NFSv4: Don't revalidate the directory in nfs_atomic_lookup()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
66 };
67
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
81 };
82
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
101 };
102 #endif /* CONFIG_NFS_V3 */
103
104 #ifdef CONFIG_NFS_V4
105
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
123 };
124
125 #endif /* CONFIG_NFS_V4 */
126
127 /*
128 * Open file
129 */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 int res;
134
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
137
138 lock_kernel();
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
141 unlock_kernel();
142 return res;
143 }
144
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 __be32 *ptr;
151 u64 *dir_cookie;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
155 int plus;
156 int error;
157 unsigned long timestamp;
158 int timestamp_valid;
159 } nfs_readdir_descriptor_t;
160
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
163 *
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
168 *
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
172 */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
180 int error;
181
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
184 page->index);
185
186 again:
187 timestamp = jiffies;
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
190 if (error < 0) {
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 desc->plus = 0;
196 goto again;
197 }
198 goto error;
199 }
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
206 */
207 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode, inode->i_mapping);
210 }
211 unlock_page(page);
212 return 0;
213 error:
214 SetPageError(page);
215 unlock_page(page);
216 nfs_zap_caches(inode);
217 desc->error = error;
218 return -EIO;
219 }
220
221 static inline
222 int dir_decode(nfs_readdir_descriptor_t *desc)
223 {
224 __be32 *p = desc->ptr;
225 p = desc->decode(p, desc->entry, desc->plus);
226 if (IS_ERR(p))
227 return PTR_ERR(p);
228 desc->ptr = p;
229 if (desc->timestamp_valid)
230 desc->entry->fattr->time_start = desc->timestamp;
231 else
232 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
233 return 0;
234 }
235
236 static inline
237 void dir_page_release(nfs_readdir_descriptor_t *desc)
238 {
239 kunmap(desc->page);
240 page_cache_release(desc->page);
241 desc->page = NULL;
242 desc->ptr = NULL;
243 }
244
245 /*
246 * Given a pointer to a buffer that has already been filled by a call
247 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
248 *
249 * If the end of the buffer has been reached, return -EAGAIN, if not,
250 * return the offset within the buffer of the next entry to be
251 * read.
252 */
253 static inline
254 int find_dirent(nfs_readdir_descriptor_t *desc)
255 {
256 struct nfs_entry *entry = desc->entry;
257 int loop_count = 0,
258 status;
259
260 while((status = dir_decode(desc)) == 0) {
261 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
262 __FUNCTION__, (unsigned long long)entry->cookie);
263 if (entry->prev_cookie == *desc->dir_cookie)
264 break;
265 if (loop_count++ > 200) {
266 loop_count = 0;
267 schedule();
268 }
269 }
270 return status;
271 }
272
273 /*
274 * Given a pointer to a buffer that has already been filled by a call
275 * to readdir, find the entry at offset 'desc->file->f_pos'.
276 *
277 * If the end of the buffer has been reached, return -EAGAIN, if not,
278 * return the offset within the buffer of the next entry to be
279 * read.
280 */
281 static inline
282 int find_dirent_index(nfs_readdir_descriptor_t *desc)
283 {
284 struct nfs_entry *entry = desc->entry;
285 int loop_count = 0,
286 status;
287
288 for(;;) {
289 status = dir_decode(desc);
290 if (status)
291 break;
292
293 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
294 (unsigned long long)entry->cookie, desc->current_index);
295
296 if (desc->file->f_pos == desc->current_index) {
297 *desc->dir_cookie = entry->cookie;
298 break;
299 }
300 desc->current_index++;
301 if (loop_count++ > 200) {
302 loop_count = 0;
303 schedule();
304 }
305 }
306 return status;
307 }
308
309 /*
310 * Find the given page, and call find_dirent() or find_dirent_index in
311 * order to try to return the next entry.
312 */
313 static inline
314 int find_dirent_page(nfs_readdir_descriptor_t *desc)
315 {
316 struct inode *inode = desc->file->f_path.dentry->d_inode;
317 struct page *page;
318 int status;
319
320 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
321 __FUNCTION__, desc->page_index,
322 (long long) *desc->dir_cookie);
323
324 /* If we find the page in the page_cache, we cannot be sure
325 * how fresh the data is, so we will ignore readdir_plus attributes.
326 */
327 desc->timestamp_valid = 0;
328 page = read_cache_page(inode->i_mapping, desc->page_index,
329 (filler_t *)nfs_readdir_filler, desc);
330 if (IS_ERR(page)) {
331 status = PTR_ERR(page);
332 goto out;
333 }
334
335 /* NOTE: Someone else may have changed the READDIRPLUS flag */
336 desc->page = page;
337 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
338 if (*desc->dir_cookie != 0)
339 status = find_dirent(desc);
340 else
341 status = find_dirent_index(desc);
342 if (status < 0)
343 dir_page_release(desc);
344 out:
345 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
346 return status;
347 }
348
349 /*
350 * Recurse through the page cache pages, and return a
351 * filled nfs_entry structure of the next directory entry if possible.
352 *
353 * The target for the search is '*desc->dir_cookie' if non-0,
354 * 'desc->file->f_pos' otherwise
355 */
356 static inline
357 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
358 {
359 int loop_count = 0;
360 int res;
361
362 /* Always search-by-index from the beginning of the cache */
363 if (*desc->dir_cookie == 0) {
364 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
365 (long long)desc->file->f_pos);
366 desc->page_index = 0;
367 desc->entry->cookie = desc->entry->prev_cookie = 0;
368 desc->entry->eof = 0;
369 desc->current_index = 0;
370 } else
371 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
372 (unsigned long long)*desc->dir_cookie);
373
374 for (;;) {
375 res = find_dirent_page(desc);
376 if (res != -EAGAIN)
377 break;
378 /* Align to beginning of next page */
379 desc->page_index ++;
380 if (loop_count++ > 200) {
381 loop_count = 0;
382 schedule();
383 }
384 }
385
386 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
387 return res;
388 }
389
390 static inline unsigned int dt_type(struct inode *inode)
391 {
392 return (inode->i_mode >> 12) & 15;
393 }
394
395 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
396
397 /*
398 * Once we've found the start of the dirent within a page: fill 'er up...
399 */
400 static
401 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
402 filldir_t filldir)
403 {
404 struct file *file = desc->file;
405 struct nfs_entry *entry = desc->entry;
406 struct dentry *dentry = NULL;
407 u64 fileid;
408 int loop_count = 0,
409 res;
410
411 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
412 (unsigned long long)entry->cookie);
413
414 for(;;) {
415 unsigned d_type = DT_UNKNOWN;
416 /* Note: entry->prev_cookie contains the cookie for
417 * retrieving the current dirent on the server */
418 fileid = entry->ino;
419
420 /* Get a dentry if we have one */
421 if (dentry != NULL)
422 dput(dentry);
423 dentry = nfs_readdir_lookup(desc);
424
425 /* Use readdirplus info */
426 if (dentry != NULL && dentry->d_inode != NULL) {
427 d_type = dt_type(dentry->d_inode);
428 fileid = NFS_FILEID(dentry->d_inode);
429 }
430
431 res = filldir(dirent, entry->name, entry->len,
432 file->f_pos, fileid, d_type);
433 if (res < 0)
434 break;
435 file->f_pos++;
436 *desc->dir_cookie = entry->cookie;
437 if (dir_decode(desc) != 0) {
438 desc->page_index ++;
439 break;
440 }
441 if (loop_count++ > 200) {
442 loop_count = 0;
443 schedule();
444 }
445 }
446 dir_page_release(desc);
447 if (dentry != NULL)
448 dput(dentry);
449 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
450 (unsigned long long)*desc->dir_cookie, res);
451 return res;
452 }
453
454 /*
455 * If we cannot find a cookie in our cache, we suspect that this is
456 * because it points to a deleted file, so we ask the server to return
457 * whatever it thinks is the next entry. We then feed this to filldir.
458 * If all goes well, we should then be able to find our way round the
459 * cache on the next call to readdir_search_pagecache();
460 *
461 * NOTE: we cannot add the anonymous page to the pagecache because
462 * the data it contains might not be page aligned. Besides,
463 * we should already have a complete representation of the
464 * directory in the page cache by the time we get here.
465 */
466 static inline
467 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
468 filldir_t filldir)
469 {
470 struct file *file = desc->file;
471 struct inode *inode = file->f_path.dentry->d_inode;
472 struct rpc_cred *cred = nfs_file_cred(file);
473 struct page *page = NULL;
474 int status;
475 unsigned long timestamp;
476
477 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
478 (unsigned long long)*desc->dir_cookie);
479
480 page = alloc_page(GFP_HIGHUSER);
481 if (!page) {
482 status = -ENOMEM;
483 goto out;
484 }
485 timestamp = jiffies;
486 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
487 page,
488 NFS_SERVER(inode)->dtsize,
489 desc->plus);
490 desc->page = page;
491 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
492 if (desc->error >= 0) {
493 desc->timestamp = timestamp;
494 desc->timestamp_valid = 1;
495 if ((status = dir_decode(desc)) == 0)
496 desc->entry->prev_cookie = *desc->dir_cookie;
497 } else
498 status = -EIO;
499 if (status < 0)
500 goto out_release;
501
502 status = nfs_do_filldir(desc, dirent, filldir);
503
504 /* Reset read descriptor so it searches the page cache from
505 * the start upon the next call to readdir_search_pagecache() */
506 desc->page_index = 0;
507 desc->entry->cookie = desc->entry->prev_cookie = 0;
508 desc->entry->eof = 0;
509 out:
510 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
511 __FUNCTION__, status);
512 return status;
513 out_release:
514 dir_page_release(desc);
515 goto out;
516 }
517
518 /* The file offset position represents the dirent entry number. A
519 last cookie cache takes care of the common case of reading the
520 whole directory.
521 */
522 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
523 {
524 struct dentry *dentry = filp->f_path.dentry;
525 struct inode *inode = dentry->d_inode;
526 nfs_readdir_descriptor_t my_desc,
527 *desc = &my_desc;
528 struct nfs_entry my_entry;
529 struct nfs_fh fh;
530 struct nfs_fattr fattr;
531 long res;
532
533 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
534 dentry->d_parent->d_name.name, dentry->d_name.name,
535 (long long)filp->f_pos);
536 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
537
538 lock_kernel();
539
540 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
541 if (res < 0) {
542 unlock_kernel();
543 return res;
544 }
545
546 /*
547 * filp->f_pos points to the dirent entry number.
548 * *desc->dir_cookie has the cookie for the next entry. We have
549 * to either find the entry with the appropriate number or
550 * revalidate the cookie.
551 */
552 memset(desc, 0, sizeof(*desc));
553
554 desc->file = filp;
555 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
556 desc->decode = NFS_PROTO(inode)->decode_dirent;
557 desc->plus = NFS_USE_READDIRPLUS(inode);
558
559 my_entry.cookie = my_entry.prev_cookie = 0;
560 my_entry.eof = 0;
561 my_entry.fh = &fh;
562 my_entry.fattr = &fattr;
563 nfs_fattr_init(&fattr);
564 desc->entry = &my_entry;
565
566 while(!desc->entry->eof) {
567 res = readdir_search_pagecache(desc);
568
569 if (res == -EBADCOOKIE) {
570 /* This means either end of directory */
571 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
572 /* Or that the server has 'lost' a cookie */
573 res = uncached_readdir(desc, dirent, filldir);
574 if (res >= 0)
575 continue;
576 }
577 res = 0;
578 break;
579 }
580 if (res == -ETOOSMALL && desc->plus) {
581 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
582 nfs_zap_caches(inode);
583 desc->plus = 0;
584 desc->entry->eof = 0;
585 continue;
586 }
587 if (res < 0)
588 break;
589
590 res = nfs_do_filldir(desc, dirent, filldir);
591 if (res < 0) {
592 res = 0;
593 break;
594 }
595 }
596 unlock_kernel();
597 if (res > 0)
598 res = 0;
599 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
600 dentry->d_parent->d_name.name, dentry->d_name.name,
601 res);
602 return res;
603 }
604
605 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
606 {
607 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
608 switch (origin) {
609 case 1:
610 offset += filp->f_pos;
611 case 0:
612 if (offset >= 0)
613 break;
614 default:
615 offset = -EINVAL;
616 goto out;
617 }
618 if (offset != filp->f_pos) {
619 filp->f_pos = offset;
620 nfs_file_open_context(filp)->dir_cookie = 0;
621 }
622 out:
623 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
624 return offset;
625 }
626
627 /*
628 * All directory operations under NFS are synchronous, so fsync()
629 * is a dummy operation.
630 */
631 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
632 {
633 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
634 dentry->d_parent->d_name.name, dentry->d_name.name,
635 datasync);
636
637 return 0;
638 }
639
640 /*
641 * A check for whether or not the parent directory has changed.
642 * In the case it has, we assume that the dentries are untrustworthy
643 * and may need to be looked up again.
644 */
645 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
646 {
647 if (IS_ROOT(dentry))
648 return 1;
649 if (!nfs_verify_change_attribute(dir, dentry->d_time))
650 return 0;
651 /* Revalidate nfsi->cache_change_attribute before we declare a match */
652 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
653 return 0;
654 if (!nfs_verify_change_attribute(dir, dentry->d_time))
655 return 0;
656 return 1;
657 }
658
659 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
660 {
661 dentry->d_time = verf;
662 }
663
664 /*
665 * Return the intent data that applies to this particular path component
666 *
667 * Note that the current set of intents only apply to the very last
668 * component of the path.
669 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
670 */
671 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
672 {
673 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
674 return 0;
675 return nd->flags & mask;
676 }
677
678 /*
679 * Inode and filehandle revalidation for lookups.
680 *
681 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
682 * or if the intent information indicates that we're about to open this
683 * particular file and the "nocto" mount flag is not set.
684 *
685 */
686 static inline
687 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
688 {
689 struct nfs_server *server = NFS_SERVER(inode);
690
691 if (nd != NULL) {
692 /* VFS wants an on-the-wire revalidation */
693 if (nd->flags & LOOKUP_REVAL)
694 goto out_force;
695 /* This is an open(2) */
696 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
697 !(server->flags & NFS_MOUNT_NOCTO) &&
698 (S_ISREG(inode->i_mode) ||
699 S_ISDIR(inode->i_mode)))
700 goto out_force;
701 }
702 return nfs_revalidate_inode(server, inode);
703 out_force:
704 return __nfs_revalidate_inode(server, inode);
705 }
706
707 /*
708 * We judge how long we want to trust negative
709 * dentries by looking at the parent inode mtime.
710 *
711 * If parent mtime has changed, we revalidate, else we wait for a
712 * period corresponding to the parent's attribute cache timeout value.
713 */
714 static inline
715 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
716 struct nameidata *nd)
717 {
718 /* Don't revalidate a negative dentry if we're creating a new file */
719 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
720 return 0;
721 return !nfs_check_verifier(dir, dentry);
722 }
723
724 /*
725 * This is called every time the dcache has a lookup hit,
726 * and we should check whether we can really trust that
727 * lookup.
728 *
729 * NOTE! The hit can be a negative hit too, don't assume
730 * we have an inode!
731 *
732 * If the parent directory is seen to have changed, we throw out the
733 * cached dentry and do a new lookup.
734 */
735 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
736 {
737 struct inode *dir;
738 struct inode *inode;
739 struct dentry *parent;
740 int error;
741 struct nfs_fh fhandle;
742 struct nfs_fattr fattr;
743
744 parent = dget_parent(dentry);
745 lock_kernel();
746 dir = parent->d_inode;
747 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
748 inode = dentry->d_inode;
749
750 if (!inode) {
751 if (nfs_neg_need_reval(dir, dentry, nd))
752 goto out_bad;
753 goto out_valid;
754 }
755
756 if (is_bad_inode(inode)) {
757 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
758 __FUNCTION__, dentry->d_parent->d_name.name,
759 dentry->d_name.name);
760 goto out_bad;
761 }
762
763 /* Force a full look up iff the parent directory has changed */
764 if (nfs_check_verifier(dir, dentry)) {
765 if (nfs_lookup_verify_inode(inode, nd))
766 goto out_zap_parent;
767 goto out_valid;
768 }
769
770 if (NFS_STALE(inode))
771 goto out_bad;
772
773 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
774 if (error)
775 goto out_bad;
776 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
777 goto out_bad;
778 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
779 goto out_bad;
780
781 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
782 out_valid:
783 unlock_kernel();
784 dput(parent);
785 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
786 __FUNCTION__, dentry->d_parent->d_name.name,
787 dentry->d_name.name);
788 return 1;
789 out_zap_parent:
790 nfs_zap_caches(dir);
791 out_bad:
792 nfs_mark_for_revalidate(dir);
793 if (inode && S_ISDIR(inode->i_mode)) {
794 /* Purge readdir caches. */
795 nfs_zap_caches(inode);
796 /* If we have submounts, don't unhash ! */
797 if (have_submounts(dentry))
798 goto out_valid;
799 shrink_dcache_parent(dentry);
800 }
801 d_drop(dentry);
802 unlock_kernel();
803 dput(parent);
804 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
805 __FUNCTION__, dentry->d_parent->d_name.name,
806 dentry->d_name.name);
807 return 0;
808 }
809
810 /*
811 * This is called from dput() when d_count is going to 0.
812 */
813 static int nfs_dentry_delete(struct dentry *dentry)
814 {
815 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
816 dentry->d_parent->d_name.name, dentry->d_name.name,
817 dentry->d_flags);
818
819 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
820 /* Unhash it, so that ->d_iput() would be called */
821 return 1;
822 }
823 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
824 /* Unhash it, so that ancestors of killed async unlink
825 * files will be cleaned up during umount */
826 return 1;
827 }
828 return 0;
829
830 }
831
832 /*
833 * Called when the dentry loses inode.
834 * We use it to clean up silly-renamed files.
835 */
836 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
837 {
838 nfs_inode_return_delegation(inode);
839 if (S_ISDIR(inode->i_mode))
840 /* drop any readdir cache as it could easily be old */
841 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
842
843 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
844 lock_kernel();
845 drop_nlink(inode);
846 nfs_complete_unlink(dentry, inode);
847 unlock_kernel();
848 }
849 iput(inode);
850 }
851
852 struct dentry_operations nfs_dentry_operations = {
853 .d_revalidate = nfs_lookup_revalidate,
854 .d_delete = nfs_dentry_delete,
855 .d_iput = nfs_dentry_iput,
856 };
857
858 /*
859 * Use intent information to check whether or not we're going to do
860 * an O_EXCL create using this path component.
861 */
862 static inline
863 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
864 {
865 if (NFS_PROTO(dir)->version == 2)
866 return 0;
867 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
868 return 0;
869 return (nd->intent.open.flags & O_EXCL) != 0;
870 }
871
872 static inline int nfs_reval_fsid(struct inode *dir, const struct nfs_fattr *fattr)
873 {
874 struct nfs_server *server = NFS_SERVER(dir);
875
876 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
877 /* Revalidate fsid using the parent directory */
878 return __nfs_revalidate_inode(server, dir);
879 return 0;
880 }
881
882 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
883 {
884 struct dentry *res;
885 struct inode *inode = NULL;
886 int error;
887 struct nfs_fh fhandle;
888 struct nfs_fattr fattr;
889
890 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
891 dentry->d_parent->d_name.name, dentry->d_name.name);
892 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
893
894 res = ERR_PTR(-ENAMETOOLONG);
895 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
896 goto out;
897
898 res = ERR_PTR(-ENOMEM);
899 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
900
901 lock_kernel();
902
903 /*
904 * If we're doing an exclusive create, optimize away the lookup
905 * but don't hash the dentry.
906 */
907 if (nfs_is_exclusive_create(dir, nd)) {
908 d_instantiate(dentry, NULL);
909 res = NULL;
910 goto out_unlock;
911 }
912
913 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
914 if (error == -ENOENT)
915 goto no_entry;
916 if (error < 0) {
917 res = ERR_PTR(error);
918 goto out_unlock;
919 }
920 error = nfs_reval_fsid(dir, &fattr);
921 if (error < 0) {
922 res = ERR_PTR(error);
923 goto out_unlock;
924 }
925 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
926 res = (struct dentry *)inode;
927 if (IS_ERR(res))
928 goto out_unlock;
929
930 no_entry:
931 res = d_materialise_unique(dentry, inode);
932 if (res != NULL) {
933 if (IS_ERR(res))
934 goto out_unlock;
935 dentry = res;
936 }
937 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
938 out_unlock:
939 unlock_kernel();
940 out:
941 return res;
942 }
943
944 #ifdef CONFIG_NFS_V4
945 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
946
947 struct dentry_operations nfs4_dentry_operations = {
948 .d_revalidate = nfs_open_revalidate,
949 .d_delete = nfs_dentry_delete,
950 .d_iput = nfs_dentry_iput,
951 };
952
953 /*
954 * Use intent information to determine whether we need to substitute
955 * the NFSv4-style stateful OPEN for the LOOKUP call
956 */
957 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
958 {
959 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
960 return 0;
961 /* NFS does not (yet) have a stateful open for directories */
962 if (nd->flags & LOOKUP_DIRECTORY)
963 return 0;
964 /* Are we trying to write to a read only partition? */
965 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
966 return 0;
967 return 1;
968 }
969
970 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
971 {
972 struct dentry *res = NULL;
973 int error;
974
975 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
976 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
977
978 /* Check that we are indeed trying to open this file */
979 if (!is_atomic_open(dir, nd))
980 goto no_open;
981
982 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
983 res = ERR_PTR(-ENAMETOOLONG);
984 goto out;
985 }
986 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
987
988 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
989 * the dentry. */
990 if (nd->intent.open.flags & O_EXCL) {
991 d_instantiate(dentry, NULL);
992 goto out;
993 }
994
995 /* Open the file on the server */
996 lock_kernel();
997 res = nfs4_atomic_open(dir, dentry, nd);
998 unlock_kernel();
999 if (IS_ERR(res)) {
1000 error = PTR_ERR(res);
1001 switch (error) {
1002 /* Make a negative dentry */
1003 case -ENOENT:
1004 res = NULL;
1005 goto out;
1006 /* This turned out not to be a regular file */
1007 case -EISDIR:
1008 case -ENOTDIR:
1009 goto no_open;
1010 case -ELOOP:
1011 if (!(nd->intent.open.flags & O_NOFOLLOW))
1012 goto no_open;
1013 /* case -EINVAL: */
1014 default:
1015 goto out;
1016 }
1017 } else if (res != NULL)
1018 dentry = res;
1019 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1020 out:
1021 return res;
1022 no_open:
1023 return nfs_lookup(dir, dentry, nd);
1024 }
1025
1026 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1027 {
1028 struct dentry *parent = NULL;
1029 struct inode *inode = dentry->d_inode;
1030 struct inode *dir;
1031 int openflags, ret = 0;
1032
1033 parent = dget_parent(dentry);
1034 dir = parent->d_inode;
1035 if (!is_atomic_open(dir, nd))
1036 goto no_open;
1037 /* We can't create new files in nfs_open_revalidate(), so we
1038 * optimize away revalidation of negative dentries.
1039 */
1040 if (inode == NULL)
1041 goto out;
1042 /* NFS only supports OPEN on regular files */
1043 if (!S_ISREG(inode->i_mode))
1044 goto no_open;
1045 openflags = nd->intent.open.flags;
1046 /* We cannot do exclusive creation on a positive dentry */
1047 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1048 goto no_open;
1049 /* We can't create new files, or truncate existing ones here */
1050 openflags &= ~(O_CREAT|O_TRUNC);
1051
1052 /*
1053 * Note: we're not holding inode->i_mutex and so may be racing with
1054 * operations that change the directory. We therefore save the
1055 * change attribute *before* we do the RPC call.
1056 */
1057 lock_kernel();
1058 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1059 if (ret == 1)
1060 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1061 unlock_kernel();
1062 out:
1063 dput(parent);
1064 if (!ret)
1065 d_drop(dentry);
1066 return ret;
1067 no_open:
1068 dput(parent);
1069 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1070 return 1;
1071 return nfs_lookup_revalidate(dentry, nd);
1072 }
1073 #endif /* CONFIG_NFSV4 */
1074
1075 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1076 {
1077 struct dentry *parent = desc->file->f_path.dentry;
1078 struct inode *dir = parent->d_inode;
1079 struct nfs_entry *entry = desc->entry;
1080 struct dentry *dentry, *alias;
1081 struct qstr name = {
1082 .name = entry->name,
1083 .len = entry->len,
1084 };
1085 struct inode *inode;
1086 unsigned long verf = nfs_save_change_attribute(dir);
1087
1088 switch (name.len) {
1089 case 2:
1090 if (name.name[0] == '.' && name.name[1] == '.')
1091 return dget_parent(parent);
1092 break;
1093 case 1:
1094 if (name.name[0] == '.')
1095 return dget(parent);
1096 }
1097
1098 spin_lock(&dir->i_lock);
1099 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1100 spin_unlock(&dir->i_lock);
1101 return NULL;
1102 }
1103 spin_unlock(&dir->i_lock);
1104
1105 name.hash = full_name_hash(name.name, name.len);
1106 dentry = d_lookup(parent, &name);
1107 if (dentry != NULL) {
1108 /* Is this a positive dentry that matches the readdir info? */
1109 if (dentry->d_inode != NULL &&
1110 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1111 d_mountpoint(dentry))) {
1112 if (!desc->plus || entry->fh->size == 0)
1113 return dentry;
1114 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1115 entry->fh) == 0)
1116 goto out_renew;
1117 }
1118 /* No, so d_drop to allow one to be created */
1119 d_drop(dentry);
1120 dput(dentry);
1121 }
1122 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1123 return NULL;
1124 if (name.len > NFS_SERVER(dir)->namelen)
1125 return NULL;
1126 /* Note: caller is already holding the dir->i_mutex! */
1127 dentry = d_alloc(parent, &name);
1128 if (dentry == NULL)
1129 return NULL;
1130 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1131 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1132 if (IS_ERR(inode)) {
1133 dput(dentry);
1134 return NULL;
1135 }
1136
1137 alias = d_materialise_unique(dentry, inode);
1138 if (alias != NULL) {
1139 dput(dentry);
1140 if (IS_ERR(alias))
1141 return NULL;
1142 dentry = alias;
1143 }
1144
1145 out_renew:
1146 nfs_set_verifier(dentry, verf);
1147 return dentry;
1148 }
1149
1150 /*
1151 * Code common to create, mkdir, and mknod.
1152 */
1153 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1154 struct nfs_fattr *fattr)
1155 {
1156 struct dentry *parent = dget_parent(dentry);
1157 struct inode *dir = parent->d_inode;
1158 struct inode *inode;
1159 int error = -EACCES;
1160
1161 d_drop(dentry);
1162
1163 /* We may have been initialized further down */
1164 if (dentry->d_inode)
1165 goto out;
1166 if (fhandle->size == 0) {
1167 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1168 if (error)
1169 goto out_error;
1170 }
1171 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1172 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1173 struct nfs_server *server = NFS_SB(dentry->d_sb);
1174 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1175 if (error < 0)
1176 goto out_error;
1177 }
1178 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1179 error = PTR_ERR(inode);
1180 if (IS_ERR(inode))
1181 goto out_error;
1182 d_add(dentry, inode);
1183 out:
1184 dput(parent);
1185 return 0;
1186 out_error:
1187 nfs_mark_for_revalidate(dir);
1188 dput(parent);
1189 return error;
1190 }
1191
1192 /*
1193 * Following a failed create operation, we drop the dentry rather
1194 * than retain a negative dentry. This avoids a problem in the event
1195 * that the operation succeeded on the server, but an error in the
1196 * reply path made it appear to have failed.
1197 */
1198 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1199 struct nameidata *nd)
1200 {
1201 struct iattr attr;
1202 int error;
1203 int open_flags = 0;
1204
1205 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1206 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1207
1208 attr.ia_mode = mode;
1209 attr.ia_valid = ATTR_MODE;
1210
1211 if ((nd->flags & LOOKUP_CREATE) != 0)
1212 open_flags = nd->intent.open.flags;
1213
1214 lock_kernel();
1215 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1216 if (error != 0)
1217 goto out_err;
1218 unlock_kernel();
1219 return 0;
1220 out_err:
1221 unlock_kernel();
1222 d_drop(dentry);
1223 return error;
1224 }
1225
1226 /*
1227 * See comments for nfs_proc_create regarding failed operations.
1228 */
1229 static int
1230 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1231 {
1232 struct iattr attr;
1233 int status;
1234
1235 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1236 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1237
1238 if (!new_valid_dev(rdev))
1239 return -EINVAL;
1240
1241 attr.ia_mode = mode;
1242 attr.ia_valid = ATTR_MODE;
1243
1244 lock_kernel();
1245 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1246 if (status != 0)
1247 goto out_err;
1248 unlock_kernel();
1249 return 0;
1250 out_err:
1251 unlock_kernel();
1252 d_drop(dentry);
1253 return status;
1254 }
1255
1256 /*
1257 * See comments for nfs_proc_create regarding failed operations.
1258 */
1259 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1260 {
1261 struct iattr attr;
1262 int error;
1263
1264 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1265 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1266
1267 attr.ia_valid = ATTR_MODE;
1268 attr.ia_mode = mode | S_IFDIR;
1269
1270 lock_kernel();
1271 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1272 if (error != 0)
1273 goto out_err;
1274 unlock_kernel();
1275 return 0;
1276 out_err:
1277 d_drop(dentry);
1278 unlock_kernel();
1279 return error;
1280 }
1281
1282 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1283 {
1284 int error;
1285
1286 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1287 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1288
1289 lock_kernel();
1290 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1291 /* Ensure the VFS deletes this inode */
1292 if (error == 0 && dentry->d_inode != NULL)
1293 clear_nlink(dentry->d_inode);
1294 unlock_kernel();
1295
1296 return error;
1297 }
1298
1299 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1300 {
1301 static unsigned int sillycounter;
1302 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1303 const int countersize = sizeof(sillycounter)*2;
1304 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1305 char silly[slen+1];
1306 struct qstr qsilly;
1307 struct dentry *sdentry;
1308 int error = -EIO;
1309
1310 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1311 dentry->d_parent->d_name.name, dentry->d_name.name,
1312 atomic_read(&dentry->d_count));
1313 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1314
1315 /*
1316 * We don't allow a dentry to be silly-renamed twice.
1317 */
1318 error = -EBUSY;
1319 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1320 goto out;
1321
1322 sprintf(silly, ".nfs%*.*Lx",
1323 fileidsize, fileidsize,
1324 (unsigned long long)NFS_FILEID(dentry->d_inode));
1325
1326 /* Return delegation in anticipation of the rename */
1327 nfs_inode_return_delegation(dentry->d_inode);
1328
1329 sdentry = NULL;
1330 do {
1331 char *suffix = silly + slen - countersize;
1332
1333 dput(sdentry);
1334 sillycounter++;
1335 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1336
1337 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1338 dentry->d_name.name, silly);
1339
1340 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1341 /*
1342 * N.B. Better to return EBUSY here ... it could be
1343 * dangerous to delete the file while it's in use.
1344 */
1345 if (IS_ERR(sdentry))
1346 goto out;
1347 } while(sdentry->d_inode != NULL); /* need negative lookup */
1348
1349 qsilly.name = silly;
1350 qsilly.len = strlen(silly);
1351 if (dentry->d_inode) {
1352 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1353 dir, &qsilly);
1354 nfs_mark_for_revalidate(dentry->d_inode);
1355 } else
1356 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1357 dir, &qsilly);
1358 if (!error) {
1359 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1360 d_move(dentry, sdentry);
1361 error = nfs_async_unlink(dir, dentry);
1362 /* If we return 0 we don't unlink */
1363 }
1364 dput(sdentry);
1365 out:
1366 return error;
1367 }
1368
1369 /*
1370 * Remove a file after making sure there are no pending writes,
1371 * and after checking that the file has only one user.
1372 *
1373 * We invalidate the attribute cache and free the inode prior to the operation
1374 * to avoid possible races if the server reuses the inode.
1375 */
1376 static int nfs_safe_remove(struct dentry *dentry)
1377 {
1378 struct inode *dir = dentry->d_parent->d_inode;
1379 struct inode *inode = dentry->d_inode;
1380 int error = -EBUSY;
1381
1382 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1383 dentry->d_parent->d_name.name, dentry->d_name.name);
1384
1385 /* If the dentry was sillyrenamed, we simply call d_delete() */
1386 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1387 error = 0;
1388 goto out;
1389 }
1390
1391 if (inode != NULL) {
1392 nfs_inode_return_delegation(inode);
1393 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1394 /* The VFS may want to delete this inode */
1395 if (error == 0)
1396 drop_nlink(inode);
1397 nfs_mark_for_revalidate(inode);
1398 } else
1399 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1400 out:
1401 return error;
1402 }
1403
1404 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1405 * belongs to an active ".nfs..." file and we return -EBUSY.
1406 *
1407 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1408 */
1409 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1410 {
1411 int error;
1412 int need_rehash = 0;
1413
1414 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1415 dir->i_ino, dentry->d_name.name);
1416
1417 lock_kernel();
1418 spin_lock(&dcache_lock);
1419 spin_lock(&dentry->d_lock);
1420 if (atomic_read(&dentry->d_count) > 1) {
1421 spin_unlock(&dentry->d_lock);
1422 spin_unlock(&dcache_lock);
1423 /* Start asynchronous writeout of the inode */
1424 write_inode_now(dentry->d_inode, 0);
1425 error = nfs_sillyrename(dir, dentry);
1426 unlock_kernel();
1427 return error;
1428 }
1429 if (!d_unhashed(dentry)) {
1430 __d_drop(dentry);
1431 need_rehash = 1;
1432 }
1433 spin_unlock(&dentry->d_lock);
1434 spin_unlock(&dcache_lock);
1435 error = nfs_safe_remove(dentry);
1436 if (!error) {
1437 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1438 } else if (need_rehash)
1439 d_rehash(dentry);
1440 unlock_kernel();
1441 return error;
1442 }
1443
1444 /*
1445 * To create a symbolic link, most file systems instantiate a new inode,
1446 * add a page to it containing the path, then write it out to the disk
1447 * using prepare_write/commit_write.
1448 *
1449 * Unfortunately the NFS client can't create the in-core inode first
1450 * because it needs a file handle to create an in-core inode (see
1451 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1452 * symlink request has completed on the server.
1453 *
1454 * So instead we allocate a raw page, copy the symname into it, then do
1455 * the SYMLINK request with the page as the buffer. If it succeeds, we
1456 * now have a new file handle and can instantiate an in-core NFS inode
1457 * and move the raw page into its mapping.
1458 */
1459 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1460 {
1461 struct pagevec lru_pvec;
1462 struct page *page;
1463 char *kaddr;
1464 struct iattr attr;
1465 unsigned int pathlen = strlen(symname);
1466 int error;
1467
1468 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1469 dir->i_ino, dentry->d_name.name, symname);
1470
1471 if (pathlen > PAGE_SIZE)
1472 return -ENAMETOOLONG;
1473
1474 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1475 attr.ia_valid = ATTR_MODE;
1476
1477 lock_kernel();
1478
1479 page = alloc_page(GFP_HIGHUSER);
1480 if (!page) {
1481 unlock_kernel();
1482 return -ENOMEM;
1483 }
1484
1485 kaddr = kmap_atomic(page, KM_USER0);
1486 memcpy(kaddr, symname, pathlen);
1487 if (pathlen < PAGE_SIZE)
1488 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1489 kunmap_atomic(kaddr, KM_USER0);
1490
1491 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1492 if (error != 0) {
1493 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1494 dir->i_sb->s_id, dir->i_ino,
1495 dentry->d_name.name, symname, error);
1496 d_drop(dentry);
1497 __free_page(page);
1498 unlock_kernel();
1499 return error;
1500 }
1501
1502 /*
1503 * No big deal if we can't add this page to the page cache here.
1504 * READLINK will get the missing page from the server if needed.
1505 */
1506 pagevec_init(&lru_pvec, 0);
1507 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1508 GFP_KERNEL)) {
1509 pagevec_add(&lru_pvec, page);
1510 pagevec_lru_add(&lru_pvec);
1511 SetPageUptodate(page);
1512 unlock_page(page);
1513 } else
1514 __free_page(page);
1515
1516 unlock_kernel();
1517 return 0;
1518 }
1519
1520 static int
1521 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1522 {
1523 struct inode *inode = old_dentry->d_inode;
1524 int error;
1525
1526 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1527 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1528 dentry->d_parent->d_name.name, dentry->d_name.name);
1529
1530 lock_kernel();
1531 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1532 if (error == 0) {
1533 atomic_inc(&inode->i_count);
1534 d_instantiate(dentry, inode);
1535 }
1536 unlock_kernel();
1537 return error;
1538 }
1539
1540 /*
1541 * RENAME
1542 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1543 * different file handle for the same inode after a rename (e.g. when
1544 * moving to a different directory). A fail-safe method to do so would
1545 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1546 * rename the old file using the sillyrename stuff. This way, the original
1547 * file in old_dir will go away when the last process iput()s the inode.
1548 *
1549 * FIXED.
1550 *
1551 * It actually works quite well. One needs to have the possibility for
1552 * at least one ".nfs..." file in each directory the file ever gets
1553 * moved or linked to which happens automagically with the new
1554 * implementation that only depends on the dcache stuff instead of
1555 * using the inode layer
1556 *
1557 * Unfortunately, things are a little more complicated than indicated
1558 * above. For a cross-directory move, we want to make sure we can get
1559 * rid of the old inode after the operation. This means there must be
1560 * no pending writes (if it's a file), and the use count must be 1.
1561 * If these conditions are met, we can drop the dentries before doing
1562 * the rename.
1563 */
1564 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1565 struct inode *new_dir, struct dentry *new_dentry)
1566 {
1567 struct inode *old_inode = old_dentry->d_inode;
1568 struct inode *new_inode = new_dentry->d_inode;
1569 struct dentry *dentry = NULL, *rehash = NULL;
1570 int error = -EBUSY;
1571
1572 /*
1573 * To prevent any new references to the target during the rename,
1574 * we unhash the dentry and free the inode in advance.
1575 */
1576 lock_kernel();
1577 if (!d_unhashed(new_dentry)) {
1578 d_drop(new_dentry);
1579 rehash = new_dentry;
1580 }
1581
1582 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1583 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1584 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1585 atomic_read(&new_dentry->d_count));
1586
1587 /*
1588 * First check whether the target is busy ... we can't
1589 * safely do _any_ rename if the target is in use.
1590 *
1591 * For files, make a copy of the dentry and then do a
1592 * silly-rename. If the silly-rename succeeds, the
1593 * copied dentry is hashed and becomes the new target.
1594 */
1595 if (!new_inode)
1596 goto go_ahead;
1597 if (S_ISDIR(new_inode->i_mode)) {
1598 error = -EISDIR;
1599 if (!S_ISDIR(old_inode->i_mode))
1600 goto out;
1601 } else if (atomic_read(&new_dentry->d_count) > 2) {
1602 int err;
1603 /* copy the target dentry's name */
1604 dentry = d_alloc(new_dentry->d_parent,
1605 &new_dentry->d_name);
1606 if (!dentry)
1607 goto out;
1608
1609 /* silly-rename the existing target ... */
1610 err = nfs_sillyrename(new_dir, new_dentry);
1611 if (!err) {
1612 new_dentry = rehash = dentry;
1613 new_inode = NULL;
1614 /* instantiate the replacement target */
1615 d_instantiate(new_dentry, NULL);
1616 } else if (atomic_read(&new_dentry->d_count) > 1)
1617 /* dentry still busy? */
1618 goto out;
1619 } else
1620 drop_nlink(new_inode);
1621
1622 go_ahead:
1623 /*
1624 * ... prune child dentries and writebacks if needed.
1625 */
1626 if (atomic_read(&old_dentry->d_count) > 1) {
1627 if (S_ISREG(old_inode->i_mode))
1628 nfs_wb_all(old_inode);
1629 shrink_dcache_parent(old_dentry);
1630 }
1631 nfs_inode_return_delegation(old_inode);
1632
1633 if (new_inode != NULL) {
1634 nfs_inode_return_delegation(new_inode);
1635 d_delete(new_dentry);
1636 }
1637
1638 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1639 new_dir, &new_dentry->d_name);
1640 nfs_mark_for_revalidate(old_inode);
1641 out:
1642 if (rehash)
1643 d_rehash(rehash);
1644 if (!error) {
1645 d_move(old_dentry, new_dentry);
1646 nfs_set_verifier(new_dentry,
1647 nfs_save_change_attribute(new_dir));
1648 }
1649
1650 /* new dentry created? */
1651 if (dentry)
1652 dput(dentry);
1653 unlock_kernel();
1654 return error;
1655 }
1656
1657 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1658 static LIST_HEAD(nfs_access_lru_list);
1659 static atomic_long_t nfs_access_nr_entries;
1660
1661 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1662 {
1663 put_rpccred(entry->cred);
1664 kfree(entry);
1665 smp_mb__before_atomic_dec();
1666 atomic_long_dec(&nfs_access_nr_entries);
1667 smp_mb__after_atomic_dec();
1668 }
1669
1670 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1671 {
1672 LIST_HEAD(head);
1673 struct nfs_inode *nfsi;
1674 struct nfs_access_entry *cache;
1675
1676 restart:
1677 spin_lock(&nfs_access_lru_lock);
1678 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1679 struct inode *inode;
1680
1681 if (nr_to_scan-- == 0)
1682 break;
1683 inode = igrab(&nfsi->vfs_inode);
1684 if (inode == NULL)
1685 continue;
1686 spin_lock(&inode->i_lock);
1687 if (list_empty(&nfsi->access_cache_entry_lru))
1688 goto remove_lru_entry;
1689 cache = list_entry(nfsi->access_cache_entry_lru.next,
1690 struct nfs_access_entry, lru);
1691 list_move(&cache->lru, &head);
1692 rb_erase(&cache->rb_node, &nfsi->access_cache);
1693 if (!list_empty(&nfsi->access_cache_entry_lru))
1694 list_move_tail(&nfsi->access_cache_inode_lru,
1695 &nfs_access_lru_list);
1696 else {
1697 remove_lru_entry:
1698 list_del_init(&nfsi->access_cache_inode_lru);
1699 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1700 }
1701 spin_unlock(&inode->i_lock);
1702 spin_unlock(&nfs_access_lru_lock);
1703 iput(inode);
1704 goto restart;
1705 }
1706 spin_unlock(&nfs_access_lru_lock);
1707 while (!list_empty(&head)) {
1708 cache = list_entry(head.next, struct nfs_access_entry, lru);
1709 list_del(&cache->lru);
1710 nfs_access_free_entry(cache);
1711 }
1712 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1713 }
1714
1715 static void __nfs_access_zap_cache(struct inode *inode)
1716 {
1717 struct nfs_inode *nfsi = NFS_I(inode);
1718 struct rb_root *root_node = &nfsi->access_cache;
1719 struct rb_node *n, *dispose = NULL;
1720 struct nfs_access_entry *entry;
1721
1722 /* Unhook entries from the cache */
1723 while ((n = rb_first(root_node)) != NULL) {
1724 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1725 rb_erase(n, root_node);
1726 list_del(&entry->lru);
1727 n->rb_left = dispose;
1728 dispose = n;
1729 }
1730 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1731 spin_unlock(&inode->i_lock);
1732
1733 /* Now kill them all! */
1734 while (dispose != NULL) {
1735 n = dispose;
1736 dispose = n->rb_left;
1737 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1738 }
1739 }
1740
1741 void nfs_access_zap_cache(struct inode *inode)
1742 {
1743 /* Remove from global LRU init */
1744 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1745 spin_lock(&nfs_access_lru_lock);
1746 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1747 spin_unlock(&nfs_access_lru_lock);
1748 }
1749
1750 spin_lock(&inode->i_lock);
1751 /* This will release the spinlock */
1752 __nfs_access_zap_cache(inode);
1753 }
1754
1755 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1756 {
1757 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1758 struct nfs_access_entry *entry;
1759
1760 while (n != NULL) {
1761 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1762
1763 if (cred < entry->cred)
1764 n = n->rb_left;
1765 else if (cred > entry->cred)
1766 n = n->rb_right;
1767 else
1768 return entry;
1769 }
1770 return NULL;
1771 }
1772
1773 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1774 {
1775 struct nfs_inode *nfsi = NFS_I(inode);
1776 struct nfs_access_entry *cache;
1777 int err = -ENOENT;
1778
1779 spin_lock(&inode->i_lock);
1780 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1781 goto out_zap;
1782 cache = nfs_access_search_rbtree(inode, cred);
1783 if (cache == NULL)
1784 goto out;
1785 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1786 goto out_stale;
1787 res->jiffies = cache->jiffies;
1788 res->cred = cache->cred;
1789 res->mask = cache->mask;
1790 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1791 err = 0;
1792 out:
1793 spin_unlock(&inode->i_lock);
1794 return err;
1795 out_stale:
1796 rb_erase(&cache->rb_node, &nfsi->access_cache);
1797 list_del(&cache->lru);
1798 spin_unlock(&inode->i_lock);
1799 nfs_access_free_entry(cache);
1800 return -ENOENT;
1801 out_zap:
1802 /* This will release the spinlock */
1803 __nfs_access_zap_cache(inode);
1804 return -ENOENT;
1805 }
1806
1807 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1808 {
1809 struct nfs_inode *nfsi = NFS_I(inode);
1810 struct rb_root *root_node = &nfsi->access_cache;
1811 struct rb_node **p = &root_node->rb_node;
1812 struct rb_node *parent = NULL;
1813 struct nfs_access_entry *entry;
1814
1815 spin_lock(&inode->i_lock);
1816 while (*p != NULL) {
1817 parent = *p;
1818 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1819
1820 if (set->cred < entry->cred)
1821 p = &parent->rb_left;
1822 else if (set->cred > entry->cred)
1823 p = &parent->rb_right;
1824 else
1825 goto found;
1826 }
1827 rb_link_node(&set->rb_node, parent, p);
1828 rb_insert_color(&set->rb_node, root_node);
1829 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1830 spin_unlock(&inode->i_lock);
1831 return;
1832 found:
1833 rb_replace_node(parent, &set->rb_node, root_node);
1834 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1835 list_del(&entry->lru);
1836 spin_unlock(&inode->i_lock);
1837 nfs_access_free_entry(entry);
1838 }
1839
1840 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1841 {
1842 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1843 if (cache == NULL)
1844 return;
1845 RB_CLEAR_NODE(&cache->rb_node);
1846 cache->jiffies = set->jiffies;
1847 cache->cred = get_rpccred(set->cred);
1848 cache->mask = set->mask;
1849
1850 nfs_access_add_rbtree(inode, cache);
1851
1852 /* Update accounting */
1853 smp_mb__before_atomic_inc();
1854 atomic_long_inc(&nfs_access_nr_entries);
1855 smp_mb__after_atomic_inc();
1856
1857 /* Add inode to global LRU list */
1858 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1859 spin_lock(&nfs_access_lru_lock);
1860 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1861 spin_unlock(&nfs_access_lru_lock);
1862 }
1863 }
1864
1865 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1866 {
1867 struct nfs_access_entry cache;
1868 int status;
1869
1870 status = nfs_access_get_cached(inode, cred, &cache);
1871 if (status == 0)
1872 goto out;
1873
1874 /* Be clever: ask server to check for all possible rights */
1875 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1876 cache.cred = cred;
1877 cache.jiffies = jiffies;
1878 status = NFS_PROTO(inode)->access(inode, &cache);
1879 if (status != 0)
1880 return status;
1881 nfs_access_add_cache(inode, &cache);
1882 out:
1883 if ((cache.mask & mask) == mask)
1884 return 0;
1885 return -EACCES;
1886 }
1887
1888 static int nfs_open_permission_mask(int openflags)
1889 {
1890 int mask = 0;
1891
1892 if (openflags & FMODE_READ)
1893 mask |= MAY_READ;
1894 if (openflags & FMODE_WRITE)
1895 mask |= MAY_WRITE;
1896 if (openflags & FMODE_EXEC)
1897 mask |= MAY_EXEC;
1898 return mask;
1899 }
1900
1901 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1902 {
1903 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1904 }
1905
1906 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1907 {
1908 struct rpc_cred *cred;
1909 int res = 0;
1910
1911 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1912
1913 if (mask == 0)
1914 goto out;
1915 /* Is this sys_access() ? */
1916 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1917 goto force_lookup;
1918
1919 switch (inode->i_mode & S_IFMT) {
1920 case S_IFLNK:
1921 goto out;
1922 case S_IFREG:
1923 /* NFSv4 has atomic_open... */
1924 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1925 && nd != NULL
1926 && (nd->flags & LOOKUP_OPEN))
1927 goto out;
1928 break;
1929 case S_IFDIR:
1930 /*
1931 * Optimize away all write operations, since the server
1932 * will check permissions when we perform the op.
1933 */
1934 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1935 goto out;
1936 }
1937
1938 force_lookup:
1939 lock_kernel();
1940
1941 if (!NFS_PROTO(inode)->access)
1942 goto out_notsup;
1943
1944 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1945 if (!IS_ERR(cred)) {
1946 res = nfs_do_access(inode, cred, mask);
1947 put_rpccred(cred);
1948 } else
1949 res = PTR_ERR(cred);
1950 unlock_kernel();
1951 out:
1952 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1953 inode->i_sb->s_id, inode->i_ino, mask, res);
1954 return res;
1955 out_notsup:
1956 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1957 if (res == 0)
1958 res = generic_permission(inode, mask, NULL);
1959 unlock_kernel();
1960 goto out;
1961 }
1962
1963 /*
1964 * Local variables:
1965 * version-control: t
1966 * kept-new-versions: 5
1967 * End:
1968 */