Merge branch 'for-linus' of git://android.git.kernel.org/kernel/tegra
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_readdir(struct file *, void *, filldir_t);
48 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
49 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
50 static int nfs_mkdir(struct inode *, struct dentry *, int);
51 static int nfs_rmdir(struct inode *, struct dentry *);
52 static int nfs_unlink(struct inode *, struct dentry *);
53 static int nfs_symlink(struct inode *, struct dentry *, const char *);
54 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
55 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
56 static int nfs_rename(struct inode *, struct dentry *,
57 struct inode *, struct dentry *);
58 static int nfs_fsync_dir(struct file *, int);
59 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 static void nfs_readdir_clear_array(struct page*);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .readdir = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_release,
68 .fsync = nfs_fsync_dir,
69 };
70
71 const struct inode_operations nfs_dir_inode_operations = {
72 .create = nfs_create,
73 .lookup = nfs_lookup,
74 .link = nfs_link,
75 .unlink = nfs_unlink,
76 .symlink = nfs_symlink,
77 .mkdir = nfs_mkdir,
78 .rmdir = nfs_rmdir,
79 .mknod = nfs_mknod,
80 .rename = nfs_rename,
81 .permission = nfs_permission,
82 .getattr = nfs_getattr,
83 .setattr = nfs_setattr,
84 };
85
86 const struct address_space_operations nfs_dir_aops = {
87 .freepage = nfs_readdir_clear_array,
88 };
89
90 #ifdef CONFIG_NFS_V3
91 const struct inode_operations nfs3_dir_inode_operations = {
92 .create = nfs_create,
93 .lookup = nfs_lookup,
94 .link = nfs_link,
95 .unlink = nfs_unlink,
96 .symlink = nfs_symlink,
97 .mkdir = nfs_mkdir,
98 .rmdir = nfs_rmdir,
99 .mknod = nfs_mknod,
100 .rename = nfs_rename,
101 .permission = nfs_permission,
102 .getattr = nfs_getattr,
103 .setattr = nfs_setattr,
104 .listxattr = nfs3_listxattr,
105 .getxattr = nfs3_getxattr,
106 .setxattr = nfs3_setxattr,
107 .removexattr = nfs3_removexattr,
108 };
109 #endif /* CONFIG_NFS_V3 */
110
111 #ifdef CONFIG_NFS_V4
112
113 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
114 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
115 const struct inode_operations nfs4_dir_inode_operations = {
116 .create = nfs_open_create,
117 .lookup = nfs_atomic_lookup,
118 .link = nfs_link,
119 .unlink = nfs_unlink,
120 .symlink = nfs_symlink,
121 .mkdir = nfs_mkdir,
122 .rmdir = nfs_rmdir,
123 .mknod = nfs_mknod,
124 .rename = nfs_rename,
125 .permission = nfs_permission,
126 .getattr = nfs_getattr,
127 .setattr = nfs_setattr,
128 .getxattr = generic_getxattr,
129 .setxattr = generic_setxattr,
130 .listxattr = generic_listxattr,
131 .removexattr = generic_removexattr,
132 };
133
134 #endif /* CONFIG_NFS_V4 */
135
136 /*
137 * Open file
138 */
139 static int
140 nfs_opendir(struct inode *inode, struct file *filp)
141 {
142 int res;
143
144 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
145 filp->f_path.dentry->d_parent->d_name.name,
146 filp->f_path.dentry->d_name.name);
147
148 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
149
150 /* Call generic open code in order to cache credentials */
151 res = nfs_open(inode, filp);
152 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
153 /* This is a mountpoint, so d_revalidate will never
154 * have been called, so we need to refresh the
155 * inode (for close-open consistency) ourselves.
156 */
157 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
158 }
159 return res;
160 }
161
162 struct nfs_cache_array_entry {
163 u64 cookie;
164 u64 ino;
165 struct qstr string;
166 unsigned char d_type;
167 };
168
169 struct nfs_cache_array {
170 unsigned int size;
171 int eof_index;
172 u64 last_cookie;
173 struct nfs_cache_array_entry array[0];
174 };
175
176 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
177 typedef struct {
178 struct file *file;
179 struct page *page;
180 unsigned long page_index;
181 u64 *dir_cookie;
182 u64 last_cookie;
183 loff_t current_index;
184 decode_dirent_t decode;
185
186 unsigned long timestamp;
187 unsigned long gencount;
188 unsigned int cache_entry_index;
189 unsigned int plus:1;
190 unsigned int eof:1;
191 } nfs_readdir_descriptor_t;
192
193 /*
194 * The caller is responsible for calling nfs_readdir_release_array(page)
195 */
196 static
197 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
198 {
199 void *ptr;
200 if (page == NULL)
201 return ERR_PTR(-EIO);
202 ptr = kmap(page);
203 if (ptr == NULL)
204 return ERR_PTR(-ENOMEM);
205 return ptr;
206 }
207
208 static
209 void nfs_readdir_release_array(struct page *page)
210 {
211 kunmap(page);
212 }
213
214 /*
215 * we are freeing strings created by nfs_add_to_readdir_array()
216 */
217 static
218 void nfs_readdir_clear_array(struct page *page)
219 {
220 struct nfs_cache_array *array;
221 int i;
222
223 array = kmap_atomic(page, KM_USER0);
224 for (i = 0; i < array->size; i++)
225 kfree(array->array[i].string.name);
226 kunmap_atomic(array, KM_USER0);
227 }
228
229 /*
230 * the caller is responsible for freeing qstr.name
231 * when called by nfs_readdir_add_to_array, the strings will be freed in
232 * nfs_clear_readdir_array()
233 */
234 static
235 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
236 {
237 string->len = len;
238 string->name = kmemdup(name, len, GFP_KERNEL);
239 if (string->name == NULL)
240 return -ENOMEM;
241 /*
242 * Avoid a kmemleak false positive. The pointer to the name is stored
243 * in a page cache page which kmemleak does not scan.
244 */
245 kmemleak_not_leak(string->name);
246 string->hash = full_name_hash(name, len);
247 return 0;
248 }
249
250 static
251 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
252 {
253 struct nfs_cache_array *array = nfs_readdir_get_array(page);
254 struct nfs_cache_array_entry *cache_entry;
255 int ret;
256
257 if (IS_ERR(array))
258 return PTR_ERR(array);
259
260 cache_entry = &array->array[array->size];
261
262 /* Check that this entry lies within the page bounds */
263 ret = -ENOSPC;
264 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
265 goto out;
266
267 cache_entry->cookie = entry->prev_cookie;
268 cache_entry->ino = entry->ino;
269 cache_entry->d_type = entry->d_type;
270 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
271 if (ret)
272 goto out;
273 array->last_cookie = entry->cookie;
274 array->size++;
275 if (entry->eof != 0)
276 array->eof_index = array->size;
277 out:
278 nfs_readdir_release_array(page);
279 return ret;
280 }
281
282 static
283 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
284 {
285 loff_t diff = desc->file->f_pos - desc->current_index;
286 unsigned int index;
287
288 if (diff < 0)
289 goto out_eof;
290 if (diff >= array->size) {
291 if (array->eof_index >= 0)
292 goto out_eof;
293 desc->current_index += array->size;
294 return -EAGAIN;
295 }
296
297 index = (unsigned int)diff;
298 *desc->dir_cookie = array->array[index].cookie;
299 desc->cache_entry_index = index;
300 return 0;
301 out_eof:
302 desc->eof = 1;
303 return -EBADCOOKIE;
304 }
305
306 static
307 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
308 {
309 int i;
310 int status = -EAGAIN;
311
312 for (i = 0; i < array->size; i++) {
313 if (array->array[i].cookie == *desc->dir_cookie) {
314 desc->cache_entry_index = i;
315 return 0;
316 }
317 }
318 if (array->eof_index >= 0) {
319 status = -EBADCOOKIE;
320 if (*desc->dir_cookie == array->last_cookie)
321 desc->eof = 1;
322 }
323 return status;
324 }
325
326 static
327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
328 {
329 struct nfs_cache_array *array;
330 int status;
331
332 array = nfs_readdir_get_array(desc->page);
333 if (IS_ERR(array)) {
334 status = PTR_ERR(array);
335 goto out;
336 }
337
338 if (*desc->dir_cookie == 0)
339 status = nfs_readdir_search_for_pos(array, desc);
340 else
341 status = nfs_readdir_search_for_cookie(array, desc);
342
343 if (status == -EAGAIN) {
344 desc->last_cookie = array->last_cookie;
345 desc->page_index++;
346 }
347 nfs_readdir_release_array(desc->page);
348 out:
349 return status;
350 }
351
352 /* Fill a page with xdr information before transferring to the cache page */
353 static
354 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
355 struct nfs_entry *entry, struct file *file, struct inode *inode)
356 {
357 struct rpc_cred *cred = nfs_file_cred(file);
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
380 }
381
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393 }
394
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403 different:
404 return 0;
405 }
406
407 static
408 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
409 {
410 struct qstr filename = {
411 .len = entry->len,
412 .name = entry->name,
413 };
414 struct dentry *dentry;
415 struct dentry *alias;
416 struct inode *dir = parent->d_inode;
417 struct inode *inode;
418
419 if (filename.name[0] == '.') {
420 if (filename.len == 1)
421 return;
422 if (filename.len == 2 && filename.name[1] == '.')
423 return;
424 }
425 filename.hash = full_name_hash(filename.name, filename.len);
426
427 dentry = d_lookup(parent, &filename);
428 if (dentry != NULL) {
429 if (nfs_same_file(dentry, entry)) {
430 nfs_refresh_inode(dentry->d_inode, entry->fattr);
431 goto out;
432 } else {
433 d_drop(dentry);
434 dput(dentry);
435 }
436 }
437
438 dentry = d_alloc(parent, &filename);
439 if (dentry == NULL)
440 return;
441
442 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
443 if (IS_ERR(inode))
444 goto out;
445
446 alias = d_materialise_unique(dentry, inode);
447 if (IS_ERR(alias))
448 goto out;
449 else if (alias) {
450 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
451 dput(alias);
452 } else
453 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
454
455 out:
456 dput(dentry);
457 }
458
459 /* Perform conversion from xdr to cache array */
460 static
461 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
462 struct page **xdr_pages, struct page *page, unsigned int buflen)
463 {
464 struct xdr_stream stream;
465 struct xdr_buf buf = {
466 .pages = xdr_pages,
467 .page_len = buflen,
468 .buflen = buflen,
469 .len = buflen,
470 };
471 struct page *scratch;
472 struct nfs_cache_array *array;
473 unsigned int count = 0;
474 int status;
475
476 scratch = alloc_page(GFP_KERNEL);
477 if (scratch == NULL)
478 return -ENOMEM;
479
480 xdr_init_decode(&stream, &buf, NULL);
481 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
482
483 do {
484 status = xdr_decode(desc, entry, &stream);
485 if (status != 0) {
486 if (status == -EAGAIN)
487 status = 0;
488 break;
489 }
490
491 count++;
492
493 if (desc->plus != 0)
494 nfs_prime_dcache(desc->file->f_path.dentry, entry);
495
496 status = nfs_readdir_add_to_array(entry, page);
497 if (status != 0)
498 break;
499 } while (!entry->eof);
500
501 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
502 array = nfs_readdir_get_array(page);
503 if (!IS_ERR(array)) {
504 array->eof_index = array->size;
505 status = 0;
506 nfs_readdir_release_array(page);
507 } else
508 status = PTR_ERR(array);
509 }
510
511 put_page(scratch);
512 return status;
513 }
514
515 static
516 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
517 {
518 unsigned int i;
519 for (i = 0; i < npages; i++)
520 put_page(pages[i]);
521 }
522
523 static
524 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
525 unsigned int npages)
526 {
527 nfs_readdir_free_pagearray(pages, npages);
528 }
529
530 /*
531 * nfs_readdir_large_page will allocate pages that must be freed with a call
532 * to nfs_readdir_free_large_page
533 */
534 static
535 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
536 {
537 unsigned int i;
538
539 for (i = 0; i < npages; i++) {
540 struct page *page = alloc_page(GFP_KERNEL);
541 if (page == NULL)
542 goto out_freepages;
543 pages[i] = page;
544 }
545 return 0;
546
547 out_freepages:
548 nfs_readdir_free_pagearray(pages, i);
549 return -ENOMEM;
550 }
551
552 static
553 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
554 {
555 struct page *pages[NFS_MAX_READDIR_PAGES];
556 void *pages_ptr = NULL;
557 struct nfs_entry entry;
558 struct file *file = desc->file;
559 struct nfs_cache_array *array;
560 int status = -ENOMEM;
561 unsigned int array_size = ARRAY_SIZE(pages);
562
563 entry.prev_cookie = 0;
564 entry.cookie = desc->last_cookie;
565 entry.eof = 0;
566 entry.fh = nfs_alloc_fhandle();
567 entry.fattr = nfs_alloc_fattr();
568 entry.server = NFS_SERVER(inode);
569 if (entry.fh == NULL || entry.fattr == NULL)
570 goto out;
571
572 array = nfs_readdir_get_array(page);
573 if (IS_ERR(array)) {
574 status = PTR_ERR(array);
575 goto out;
576 }
577 memset(array, 0, sizeof(struct nfs_cache_array));
578 array->eof_index = -1;
579
580 status = nfs_readdir_large_page(pages, array_size);
581 if (status < 0)
582 goto out_release_array;
583 do {
584 unsigned int pglen;
585 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
586
587 if (status < 0)
588 break;
589 pglen = status;
590 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
591 if (status < 0) {
592 if (status == -ENOSPC)
593 status = 0;
594 break;
595 }
596 } while (array->eof_index < 0);
597
598 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
599 out_release_array:
600 nfs_readdir_release_array(page);
601 out:
602 nfs_free_fattr(entry.fattr);
603 nfs_free_fhandle(entry.fh);
604 return status;
605 }
606
607 /*
608 * Now we cache directories properly, by converting xdr information
609 * to an array that can be used for lookups later. This results in
610 * fewer cache pages, since we can store more information on each page.
611 * We only need to convert from xdr once so future lookups are much simpler
612 */
613 static
614 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
615 {
616 struct inode *inode = desc->file->f_path.dentry->d_inode;
617 int ret;
618
619 ret = nfs_readdir_xdr_to_array(desc, page, inode);
620 if (ret < 0)
621 goto error;
622 SetPageUptodate(page);
623
624 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
625 /* Should never happen */
626 nfs_zap_mapping(inode, inode->i_mapping);
627 }
628 unlock_page(page);
629 return 0;
630 error:
631 unlock_page(page);
632 return ret;
633 }
634
635 static
636 void cache_page_release(nfs_readdir_descriptor_t *desc)
637 {
638 if (!desc->page->mapping)
639 nfs_readdir_clear_array(desc->page);
640 page_cache_release(desc->page);
641 desc->page = NULL;
642 }
643
644 static
645 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
646 {
647 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
648 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
649 }
650
651 /*
652 * Returns 0 if desc->dir_cookie was found on page desc->page_index
653 */
654 static
655 int find_cache_page(nfs_readdir_descriptor_t *desc)
656 {
657 int res;
658
659 desc->page = get_cache_page(desc);
660 if (IS_ERR(desc->page))
661 return PTR_ERR(desc->page);
662
663 res = nfs_readdir_search_array(desc);
664 if (res != 0)
665 cache_page_release(desc);
666 return res;
667 }
668
669 /* Search for desc->dir_cookie from the beginning of the page cache */
670 static inline
671 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
672 {
673 int res;
674
675 if (desc->page_index == 0) {
676 desc->current_index = 0;
677 desc->last_cookie = 0;
678 }
679 do {
680 res = find_cache_page(desc);
681 } while (res == -EAGAIN);
682 return res;
683 }
684
685 /*
686 * Once we've found the start of the dirent within a page: fill 'er up...
687 */
688 static
689 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
690 filldir_t filldir)
691 {
692 struct file *file = desc->file;
693 int i = 0;
694 int res = 0;
695 struct nfs_cache_array *array = NULL;
696
697 array = nfs_readdir_get_array(desc->page);
698 if (IS_ERR(array)) {
699 res = PTR_ERR(array);
700 goto out;
701 }
702
703 for (i = desc->cache_entry_index; i < array->size; i++) {
704 struct nfs_cache_array_entry *ent;
705
706 ent = &array->array[i];
707 if (filldir(dirent, ent->string.name, ent->string.len,
708 file->f_pos, nfs_compat_user_ino64(ent->ino),
709 ent->d_type) < 0) {
710 desc->eof = 1;
711 break;
712 }
713 file->f_pos++;
714 if (i < (array->size-1))
715 *desc->dir_cookie = array->array[i+1].cookie;
716 else
717 *desc->dir_cookie = array->last_cookie;
718 }
719 if (array->eof_index >= 0)
720 desc->eof = 1;
721
722 nfs_readdir_release_array(desc->page);
723 out:
724 cache_page_release(desc);
725 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
726 (unsigned long long)*desc->dir_cookie, res);
727 return res;
728 }
729
730 /*
731 * If we cannot find a cookie in our cache, we suspect that this is
732 * because it points to a deleted file, so we ask the server to return
733 * whatever it thinks is the next entry. We then feed this to filldir.
734 * If all goes well, we should then be able to find our way round the
735 * cache on the next call to readdir_search_pagecache();
736 *
737 * NOTE: we cannot add the anonymous page to the pagecache because
738 * the data it contains might not be page aligned. Besides,
739 * we should already have a complete representation of the
740 * directory in the page cache by the time we get here.
741 */
742 static inline
743 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
744 filldir_t filldir)
745 {
746 struct page *page = NULL;
747 int status;
748 struct inode *inode = desc->file->f_path.dentry->d_inode;
749
750 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
751 (unsigned long long)*desc->dir_cookie);
752
753 page = alloc_page(GFP_HIGHUSER);
754 if (!page) {
755 status = -ENOMEM;
756 goto out;
757 }
758
759 desc->page_index = 0;
760 desc->last_cookie = *desc->dir_cookie;
761 desc->page = page;
762
763 status = nfs_readdir_xdr_to_array(desc, page, inode);
764 if (status < 0)
765 goto out_release;
766
767 status = nfs_do_filldir(desc, dirent, filldir);
768
769 out:
770 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
771 __func__, status);
772 return status;
773 out_release:
774 cache_page_release(desc);
775 goto out;
776 }
777
778 /* The file offset position represents the dirent entry number. A
779 last cookie cache takes care of the common case of reading the
780 whole directory.
781 */
782 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
783 {
784 struct dentry *dentry = filp->f_path.dentry;
785 struct inode *inode = dentry->d_inode;
786 nfs_readdir_descriptor_t my_desc,
787 *desc = &my_desc;
788 int res;
789
790 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
791 dentry->d_parent->d_name.name, dentry->d_name.name,
792 (long long)filp->f_pos);
793 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
794
795 /*
796 * filp->f_pos points to the dirent entry number.
797 * *desc->dir_cookie has the cookie for the next entry. We have
798 * to either find the entry with the appropriate number or
799 * revalidate the cookie.
800 */
801 memset(desc, 0, sizeof(*desc));
802
803 desc->file = filp;
804 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
805 desc->decode = NFS_PROTO(inode)->decode_dirent;
806 desc->plus = NFS_USE_READDIRPLUS(inode);
807
808 nfs_block_sillyrename(dentry);
809 res = nfs_revalidate_mapping(inode, filp->f_mapping);
810 if (res < 0)
811 goto out;
812
813 do {
814 res = readdir_search_pagecache(desc);
815
816 if (res == -EBADCOOKIE) {
817 res = 0;
818 /* This means either end of directory */
819 if (*desc->dir_cookie && desc->eof == 0) {
820 /* Or that the server has 'lost' a cookie */
821 res = uncached_readdir(desc, dirent, filldir);
822 if (res == 0)
823 continue;
824 }
825 break;
826 }
827 if (res == -ETOOSMALL && desc->plus) {
828 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
829 nfs_zap_caches(inode);
830 desc->page_index = 0;
831 desc->plus = 0;
832 desc->eof = 0;
833 continue;
834 }
835 if (res < 0)
836 break;
837
838 res = nfs_do_filldir(desc, dirent, filldir);
839 if (res < 0)
840 break;
841 } while (!desc->eof);
842 out:
843 nfs_unblock_sillyrename(dentry);
844 if (res > 0)
845 res = 0;
846 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
847 dentry->d_parent->d_name.name, dentry->d_name.name,
848 res);
849 return res;
850 }
851
852 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
853 {
854 struct dentry *dentry = filp->f_path.dentry;
855 struct inode *inode = dentry->d_inode;
856
857 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
858 dentry->d_parent->d_name.name,
859 dentry->d_name.name,
860 offset, origin);
861
862 mutex_lock(&inode->i_mutex);
863 switch (origin) {
864 case 1:
865 offset += filp->f_pos;
866 case 0:
867 if (offset >= 0)
868 break;
869 default:
870 offset = -EINVAL;
871 goto out;
872 }
873 if (offset != filp->f_pos) {
874 filp->f_pos = offset;
875 nfs_file_open_context(filp)->dir_cookie = 0;
876 }
877 out:
878 mutex_unlock(&inode->i_mutex);
879 return offset;
880 }
881
882 /*
883 * All directory operations under NFS are synchronous, so fsync()
884 * is a dummy operation.
885 */
886 static int nfs_fsync_dir(struct file *filp, int datasync)
887 {
888 struct dentry *dentry = filp->f_path.dentry;
889
890 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
891 dentry->d_parent->d_name.name, dentry->d_name.name,
892 datasync);
893
894 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
895 return 0;
896 }
897
898 /**
899 * nfs_force_lookup_revalidate - Mark the directory as having changed
900 * @dir - pointer to directory inode
901 *
902 * This forces the revalidation code in nfs_lookup_revalidate() to do a
903 * full lookup on all child dentries of 'dir' whenever a change occurs
904 * on the server that might have invalidated our dcache.
905 *
906 * The caller should be holding dir->i_lock
907 */
908 void nfs_force_lookup_revalidate(struct inode *dir)
909 {
910 NFS_I(dir)->cache_change_attribute++;
911 }
912
913 /*
914 * A check for whether or not the parent directory has changed.
915 * In the case it has, we assume that the dentries are untrustworthy
916 * and may need to be looked up again.
917 */
918 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
919 {
920 if (IS_ROOT(dentry))
921 return 1;
922 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
923 return 0;
924 if (!nfs_verify_change_attribute(dir, dentry->d_time))
925 return 0;
926 /* Revalidate nfsi->cache_change_attribute before we declare a match */
927 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
928 return 0;
929 if (!nfs_verify_change_attribute(dir, dentry->d_time))
930 return 0;
931 return 1;
932 }
933
934 /*
935 * Return the intent data that applies to this particular path component
936 *
937 * Note that the current set of intents only apply to the very last
938 * component of the path.
939 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
940 */
941 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
942 unsigned int mask)
943 {
944 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
945 return 0;
946 return nd->flags & mask;
947 }
948
949 /*
950 * Use intent information to check whether or not we're going to do
951 * an O_EXCL create using this path component.
952 */
953 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
954 {
955 if (NFS_PROTO(dir)->version == 2)
956 return 0;
957 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
958 }
959
960 /*
961 * Inode and filehandle revalidation for lookups.
962 *
963 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
964 * or if the intent information indicates that we're about to open this
965 * particular file and the "nocto" mount flag is not set.
966 *
967 */
968 static inline
969 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
970 {
971 struct nfs_server *server = NFS_SERVER(inode);
972
973 if (IS_AUTOMOUNT(inode))
974 return 0;
975 if (nd != NULL) {
976 /* VFS wants an on-the-wire revalidation */
977 if (nd->flags & LOOKUP_REVAL)
978 goto out_force;
979 /* This is an open(2) */
980 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
981 !(server->flags & NFS_MOUNT_NOCTO) &&
982 (S_ISREG(inode->i_mode) ||
983 S_ISDIR(inode->i_mode)))
984 goto out_force;
985 return 0;
986 }
987 return nfs_revalidate_inode(server, inode);
988 out_force:
989 return __nfs_revalidate_inode(server, inode);
990 }
991
992 /*
993 * We judge how long we want to trust negative
994 * dentries by looking at the parent inode mtime.
995 *
996 * If parent mtime has changed, we revalidate, else we wait for a
997 * period corresponding to the parent's attribute cache timeout value.
998 */
999 static inline
1000 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1001 struct nameidata *nd)
1002 {
1003 /* Don't revalidate a negative dentry if we're creating a new file */
1004 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1005 return 0;
1006 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1007 return 1;
1008 return !nfs_check_verifier(dir, dentry);
1009 }
1010
1011 /*
1012 * This is called every time the dcache has a lookup hit,
1013 * and we should check whether we can really trust that
1014 * lookup.
1015 *
1016 * NOTE! The hit can be a negative hit too, don't assume
1017 * we have an inode!
1018 *
1019 * If the parent directory is seen to have changed, we throw out the
1020 * cached dentry and do a new lookup.
1021 */
1022 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1023 {
1024 struct inode *dir;
1025 struct inode *inode;
1026 struct dentry *parent;
1027 struct nfs_fh *fhandle = NULL;
1028 struct nfs_fattr *fattr = NULL;
1029 int error;
1030
1031 if (nd->flags & LOOKUP_RCU)
1032 return -ECHILD;
1033
1034 parent = dget_parent(dentry);
1035 dir = parent->d_inode;
1036 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1037 inode = dentry->d_inode;
1038
1039 if (!inode) {
1040 if (nfs_neg_need_reval(dir, dentry, nd))
1041 goto out_bad;
1042 goto out_valid;
1043 }
1044
1045 if (is_bad_inode(inode)) {
1046 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1047 __func__, dentry->d_parent->d_name.name,
1048 dentry->d_name.name);
1049 goto out_bad;
1050 }
1051
1052 if (nfs_have_delegation(inode, FMODE_READ))
1053 goto out_set_verifier;
1054
1055 /* Force a full look up iff the parent directory has changed */
1056 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1057 if (nfs_lookup_verify_inode(inode, nd))
1058 goto out_zap_parent;
1059 goto out_valid;
1060 }
1061
1062 if (NFS_STALE(inode))
1063 goto out_bad;
1064
1065 error = -ENOMEM;
1066 fhandle = nfs_alloc_fhandle();
1067 fattr = nfs_alloc_fattr();
1068 if (fhandle == NULL || fattr == NULL)
1069 goto out_error;
1070
1071 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1072 if (error)
1073 goto out_bad;
1074 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1075 goto out_bad;
1076 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1077 goto out_bad;
1078
1079 nfs_free_fattr(fattr);
1080 nfs_free_fhandle(fhandle);
1081 out_set_verifier:
1082 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1083 out_valid:
1084 dput(parent);
1085 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1086 __func__, dentry->d_parent->d_name.name,
1087 dentry->d_name.name);
1088 return 1;
1089 out_zap_parent:
1090 nfs_zap_caches(dir);
1091 out_bad:
1092 nfs_mark_for_revalidate(dir);
1093 if (inode && S_ISDIR(inode->i_mode)) {
1094 /* Purge readdir caches. */
1095 nfs_zap_caches(inode);
1096 /* If we have submounts, don't unhash ! */
1097 if (have_submounts(dentry))
1098 goto out_valid;
1099 if (dentry->d_flags & DCACHE_DISCONNECTED)
1100 goto out_valid;
1101 shrink_dcache_parent(dentry);
1102 }
1103 d_drop(dentry);
1104 nfs_free_fattr(fattr);
1105 nfs_free_fhandle(fhandle);
1106 dput(parent);
1107 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1108 __func__, dentry->d_parent->d_name.name,
1109 dentry->d_name.name);
1110 return 0;
1111 out_error:
1112 nfs_free_fattr(fattr);
1113 nfs_free_fhandle(fhandle);
1114 dput(parent);
1115 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1116 __func__, dentry->d_parent->d_name.name,
1117 dentry->d_name.name, error);
1118 return error;
1119 }
1120
1121 /*
1122 * This is called from dput() when d_count is going to 0.
1123 */
1124 static int nfs_dentry_delete(const struct dentry *dentry)
1125 {
1126 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1127 dentry->d_parent->d_name.name, dentry->d_name.name,
1128 dentry->d_flags);
1129
1130 /* Unhash any dentry with a stale inode */
1131 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1132 return 1;
1133
1134 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1135 /* Unhash it, so that ->d_iput() would be called */
1136 return 1;
1137 }
1138 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1139 /* Unhash it, so that ancestors of killed async unlink
1140 * files will be cleaned up during umount */
1141 return 1;
1142 }
1143 return 0;
1144
1145 }
1146
1147 static void nfs_drop_nlink(struct inode *inode)
1148 {
1149 spin_lock(&inode->i_lock);
1150 if (inode->i_nlink > 0)
1151 drop_nlink(inode);
1152 spin_unlock(&inode->i_lock);
1153 }
1154
1155 /*
1156 * Called when the dentry loses inode.
1157 * We use it to clean up silly-renamed files.
1158 */
1159 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1160 {
1161 if (S_ISDIR(inode->i_mode))
1162 /* drop any readdir cache as it could easily be old */
1163 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1164
1165 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1166 drop_nlink(inode);
1167 nfs_complete_unlink(dentry, inode);
1168 }
1169 iput(inode);
1170 }
1171
1172 static void nfs_d_release(struct dentry *dentry)
1173 {
1174 /* free cached devname value, if it survived that far */
1175 if (unlikely(dentry->d_fsdata)) {
1176 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1177 WARN_ON(1);
1178 else
1179 kfree(dentry->d_fsdata);
1180 }
1181 }
1182
1183 const struct dentry_operations nfs_dentry_operations = {
1184 .d_revalidate = nfs_lookup_revalidate,
1185 .d_delete = nfs_dentry_delete,
1186 .d_iput = nfs_dentry_iput,
1187 .d_automount = nfs_d_automount,
1188 .d_release = nfs_d_release,
1189 };
1190
1191 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1192 {
1193 struct dentry *res;
1194 struct dentry *parent;
1195 struct inode *inode = NULL;
1196 struct nfs_fh *fhandle = NULL;
1197 struct nfs_fattr *fattr = NULL;
1198 int error;
1199
1200 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1201 dentry->d_parent->d_name.name, dentry->d_name.name);
1202 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1203
1204 res = ERR_PTR(-ENAMETOOLONG);
1205 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1206 goto out;
1207
1208 /*
1209 * If we're doing an exclusive create, optimize away the lookup
1210 * but don't hash the dentry.
1211 */
1212 if (nfs_is_exclusive_create(dir, nd)) {
1213 d_instantiate(dentry, NULL);
1214 res = NULL;
1215 goto out;
1216 }
1217
1218 res = ERR_PTR(-ENOMEM);
1219 fhandle = nfs_alloc_fhandle();
1220 fattr = nfs_alloc_fattr();
1221 if (fhandle == NULL || fattr == NULL)
1222 goto out;
1223
1224 parent = dentry->d_parent;
1225 /* Protect against concurrent sillydeletes */
1226 nfs_block_sillyrename(parent);
1227 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1228 if (error == -ENOENT)
1229 goto no_entry;
1230 if (error < 0) {
1231 res = ERR_PTR(error);
1232 goto out_unblock_sillyrename;
1233 }
1234 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1235 res = ERR_CAST(inode);
1236 if (IS_ERR(res))
1237 goto out_unblock_sillyrename;
1238
1239 no_entry:
1240 res = d_materialise_unique(dentry, inode);
1241 if (res != NULL) {
1242 if (IS_ERR(res))
1243 goto out_unblock_sillyrename;
1244 dentry = res;
1245 }
1246 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1247 out_unblock_sillyrename:
1248 nfs_unblock_sillyrename(parent);
1249 out:
1250 nfs_free_fattr(fattr);
1251 nfs_free_fhandle(fhandle);
1252 return res;
1253 }
1254
1255 #ifdef CONFIG_NFS_V4
1256 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1257
1258 const struct dentry_operations nfs4_dentry_operations = {
1259 .d_revalidate = nfs_open_revalidate,
1260 .d_delete = nfs_dentry_delete,
1261 .d_iput = nfs_dentry_iput,
1262 .d_automount = nfs_d_automount,
1263 .d_release = nfs_d_release,
1264 };
1265
1266 /*
1267 * Use intent information to determine whether we need to substitute
1268 * the NFSv4-style stateful OPEN for the LOOKUP call
1269 */
1270 static int is_atomic_open(struct nameidata *nd)
1271 {
1272 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1273 return 0;
1274 /* NFS does not (yet) have a stateful open for directories */
1275 if (nd->flags & LOOKUP_DIRECTORY)
1276 return 0;
1277 /* Are we trying to write to a read only partition? */
1278 if (__mnt_is_readonly(nd->path.mnt) &&
1279 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1280 return 0;
1281 return 1;
1282 }
1283
1284 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1285 {
1286 struct path path = {
1287 .mnt = nd->path.mnt,
1288 .dentry = dentry,
1289 };
1290 struct nfs_open_context *ctx;
1291 struct rpc_cred *cred;
1292 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1293
1294 cred = rpc_lookup_cred();
1295 if (IS_ERR(cred))
1296 return ERR_CAST(cred);
1297 ctx = alloc_nfs_open_context(&path, cred, fmode);
1298 put_rpccred(cred);
1299 if (ctx == NULL)
1300 return ERR_PTR(-ENOMEM);
1301 return ctx;
1302 }
1303
1304 static int do_open(struct inode *inode, struct file *filp)
1305 {
1306 nfs_fscache_set_inode_cookie(inode, filp);
1307 return 0;
1308 }
1309
1310 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1311 {
1312 struct file *filp;
1313 int ret = 0;
1314
1315 /* If the open_intent is for execute, we have an extra check to make */
1316 if (ctx->mode & FMODE_EXEC) {
1317 ret = nfs_may_open(ctx->path.dentry->d_inode,
1318 ctx->cred,
1319 nd->intent.open.flags);
1320 if (ret < 0)
1321 goto out;
1322 }
1323 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1324 if (IS_ERR(filp))
1325 ret = PTR_ERR(filp);
1326 else
1327 nfs_file_set_open_context(filp, ctx);
1328 out:
1329 put_nfs_open_context(ctx);
1330 return ret;
1331 }
1332
1333 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1334 {
1335 struct nfs_open_context *ctx;
1336 struct iattr attr;
1337 struct dentry *res = NULL;
1338 struct inode *inode;
1339 int open_flags;
1340 int err;
1341
1342 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1343 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1344
1345 /* Check that we are indeed trying to open this file */
1346 if (!is_atomic_open(nd))
1347 goto no_open;
1348
1349 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1350 res = ERR_PTR(-ENAMETOOLONG);
1351 goto out;
1352 }
1353
1354 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1355 * the dentry. */
1356 if (nd->flags & LOOKUP_EXCL) {
1357 d_instantiate(dentry, NULL);
1358 goto out;
1359 }
1360
1361 ctx = nameidata_to_nfs_open_context(dentry, nd);
1362 res = ERR_CAST(ctx);
1363 if (IS_ERR(ctx))
1364 goto out;
1365
1366 open_flags = nd->intent.open.flags;
1367 if (nd->flags & LOOKUP_CREATE) {
1368 attr.ia_mode = nd->intent.open.create_mode;
1369 attr.ia_valid = ATTR_MODE;
1370 attr.ia_mode &= ~current_umask();
1371 } else {
1372 open_flags &= ~(O_EXCL | O_CREAT);
1373 attr.ia_valid = 0;
1374 }
1375
1376 /* Open the file on the server */
1377 nfs_block_sillyrename(dentry->d_parent);
1378 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1379 if (IS_ERR(inode)) {
1380 nfs_unblock_sillyrename(dentry->d_parent);
1381 put_nfs_open_context(ctx);
1382 switch (PTR_ERR(inode)) {
1383 /* Make a negative dentry */
1384 case -ENOENT:
1385 d_add(dentry, NULL);
1386 res = NULL;
1387 goto out;
1388 /* This turned out not to be a regular file */
1389 case -ENOTDIR:
1390 goto no_open;
1391 case -ELOOP:
1392 if (!(nd->intent.open.flags & O_NOFOLLOW))
1393 goto no_open;
1394 /* case -EISDIR: */
1395 /* case -EINVAL: */
1396 default:
1397 res = ERR_CAST(inode);
1398 goto out;
1399 }
1400 }
1401 res = d_add_unique(dentry, inode);
1402 nfs_unblock_sillyrename(dentry->d_parent);
1403 if (res != NULL) {
1404 dput(ctx->path.dentry);
1405 ctx->path.dentry = dget(res);
1406 dentry = res;
1407 }
1408 err = nfs_intent_set_file(nd, ctx);
1409 if (err < 0) {
1410 if (res != NULL)
1411 dput(res);
1412 return ERR_PTR(err);
1413 }
1414 out:
1415 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1416 return res;
1417 no_open:
1418 return nfs_lookup(dir, dentry, nd);
1419 }
1420
1421 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1422 {
1423 struct dentry *parent = NULL;
1424 struct inode *inode;
1425 struct inode *dir;
1426 struct nfs_open_context *ctx;
1427 int openflags, ret = 0;
1428
1429 if (nd->flags & LOOKUP_RCU)
1430 return -ECHILD;
1431
1432 inode = dentry->d_inode;
1433 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1434 goto no_open;
1435
1436 parent = dget_parent(dentry);
1437 dir = parent->d_inode;
1438
1439 /* We can't create new files in nfs_open_revalidate(), so we
1440 * optimize away revalidation of negative dentries.
1441 */
1442 if (inode == NULL) {
1443 if (!nfs_neg_need_reval(dir, dentry, nd))
1444 ret = 1;
1445 goto out;
1446 }
1447
1448 /* NFS only supports OPEN on regular files */
1449 if (!S_ISREG(inode->i_mode))
1450 goto no_open_dput;
1451 openflags = nd->intent.open.flags;
1452 /* We cannot do exclusive creation on a positive dentry */
1453 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1454 goto no_open_dput;
1455 /* We can't create new files, or truncate existing ones here */
1456 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1457
1458 ctx = nameidata_to_nfs_open_context(dentry, nd);
1459 ret = PTR_ERR(ctx);
1460 if (IS_ERR(ctx))
1461 goto out;
1462 /*
1463 * Note: we're not holding inode->i_mutex and so may be racing with
1464 * operations that change the directory. We therefore save the
1465 * change attribute *before* we do the RPC call.
1466 */
1467 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1468 if (IS_ERR(inode)) {
1469 ret = PTR_ERR(inode);
1470 switch (ret) {
1471 case -EPERM:
1472 case -EACCES:
1473 case -EDQUOT:
1474 case -ENOSPC:
1475 case -EROFS:
1476 goto out_put_ctx;
1477 default:
1478 goto out_drop;
1479 }
1480 }
1481 iput(inode);
1482 if (inode != dentry->d_inode)
1483 goto out_drop;
1484
1485 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1486 ret = nfs_intent_set_file(nd, ctx);
1487 if (ret >= 0)
1488 ret = 1;
1489 out:
1490 dput(parent);
1491 return ret;
1492 out_drop:
1493 d_drop(dentry);
1494 ret = 0;
1495 out_put_ctx:
1496 put_nfs_open_context(ctx);
1497 goto out;
1498
1499 no_open_dput:
1500 dput(parent);
1501 no_open:
1502 return nfs_lookup_revalidate(dentry, nd);
1503 }
1504
1505 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1506 struct nameidata *nd)
1507 {
1508 struct nfs_open_context *ctx = NULL;
1509 struct iattr attr;
1510 int error;
1511 int open_flags = 0;
1512
1513 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1514 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1515
1516 attr.ia_mode = mode;
1517 attr.ia_valid = ATTR_MODE;
1518
1519 if ((nd->flags & LOOKUP_CREATE) != 0) {
1520 open_flags = nd->intent.open.flags;
1521
1522 ctx = nameidata_to_nfs_open_context(dentry, nd);
1523 error = PTR_ERR(ctx);
1524 if (IS_ERR(ctx))
1525 goto out_err_drop;
1526 }
1527
1528 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1529 if (error != 0)
1530 goto out_put_ctx;
1531 if (ctx != NULL) {
1532 error = nfs_intent_set_file(nd, ctx);
1533 if (error < 0)
1534 goto out_err;
1535 }
1536 return 0;
1537 out_put_ctx:
1538 if (ctx != NULL)
1539 put_nfs_open_context(ctx);
1540 out_err_drop:
1541 d_drop(dentry);
1542 out_err:
1543 return error;
1544 }
1545
1546 #endif /* CONFIG_NFSV4 */
1547
1548 /*
1549 * Code common to create, mkdir, and mknod.
1550 */
1551 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1552 struct nfs_fattr *fattr)
1553 {
1554 struct dentry *parent = dget_parent(dentry);
1555 struct inode *dir = parent->d_inode;
1556 struct inode *inode;
1557 int error = -EACCES;
1558
1559 d_drop(dentry);
1560
1561 /* We may have been initialized further down */
1562 if (dentry->d_inode)
1563 goto out;
1564 if (fhandle->size == 0) {
1565 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1566 if (error)
1567 goto out_error;
1568 }
1569 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1570 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1571 struct nfs_server *server = NFS_SB(dentry->d_sb);
1572 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1573 if (error < 0)
1574 goto out_error;
1575 }
1576 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1577 error = PTR_ERR(inode);
1578 if (IS_ERR(inode))
1579 goto out_error;
1580 d_add(dentry, inode);
1581 out:
1582 dput(parent);
1583 return 0;
1584 out_error:
1585 nfs_mark_for_revalidate(dir);
1586 dput(parent);
1587 return error;
1588 }
1589
1590 /*
1591 * Following a failed create operation, we drop the dentry rather
1592 * than retain a negative dentry. This avoids a problem in the event
1593 * that the operation succeeded on the server, but an error in the
1594 * reply path made it appear to have failed.
1595 */
1596 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1597 struct nameidata *nd)
1598 {
1599 struct iattr attr;
1600 int error;
1601 int open_flags = 0;
1602
1603 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1604 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1605
1606 attr.ia_mode = mode;
1607 attr.ia_valid = ATTR_MODE;
1608
1609 if ((nd->flags & LOOKUP_CREATE) != 0)
1610 open_flags = nd->intent.open.flags;
1611
1612 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1613 if (error != 0)
1614 goto out_err;
1615 return 0;
1616 out_err:
1617 d_drop(dentry);
1618 return error;
1619 }
1620
1621 /*
1622 * See comments for nfs_proc_create regarding failed operations.
1623 */
1624 static int
1625 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1626 {
1627 struct iattr attr;
1628 int status;
1629
1630 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1631 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1632
1633 if (!new_valid_dev(rdev))
1634 return -EINVAL;
1635
1636 attr.ia_mode = mode;
1637 attr.ia_valid = ATTR_MODE;
1638
1639 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1640 if (status != 0)
1641 goto out_err;
1642 return 0;
1643 out_err:
1644 d_drop(dentry);
1645 return status;
1646 }
1647
1648 /*
1649 * See comments for nfs_proc_create regarding failed operations.
1650 */
1651 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1652 {
1653 struct iattr attr;
1654 int error;
1655
1656 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1657 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1658
1659 attr.ia_valid = ATTR_MODE;
1660 attr.ia_mode = mode | S_IFDIR;
1661
1662 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1663 if (error != 0)
1664 goto out_err;
1665 return 0;
1666 out_err:
1667 d_drop(dentry);
1668 return error;
1669 }
1670
1671 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1672 {
1673 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1674 d_delete(dentry);
1675 }
1676
1677 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1678 {
1679 int error;
1680
1681 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1682 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1683
1684 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1685 /* Ensure the VFS deletes this inode */
1686 if (error == 0 && dentry->d_inode != NULL)
1687 clear_nlink(dentry->d_inode);
1688 else if (error == -ENOENT)
1689 nfs_dentry_handle_enoent(dentry);
1690
1691 return error;
1692 }
1693
1694 /*
1695 * Remove a file after making sure there are no pending writes,
1696 * and after checking that the file has only one user.
1697 *
1698 * We invalidate the attribute cache and free the inode prior to the operation
1699 * to avoid possible races if the server reuses the inode.
1700 */
1701 static int nfs_safe_remove(struct dentry *dentry)
1702 {
1703 struct inode *dir = dentry->d_parent->d_inode;
1704 struct inode *inode = dentry->d_inode;
1705 int error = -EBUSY;
1706
1707 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1708 dentry->d_parent->d_name.name, dentry->d_name.name);
1709
1710 /* If the dentry was sillyrenamed, we simply call d_delete() */
1711 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1712 error = 0;
1713 goto out;
1714 }
1715
1716 if (inode != NULL) {
1717 nfs_inode_return_delegation(inode);
1718 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1719 /* The VFS may want to delete this inode */
1720 if (error == 0)
1721 nfs_drop_nlink(inode);
1722 nfs_mark_for_revalidate(inode);
1723 } else
1724 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1725 if (error == -ENOENT)
1726 nfs_dentry_handle_enoent(dentry);
1727 out:
1728 return error;
1729 }
1730
1731 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1732 * belongs to an active ".nfs..." file and we return -EBUSY.
1733 *
1734 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1735 */
1736 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1737 {
1738 int error;
1739 int need_rehash = 0;
1740
1741 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1742 dir->i_ino, dentry->d_name.name);
1743
1744 spin_lock(&dentry->d_lock);
1745 if (dentry->d_count > 1) {
1746 spin_unlock(&dentry->d_lock);
1747 /* Start asynchronous writeout of the inode */
1748 write_inode_now(dentry->d_inode, 0);
1749 error = nfs_sillyrename(dir, dentry);
1750 return error;
1751 }
1752 if (!d_unhashed(dentry)) {
1753 __d_drop(dentry);
1754 need_rehash = 1;
1755 }
1756 spin_unlock(&dentry->d_lock);
1757 error = nfs_safe_remove(dentry);
1758 if (!error || error == -ENOENT) {
1759 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1760 } else if (need_rehash)
1761 d_rehash(dentry);
1762 return error;
1763 }
1764
1765 /*
1766 * To create a symbolic link, most file systems instantiate a new inode,
1767 * add a page to it containing the path, then write it out to the disk
1768 * using prepare_write/commit_write.
1769 *
1770 * Unfortunately the NFS client can't create the in-core inode first
1771 * because it needs a file handle to create an in-core inode (see
1772 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1773 * symlink request has completed on the server.
1774 *
1775 * So instead we allocate a raw page, copy the symname into it, then do
1776 * the SYMLINK request with the page as the buffer. If it succeeds, we
1777 * now have a new file handle and can instantiate an in-core NFS inode
1778 * and move the raw page into its mapping.
1779 */
1780 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1781 {
1782 struct pagevec lru_pvec;
1783 struct page *page;
1784 char *kaddr;
1785 struct iattr attr;
1786 unsigned int pathlen = strlen(symname);
1787 int error;
1788
1789 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1790 dir->i_ino, dentry->d_name.name, symname);
1791
1792 if (pathlen > PAGE_SIZE)
1793 return -ENAMETOOLONG;
1794
1795 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1796 attr.ia_valid = ATTR_MODE;
1797
1798 page = alloc_page(GFP_HIGHUSER);
1799 if (!page)
1800 return -ENOMEM;
1801
1802 kaddr = kmap_atomic(page, KM_USER0);
1803 memcpy(kaddr, symname, pathlen);
1804 if (pathlen < PAGE_SIZE)
1805 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1806 kunmap_atomic(kaddr, KM_USER0);
1807
1808 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1809 if (error != 0) {
1810 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1811 dir->i_sb->s_id, dir->i_ino,
1812 dentry->d_name.name, symname, error);
1813 d_drop(dentry);
1814 __free_page(page);
1815 return error;
1816 }
1817
1818 /*
1819 * No big deal if we can't add this page to the page cache here.
1820 * READLINK will get the missing page from the server if needed.
1821 */
1822 pagevec_init(&lru_pvec, 0);
1823 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1824 GFP_KERNEL)) {
1825 pagevec_add(&lru_pvec, page);
1826 pagevec_lru_add_file(&lru_pvec);
1827 SetPageUptodate(page);
1828 unlock_page(page);
1829 } else
1830 __free_page(page);
1831
1832 return 0;
1833 }
1834
1835 static int
1836 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1837 {
1838 struct inode *inode = old_dentry->d_inode;
1839 int error;
1840
1841 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1842 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1843 dentry->d_parent->d_name.name, dentry->d_name.name);
1844
1845 nfs_inode_return_delegation(inode);
1846
1847 d_drop(dentry);
1848 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1849 if (error == 0) {
1850 ihold(inode);
1851 d_add(dentry, inode);
1852 }
1853 return error;
1854 }
1855
1856 /*
1857 * RENAME
1858 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1859 * different file handle for the same inode after a rename (e.g. when
1860 * moving to a different directory). A fail-safe method to do so would
1861 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1862 * rename the old file using the sillyrename stuff. This way, the original
1863 * file in old_dir will go away when the last process iput()s the inode.
1864 *
1865 * FIXED.
1866 *
1867 * It actually works quite well. One needs to have the possibility for
1868 * at least one ".nfs..." file in each directory the file ever gets
1869 * moved or linked to which happens automagically with the new
1870 * implementation that only depends on the dcache stuff instead of
1871 * using the inode layer
1872 *
1873 * Unfortunately, things are a little more complicated than indicated
1874 * above. For a cross-directory move, we want to make sure we can get
1875 * rid of the old inode after the operation. This means there must be
1876 * no pending writes (if it's a file), and the use count must be 1.
1877 * If these conditions are met, we can drop the dentries before doing
1878 * the rename.
1879 */
1880 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1881 struct inode *new_dir, struct dentry *new_dentry)
1882 {
1883 struct inode *old_inode = old_dentry->d_inode;
1884 struct inode *new_inode = new_dentry->d_inode;
1885 struct dentry *dentry = NULL, *rehash = NULL;
1886 int error = -EBUSY;
1887
1888 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1889 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1890 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1891 new_dentry->d_count);
1892
1893 /*
1894 * For non-directories, check whether the target is busy and if so,
1895 * make a copy of the dentry and then do a silly-rename. If the
1896 * silly-rename succeeds, the copied dentry is hashed and becomes
1897 * the new target.
1898 */
1899 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1900 /*
1901 * To prevent any new references to the target during the
1902 * rename, we unhash the dentry in advance.
1903 */
1904 if (!d_unhashed(new_dentry)) {
1905 d_drop(new_dentry);
1906 rehash = new_dentry;
1907 }
1908
1909 if (new_dentry->d_count > 2) {
1910 int err;
1911
1912 /* copy the target dentry's name */
1913 dentry = d_alloc(new_dentry->d_parent,
1914 &new_dentry->d_name);
1915 if (!dentry)
1916 goto out;
1917
1918 /* silly-rename the existing target ... */
1919 err = nfs_sillyrename(new_dir, new_dentry);
1920 if (err)
1921 goto out;
1922
1923 new_dentry = dentry;
1924 rehash = NULL;
1925 new_inode = NULL;
1926 }
1927 }
1928
1929 nfs_inode_return_delegation(old_inode);
1930 if (new_inode != NULL)
1931 nfs_inode_return_delegation(new_inode);
1932
1933 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1934 new_dir, &new_dentry->d_name);
1935 nfs_mark_for_revalidate(old_inode);
1936 out:
1937 if (rehash)
1938 d_rehash(rehash);
1939 if (!error) {
1940 if (new_inode != NULL)
1941 nfs_drop_nlink(new_inode);
1942 d_move(old_dentry, new_dentry);
1943 nfs_set_verifier(new_dentry,
1944 nfs_save_change_attribute(new_dir));
1945 } else if (error == -ENOENT)
1946 nfs_dentry_handle_enoent(old_dentry);
1947
1948 /* new dentry created? */
1949 if (dentry)
1950 dput(dentry);
1951 return error;
1952 }
1953
1954 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1955 static LIST_HEAD(nfs_access_lru_list);
1956 static atomic_long_t nfs_access_nr_entries;
1957
1958 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1959 {
1960 put_rpccred(entry->cred);
1961 kfree(entry);
1962 smp_mb__before_atomic_dec();
1963 atomic_long_dec(&nfs_access_nr_entries);
1964 smp_mb__after_atomic_dec();
1965 }
1966
1967 static void nfs_access_free_list(struct list_head *head)
1968 {
1969 struct nfs_access_entry *cache;
1970
1971 while (!list_empty(head)) {
1972 cache = list_entry(head->next, struct nfs_access_entry, lru);
1973 list_del(&cache->lru);
1974 nfs_access_free_entry(cache);
1975 }
1976 }
1977
1978 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1979 {
1980 LIST_HEAD(head);
1981 struct nfs_inode *nfsi, *next;
1982 struct nfs_access_entry *cache;
1983
1984 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1985 return (nr_to_scan == 0) ? 0 : -1;
1986
1987 spin_lock(&nfs_access_lru_lock);
1988 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1989 struct inode *inode;
1990
1991 if (nr_to_scan-- == 0)
1992 break;
1993 inode = &nfsi->vfs_inode;
1994 spin_lock(&inode->i_lock);
1995 if (list_empty(&nfsi->access_cache_entry_lru))
1996 goto remove_lru_entry;
1997 cache = list_entry(nfsi->access_cache_entry_lru.next,
1998 struct nfs_access_entry, lru);
1999 list_move(&cache->lru, &head);
2000 rb_erase(&cache->rb_node, &nfsi->access_cache);
2001 if (!list_empty(&nfsi->access_cache_entry_lru))
2002 list_move_tail(&nfsi->access_cache_inode_lru,
2003 &nfs_access_lru_list);
2004 else {
2005 remove_lru_entry:
2006 list_del_init(&nfsi->access_cache_inode_lru);
2007 smp_mb__before_clear_bit();
2008 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2009 smp_mb__after_clear_bit();
2010 }
2011 spin_unlock(&inode->i_lock);
2012 }
2013 spin_unlock(&nfs_access_lru_lock);
2014 nfs_access_free_list(&head);
2015 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2016 }
2017
2018 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2019 {
2020 struct rb_root *root_node = &nfsi->access_cache;
2021 struct rb_node *n;
2022 struct nfs_access_entry *entry;
2023
2024 /* Unhook entries from the cache */
2025 while ((n = rb_first(root_node)) != NULL) {
2026 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2027 rb_erase(n, root_node);
2028 list_move(&entry->lru, head);
2029 }
2030 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2031 }
2032
2033 void nfs_access_zap_cache(struct inode *inode)
2034 {
2035 LIST_HEAD(head);
2036
2037 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2038 return;
2039 /* Remove from global LRU init */
2040 spin_lock(&nfs_access_lru_lock);
2041 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2042 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2043
2044 spin_lock(&inode->i_lock);
2045 __nfs_access_zap_cache(NFS_I(inode), &head);
2046 spin_unlock(&inode->i_lock);
2047 spin_unlock(&nfs_access_lru_lock);
2048 nfs_access_free_list(&head);
2049 }
2050
2051 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2052 {
2053 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2054 struct nfs_access_entry *entry;
2055
2056 while (n != NULL) {
2057 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2058
2059 if (cred < entry->cred)
2060 n = n->rb_left;
2061 else if (cred > entry->cred)
2062 n = n->rb_right;
2063 else
2064 return entry;
2065 }
2066 return NULL;
2067 }
2068
2069 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2070 {
2071 struct nfs_inode *nfsi = NFS_I(inode);
2072 struct nfs_access_entry *cache;
2073 int err = -ENOENT;
2074
2075 spin_lock(&inode->i_lock);
2076 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2077 goto out_zap;
2078 cache = nfs_access_search_rbtree(inode, cred);
2079 if (cache == NULL)
2080 goto out;
2081 if (!nfs_have_delegated_attributes(inode) &&
2082 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2083 goto out_stale;
2084 res->jiffies = cache->jiffies;
2085 res->cred = cache->cred;
2086 res->mask = cache->mask;
2087 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2088 err = 0;
2089 out:
2090 spin_unlock(&inode->i_lock);
2091 return err;
2092 out_stale:
2093 rb_erase(&cache->rb_node, &nfsi->access_cache);
2094 list_del(&cache->lru);
2095 spin_unlock(&inode->i_lock);
2096 nfs_access_free_entry(cache);
2097 return -ENOENT;
2098 out_zap:
2099 spin_unlock(&inode->i_lock);
2100 nfs_access_zap_cache(inode);
2101 return -ENOENT;
2102 }
2103
2104 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2105 {
2106 struct nfs_inode *nfsi = NFS_I(inode);
2107 struct rb_root *root_node = &nfsi->access_cache;
2108 struct rb_node **p = &root_node->rb_node;
2109 struct rb_node *parent = NULL;
2110 struct nfs_access_entry *entry;
2111
2112 spin_lock(&inode->i_lock);
2113 while (*p != NULL) {
2114 parent = *p;
2115 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2116
2117 if (set->cred < entry->cred)
2118 p = &parent->rb_left;
2119 else if (set->cred > entry->cred)
2120 p = &parent->rb_right;
2121 else
2122 goto found;
2123 }
2124 rb_link_node(&set->rb_node, parent, p);
2125 rb_insert_color(&set->rb_node, root_node);
2126 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2127 spin_unlock(&inode->i_lock);
2128 return;
2129 found:
2130 rb_replace_node(parent, &set->rb_node, root_node);
2131 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2132 list_del(&entry->lru);
2133 spin_unlock(&inode->i_lock);
2134 nfs_access_free_entry(entry);
2135 }
2136
2137 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2138 {
2139 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2140 if (cache == NULL)
2141 return;
2142 RB_CLEAR_NODE(&cache->rb_node);
2143 cache->jiffies = set->jiffies;
2144 cache->cred = get_rpccred(set->cred);
2145 cache->mask = set->mask;
2146
2147 nfs_access_add_rbtree(inode, cache);
2148
2149 /* Update accounting */
2150 smp_mb__before_atomic_inc();
2151 atomic_long_inc(&nfs_access_nr_entries);
2152 smp_mb__after_atomic_inc();
2153
2154 /* Add inode to global LRU list */
2155 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2156 spin_lock(&nfs_access_lru_lock);
2157 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2158 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2159 &nfs_access_lru_list);
2160 spin_unlock(&nfs_access_lru_lock);
2161 }
2162 }
2163
2164 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2165 {
2166 struct nfs_access_entry cache;
2167 int status;
2168
2169 status = nfs_access_get_cached(inode, cred, &cache);
2170 if (status == 0)
2171 goto out;
2172
2173 /* Be clever: ask server to check for all possible rights */
2174 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2175 cache.cred = cred;
2176 cache.jiffies = jiffies;
2177 status = NFS_PROTO(inode)->access(inode, &cache);
2178 if (status != 0) {
2179 if (status == -ESTALE) {
2180 nfs_zap_caches(inode);
2181 if (!S_ISDIR(inode->i_mode))
2182 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2183 }
2184 return status;
2185 }
2186 nfs_access_add_cache(inode, &cache);
2187 out:
2188 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2189 return 0;
2190 return -EACCES;
2191 }
2192
2193 static int nfs_open_permission_mask(int openflags)
2194 {
2195 int mask = 0;
2196
2197 if (openflags & FMODE_READ)
2198 mask |= MAY_READ;
2199 if (openflags & FMODE_WRITE)
2200 mask |= MAY_WRITE;
2201 if (openflags & FMODE_EXEC)
2202 mask |= MAY_EXEC;
2203 return mask;
2204 }
2205
2206 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2207 {
2208 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2209 }
2210
2211 int nfs_permission(struct inode *inode, int mask, unsigned int flags)
2212 {
2213 struct rpc_cred *cred;
2214 int res = 0;
2215
2216 if (flags & IPERM_FLAG_RCU)
2217 return -ECHILD;
2218
2219 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2220
2221 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2222 goto out;
2223 /* Is this sys_access() ? */
2224 if (mask & (MAY_ACCESS | MAY_CHDIR))
2225 goto force_lookup;
2226
2227 switch (inode->i_mode & S_IFMT) {
2228 case S_IFLNK:
2229 goto out;
2230 case S_IFREG:
2231 /* NFSv4 has atomic_open... */
2232 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2233 && (mask & MAY_OPEN)
2234 && !(mask & MAY_EXEC))
2235 goto out;
2236 break;
2237 case S_IFDIR:
2238 /*
2239 * Optimize away all write operations, since the server
2240 * will check permissions when we perform the op.
2241 */
2242 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2243 goto out;
2244 }
2245
2246 force_lookup:
2247 if (!NFS_PROTO(inode)->access)
2248 goto out_notsup;
2249
2250 cred = rpc_lookup_cred();
2251 if (!IS_ERR(cred)) {
2252 res = nfs_do_access(inode, cred, mask);
2253 put_rpccred(cred);
2254 } else
2255 res = PTR_ERR(cred);
2256 out:
2257 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2258 res = -EACCES;
2259
2260 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2261 inode->i_sb->s_id, inode->i_ino, mask, res);
2262 return res;
2263 out_notsup:
2264 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2265 if (res == 0)
2266 res = generic_permission(inode, mask, flags, NULL);
2267 goto out;
2268 }
2269
2270 /*
2271 * Local variables:
2272 * version-control: t
2273 * kept-new-versions: 5
2274 * End:
2275 */