f998c6009ad4943b5af65e9a35d8b749a15587bf
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53 {
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124 bail:
125 brelse(bh);
126
127 return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132 {
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208 bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217 {
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr);
246
247 SetPageUptodate(page);
248
249 return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
297 ret = AOP_TRUNCATED_PAGE;
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
302 goto out_inode_unlock;
303 }
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
316 zero_user(page, 0, PAGE_SIZE);
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
326 unlock = 0;
327
328 out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
332 out:
333 if (unlock)
334 unlock_page(page);
335 return ret;
336 }
337
338 /*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349 {
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387 out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392 }
393
394 /* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 {
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
410
411 return block_write_full_page(page, ocfs2_get_block, wbc);
412 }
413
414 /* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418 int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
425 {
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448 }
449
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 {
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
464 err = ocfs2_inode_lock(inode, NULL, 0);
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_inode_unlock(inode, 0);
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
489 bail:
490 status = err ? 0 : p_blkno;
491
492 return status;
493 }
494
495 /*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
510 */
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 struct buffer_head *bh_result, int create)
513 {
514 int ret;
515 u64 p_blkno, inode_blocks, contig_blocks;
516 unsigned int ext_flags;
517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 &contig_blocks, &ext_flags);
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
543 *
544 * Consider an unwritten extent as a hole.
545 */
546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 map_bh(bh_result, inode->i_sb, p_blkno);
548 else
549 clear_buffer_mapped(bh_result);
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 return ret;
558 }
559
560 /*
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
564 */
565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
568 void *private,
569 int ret,
570 bool is_async)
571 {
572 struct inode *inode = file_inode(iocb->ki_filp);
573 int level;
574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578
579 if (ocfs2_iocb_is_sem_locked(iocb))
580 ocfs2_iocb_clear_sem_locked(iocb);
581
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
591 ocfs2_iocb_clear_rw_locked(iocb);
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
594 ocfs2_rw_unlock(inode, level);
595
596 inode_dio_done(inode);
597 if (is_async)
598 aio_complete(iocb, ret, 0);
599 }
600
601 /*
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
605 */
606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607 {
608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609
610 jbd2_journal_invalidatepage(journal, page, offset);
611 }
612
613 static int ocfs2_releasepage(struct page *page, gfp_t wait)
614 {
615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616
617 if (!page_has_buffers(page))
618 return 0;
619 return jbd2_journal_try_to_free_buffers(journal, page, wait);
620 }
621
622 static ssize_t ocfs2_direct_IO(int rw,
623 struct kiocb *iocb,
624 const struct iovec *iov,
625 loff_t offset,
626 unsigned long nr_segs)
627 {
628 struct file *file = iocb->ki_filp;
629 struct inode *inode = file_inode(file)->i_mapping->host;
630
631 /*
632 * Fallback to buffered I/O if we see an inode without
633 * extents.
634 */
635 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636 return 0;
637
638 /* Fallback to buffered I/O if we are appending. */
639 if (i_size_read(inode) <= offset)
640 return 0;
641
642 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
643 iov, offset, nr_segs,
644 ocfs2_direct_IO_get_blocks,
645 ocfs2_dio_end_io, NULL, 0);
646 }
647
648 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
649 u32 cpos,
650 unsigned int *start,
651 unsigned int *end)
652 {
653 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
654
655 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
656 unsigned int cpp;
657
658 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
659
660 cluster_start = cpos % cpp;
661 cluster_start = cluster_start << osb->s_clustersize_bits;
662
663 cluster_end = cluster_start + osb->s_clustersize;
664 }
665
666 BUG_ON(cluster_start > PAGE_SIZE);
667 BUG_ON(cluster_end > PAGE_SIZE);
668
669 if (start)
670 *start = cluster_start;
671 if (end)
672 *end = cluster_end;
673 }
674
675 /*
676 * 'from' and 'to' are the region in the page to avoid zeroing.
677 *
678 * If pagesize > clustersize, this function will avoid zeroing outside
679 * of the cluster boundary.
680 *
681 * from == to == 0 is code for "zero the entire cluster region"
682 */
683 static void ocfs2_clear_page_regions(struct page *page,
684 struct ocfs2_super *osb, u32 cpos,
685 unsigned from, unsigned to)
686 {
687 void *kaddr;
688 unsigned int cluster_start, cluster_end;
689
690 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
691
692 kaddr = kmap_atomic(page);
693
694 if (from || to) {
695 if (from > cluster_start)
696 memset(kaddr + cluster_start, 0, from - cluster_start);
697 if (to < cluster_end)
698 memset(kaddr + to, 0, cluster_end - to);
699 } else {
700 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
701 }
702
703 kunmap_atomic(kaddr);
704 }
705
706 /*
707 * Nonsparse file systems fully allocate before we get to the write
708 * code. This prevents ocfs2_write() from tagging the write as an
709 * allocating one, which means ocfs2_map_page_blocks() might try to
710 * read-in the blocks at the tail of our file. Avoid reading them by
711 * testing i_size against each block offset.
712 */
713 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
714 unsigned int block_start)
715 {
716 u64 offset = page_offset(page) + block_start;
717
718 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
719 return 1;
720
721 if (i_size_read(inode) > offset)
722 return 1;
723
724 return 0;
725 }
726
727 /*
728 * Some of this taken from __block_write_begin(). We already have our
729 * mapping by now though, and the entire write will be allocating or
730 * it won't, so not much need to use BH_New.
731 *
732 * This will also skip zeroing, which is handled externally.
733 */
734 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
735 struct inode *inode, unsigned int from,
736 unsigned int to, int new)
737 {
738 int ret = 0;
739 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
740 unsigned int block_end, block_start;
741 unsigned int bsize = 1 << inode->i_blkbits;
742
743 if (!page_has_buffers(page))
744 create_empty_buffers(page, bsize, 0);
745
746 head = page_buffers(page);
747 for (bh = head, block_start = 0; bh != head || !block_start;
748 bh = bh->b_this_page, block_start += bsize) {
749 block_end = block_start + bsize;
750
751 clear_buffer_new(bh);
752
753 /*
754 * Ignore blocks outside of our i/o range -
755 * they may belong to unallocated clusters.
756 */
757 if (block_start >= to || block_end <= from) {
758 if (PageUptodate(page))
759 set_buffer_uptodate(bh);
760 continue;
761 }
762
763 /*
764 * For an allocating write with cluster size >= page
765 * size, we always write the entire page.
766 */
767 if (new)
768 set_buffer_new(bh);
769
770 if (!buffer_mapped(bh)) {
771 map_bh(bh, inode->i_sb, *p_blkno);
772 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
773 }
774
775 if (PageUptodate(page)) {
776 if (!buffer_uptodate(bh))
777 set_buffer_uptodate(bh);
778 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
779 !buffer_new(bh) &&
780 ocfs2_should_read_blk(inode, page, block_start) &&
781 (block_start < from || block_end > to)) {
782 ll_rw_block(READ, 1, &bh);
783 *wait_bh++=bh;
784 }
785
786 *p_blkno = *p_blkno + 1;
787 }
788
789 /*
790 * If we issued read requests - let them complete.
791 */
792 while(wait_bh > wait) {
793 wait_on_buffer(*--wait_bh);
794 if (!buffer_uptodate(*wait_bh))
795 ret = -EIO;
796 }
797
798 if (ret == 0 || !new)
799 return ret;
800
801 /*
802 * If we get -EIO above, zero out any newly allocated blocks
803 * to avoid exposing stale data.
804 */
805 bh = head;
806 block_start = 0;
807 do {
808 block_end = block_start + bsize;
809 if (block_end <= from)
810 goto next_bh;
811 if (block_start >= to)
812 break;
813
814 zero_user(page, block_start, bh->b_size);
815 set_buffer_uptodate(bh);
816 mark_buffer_dirty(bh);
817
818 next_bh:
819 block_start = block_end;
820 bh = bh->b_this_page;
821 } while (bh != head);
822
823 return ret;
824 }
825
826 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
827 #define OCFS2_MAX_CTXT_PAGES 1
828 #else
829 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
830 #endif
831
832 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
833
834 /*
835 * Describe the state of a single cluster to be written to.
836 */
837 struct ocfs2_write_cluster_desc {
838 u32 c_cpos;
839 u32 c_phys;
840 /*
841 * Give this a unique field because c_phys eventually gets
842 * filled.
843 */
844 unsigned c_new;
845 unsigned c_unwritten;
846 unsigned c_needs_zero;
847 };
848
849 struct ocfs2_write_ctxt {
850 /* Logical cluster position / len of write */
851 u32 w_cpos;
852 u32 w_clen;
853
854 /* First cluster allocated in a nonsparse extend */
855 u32 w_first_new_cpos;
856
857 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
858
859 /*
860 * This is true if page_size > cluster_size.
861 *
862 * It triggers a set of special cases during write which might
863 * have to deal with allocating writes to partial pages.
864 */
865 unsigned int w_large_pages;
866
867 /*
868 * Pages involved in this write.
869 *
870 * w_target_page is the page being written to by the user.
871 *
872 * w_pages is an array of pages which always contains
873 * w_target_page, and in the case of an allocating write with
874 * page_size < cluster size, it will contain zero'd and mapped
875 * pages adjacent to w_target_page which need to be written
876 * out in so that future reads from that region will get
877 * zero's.
878 */
879 unsigned int w_num_pages;
880 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
881 struct page *w_target_page;
882
883 /*
884 * w_target_locked is used for page_mkwrite path indicating no unlocking
885 * against w_target_page in ocfs2_write_end_nolock.
886 */
887 unsigned int w_target_locked:1;
888
889 /*
890 * ocfs2_write_end() uses this to know what the real range to
891 * write in the target should be.
892 */
893 unsigned int w_target_from;
894 unsigned int w_target_to;
895
896 /*
897 * We could use journal_current_handle() but this is cleaner,
898 * IMHO -Mark
899 */
900 handle_t *w_handle;
901
902 struct buffer_head *w_di_bh;
903
904 struct ocfs2_cached_dealloc_ctxt w_dealloc;
905 };
906
907 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
908 {
909 int i;
910
911 for(i = 0; i < num_pages; i++) {
912 if (pages[i]) {
913 unlock_page(pages[i]);
914 mark_page_accessed(pages[i]);
915 page_cache_release(pages[i]);
916 }
917 }
918 }
919
920 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
921 {
922 int i;
923
924 /*
925 * w_target_locked is only set to true in the page_mkwrite() case.
926 * The intent is to allow us to lock the target page from write_begin()
927 * to write_end(). The caller must hold a ref on w_target_page.
928 */
929 if (wc->w_target_locked) {
930 BUG_ON(!wc->w_target_page);
931 for (i = 0; i < wc->w_num_pages; i++) {
932 if (wc->w_target_page == wc->w_pages[i]) {
933 wc->w_pages[i] = NULL;
934 break;
935 }
936 }
937 mark_page_accessed(wc->w_target_page);
938 page_cache_release(wc->w_target_page);
939 }
940 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
941 }
942
943 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
944 {
945 ocfs2_unlock_pages(wc);
946 brelse(wc->w_di_bh);
947 kfree(wc);
948 }
949
950 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
951 struct ocfs2_super *osb, loff_t pos,
952 unsigned len, struct buffer_head *di_bh)
953 {
954 u32 cend;
955 struct ocfs2_write_ctxt *wc;
956
957 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
958 if (!wc)
959 return -ENOMEM;
960
961 wc->w_cpos = pos >> osb->s_clustersize_bits;
962 wc->w_first_new_cpos = UINT_MAX;
963 cend = (pos + len - 1) >> osb->s_clustersize_bits;
964 wc->w_clen = cend - wc->w_cpos + 1;
965 get_bh(di_bh);
966 wc->w_di_bh = di_bh;
967
968 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
969 wc->w_large_pages = 1;
970 else
971 wc->w_large_pages = 0;
972
973 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
974
975 *wcp = wc;
976
977 return 0;
978 }
979
980 /*
981 * If a page has any new buffers, zero them out here, and mark them uptodate
982 * and dirty so they'll be written out (in order to prevent uninitialised
983 * block data from leaking). And clear the new bit.
984 */
985 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
986 {
987 unsigned int block_start, block_end;
988 struct buffer_head *head, *bh;
989
990 BUG_ON(!PageLocked(page));
991 if (!page_has_buffers(page))
992 return;
993
994 bh = head = page_buffers(page);
995 block_start = 0;
996 do {
997 block_end = block_start + bh->b_size;
998
999 if (buffer_new(bh)) {
1000 if (block_end > from && block_start < to) {
1001 if (!PageUptodate(page)) {
1002 unsigned start, end;
1003
1004 start = max(from, block_start);
1005 end = min(to, block_end);
1006
1007 zero_user_segment(page, start, end);
1008 set_buffer_uptodate(bh);
1009 }
1010
1011 clear_buffer_new(bh);
1012 mark_buffer_dirty(bh);
1013 }
1014 }
1015
1016 block_start = block_end;
1017 bh = bh->b_this_page;
1018 } while (bh != head);
1019 }
1020
1021 /*
1022 * Only called when we have a failure during allocating write to write
1023 * zero's to the newly allocated region.
1024 */
1025 static void ocfs2_write_failure(struct inode *inode,
1026 struct ocfs2_write_ctxt *wc,
1027 loff_t user_pos, unsigned user_len)
1028 {
1029 int i;
1030 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1031 to = user_pos + user_len;
1032 struct page *tmppage;
1033
1034 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1035
1036 for(i = 0; i < wc->w_num_pages; i++) {
1037 tmppage = wc->w_pages[i];
1038
1039 if (page_has_buffers(tmppage)) {
1040 if (ocfs2_should_order_data(inode))
1041 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1042
1043 block_commit_write(tmppage, from, to);
1044 }
1045 }
1046 }
1047
1048 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1049 struct ocfs2_write_ctxt *wc,
1050 struct page *page, u32 cpos,
1051 loff_t user_pos, unsigned user_len,
1052 int new)
1053 {
1054 int ret;
1055 unsigned int map_from = 0, map_to = 0;
1056 unsigned int cluster_start, cluster_end;
1057 unsigned int user_data_from = 0, user_data_to = 0;
1058
1059 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1060 &cluster_start, &cluster_end);
1061
1062 /* treat the write as new if the a hole/lseek spanned across
1063 * the page boundary.
1064 */
1065 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1066 (page_offset(page) <= user_pos));
1067
1068 if (page == wc->w_target_page) {
1069 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1070 map_to = map_from + user_len;
1071
1072 if (new)
1073 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 cluster_start, cluster_end,
1075 new);
1076 else
1077 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1078 map_from, map_to, new);
1079 if (ret) {
1080 mlog_errno(ret);
1081 goto out;
1082 }
1083
1084 user_data_from = map_from;
1085 user_data_to = map_to;
1086 if (new) {
1087 map_from = cluster_start;
1088 map_to = cluster_end;
1089 }
1090 } else {
1091 /*
1092 * If we haven't allocated the new page yet, we
1093 * shouldn't be writing it out without copying user
1094 * data. This is likely a math error from the caller.
1095 */
1096 BUG_ON(!new);
1097
1098 map_from = cluster_start;
1099 map_to = cluster_end;
1100
1101 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1102 cluster_start, cluster_end, new);
1103 if (ret) {
1104 mlog_errno(ret);
1105 goto out;
1106 }
1107 }
1108
1109 /*
1110 * Parts of newly allocated pages need to be zero'd.
1111 *
1112 * Above, we have also rewritten 'to' and 'from' - as far as
1113 * the rest of the function is concerned, the entire cluster
1114 * range inside of a page needs to be written.
1115 *
1116 * We can skip this if the page is up to date - it's already
1117 * been zero'd from being read in as a hole.
1118 */
1119 if (new && !PageUptodate(page))
1120 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1121 cpos, user_data_from, user_data_to);
1122
1123 flush_dcache_page(page);
1124
1125 out:
1126 return ret;
1127 }
1128
1129 /*
1130 * This function will only grab one clusters worth of pages.
1131 */
1132 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1133 struct ocfs2_write_ctxt *wc,
1134 u32 cpos, loff_t user_pos,
1135 unsigned user_len, int new,
1136 struct page *mmap_page)
1137 {
1138 int ret = 0, i;
1139 unsigned long start, target_index, end_index, index;
1140 struct inode *inode = mapping->host;
1141 loff_t last_byte;
1142
1143 target_index = user_pos >> PAGE_CACHE_SHIFT;
1144
1145 /*
1146 * Figure out how many pages we'll be manipulating here. For
1147 * non allocating write, we just change the one
1148 * page. Otherwise, we'll need a whole clusters worth. If we're
1149 * writing past i_size, we only need enough pages to cover the
1150 * last page of the write.
1151 */
1152 if (new) {
1153 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1154 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1155 /*
1156 * We need the index *past* the last page we could possibly
1157 * touch. This is the page past the end of the write or
1158 * i_size, whichever is greater.
1159 */
1160 last_byte = max(user_pos + user_len, i_size_read(inode));
1161 BUG_ON(last_byte < 1);
1162 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1163 if ((start + wc->w_num_pages) > end_index)
1164 wc->w_num_pages = end_index - start;
1165 } else {
1166 wc->w_num_pages = 1;
1167 start = target_index;
1168 }
1169
1170 for(i = 0; i < wc->w_num_pages; i++) {
1171 index = start + i;
1172
1173 if (index == target_index && mmap_page) {
1174 /*
1175 * ocfs2_pagemkwrite() is a little different
1176 * and wants us to directly use the page
1177 * passed in.
1178 */
1179 lock_page(mmap_page);
1180
1181 /* Exit and let the caller retry */
1182 if (mmap_page->mapping != mapping) {
1183 WARN_ON(mmap_page->mapping);
1184 unlock_page(mmap_page);
1185 ret = -EAGAIN;
1186 goto out;
1187 }
1188
1189 page_cache_get(mmap_page);
1190 wc->w_pages[i] = mmap_page;
1191 wc->w_target_locked = true;
1192 } else {
1193 wc->w_pages[i] = find_or_create_page(mapping, index,
1194 GFP_NOFS);
1195 if (!wc->w_pages[i]) {
1196 ret = -ENOMEM;
1197 mlog_errno(ret);
1198 goto out;
1199 }
1200 }
1201 wait_for_stable_page(wc->w_pages[i]);
1202
1203 if (index == target_index)
1204 wc->w_target_page = wc->w_pages[i];
1205 }
1206 out:
1207 if (ret)
1208 wc->w_target_locked = false;
1209 return ret;
1210 }
1211
1212 /*
1213 * Prepare a single cluster for write one cluster into the file.
1214 */
1215 static int ocfs2_write_cluster(struct address_space *mapping,
1216 u32 phys, unsigned int unwritten,
1217 unsigned int should_zero,
1218 struct ocfs2_alloc_context *data_ac,
1219 struct ocfs2_alloc_context *meta_ac,
1220 struct ocfs2_write_ctxt *wc, u32 cpos,
1221 loff_t user_pos, unsigned user_len)
1222 {
1223 int ret, i, new;
1224 u64 v_blkno, p_blkno;
1225 struct inode *inode = mapping->host;
1226 struct ocfs2_extent_tree et;
1227
1228 new = phys == 0 ? 1 : 0;
1229 if (new) {
1230 u32 tmp_pos;
1231
1232 /*
1233 * This is safe to call with the page locks - it won't take
1234 * any additional semaphores or cluster locks.
1235 */
1236 tmp_pos = cpos;
1237 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1238 &tmp_pos, 1, 0, wc->w_di_bh,
1239 wc->w_handle, data_ac,
1240 meta_ac, NULL);
1241 /*
1242 * This shouldn't happen because we must have already
1243 * calculated the correct meta data allocation required. The
1244 * internal tree allocation code should know how to increase
1245 * transaction credits itself.
1246 *
1247 * If need be, we could handle -EAGAIN for a
1248 * RESTART_TRANS here.
1249 */
1250 mlog_bug_on_msg(ret == -EAGAIN,
1251 "Inode %llu: EAGAIN return during allocation.\n",
1252 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1253 if (ret < 0) {
1254 mlog_errno(ret);
1255 goto out;
1256 }
1257 } else if (unwritten) {
1258 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1259 wc->w_di_bh);
1260 ret = ocfs2_mark_extent_written(inode, &et,
1261 wc->w_handle, cpos, 1, phys,
1262 meta_ac, &wc->w_dealloc);
1263 if (ret < 0) {
1264 mlog_errno(ret);
1265 goto out;
1266 }
1267 }
1268
1269 if (should_zero)
1270 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1271 else
1272 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1273
1274 /*
1275 * The only reason this should fail is due to an inability to
1276 * find the extent added.
1277 */
1278 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1279 NULL);
1280 if (ret < 0) {
1281 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1282 "at logical block %llu",
1283 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1284 (unsigned long long)v_blkno);
1285 goto out;
1286 }
1287
1288 BUG_ON(p_blkno == 0);
1289
1290 for(i = 0; i < wc->w_num_pages; i++) {
1291 int tmpret;
1292
1293 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1294 wc->w_pages[i], cpos,
1295 user_pos, user_len,
1296 should_zero);
1297 if (tmpret) {
1298 mlog_errno(tmpret);
1299 if (ret == 0)
1300 ret = tmpret;
1301 }
1302 }
1303
1304 /*
1305 * We only have cleanup to do in case of allocating write.
1306 */
1307 if (ret && new)
1308 ocfs2_write_failure(inode, wc, user_pos, user_len);
1309
1310 out:
1311
1312 return ret;
1313 }
1314
1315 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1316 struct ocfs2_alloc_context *data_ac,
1317 struct ocfs2_alloc_context *meta_ac,
1318 struct ocfs2_write_ctxt *wc,
1319 loff_t pos, unsigned len)
1320 {
1321 int ret, i;
1322 loff_t cluster_off;
1323 unsigned int local_len = len;
1324 struct ocfs2_write_cluster_desc *desc;
1325 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1326
1327 for (i = 0; i < wc->w_clen; i++) {
1328 desc = &wc->w_desc[i];
1329
1330 /*
1331 * We have to make sure that the total write passed in
1332 * doesn't extend past a single cluster.
1333 */
1334 local_len = len;
1335 cluster_off = pos & (osb->s_clustersize - 1);
1336 if ((cluster_off + local_len) > osb->s_clustersize)
1337 local_len = osb->s_clustersize - cluster_off;
1338
1339 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1340 desc->c_unwritten,
1341 desc->c_needs_zero,
1342 data_ac, meta_ac,
1343 wc, desc->c_cpos, pos, local_len);
1344 if (ret) {
1345 mlog_errno(ret);
1346 goto out;
1347 }
1348
1349 len -= local_len;
1350 pos += local_len;
1351 }
1352
1353 ret = 0;
1354 out:
1355 return ret;
1356 }
1357
1358 /*
1359 * ocfs2_write_end() wants to know which parts of the target page it
1360 * should complete the write on. It's easiest to compute them ahead of
1361 * time when a more complete view of the write is available.
1362 */
1363 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1364 struct ocfs2_write_ctxt *wc,
1365 loff_t pos, unsigned len, int alloc)
1366 {
1367 struct ocfs2_write_cluster_desc *desc;
1368
1369 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1370 wc->w_target_to = wc->w_target_from + len;
1371
1372 if (alloc == 0)
1373 return;
1374
1375 /*
1376 * Allocating write - we may have different boundaries based
1377 * on page size and cluster size.
1378 *
1379 * NOTE: We can no longer compute one value from the other as
1380 * the actual write length and user provided length may be
1381 * different.
1382 */
1383
1384 if (wc->w_large_pages) {
1385 /*
1386 * We only care about the 1st and last cluster within
1387 * our range and whether they should be zero'd or not. Either
1388 * value may be extended out to the start/end of a
1389 * newly allocated cluster.
1390 */
1391 desc = &wc->w_desc[0];
1392 if (desc->c_needs_zero)
1393 ocfs2_figure_cluster_boundaries(osb,
1394 desc->c_cpos,
1395 &wc->w_target_from,
1396 NULL);
1397
1398 desc = &wc->w_desc[wc->w_clen - 1];
1399 if (desc->c_needs_zero)
1400 ocfs2_figure_cluster_boundaries(osb,
1401 desc->c_cpos,
1402 NULL,
1403 &wc->w_target_to);
1404 } else {
1405 wc->w_target_from = 0;
1406 wc->w_target_to = PAGE_CACHE_SIZE;
1407 }
1408 }
1409
1410 /*
1411 * Populate each single-cluster write descriptor in the write context
1412 * with information about the i/o to be done.
1413 *
1414 * Returns the number of clusters that will have to be allocated, as
1415 * well as a worst case estimate of the number of extent records that
1416 * would have to be created during a write to an unwritten region.
1417 */
1418 static int ocfs2_populate_write_desc(struct inode *inode,
1419 struct ocfs2_write_ctxt *wc,
1420 unsigned int *clusters_to_alloc,
1421 unsigned int *extents_to_split)
1422 {
1423 int ret;
1424 struct ocfs2_write_cluster_desc *desc;
1425 unsigned int num_clusters = 0;
1426 unsigned int ext_flags = 0;
1427 u32 phys = 0;
1428 int i;
1429
1430 *clusters_to_alloc = 0;
1431 *extents_to_split = 0;
1432
1433 for (i = 0; i < wc->w_clen; i++) {
1434 desc = &wc->w_desc[i];
1435 desc->c_cpos = wc->w_cpos + i;
1436
1437 if (num_clusters == 0) {
1438 /*
1439 * Need to look up the next extent record.
1440 */
1441 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1442 &num_clusters, &ext_flags);
1443 if (ret) {
1444 mlog_errno(ret);
1445 goto out;
1446 }
1447
1448 /* We should already CoW the refcountd extent. */
1449 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1450
1451 /*
1452 * Assume worst case - that we're writing in
1453 * the middle of the extent.
1454 *
1455 * We can assume that the write proceeds from
1456 * left to right, in which case the extent
1457 * insert code is smart enough to coalesce the
1458 * next splits into the previous records created.
1459 */
1460 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1461 *extents_to_split = *extents_to_split + 2;
1462 } else if (phys) {
1463 /*
1464 * Only increment phys if it doesn't describe
1465 * a hole.
1466 */
1467 phys++;
1468 }
1469
1470 /*
1471 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1472 * file that got extended. w_first_new_cpos tells us
1473 * where the newly allocated clusters are so we can
1474 * zero them.
1475 */
1476 if (desc->c_cpos >= wc->w_first_new_cpos) {
1477 BUG_ON(phys == 0);
1478 desc->c_needs_zero = 1;
1479 }
1480
1481 desc->c_phys = phys;
1482 if (phys == 0) {
1483 desc->c_new = 1;
1484 desc->c_needs_zero = 1;
1485 *clusters_to_alloc = *clusters_to_alloc + 1;
1486 }
1487
1488 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1489 desc->c_unwritten = 1;
1490 desc->c_needs_zero = 1;
1491 }
1492
1493 num_clusters--;
1494 }
1495
1496 ret = 0;
1497 out:
1498 return ret;
1499 }
1500
1501 static int ocfs2_write_begin_inline(struct address_space *mapping,
1502 struct inode *inode,
1503 struct ocfs2_write_ctxt *wc)
1504 {
1505 int ret;
1506 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1507 struct page *page;
1508 handle_t *handle;
1509 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1510
1511 page = find_or_create_page(mapping, 0, GFP_NOFS);
1512 if (!page) {
1513 ret = -ENOMEM;
1514 mlog_errno(ret);
1515 goto out;
1516 }
1517 /*
1518 * If we don't set w_num_pages then this page won't get unlocked
1519 * and freed on cleanup of the write context.
1520 */
1521 wc->w_pages[0] = wc->w_target_page = page;
1522 wc->w_num_pages = 1;
1523
1524 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1525 if (IS_ERR(handle)) {
1526 ret = PTR_ERR(handle);
1527 mlog_errno(ret);
1528 goto out;
1529 }
1530
1531 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1532 OCFS2_JOURNAL_ACCESS_WRITE);
1533 if (ret) {
1534 ocfs2_commit_trans(osb, handle);
1535
1536 mlog_errno(ret);
1537 goto out;
1538 }
1539
1540 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1541 ocfs2_set_inode_data_inline(inode, di);
1542
1543 if (!PageUptodate(page)) {
1544 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1545 if (ret) {
1546 ocfs2_commit_trans(osb, handle);
1547
1548 goto out;
1549 }
1550 }
1551
1552 wc->w_handle = handle;
1553 out:
1554 return ret;
1555 }
1556
1557 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1558 {
1559 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1560
1561 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1562 return 1;
1563 return 0;
1564 }
1565
1566 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1567 struct inode *inode, loff_t pos,
1568 unsigned len, struct page *mmap_page,
1569 struct ocfs2_write_ctxt *wc)
1570 {
1571 int ret, written = 0;
1572 loff_t end = pos + len;
1573 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1574 struct ocfs2_dinode *di = NULL;
1575
1576 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1577 len, (unsigned long long)pos,
1578 oi->ip_dyn_features);
1579
1580 /*
1581 * Handle inodes which already have inline data 1st.
1582 */
1583 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1584 if (mmap_page == NULL &&
1585 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1586 goto do_inline_write;
1587
1588 /*
1589 * The write won't fit - we have to give this inode an
1590 * inline extent list now.
1591 */
1592 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1593 if (ret)
1594 mlog_errno(ret);
1595 goto out;
1596 }
1597
1598 /*
1599 * Check whether the inode can accept inline data.
1600 */
1601 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1602 return 0;
1603
1604 /*
1605 * Check whether the write can fit.
1606 */
1607 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1608 if (mmap_page ||
1609 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1610 return 0;
1611
1612 do_inline_write:
1613 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1614 if (ret) {
1615 mlog_errno(ret);
1616 goto out;
1617 }
1618
1619 /*
1620 * This signals to the caller that the data can be written
1621 * inline.
1622 */
1623 written = 1;
1624 out:
1625 return written ? written : ret;
1626 }
1627
1628 /*
1629 * This function only does anything for file systems which can't
1630 * handle sparse files.
1631 *
1632 * What we want to do here is fill in any hole between the current end
1633 * of allocation and the end of our write. That way the rest of the
1634 * write path can treat it as an non-allocating write, which has no
1635 * special case code for sparse/nonsparse files.
1636 */
1637 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1638 struct buffer_head *di_bh,
1639 loff_t pos, unsigned len,
1640 struct ocfs2_write_ctxt *wc)
1641 {
1642 int ret;
1643 loff_t newsize = pos + len;
1644
1645 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1646
1647 if (newsize <= i_size_read(inode))
1648 return 0;
1649
1650 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1651 if (ret)
1652 mlog_errno(ret);
1653
1654 wc->w_first_new_cpos =
1655 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1656
1657 return ret;
1658 }
1659
1660 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1661 loff_t pos)
1662 {
1663 int ret = 0;
1664
1665 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1666 if (pos > i_size_read(inode))
1667 ret = ocfs2_zero_extend(inode, di_bh, pos);
1668
1669 return ret;
1670 }
1671
1672 /*
1673 * Try to flush truncate logs if we can free enough clusters from it.
1674 * As for return value, "< 0" means error, "0" no space and "1" means
1675 * we have freed enough spaces and let the caller try to allocate again.
1676 */
1677 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1678 unsigned int needed)
1679 {
1680 tid_t target;
1681 int ret = 0;
1682 unsigned int truncated_clusters;
1683
1684 mutex_lock(&osb->osb_tl_inode->i_mutex);
1685 truncated_clusters = osb->truncated_clusters;
1686 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1687
1688 /*
1689 * Check whether we can succeed in allocating if we free
1690 * the truncate log.
1691 */
1692 if (truncated_clusters < needed)
1693 goto out;
1694
1695 ret = ocfs2_flush_truncate_log(osb);
1696 if (ret) {
1697 mlog_errno(ret);
1698 goto out;
1699 }
1700
1701 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1702 jbd2_log_wait_commit(osb->journal->j_journal, target);
1703 ret = 1;
1704 }
1705 out:
1706 return ret;
1707 }
1708
1709 int ocfs2_write_begin_nolock(struct file *filp,
1710 struct address_space *mapping,
1711 loff_t pos, unsigned len, unsigned flags,
1712 struct page **pagep, void **fsdata,
1713 struct buffer_head *di_bh, struct page *mmap_page)
1714 {
1715 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1716 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1717 struct ocfs2_write_ctxt *wc;
1718 struct inode *inode = mapping->host;
1719 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1720 struct ocfs2_dinode *di;
1721 struct ocfs2_alloc_context *data_ac = NULL;
1722 struct ocfs2_alloc_context *meta_ac = NULL;
1723 handle_t *handle;
1724 struct ocfs2_extent_tree et;
1725 int try_free = 1, ret1;
1726
1727 try_again:
1728 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1729 if (ret) {
1730 mlog_errno(ret);
1731 return ret;
1732 }
1733
1734 if (ocfs2_supports_inline_data(osb)) {
1735 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1736 mmap_page, wc);
1737 if (ret == 1) {
1738 ret = 0;
1739 goto success;
1740 }
1741 if (ret < 0) {
1742 mlog_errno(ret);
1743 goto out;
1744 }
1745 }
1746
1747 if (ocfs2_sparse_alloc(osb))
1748 ret = ocfs2_zero_tail(inode, di_bh, pos);
1749 else
1750 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1751 wc);
1752 if (ret) {
1753 mlog_errno(ret);
1754 goto out;
1755 }
1756
1757 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1758 if (ret < 0) {
1759 mlog_errno(ret);
1760 goto out;
1761 } else if (ret == 1) {
1762 clusters_need = wc->w_clen;
1763 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1764 wc->w_cpos, wc->w_clen, UINT_MAX);
1765 if (ret) {
1766 mlog_errno(ret);
1767 goto out;
1768 }
1769 }
1770
1771 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1772 &extents_to_split);
1773 if (ret) {
1774 mlog_errno(ret);
1775 goto out;
1776 }
1777 clusters_need += clusters_to_alloc;
1778
1779 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1780
1781 trace_ocfs2_write_begin_nolock(
1782 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1783 (long long)i_size_read(inode),
1784 le32_to_cpu(di->i_clusters),
1785 pos, len, flags, mmap_page,
1786 clusters_to_alloc, extents_to_split);
1787
1788 /*
1789 * We set w_target_from, w_target_to here so that
1790 * ocfs2_write_end() knows which range in the target page to
1791 * write out. An allocation requires that we write the entire
1792 * cluster range.
1793 */
1794 if (clusters_to_alloc || extents_to_split) {
1795 /*
1796 * XXX: We are stretching the limits of
1797 * ocfs2_lock_allocators(). It greatly over-estimates
1798 * the work to be done.
1799 */
1800 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1801 wc->w_di_bh);
1802 ret = ocfs2_lock_allocators(inode, &et,
1803 clusters_to_alloc, extents_to_split,
1804 &data_ac, &meta_ac);
1805 if (ret) {
1806 mlog_errno(ret);
1807 goto out;
1808 }
1809
1810 if (data_ac)
1811 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1812
1813 credits = ocfs2_calc_extend_credits(inode->i_sb,
1814 &di->id2.i_list,
1815 clusters_to_alloc);
1816
1817 }
1818
1819 /*
1820 * We have to zero sparse allocated clusters, unwritten extent clusters,
1821 * and non-sparse clusters we just extended. For non-sparse writes,
1822 * we know zeros will only be needed in the first and/or last cluster.
1823 */
1824 if (clusters_to_alloc || extents_to_split ||
1825 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1826 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1827 cluster_of_pages = 1;
1828 else
1829 cluster_of_pages = 0;
1830
1831 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1832
1833 handle = ocfs2_start_trans(osb, credits);
1834 if (IS_ERR(handle)) {
1835 ret = PTR_ERR(handle);
1836 mlog_errno(ret);
1837 goto out;
1838 }
1839
1840 wc->w_handle = handle;
1841
1842 if (clusters_to_alloc) {
1843 ret = dquot_alloc_space_nodirty(inode,
1844 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1845 if (ret)
1846 goto out_commit;
1847 }
1848 /*
1849 * We don't want this to fail in ocfs2_write_end(), so do it
1850 * here.
1851 */
1852 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1853 OCFS2_JOURNAL_ACCESS_WRITE);
1854 if (ret) {
1855 mlog_errno(ret);
1856 goto out_quota;
1857 }
1858
1859 /*
1860 * Fill our page array first. That way we've grabbed enough so
1861 * that we can zero and flush if we error after adding the
1862 * extent.
1863 */
1864 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1865 cluster_of_pages, mmap_page);
1866 if (ret && ret != -EAGAIN) {
1867 mlog_errno(ret);
1868 goto out_quota;
1869 }
1870
1871 /*
1872 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1873 * the target page. In this case, we exit with no error and no target
1874 * page. This will trigger the caller, page_mkwrite(), to re-try
1875 * the operation.
1876 */
1877 if (ret == -EAGAIN) {
1878 BUG_ON(wc->w_target_page);
1879 ret = 0;
1880 goto out_quota;
1881 }
1882
1883 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1884 len);
1885 if (ret) {
1886 mlog_errno(ret);
1887 goto out_quota;
1888 }
1889
1890 if (data_ac)
1891 ocfs2_free_alloc_context(data_ac);
1892 if (meta_ac)
1893 ocfs2_free_alloc_context(meta_ac);
1894
1895 success:
1896 *pagep = wc->w_target_page;
1897 *fsdata = wc;
1898 return 0;
1899 out_quota:
1900 if (clusters_to_alloc)
1901 dquot_free_space(inode,
1902 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1903 out_commit:
1904 ocfs2_commit_trans(osb, handle);
1905
1906 out:
1907 ocfs2_free_write_ctxt(wc);
1908
1909 if (data_ac)
1910 ocfs2_free_alloc_context(data_ac);
1911 if (meta_ac)
1912 ocfs2_free_alloc_context(meta_ac);
1913
1914 if (ret == -ENOSPC && try_free) {
1915 /*
1916 * Try to free some truncate log so that we can have enough
1917 * clusters to allocate.
1918 */
1919 try_free = 0;
1920
1921 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1922 if (ret1 == 1)
1923 goto try_again;
1924
1925 if (ret1 < 0)
1926 mlog_errno(ret1);
1927 }
1928
1929 return ret;
1930 }
1931
1932 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1933 loff_t pos, unsigned len, unsigned flags,
1934 struct page **pagep, void **fsdata)
1935 {
1936 int ret;
1937 struct buffer_head *di_bh = NULL;
1938 struct inode *inode = mapping->host;
1939
1940 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1941 if (ret) {
1942 mlog_errno(ret);
1943 return ret;
1944 }
1945
1946 /*
1947 * Take alloc sem here to prevent concurrent lookups. That way
1948 * the mapping, zeroing and tree manipulation within
1949 * ocfs2_write() will be safe against ->readpage(). This
1950 * should also serve to lock out allocation from a shared
1951 * writeable region.
1952 */
1953 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1954
1955 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1956 fsdata, di_bh, NULL);
1957 if (ret) {
1958 mlog_errno(ret);
1959 goto out_fail;
1960 }
1961
1962 brelse(di_bh);
1963
1964 return 0;
1965
1966 out_fail:
1967 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1968
1969 brelse(di_bh);
1970 ocfs2_inode_unlock(inode, 1);
1971
1972 return ret;
1973 }
1974
1975 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1976 unsigned len, unsigned *copied,
1977 struct ocfs2_dinode *di,
1978 struct ocfs2_write_ctxt *wc)
1979 {
1980 void *kaddr;
1981
1982 if (unlikely(*copied < len)) {
1983 if (!PageUptodate(wc->w_target_page)) {
1984 *copied = 0;
1985 return;
1986 }
1987 }
1988
1989 kaddr = kmap_atomic(wc->w_target_page);
1990 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1991 kunmap_atomic(kaddr);
1992
1993 trace_ocfs2_write_end_inline(
1994 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1995 (unsigned long long)pos, *copied,
1996 le16_to_cpu(di->id2.i_data.id_count),
1997 le16_to_cpu(di->i_dyn_features));
1998 }
1999
2000 int ocfs2_write_end_nolock(struct address_space *mapping,
2001 loff_t pos, unsigned len, unsigned copied,
2002 struct page *page, void *fsdata)
2003 {
2004 int i;
2005 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2006 struct inode *inode = mapping->host;
2007 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2008 struct ocfs2_write_ctxt *wc = fsdata;
2009 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2010 handle_t *handle = wc->w_handle;
2011 struct page *tmppage;
2012
2013 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2014 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2015 goto out_write_size;
2016 }
2017
2018 if (unlikely(copied < len)) {
2019 if (!PageUptodate(wc->w_target_page))
2020 copied = 0;
2021
2022 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2023 start+len);
2024 }
2025 flush_dcache_page(wc->w_target_page);
2026
2027 for(i = 0; i < wc->w_num_pages; i++) {
2028 tmppage = wc->w_pages[i];
2029
2030 if (tmppage == wc->w_target_page) {
2031 from = wc->w_target_from;
2032 to = wc->w_target_to;
2033
2034 BUG_ON(from > PAGE_CACHE_SIZE ||
2035 to > PAGE_CACHE_SIZE ||
2036 to < from);
2037 } else {
2038 /*
2039 * Pages adjacent to the target (if any) imply
2040 * a hole-filling write in which case we want
2041 * to flush their entire range.
2042 */
2043 from = 0;
2044 to = PAGE_CACHE_SIZE;
2045 }
2046
2047 if (page_has_buffers(tmppage)) {
2048 if (ocfs2_should_order_data(inode))
2049 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2050 block_commit_write(tmppage, from, to);
2051 }
2052 }
2053
2054 out_write_size:
2055 pos += copied;
2056 if (pos > inode->i_size) {
2057 i_size_write(inode, pos);
2058 mark_inode_dirty(inode);
2059 }
2060 inode->i_blocks = ocfs2_inode_sector_count(inode);
2061 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2062 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2063 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2064 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2065 ocfs2_journal_dirty(handle, wc->w_di_bh);
2066
2067 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2068 * lock, or it will cause a deadlock since journal commit threads holds
2069 * this lock and will ask for the page lock when flushing the data.
2070 * put it here to preserve the unlock order.
2071 */
2072 ocfs2_unlock_pages(wc);
2073
2074 ocfs2_commit_trans(osb, handle);
2075
2076 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2077
2078 brelse(wc->w_di_bh);
2079 kfree(wc);
2080
2081 return copied;
2082 }
2083
2084 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2085 loff_t pos, unsigned len, unsigned copied,
2086 struct page *page, void *fsdata)
2087 {
2088 int ret;
2089 struct inode *inode = mapping->host;
2090
2091 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2092
2093 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2094 ocfs2_inode_unlock(inode, 1);
2095
2096 return ret;
2097 }
2098
2099 const struct address_space_operations ocfs2_aops = {
2100 .readpage = ocfs2_readpage,
2101 .readpages = ocfs2_readpages,
2102 .writepage = ocfs2_writepage,
2103 .write_begin = ocfs2_write_begin,
2104 .write_end = ocfs2_write_end,
2105 .bmap = ocfs2_bmap,
2106 .direct_IO = ocfs2_direct_IO,
2107 .invalidatepage = ocfs2_invalidatepage,
2108 .releasepage = ocfs2_releasepage,
2109 .migratepage = buffer_migrate_page,
2110 .is_partially_uptodate = block_is_partially_uptodate,
2111 .error_remove_page = generic_error_remove_page,
2112 };