
1024
1025 /*
1026 * Call this even if we don't add any clusters to the tree. We
1027 * still need to zero the area between the old i_size and the
1028 * new i_size.
1029 */
1030 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1031 if (ret < 0)
1032 mlog_errno(ret);
1033
1034 out:
1035 return ret;
1036 }
1037
1038 static int ocfs2_extend_file(struct inode *inode,
1039 struct buffer_head *di_bh,
1040 u64 new_i_size)
1041 {
1042 int ret = 0;
1043 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1044
1045 BUG_ON(!di_bh);
1046
1047 /* setattr sometimes calls us like this. */
1048 if (new_i_size == 0)
1049 goto out;
1050
1051 if (i_size_read(inode) == new_i_size)
1052 goto out;
1053 BUG_ON(new_i_size < i_size_read(inode));
1054
1055 /*
1056 * The alloc sem blocks people in read/write from reading our
1057 * allocation until we're done changing it. We depend on
1058 * i_mutex to block other extend/truncate calls while we're
1059 * here. We even have to hold it for sparse files because there
1060 * might be some tail zeroing.
1061 */
1062 down_write(&oi->ip_alloc_sem);
1063
1064 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1065 /*
1066 * We can optimize small extends by keeping the inodes
1067 * inline data.
1068 */
1069 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1070 up_write(&oi->ip_alloc_sem);
1071 goto out_update_size;
1072 }
1073
1074 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1075 if (ret) {
1076 up_write(&oi->ip_alloc_sem);
1077 mlog_errno(ret);
1078 goto out;
1079 }
1080 }
1081
1082 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1084 else
1085 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1086 new_i_size);
1087
1088 up_write(&oi->ip_alloc_sem);
1089
1090 if (ret < 0) {
1091 mlog_errno(ret);
1092 goto out;
1093 }
1094
1095 out_update_size:
1096 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1097 if (ret < 0)
1098 mlog_errno(ret);
1099
1100 out:
1101 return ret;
1102 }
1103
1104 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1105 {
1106 int status = 0, size_change;
1107 struct inode *inode = dentry->d_inode;
1108 struct super_block *sb = inode->i_sb;
1109 struct ocfs2_super *osb = OCFS2_SB(sb);
1110 struct buffer_head *bh = NULL;
1111 handle_t *handle = NULL;
1112 struct dquot *transfer_to[MAXQUOTAS] = { };
1113 int qtype;
1114
1115 trace_ocfs2_setattr(inode, dentry,
1116 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1117 dentry->d_name.len, dentry->d_name.name,
1118 attr->ia_valid, attr->ia_mode,
1119 attr->ia_uid, attr->ia_gid);
1120
1121 /* ensuring we don't even attempt to truncate a symlink */
1122 if (S_ISLNK(inode->i_mode))
1123 attr->ia_valid &= ~ATTR_SIZE;
1124
1125 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126 | ATTR_GID | ATTR_UID | ATTR_MODE)
1127 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1128 return 0;
1129
1130 status = inode_change_ok(inode, attr);
1131 if (status)
1132 return status;
1133
1134 if (is_quota_modification(inode, attr))
1135 dquot_initialize(inode);
1136 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1137 if (size_change) {
1138 status = ocfs2_rw_lock(inode, 1);
1139 if (status < 0) {
1140 mlog_errno(status);
1141 goto bail;
1142 }
1143 }
1144
1145 status = ocfs2_inode_lock(inode, &bh, 1);
1146 if (status < 0) {
1147 if (status != -ENOENT)
1148 mlog_errno(status);
1149 goto bail_unlock_rw;
1150 }
1151
1152 if (size_change && attr->ia_size != i_size_read(inode)) {
1153 status = inode_newsize_ok(inode, attr->ia_size);
1154 if (status)
1155 goto bail_unlock;
1156
1157 inode_dio_wait(inode);
1158
1159 if (i_size_read(inode) > attr->ia_size) {
1160 if (ocfs2_should_order_data(inode)) {
1161 status = ocfs2_begin_ordered_truncate(inode,
1162 attr->ia_size);
1163 if (status)
1164 goto bail_unlock;
1165 }
1166 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1167 } else
1168 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1169 if (status < 0) {
1170 if (status != -ENOSPC)
1171 mlog_errno(status);
1172 status = -ENOSPC;
1173 goto bail_unlock;
1174 }
1175 }
1176
1177 if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1178 (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1179 /*
1180 * Gather pointers to quota structures so that allocation /
1181 * freeing of quota structures happens here and not inside
1182 * dquot_transfer() where we have problems with lock ordering
1183 */
1184 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1185 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1186 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1187 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1188 if (!transfer_to[USRQUOTA]) {
1189 status = -ESRCH;
1190 goto bail_unlock;
1191 }
1192 }
1193 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1194 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1195 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1196 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1197 if (!transfer_to[GRPQUOTA]) {
1198 status = -ESRCH;
1199 goto bail_unlock;
1200 }
1201 }
1202 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1203 2 * ocfs2_quota_trans_credits(sb));
1204 if (IS_ERR(handle)) {
1205 status = PTR_ERR(handle);
1206 mlog_errno(status);
1207 goto bail_unlock;
1208 }
1209 status = __dquot_transfer(inode, transfer_to);
1210 if (status < 0)
1211 goto bail_commit;
1212 } else {
1213 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1214 if (IS_ERR(handle)) {
1215 status = PTR_ERR(handle);
1216 mlog_errno(status);
1217 goto bail_unlock;
1218 }
1219 }
1220
1221 /*
1222 * This will intentionally not wind up calling truncate_setsize(),
1223 * since all the work for a size change has been done above.
1224 * Otherwise, we could get into problems with truncate as
1225 * ip_alloc_sem is used there to protect against i_size
1226 * changes.
1227 *
1228 * XXX: this means the conditional below can probably be removed.
1229 */
1230 if ((attr->ia_valid & ATTR_SIZE) &&
1231 attr->ia_size != i_size_read(inode)) {
1232 status = vmtruncate(inode, attr->ia_size);
1233 if (status) {
1234 mlog_errno(status);
1235 goto bail_commit;
1236 }
1237 }
1238
1239 setattr_copy(inode, attr);
1240 mark_inode_dirty(inode);
1241
1242 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1243 if (status < 0)
1244 mlog_errno(status);
1245
1246 bail_commit:
1247 ocfs2_commit_trans(osb, handle);
1248 bail_unlock:
1249 ocfs2_inode_unlock(inode, 1);
1250 bail_unlock_rw:
1251 if (size_change)
1252 ocfs2_rw_unlock(inode, 1);
1253 bail:
1254 brelse(bh);
1255
1256 /* Release quota pointers in case we acquired them */
1257 for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1258 dqput(transfer_to[qtype]);
1259
1260 if (!status && attr->ia_valid & ATTR_MODE) {
1261 status = ocfs2_acl_chmod(inode);
1262 if (status < 0)
1263 mlog_errno(status);
1264 }
1265
1266 return status;
1267 }
1268
1269 int ocfs2_getattr(struct vfsmount *mnt,
1270 struct dentry *dentry,
1271 struct kstat *stat)
1272 {
1273 struct inode *inode = dentry->d_inode;
1274 struct super_block *sb = dentry->d_inode->i_sb;
1275 struct ocfs2_super *osb = sb->s_fs_info;
1276 int err;
1277
1278 err = ocfs2_inode_revalidate(dentry);
1279 if (err) {
1280 if (err != -ENOENT)
1281 mlog_errno(err);
1282 goto bail;
1283 }
1284
1285 generic_fillattr(inode, stat);
1286
1287 /* We set the blksize from the cluster size for performance */
1288 stat->blksize = osb->s_clustersize;
1289
1290 bail:
1291 return err;
1292 }
1293
1294 int ocfs2_permission(struct inode *inode, int mask)
1295 {
1296 int ret;
1297
1298 if (mask & MAY_NOT_BLOCK)
1299 return -ECHILD;
1300
1301 ret = ocfs2_inode_lock(inode, NULL, 0);
1302 if (ret) {
1303 if (ret != -ENOENT)
1304 mlog_errno(ret);
1305 goto out;
1306 }
1307
1308 ret = generic_permission(inode, mask);
1309
1310 ocfs2_inode_unlock(inode, 0);
1311 out:
1312 return ret;
1313 }
1314
1315 static int __ocfs2_write_remove_suid(struct inode *inode,
1316 struct buffer_head *bh)
1317 {
1318 int ret;
1319 handle_t *handle;
1320 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1321 struct ocfs2_dinode *di;
1322
1323 trace_ocfs2_write_remove_suid(
1324 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1325 inode->i_mode);
1326
1327 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1328 if (IS_ERR(handle)) {
1329 ret = PTR_ERR(handle);
1330 mlog_errno(ret);
1331 goto out;
1332 }
1333
1334 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1335 OCFS2_JOURNAL_ACCESS_WRITE);
1336 if (ret < 0) {
1337 mlog_errno(ret);
1338 goto out_trans;
1339 }
1340
1341 inode->i_mode &= ~S_ISUID;
1342 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1343 inode->i_mode &= ~S_ISGID;
1344
1345 di = (struct ocfs2_dinode *) bh->b_data;
1346 di->i_mode = cpu_to_le16(inode->i_mode);
1347
1348 ocfs2_journal_dirty(handle, bh);
1349
1350 out_trans:
1351 ocfs2_commit_trans(osb, handle);
1352 out:
1353 return ret;
1354 }
1355
1356 /*
1357 * Will look for holes and unwritten extents in the range starting at
1358 * pos for count bytes (inclusive).
1359 */
1360 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1361 size_t count)
1362 {
1363 int ret = 0;
1364 unsigned int extent_flags;
1365 u32 cpos, clusters, extent_len, phys_cpos;
1366 struct super_block *sb = inode->i_sb;
1367
1368 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1369 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1370
1371 while (clusters) {
1372 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1373 &extent_flags);
1374 if (ret < 0) {
1375 mlog_errno(ret);
1376 goto out;
1377 }
1378
1379 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1380 ret = 1;
1381 break;
1382 }
1383
1384 if (extent_len > clusters)
1385 extent_len = clusters;
1386
1387 clusters -= extent_len;
1388 cpos += extent_len;
1389 }
1390 out:
1391 return ret;
1392 }
1393
1394 static int ocfs2_write_remove_suid(struct inode *inode)
1395 {
1396 int ret;
1397 struct buffer_head *bh = NULL;
1398
1399 ret = ocfs2_read_inode_block(inode, &bh);
1400 if (ret < 0) {
1401 mlog_errno(ret);
1402 goto out;
1403 }
1404
1405 ret = __ocfs2_write_remove_suid(inode, bh);
1406 out:
1407 brelse(bh);
1408 return ret;
1409 }
1410
1411 /*
1412 * Allocate enough extents to cover the region starting at byte offset
1413 * start for len bytes. Existing extents are skipped, any extents
1414 * added are marked as "unwritten".
1415 */
1416 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1417 u64 start, u64 len)
1418 {
1419 int ret;
1420 u32 cpos, phys_cpos, clusters, alloc_size;
1421 u64 end = start + len;
1422 struct buffer_head *di_bh = NULL;
1423
1424 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1425 ret = ocfs2_read_inode_block(inode, &di_bh);
1426 if (ret) {
1427 mlog_errno(ret);
1428 goto out;
1429 }
1430
1431 /*
1432 * Nothing to do if the requested reservation range
1433 * fits within the inode.
1434 */
1435 if (ocfs2_size_fits_inline_data(di_bh, end))
1436 goto out;
1437
1438 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1439 if (ret) {
1440 mlog_errno(ret);
1441 goto out;
1442 }
1443 }
1444
1445 /*
1446 * We consider both start and len to be inclusive.
1447 */
1448 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1449 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1450 clusters -= cpos;
1451
1452 while (clusters) {
1453 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1454 &alloc_size, NULL);
1455 if (ret) {
1456 mlog_errno(ret);
1457 goto out;
1458 }
1459
1460 /*
1461 * Hole or existing extent len can be arbitrary, so
1462 * cap it to our own allocation request.
1463 */
1464 if (alloc_size > clusters)
1465 alloc_size = clusters;
1466
1467 if (phys_cpos) {
1468 /*
1469 * We already have an allocation at this
1470 * region so we can safely skip it.
1471 */
1472 goto next;
1473 }
1474
1475 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1476 if (ret) {
1477 if (ret != -ENOSPC)
1478 mlog_errno(ret);
1479 goto out;
1480 }
1481
1482 next:
1483 cpos += alloc_size;
1484 clusters -= alloc_size;
1485 }
1486
1487 ret = 0;
1488 out:
1489
1490 brelse(di_bh);
1491 return ret;
1492 }
1493
1494 /*
1495 * Truncate a byte range, avoiding pages within partial clusters. This
1496 * preserves those pages for the zeroing code to write to.
1497 */
1498 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1499 u64 byte_len)
1500 {
1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 loff_t start, end;
1503 struct address_space *mapping = inode->i_mapping;
1504
1505 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1506 end = byte_start + byte_len;
1507 end = end & ~(osb->s_clustersize - 1);
1508
1509 if (start < end) {
1510 unmap_mapping_range(mapping, start, end - start, 0);
1511 truncate_inode_pages_range(mapping, start, end - 1);
1512 }
1513 }
1514
1515 static int ocfs2_zero_partial_clusters(struct inode *inode,
1516 u64 start, u64 len)
1517 {
1518 int ret = 0;
1519 u64 tmpend, end = start + len;
1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521 unsigned int csize = osb->s_clustersize;
1522 handle_t *handle;
1523
1524 /*
1525 * The "start" and "end" values are NOT necessarily part of
1526 * the range whose allocation is being deleted. Rather, this
1527 * is what the user passed in with the request. We must zero
1528 * partial clusters here. There's no need to worry about
1529 * physical allocation - the zeroing code knows to skip holes.
1530 */
1531 trace_ocfs2_zero_partial_clusters(
1532 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1533 (unsigned long long)start, (unsigned long long)end);
1534
1535 /*
1536 * If both edges are on a cluster boundary then there's no
1537 * zeroing required as the region is part of the allocation to
1538 * be truncated.
1539 */
1540 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1541 goto out;
1542
1543 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1544 if (IS_ERR(handle)) {
1545 ret = PTR_ERR(handle);
1546 mlog_errno(ret);
1547 goto out;
1548 }
1549
1550 /*
1551 * We want to get the byte offset of the end of the 1st cluster.
1552 */
1553 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1554 if (tmpend > end)
1555 tmpend = end;
1556
1557 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1558 (unsigned long long)tmpend);
1559
1560 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1561 if (ret)
1562 mlog_errno(ret);
1563
1564 if (tmpend < end) {
1565 /*
1566 * This may make start and end equal, but the zeroing
1567 * code will skip any work in that case so there's no
1568 * need to catch it up here.
1569 */
1570 start = end & ~(osb->s_clustersize - 1);
1571
1572 trace_ocfs2_zero_partial_clusters_range2(
1573 (unsigned long long)start, (unsigned long long)end);
1574
1575 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1576 if (ret)
1577 mlog_errno(ret);
1578 }
1579
1580 ocfs2_commit_trans(osb, handle);
1581 out:
1582 return ret;
1583 }
1584
1585 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1586 {
1587 int i;
1588 struct ocfs2_extent_rec *rec = NULL;
1589
1590 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1591
1592 rec = &el->l_recs[i];
1593
1594 if (le32_to_cpu(rec->e_cpos) < pos)
1595 break;
1596 }
1597
1598 return i;
1599 }
1600
1601 /*
1602 * Helper to calculate the punching pos and length in one run, we handle the
1603 * following three cases in order:
1604 *
1605 * - remove the entire record
1606 * - remove a partial record
1607 * - no record needs to be removed (hole-punching completed)
1608 */
1609 static void ocfs2_calc_trunc_pos(struct inode *inode,
1610 struct ocfs2_extent_list *el,
1611 struct ocfs2_extent_rec *rec,
1612 u32 trunc_start, u32 *trunc_cpos,
1613 u32 *trunc_len, u32 *trunc_end,
1614 u64 *blkno, int *done)
1615 {
1616 int ret = 0;
1617 u32 coff, range;
1618
1619 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1620
1621 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1622 /*
1623 * remove an entire extent record.
1624 */
1625 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1626 /*
1627 * Skip holes if any.
1628 */
1629 if (range < *trunc_end)
1630 *trunc_end = range;
1631 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1632 *blkno = le64_to_cpu(rec->e_blkno);
1633 *trunc_end = le32_to_cpu(rec->e_cpos);
1634 } else if (range > trunc_start) {
1635 /*
1636 * remove a partial extent record, which means we're
1637 * removing the last extent record.
1638 */
1639 *trunc_cpos = trunc_start;
1640 /*
1641 * skip hole if any.
1642 */
1643 if (range < *trunc_end)
1644 *trunc_end = range;
1645 *trunc_len = *trunc_end - trunc_start;
1646 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1647 *blkno = le64_to_cpu(rec->e_blkno) +
1648 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1649 *trunc_end = trunc_start;
1650 } else {
1651 /*
1652 * It may have two following possibilities:
1653 *
1654 * - last record has been removed
1655 * - trunc_start was within a hole
1656 *
1657 * both two cases mean the completion of hole punching.
1658 */
1659 ret = 1;
1660 }
1661
1662 *done = ret;
1663 }
1664
1665 static int ocfs2_remove_inode_range(struct inode *inode,
1666 struct buffer_head *di_bh, u64 byte_start,
1667 u64 byte_len)
1668 {
1669 int ret = 0, flags = 0, done = 0, i;
1670 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1671 u32 cluster_in_el;
1672 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673 struct ocfs2_cached_dealloc_ctxt dealloc;
1674 struct address_space *mapping = inode->i_mapping;
1675 struct ocfs2_extent_tree et;
1676 struct ocfs2_path *path = NULL;
1677 struct ocfs2_extent_list *el = NULL;
1678 struct ocfs2_extent_rec *rec = NULL;
1679 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1680 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1681
1682 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1683 ocfs2_init_dealloc_ctxt(&dealloc);
1684
1685 trace_ocfs2_remove_inode_range(
1686 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1687 (unsigned long long)byte_start,
1688 (unsigned long long)byte_len);
1689
1690 if (byte_len == 0)
1691 return 0;
1692
1693 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1694 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1695 byte_start + byte_len, 0);
1696 if (ret) {
1697 mlog_errno(ret);
1698 goto out;
1699 }
1700 /*
1701 * There's no need to get fancy with the page cache
1702 * truncate of an inline-data inode. We're talking
1703 * about less than a page here, which will be cached
1704 * in the dinode buffer anyway.
1705 */
1706 unmap_mapping_range(mapping, 0, 0, 0);
1707 truncate_inode_pages(mapping, 0);
1708 goto out;
1709 }
1710
1711 /*
1712 * For reflinks, we may need to CoW 2 clusters which might be
1713 * partially zero'd later, if hole's start and end offset were
1714 * within one cluster(means is not exactly aligned to clustersize).
1715 */
1716
1717 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1718
1719 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1720 if (ret) {
1721 mlog_errno(ret);
1722 goto out;
1723 }
1724
1725 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1726 if (ret) {
1727 mlog_errno(ret);
1728 goto out;
1729 }
1730 }
1731
1732 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1733 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1734 cluster_in_el = trunc_end;
1735
1736 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1737 if (ret) {
1738 mlog_errno(ret);
1739 goto out;
1740 }
1741
1742 path = ocfs2_new_path_from_et(&et);
1743 if (!path) {
1744 ret = -ENOMEM;
1745 mlog_errno(ret);
1746 goto out;
1747 }
1748
1749 while (trunc_end > trunc_start) {
1750
1751 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1752 cluster_in_el);
1753 if (ret) {
1754 mlog_errno(ret);
1755 goto out;
1756 }
1757
1758 el = path_leaf_el(path);
1759
1760 i = ocfs2_find_rec(el, trunc_end);
1761 /*
1762 * Need to go to previous extent block.
1763 */
1764 if (i < 0) {
1765 if (path->p_tree_depth == 0)
1766 break;
1767
1768 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1769 path,
1770 &cluster_in_el);
1771 if (ret) {
1772 mlog_errno(ret);
1773 goto out;
1774 }
1775
1776 /*
1777 * We've reached the leftmost extent block,
1778 * it's safe to leave.
1779 */
1780 if (cluster_in_el == 0)
1781 break;
1782
1783 /*
1784 * The 'pos' searched for previous extent block is
1785 * always one cluster less than actual trunc_end.
1786 */
1787 trunc_end = cluster_in_el + 1;
1788
1789 ocfs2_reinit_path(path, 1);
1790
1791 continue;
1792
1793 } else
1794 rec = &el->l_recs[i];
1795
1796 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1797 &trunc_len, &trunc_end, &blkno, &done);
1798 if (done)
1799 break;
1800
1801 flags = rec->e_flags;
1802 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1803
1804 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1805 phys_cpos, trunc_len, flags,
1806 &dealloc, refcount_loc);
1807 if (ret < 0) {
1808 mlog_errno(ret);
1809 goto out;
1810 }
1811
1812 cluster_in_el = trunc_end;
1813
1814 ocfs2_reinit_path(path, 1);
1815 }
1816
1817 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1818
1819 out:
1820 ocfs2_schedule_truncate_log_flush(osb, 1);
1821 ocfs2_run_deallocs(osb, &dealloc);
1822
1823 return ret;
1824 }
1825
1826 /*
1827 * Parts of this function taken from xfs_change_file_space()
1828 */
1829 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1830 loff_t f_pos, unsigned int cmd,
1831 struct ocfs2_space_resv *sr,
1832 int change_size)
1833 {
1834 int ret;
1835 s64 llen;
1836 loff_t size;
1837 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1838 struct buffer_head *di_bh = NULL;
1839 handle_t *handle;
1840 unsigned long long max_off = inode->i_sb->s_maxbytes;
1841
1842 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1843 return -EROFS;
1844
1845 mutex_lock(&inode->i_mutex);
1846
1847 /*
1848 * This prevents concurrent writes on other nodes
1849 */
1850 ret = ocfs2_rw_lock(inode, 1);
1851 if (ret) {
1852 mlog_errno(ret);
1853 goto out;
1854 }
1855
1856 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1857 if (ret) {
1858 mlog_errno(ret);
1859 goto out_rw_unlock;
1860 }
1861
1862 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1863 ret = -EPERM;
1864 goto out_inode_unlock;
1865 }
1866
1867 switch (sr->l_whence) {
1868 case 0: /*SEEK_SET*/
1869 break;
1870 case 1: /*SEEK_CUR*/
1871 sr->l_start += f_pos;
1872 break;
1873 case 2: /*SEEK_END*/
1874 sr->l_start += i_size_read(inode);
1875 break;
1876 default:
1877 ret = -EINVAL;
1878 goto out_inode_unlock;
1879 }
1880 sr->l_whence = 0;
1881
1882 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1883
1884 if (sr->l_start < 0
1885 || sr->l_start > max_off
1886 || (sr->l_start + llen) < 0
1887 || (sr->l_start + llen) > max_off) {
1888 ret = -EINVAL;
1889 goto out_inode_unlock;
1890 }
1891 size = sr->l_start + sr->l_len;
1892
1893 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1894 if (sr->l_len <= 0) {
1895 ret = -EINVAL;
1896 goto out_inode_unlock;
1897 }
1898 }
1899
1900 if (file && should_remove_suid(file->f_path.dentry)) {
1901 ret = __ocfs2_write_remove_suid(inode, di_bh);
1902 if (ret) {
1903 mlog_errno(ret);
1904 goto out_inode_unlock;
1905 }
1906 }
1907
1908 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1909 switch (cmd) {
1910 case OCFS2_IOC_RESVSP:
1911 case OCFS2_IOC_RESVSP64:
1912 /*
1913 * This takes unsigned offsets, but the signed ones we
1914 * pass have been checked against overflow above.
1915 */
1916 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1917 sr->l_len);
1918 break;
1919 case OCFS2_IOC_UNRESVSP:
1920 case OCFS2_IOC_UNRESVSP64:
1921 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1922 sr->l_len);
1923 break;
1924 default:
1925 ret = -EINVAL;
1926 }
1927 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1928 if (ret) {
1929 mlog_errno(ret);
1930 goto out_inode_unlock;
1931 }
1932
1933 /*
1934 * We update c/mtime for these changes
1935 */
1936 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1937 if (IS_ERR(handle)) {
1938 ret = PTR_ERR(handle);
1939 mlog_errno(ret);
1940 goto out_inode_unlock;
1941 }
1942
1943 if (change_size && i_size_read(inode) < size)
1944 i_size_write(inode, size);
1945
1946 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1947 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1948 if (ret < 0)
1949 mlog_errno(ret);
1950
1951 if (file && (file->f_flags & O_SYNC))
1952 handle->h_sync = 1;
1953
1954 ocfs2_commit_trans(osb, handle);
1955
1956 out_inode_unlock:
1957 brelse(di_bh);
1958 ocfs2_inode_unlock(inode, 1);
1959 out_rw_unlock:
1960 ocfs2_rw_unlock(inode, 1);
1961
1962 out:
1963 mutex_unlock(&inode->i_mutex);
1964 return ret;
1965 }
1966
1967 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1968 struct ocfs2_space_resv *sr)
1969 {
1970 struct inode *inode = file->f_path.dentry->d_inode;
1971 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1972 int ret;
1973
1974 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1975 !ocfs2_writes_unwritten_extents(osb))
1976 return -ENOTTY;
1977 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1978 !ocfs2_sparse_alloc(osb))
1979 return -ENOTTY;
1980
1981 if (!S_ISREG(inode->i_mode))
1982 return -EINVAL;
1983
1984 if (!(file->f_mode & FMODE_WRITE))
1985 return -EBADF;
1986
1987 ret = mnt_want_write_file(file);
1988 if (ret)
1989 return ret;
1990 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1991 mnt_drop_write_file(file);
1992 return ret;
1993 }
1994
1995 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1996 loff_t len)
1997 {
1998 struct inode *inode = file->f_path.dentry->d_inode;
1999 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2000 struct ocfs2_space_resv sr;
2001 int change_size = 1;
2002 int cmd = OCFS2_IOC_RESVSP64;
2003
2004 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2005 return -EOPNOTSUPP;
2006 if (!ocfs2_writes_unwritten_extents(osb))
2007 return -EOPNOTSUPP;
2008
2009 if (mode & FALLOC_FL_KEEP_SIZE)
2010 change_size = 0;
2011
2012 if (mode & FALLOC_FL_PUNCH_HOLE)
2013 cmd = OCFS2_IOC_UNRESVSP64;
2014
2015 sr.l_whence = 0;
2016 sr.l_start = (s64)offset;
2017 sr.l_len = (s64)len;
2018
2019 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2020 change_size);
2021 }
2022
2023 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2024 size_t count)
2025 {
2026 int ret = 0;
2027 unsigned int extent_flags;
2028 u32 cpos, clusters, extent_len, phys_cpos;
2029 struct super_block *sb = inode->i_sb;
2030
2031 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2032 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2033 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2034 return 0;
2035
2036 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2037 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2038
2039 while (clusters) {
2040 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2041 &extent_flags);
2042 if (ret < 0) {
2043 mlog_errno(ret);
2044 goto out;
2045 }
2046
2047 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2048 ret = 1;
2049 break;
2050 }
2051
2052 if (extent_len > clusters)
2053 extent_len = clusters;
2054
2055 clusters -= extent_len;
2056 cpos += extent_len;
2057 }
2058 out:
2059 return ret;
2060 }
2061
2062 static void ocfs2_aiodio_wait(struct inode *inode)
2063 {
2064 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2065
2066 wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2067 }
2068
2069 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2070 {
2071 int blockmask = inode->i_sb->s_blocksize - 1;
2072 loff_t final_size = pos + count;
2073
2074 if ((pos & blockmask) || (final_size & blockmask))
2075 return 1;
2076 return 0;
2077 }
2078
2079 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2080 struct file *file,
2081 loff_t pos, size_t count,
2082 int *meta_level)
2083 {
2084 int ret;
2085 struct buffer_head *di_bh = NULL;
2086 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2087 u32 clusters =
2088 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2089
2090 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2091 if (ret) {
2092 mlog_errno(ret);
2093 goto out;
2094 }
2095
2096 *meta_level = 1;
2097
2098 ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2099 if (ret)
2100 mlog_errno(ret);
2101 out:
2102 brelse(di_bh);
2103 return ret;
2104 }
2105
2106 static int ocfs2_prepare_inode_for_write(struct file *file,
2107 loff_t *ppos,
2108 size_t count,
2109 int appending,
2110 int *direct_io,
2111 int *has_refcount)
2112 {
2113 int ret = 0, meta_level = 0;
2114 struct dentry *dentry = file->f_path.dentry;
2115 struct inode *inode = dentry->d_inode;
2116 loff_t saved_pos = 0, end;
2117
2118 /*
2119 * We start with a read level meta lock and only jump to an ex
2120 * if we need to make modifications here.
2121 */
2122 for(;;) {
2123 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2124 if (ret < 0) {
2125 meta_level = -1;
2126 mlog_errno(ret);
2127 goto out;
2128 }
2129
2130 /* Clear suid / sgid if necessary. We do this here
2131 * instead of later in the write path because
2132 * remove_suid() calls ->setattr without any hint that
2133 * we may have already done our cluster locking. Since
2134 * ocfs2_setattr() *must* take cluster locks to
2135 * proceed, this will lead us to recursively lock the
2136 * inode. There's also the dinode i_size state which
2137 * can be lost via setattr during extending writes (we
2138 * set inode->i_size at the end of a write. */
2139 if (should_remove_suid(dentry)) {
2140 if (meta_level == 0) {
2141 ocfs2_inode_unlock(inode, meta_level);
2142 meta_level = 1;
2143 continue;
2144 }
2145
2146 ret = ocfs2_write_remove_suid(inode);
2147 if (ret < 0) {
2148 mlog_errno(ret);
2149 goto out_unlock;
2150 }
2151 }
2152
2153 /* work on a copy of ppos until we're sure that we won't have
2154 * to recalculate it due to relocking. */
2155 if (appending)
2156 saved_pos = i_size_read(inode);
2157 else
2158 saved_pos = *ppos;
2159
2160 end = saved_pos + count;
2161
2162 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2163 if (ret == 1) {
2164 ocfs2_inode_unlock(inode, meta_level);
2165 meta_level = -1;
2166
2167 ret = ocfs2_prepare_inode_for_refcount(inode,
2168 file,
2169 saved_pos,
2170 count,
2171 &meta_level);
2172 if (has_refcount)
2173 *has_refcount = 1;
2174 if (direct_io)
2175 *direct_io = 0;
2176 }
2177
2178 if (ret < 0) {
2179 mlog_errno(ret);
2180 goto out_unlock;
2181 }
2182
2183 /*
2184 * Skip the O_DIRECT checks if we don't need
2185 * them.
2186 */
2187 if (!direct_io || !(*direct_io))
2188 break;
2189
2190 /*
2191 * There's no sane way to do direct writes to an inode
2192 * with inline data.
2193 */
2194 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2195 *direct_io = 0;
2196 break;
2197 }
2198
2199 /*
2200 * Allowing concurrent direct writes means
2201 * i_size changes wouldn't be synchronized, so
2202 * one node could wind up truncating another
2203 * nodes writes.
2204 */
2205 if (end > i_size_read(inode)) {
2206 *direct_io = 0;
2207 break;
2208 }
2209
2210 /*
2211 * We don't fill holes during direct io, so
2212 * check for them here. If any are found, the
2213 * caller will have to retake some cluster
2214 * locks and initiate the io as buffered.
2215 */
2216 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2217 if (ret == 1) {
2218 *direct_io = 0;
2219 ret = 0;
2220 } else if (ret < 0)
2221 mlog_errno(ret);
2222 break;
2223 }
2224
2225 if (appending)
2226 *ppos = saved_pos;
2227
2228 out_unlock:
2229 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2230 saved_pos, appending, count,
2231 direct_io, has_refcount);
2232
2233 if (meta_level >= 0)
2234 ocfs2_inode_unlock(inode, meta_level);
2235
2236 out:
2237 return ret;
2238 }
2239
2240 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2241 const struct iovec *iov,
2242 unsigned long nr_segs,
2243 loff_t pos)
2244 {
2245 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
2246 int can_do_direct, has_refcount = 0;
2247 ssize_t written = 0;
2248 size_t ocount; /* original count */
2249 size_t count; /* after file limit checks */
2250 loff_t old_size, *ppos = &iocb->ki_pos;
2251 u32 old_clusters;
2252 struct file *file = iocb->ki_filp;
2253 struct inode *inode = file->f_path.dentry->d_inode;
2254 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2255 int full_coherency = !(osb->s_mount_opt &
2256 OCFS2_MOUNT_COHERENCY_BUFFERED);
2257 int unaligned_dio = 0;
2258
2259 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2260 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2261 file->f_path.dentry->d_name.len,
2262 file->f_path.dentry->d_name.name,
2263 (unsigned int)nr_segs);
2264
2265 if (iocb->ki_left == 0)
2266 return 0;
2267
2268 sb_start_write(inode->i_sb);
2269
2270 appending = file->f_flags & O_APPEND ? 1 : 0;
2271 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2272
2273 mutex_lock(&inode->i_mutex);
2274
2275 ocfs2_iocb_clear_sem_locked(iocb);
2276
2277 relock:
2278 /* to match setattr's i_mutex -> rw_lock ordering */
2279 if (direct_io) {
2280 have_alloc_sem = 1;
2281 /* communicate with ocfs2_dio_end_io */
2282 ocfs2_iocb_set_sem_locked(iocb);
2283 }
2284
2285 /*
2286 * Concurrent O_DIRECT writes are allowed with
2287 * mount_option "coherency=buffered".
2288 */
2289 rw_level = (!direct_io || full_coherency);
2290
2291 ret = ocfs2_rw_lock(inode, rw_level);
2292 if (ret < 0) {
2293 mlog_errno(ret);
2294 goto out_sems;
2295 }
2296
2297 /*
2298 * O_DIRECT writes with "coherency=full" need to take EX cluster
2299 * inode_lock to guarantee coherency.
2300 */
2301 if (direct_io && full_coherency) {
2302 /*
2303 * We need to take and drop the inode lock to force
2304 * other nodes to drop their caches. Buffered I/O
2305 * already does this in write_begin().
2306 */
2307 ret = ocfs2_inode_lock(inode, NULL, 1);
2308 if (ret < 0) {
2309 mlog_errno(ret);
2310 goto out_sems;
2311 }
2312
2313 ocfs2_inode_unlock(inode, 1);
2314 }
2315
2316 can_do_direct = direct_io;
2317 ret = ocfs2_prepare_inode_for_write(file, ppos,
2318 iocb->ki_left, appending,
2319 &can_do_direct, &has_refcount);
2320 if (ret < 0) {
2321 mlog_errno(ret);
2322 goto out;
2323 }
2324
2325 if (direct_io && !is_sync_kiocb(iocb))
2326 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_left,
2327 *ppos);
2328
2329 /*
2330 * We can't complete the direct I/O as requested, fall back to
2331 * buffered I/O.
2332 */
2333 if (direct_io && !can_do_direct) {
2334 ocfs2_rw_unlock(inode, rw_level);
2335
2336 have_alloc_sem = 0;
2337 rw_level = -1;
2338
2339 direct_io = 0;
2340 goto relock;
2341 }
2342
2343 if (unaligned_dio) {
2344 /*
2345 * Wait on previous unaligned aio to complete before
2346 * proceeding.
2347 */
2348 ocfs2_aiodio_wait(inode);
2349
2350 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2351 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2352 ocfs2_iocb_set_unaligned_aio(iocb);
2353 }
2354
2355 /*
2356 * To later detect whether a journal commit for sync writes is
2357 * necessary, we sample i_size, and cluster count here.
2358 */
2359 old_size = i_size_read(inode);
2360 old_clusters = OCFS2_I(inode)->ip_clusters;
2361
2362 /* communicate with ocfs2_dio_end_io */
2363 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2364
2365 ret = generic_segment_checks(iov, &nr_segs, &ocount,
2366 VERIFY_READ);
2367 if (ret)
2368 goto out_dio;
2369
2370 count = ocount;
2371 ret = generic_write_checks(file, ppos, &count,
2372 S_ISBLK(inode->i_mode));
2373 if (ret)
2374 goto out_dio;
2375
2376 if (direct_io) {
2377 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2378 ppos, count, ocount);
2379 if (written < 0) {
2380 ret = written;
2381 goto out_dio;
2382 }
2383 } else {
2384 current->backing_dev_info = file->f_mapping->backing_dev_info;
2385 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2386 ppos, count, 0);
2387 current->backing_dev_info = NULL;
2388 }
2389
2390 out_dio:
2391 /* buffered aio wouldn't have proper lock coverage today */
2392 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2393
2394 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2395 ((file->f_flags & O_DIRECT) && !direct_io)) {
2396 ret = filemap_fdatawrite_range(file->f_mapping, pos,
2397 pos + count - 1);
2398 if (ret < 0)
2399 written = ret;
2400
2401 if (!ret && ((old_size != i_size_read(inode)) ||
2402 (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2403 has_refcount)) {
2404 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2405 if (ret < 0)
2406 written = ret;
2407 }
2408
2409 if (!ret)
2410 ret = filemap_fdatawait_range(file->f_mapping, pos,
2411 pos + count - 1);
2412 }
2413
2414 /*
2415 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2416 * function pointer which is called when o_direct io completes so that
2417 * it can unlock our rw lock.
2418 * Unfortunately there are error cases which call end_io and others
2419 * that don't. so we don't have to unlock the rw_lock if either an
2420 * async dio is going to do it in the future or an end_io after an
2421 * error has already done it.
2422 */
2423 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2424 rw_level = -1;
2425 have_alloc_sem = 0;
2426 unaligned_dio = 0;
2427 }
2428
2429 if (unaligned_dio) {
2430 ocfs2_iocb_clear_unaligned_aio(iocb);
2431 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2432 }
2433
2434 out:
2435 if (rw_level != -1)
2436 ocfs2_rw_unlock(inode, rw_level);
2437
2438 out_sems:
2439 if (have_alloc_sem)
2440 ocfs2_iocb_clear_sem_locked(iocb);
2441
2442 mutex_unlock(&inode->i_mutex);
2443 sb_end_write(inode->i_sb);
2444
2445 if (written)
2446 ret = written;
2447 return ret;
2448 }
2449
2450 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2451 struct file *out,
2452 struct splice_desc *sd)
2453 {
2454 int ret;
2455
2456 ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2457 sd->total_len, 0, NULL, NULL);
2458 if (ret < 0) {
2459 mlog_errno(ret);
2460 return ret;
2461 }
2462
2463 return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2464 }
2465
2466 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2467 struct file *out,
2468 loff_t *ppos,
2469 size_t len,
2470 unsigned int flags)
2471 {
2472 int ret;
2473 struct address_space *mapping = out->f_mapping;
2474 struct inode *inode = mapping->host;
2475 struct splice_desc sd = {
2476 .total_len = len,
2477 .flags = flags,
2478 .pos = *ppos,
2479 .u.file = out,
2480 };
2481
2482
2483 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2484 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2485 out->f_path.dentry->d_name.len,
2486 out->f_path.dentry->d_name.name, len);
2487
2488 if (pipe->inode)
2489 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2490
2491 splice_from_pipe_begin(&sd);
2492 do {
2493 ret = splice_from_pipe_next(pipe, &sd);
2494 if (ret <= 0)
2495 break;
2496
2497 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2498 ret = ocfs2_rw_lock(inode, 1);
2499 if (ret < 0)
2500 mlog_errno(ret);
2501 else {
2502 ret = ocfs2_splice_to_file(pipe, out, &sd);
2503 ocfs2_rw_unlock(inode, 1);
2504 }
2505 mutex_unlock(&inode->i_mutex);
2506 } while (ret > 0);
2507 splice_from_pipe_end(pipe, &sd);
2508
2509 if (pipe->inode)
2510 mutex_unlock(&pipe->inode->i_mutex);
2511
2512 if (sd.num_spliced)
2513 ret = sd.num_spliced;
2514
2515 if (ret > 0) {
2516 int err;
2517
2518 err = generic_write_sync(out, *ppos, ret);
2519 if (err)
2520 ret = err;
2521 else
2522 *ppos += ret;
2523
2524 balance_dirty_pages_ratelimited(mapping);
2525 }
2526
2527 return ret;
2528 }
2529
2530 static ssize_t ocfs2_file_splice_read(struct file *in,
2531 loff_t *ppos,
2532 struct pipe_inode_info *pipe,
2533 size_t len,
2534 unsigned int flags)
2535 {
2536 int ret = 0, lock_level = 0;
2537 struct inode *inode = in->f_path.dentry->d_inode;
2538
2539 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2540 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2541 in->f_path.dentry->d_name.len,
2542 in->f_path.dentry->d_name.name, len);
2543
2544 /*
2545 * See the comment in ocfs2_file_aio_read()
2546 */
2547 ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2548 if (ret < 0) {
2549 mlog_errno(ret);
2550 goto bail;
2551 }
2552 ocfs2_inode_unlock(inode, lock_level);
2553
2554 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2555
2556 bail:
2557 return ret;
2558 }
2559
2560 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2561 const struct iovec *iov,
2562 unsigned long nr_segs,
2563 loff_t pos)
2564 {
2565 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2566 struct file *filp = iocb->ki_filp;
2567 struct inode *inode = filp->f_path.dentry->d_inode;
2568
2569 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2570 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2571 filp->f_path.dentry->d_name.len,
2572 filp->f_path.dentry->d_name.name, nr_segs);
2573
2574
2575 if (!inode) {
2576 ret = -EINVAL;
2577 mlog_errno(ret);
2578 goto bail;
2579 }
2580
2581 ocfs2_iocb_clear_sem_locked(iocb);
2582
2583 /*
2584 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2585 * need locks to protect pending reads from racing with truncate.
2586 */
2587 if (filp->f_flags & O_DIRECT) {
2588 have_alloc_sem = 1;
2589 ocfs2_iocb_set_sem_locked(iocb);
2590
2591 ret = ocfs2_rw_lock(inode, 0);
2592 if (ret < 0) {
2593 mlog_errno(ret);
2594 goto bail;
2595 }
2596 rw_level = 0;
2597 /* communicate with ocfs2_dio_end_io */
2598 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2599 }
2600
2601 /*
2602 * We're fine letting folks race truncates and extending
2603 * writes with read across the cluster, just like they can
2604 * locally. Hence no rw_lock during read.
2605 *
2606 * Take and drop the meta data lock to update inode fields
2607 * like i_size. This allows the checks down below
2608 * generic_file_aio_read() a chance of actually working.
2609 */
2610 ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2611 if (ret < 0) {
2612 mlog_errno(ret);
2613 goto bail;
2614 }
2615 ocfs2_inode_unlock(inode, lock_level);
2616
2617 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2618 trace_generic_file_aio_read_ret(ret);
2619
2620 /* buffered aio wouldn't have proper lock coverage today */
2621 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2622
2623 /* see ocfs2_file_aio_write */
2624 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2625 rw_level = -1;
2626 have_alloc_sem = 0;
2627 }
2628
2629 bail:
2630 if (have_alloc_sem)
2631 ocfs2_iocb_clear_sem_locked(iocb);
2632
2633 if (rw_level != -1)
2634 ocfs2_rw_unlock(inode, rw_level);
2635
2636 return ret;
2637 }
2638
2639 /* Refer generic_file_llseek_unlocked() */
2640 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2641 {
2642 struct inode *inode = file->f_mapping->host;
2643 int ret = 0;
2644
2645 mutex_lock(&inode->i_mutex);
2646
2647 switch (whence) {
2648 case SEEK_SET:
2649 break;
2650 case SEEK_END:
2651 offset += inode->i_size;
2652 break;
2653 case SEEK_CUR:
2654 if (offset == 0) {
2655 offset = file->f_pos;
2656 goto out;
2657 }
2658 offset += file->f_pos;
2659 break;
2660 case SEEK_DATA:
2661 case SEEK_HOLE:
2662 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2663 if (ret)
2664 goto out;
2665 break;
2666 default:
2667 ret = -EINVAL;
2668 goto out;
2669 }
2670
2671 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
2672 ret = -EINVAL;
2673 if (!ret && offset > inode->i_sb->s_maxbytes)
2674 ret = -EINVAL;
2675 if (ret)
2676 goto out;
2677
2678 if (offset != file->f_pos) {
2679 file->f_pos = offset;
2680 file->f_version = 0;
2681 }
2682
2683 out:
2684 mutex_unlock(&inode->i_mutex);
2685 if (ret)
2686 return ret;
2687 return offset;
2688 }
2689
2690 const struct inode_operations ocfs2_file_iops = {
2691 .setattr = ocfs2_setattr,
2692 .getattr = ocfs2_getattr,
2693 .permission = ocfs2_permission,
2694 .setxattr = generic_setxattr,
2695 .getxattr = generic_getxattr,
2696 .listxattr = ocfs2_listxattr,
2697 .removexattr = generic_removexattr,
2698 .fiemap = ocfs2_fiemap,
2699 .get_acl = ocfs2_iop_get_acl,
2700 };
2701
2702 const struct inode_operations ocfs2_special_file_iops = {
2703 .setattr = ocfs2_setattr,
2704 .getattr = ocfs2_getattr,
2705 .permission = ocfs2_permission,
2706 .get_acl = ocfs2_iop_get_acl,
2707 };
2708
2709 /*
2710 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2711 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2712 */
2713 const struct file_operations ocfs2_fops = {
2714 .llseek = ocfs2_file_llseek,
2715 .read = do_sync_read,
2716 .write = do_sync_write,
2717 .mmap = ocfs2_mmap,
2718 .fsync = ocfs2_sync_file,
2719 .release = ocfs2_file_release,
2720 .open = ocfs2_file_open,
2721 .aio_read = ocfs2_file_aio_read,
2722 .aio_write = ocfs2_file_aio_write,
2723 .unlocked_ioctl = ocfs2_ioctl,
2724 #ifdef CONFIG_COMPAT
2725 .compat_ioctl = ocfs2_compat_ioctl,
2726 #endif
2727 .lock = ocfs2_lock,
2728 .flock = ocfs2_flock,
2729 .splice_read = ocfs2_file_splice_read,
2730 .splice_write = ocfs2_file_splice_write,
2731 .fallocate = ocfs2_fallocate,
2732 };
2733
2734 const struct file_operations ocfs2_dops = {
2735 .llseek = generic_file_llseek,
2736 .read = generic_read_dir,
2737 .readdir = ocfs2_readdir,
2738 .fsync = ocfs2_sync_file,
2739 .release = ocfs2_dir_release,
2740 .open = ocfs2_dir_open,
2741 .unlocked_ioctl = ocfs2_ioctl,
2742 #ifdef CONFIG_COMPAT
2743 .compat_ioctl = ocfs2_compat_ioctl,
2744 #endif
2745 .lock = ocfs2_lock,
2746 .flock = ocfs2_flock,
2747 };
2748
2749 /*
2750 * POSIX-lockless variants of our file_operations.
2751 *
2752 * These will be used if the underlying cluster stack does not support
2753 * posix file locking, if the user passes the "localflocks" mount
2754 * option, or if we have a local-only fs.
2755 *
2756 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2757 * so we still want it in the case of no stack support for
2758 * plocks. Internally, it will do the right thing when asked to ignore
2759 * the cluster.
2760 */
2761 const struct file_operations ocfs2_fops_no_plocks = {
2762 .llseek = ocfs2_file_llseek,
2763 .read = do_sync_read,
2764 .write = do_sync_write,
2765 .mmap = ocfs2_mmap,
2766 .fsync = ocfs2_sync_file,
2767 .release = ocfs2_file_release,
2768 .open = ocfs2_file_open,
2769 .aio_read = ocfs2_file_aio_read,
2770 .aio_write = ocfs2_file_aio_write,
2771 .unlocked_ioctl = ocfs2_ioctl,
2772 #ifdef CONFIG_COMPAT
2773 .compat_ioctl = ocfs2_compat_ioctl,
2774 #endif
2775 .flock = ocfs2_flock,
2776 .splice_read = ocfs2_file_splice_read,
2777 .splice_write = ocfs2_file_splice_write,
2778 .fallocate = ocfs2_fallocate,
2779 };
2780
2781 const struct file_operations ocfs2_dops_no_plocks = {
2782 .llseek = generic_file_llseek,
2783 .read = generic_read_dir,
2784 .readdir = ocfs2_readdir,
2785 .fsync = ocfs2_sync_file,
2786 .release = ocfs2_dir_release,
2787 .open = ocfs2_dir_open,
2788 .unlocked_ioctl = ocfs2_ioctl,
2789 #ifdef CONFIG_COMPAT
2790 .compat_ioctl = ocfs2_compat_ioctl,
2791 #endif
2792 .flock = ocfs2_flock,
2793 };