ARM: at91: fix board-rm9200-dt after sys_timer conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
39
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
44
45 /* #define NFS_DEBUG_VERBOSE 1 */
46
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
53
54 const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
61 };
62
63 const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
65 };
66
67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68 {
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
78 }
79 return ERR_PTR(-ENOMEM);
80 }
81
82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83 {
84 put_rpccred(ctx->cred);
85 kfree(ctx);
86 }
87
88 /*
89 * Open file
90 */
91 static int
92 nfs_opendir(struct inode *inode, struct file *filp)
93 {
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
97
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
101
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
111 }
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
117 */
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 }
120 out:
121 put_rpccred(cred);
122 return res;
123 }
124
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
130 }
131
132 struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
137 };
138
139 struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
144 };
145
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
155
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161 } nfs_readdir_descriptor_t;
162
163 /*
164 * The caller is responsible for calling nfs_readdir_release_array(page)
165 */
166 static
167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168 {
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
176 }
177
178 static
179 void nfs_readdir_release_array(struct page *page)
180 {
181 kunmap(page);
182 }
183
184 /*
185 * we are freeing strings created by nfs_add_to_readdir_array()
186 */
187 static
188 void nfs_readdir_clear_array(struct page *page)
189 {
190 struct nfs_cache_array *array;
191 int i;
192
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
197 }
198
199 /*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204 static
205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206 {
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
218 }
219
220 static
221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222 {
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 if (IS_ERR(array))
228 return PTR_ERR(array);
229
230 cache_entry = &array->array[array->size];
231
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
236
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247 out:
248 nfs_readdir_release_array(page);
249 return ret;
250 }
251
252 static
253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254 {
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
257
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
264 }
265
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270 out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
273 }
274
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
281
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
286
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
303 }
304 status = -ELOOP;
305 goto out;
306 }
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
309 }
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
313 }
314 }
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
319 }
320 out:
321 return status;
322 }
323
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 nfs_readdir_release_array(desc->page);
347 out:
348 return status;
349 }
350
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
355 {
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
380 }
381
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393 }
394
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403 different:
404 return 0;
405 }
406
407 static
408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409 {
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
417 }
418
419 /*
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
423 */
424 static
425 void nfs_advise_use_readdirplus(struct inode *dir)
426 {
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428 }
429
430 static
431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432 {
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
438
439 if (filename.name[0] == '.') {
440 if (filename.len == 1)
441 return;
442 if (filename.len == 2 && filename.name[1] == '.')
443 return;
444 }
445 filename.hash = full_name_hash(filename.name, filename.len);
446
447 dentry = d_lookup(parent, &filename);
448 if (dentry != NULL) {
449 if (nfs_same_file(dentry, entry)) {
450 nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 goto out;
452 } else {
453 if (d_invalidate(dentry) != 0)
454 goto out;
455 dput(dentry);
456 }
457 }
458
459 dentry = d_alloc(parent, &filename);
460 if (dentry == NULL)
461 return;
462
463 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
464 if (IS_ERR(inode))
465 goto out;
466
467 alias = d_materialise_unique(dentry, inode);
468 if (IS_ERR(alias))
469 goto out;
470 else if (alias) {
471 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
472 dput(alias);
473 } else
474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
475
476 out:
477 dput(dentry);
478 }
479
480 /* Perform conversion from xdr to cache array */
481 static
482 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
483 struct page **xdr_pages, struct page *page, unsigned int buflen)
484 {
485 struct xdr_stream stream;
486 struct xdr_buf buf;
487 struct page *scratch;
488 struct nfs_cache_array *array;
489 unsigned int count = 0;
490 int status;
491
492 scratch = alloc_page(GFP_KERNEL);
493 if (scratch == NULL)
494 return -ENOMEM;
495
496 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
497 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
498
499 do {
500 status = xdr_decode(desc, entry, &stream);
501 if (status != 0) {
502 if (status == -EAGAIN)
503 status = 0;
504 break;
505 }
506
507 count++;
508
509 if (desc->plus != 0)
510 nfs_prime_dcache(desc->file->f_path.dentry, entry);
511
512 status = nfs_readdir_add_to_array(entry, page);
513 if (status != 0)
514 break;
515 } while (!entry->eof);
516
517 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
518 array = nfs_readdir_get_array(page);
519 if (!IS_ERR(array)) {
520 array->eof_index = array->size;
521 status = 0;
522 nfs_readdir_release_array(page);
523 } else
524 status = PTR_ERR(array);
525 }
526
527 put_page(scratch);
528 return status;
529 }
530
531 static
532 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
533 {
534 unsigned int i;
535 for (i = 0; i < npages; i++)
536 put_page(pages[i]);
537 }
538
539 static
540 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
541 unsigned int npages)
542 {
543 nfs_readdir_free_pagearray(pages, npages);
544 }
545
546 /*
547 * nfs_readdir_large_page will allocate pages that must be freed with a call
548 * to nfs_readdir_free_large_page
549 */
550 static
551 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
552 {
553 unsigned int i;
554
555 for (i = 0; i < npages; i++) {
556 struct page *page = alloc_page(GFP_KERNEL);
557 if (page == NULL)
558 goto out_freepages;
559 pages[i] = page;
560 }
561 return 0;
562
563 out_freepages:
564 nfs_readdir_free_pagearray(pages, i);
565 return -ENOMEM;
566 }
567
568 static
569 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
570 {
571 struct page *pages[NFS_MAX_READDIR_PAGES];
572 void *pages_ptr = NULL;
573 struct nfs_entry entry;
574 struct file *file = desc->file;
575 struct nfs_cache_array *array;
576 int status = -ENOMEM;
577 unsigned int array_size = ARRAY_SIZE(pages);
578
579 entry.prev_cookie = 0;
580 entry.cookie = desc->last_cookie;
581 entry.eof = 0;
582 entry.fh = nfs_alloc_fhandle();
583 entry.fattr = nfs_alloc_fattr();
584 entry.server = NFS_SERVER(inode);
585 if (entry.fh == NULL || entry.fattr == NULL)
586 goto out;
587
588 array = nfs_readdir_get_array(page);
589 if (IS_ERR(array)) {
590 status = PTR_ERR(array);
591 goto out;
592 }
593 memset(array, 0, sizeof(struct nfs_cache_array));
594 array->eof_index = -1;
595
596 status = nfs_readdir_large_page(pages, array_size);
597 if (status < 0)
598 goto out_release_array;
599 do {
600 unsigned int pglen;
601 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
602
603 if (status < 0)
604 break;
605 pglen = status;
606 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
607 if (status < 0) {
608 if (status == -ENOSPC)
609 status = 0;
610 break;
611 }
612 } while (array->eof_index < 0);
613
614 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
615 out_release_array:
616 nfs_readdir_release_array(page);
617 out:
618 nfs_free_fattr(entry.fattr);
619 nfs_free_fhandle(entry.fh);
620 return status;
621 }
622
623 /*
624 * Now we cache directories properly, by converting xdr information
625 * to an array that can be used for lookups later. This results in
626 * fewer cache pages, since we can store more information on each page.
627 * We only need to convert from xdr once so future lookups are much simpler
628 */
629 static
630 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
631 {
632 struct inode *inode = desc->file->f_path.dentry->d_inode;
633 int ret;
634
635 ret = nfs_readdir_xdr_to_array(desc, page, inode);
636 if (ret < 0)
637 goto error;
638 SetPageUptodate(page);
639
640 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
641 /* Should never happen */
642 nfs_zap_mapping(inode, inode->i_mapping);
643 }
644 unlock_page(page);
645 return 0;
646 error:
647 unlock_page(page);
648 return ret;
649 }
650
651 static
652 void cache_page_release(nfs_readdir_descriptor_t *desc)
653 {
654 if (!desc->page->mapping)
655 nfs_readdir_clear_array(desc->page);
656 page_cache_release(desc->page);
657 desc->page = NULL;
658 }
659
660 static
661 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
662 {
663 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
664 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
665 }
666
667 /*
668 * Returns 0 if desc->dir_cookie was found on page desc->page_index
669 */
670 static
671 int find_cache_page(nfs_readdir_descriptor_t *desc)
672 {
673 int res;
674
675 desc->page = get_cache_page(desc);
676 if (IS_ERR(desc->page))
677 return PTR_ERR(desc->page);
678
679 res = nfs_readdir_search_array(desc);
680 if (res != 0)
681 cache_page_release(desc);
682 return res;
683 }
684
685 /* Search for desc->dir_cookie from the beginning of the page cache */
686 static inline
687 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
688 {
689 int res;
690
691 if (desc->page_index == 0) {
692 desc->current_index = 0;
693 desc->last_cookie = 0;
694 }
695 do {
696 res = find_cache_page(desc);
697 } while (res == -EAGAIN);
698 return res;
699 }
700
701 /*
702 * Once we've found the start of the dirent within a page: fill 'er up...
703 */
704 static
705 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
706 filldir_t filldir)
707 {
708 struct file *file = desc->file;
709 int i = 0;
710 int res = 0;
711 struct nfs_cache_array *array = NULL;
712 struct nfs_open_dir_context *ctx = file->private_data;
713
714 array = nfs_readdir_get_array(desc->page);
715 if (IS_ERR(array)) {
716 res = PTR_ERR(array);
717 goto out;
718 }
719
720 for (i = desc->cache_entry_index; i < array->size; i++) {
721 struct nfs_cache_array_entry *ent;
722
723 ent = &array->array[i];
724 if (filldir(dirent, ent->string.name, ent->string.len,
725 file->f_pos, nfs_compat_user_ino64(ent->ino),
726 ent->d_type) < 0) {
727 desc->eof = 1;
728 break;
729 }
730 file->f_pos++;
731 if (i < (array->size-1))
732 *desc->dir_cookie = array->array[i+1].cookie;
733 else
734 *desc->dir_cookie = array->last_cookie;
735 if (ctx->duped != 0)
736 ctx->duped = 1;
737 }
738 if (array->eof_index >= 0)
739 desc->eof = 1;
740
741 nfs_readdir_release_array(desc->page);
742 out:
743 cache_page_release(desc);
744 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
745 (unsigned long long)*desc->dir_cookie, res);
746 return res;
747 }
748
749 /*
750 * If we cannot find a cookie in our cache, we suspect that this is
751 * because it points to a deleted file, so we ask the server to return
752 * whatever it thinks is the next entry. We then feed this to filldir.
753 * If all goes well, we should then be able to find our way round the
754 * cache on the next call to readdir_search_pagecache();
755 *
756 * NOTE: we cannot add the anonymous page to the pagecache because
757 * the data it contains might not be page aligned. Besides,
758 * we should already have a complete representation of the
759 * directory in the page cache by the time we get here.
760 */
761 static inline
762 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
763 filldir_t filldir)
764 {
765 struct page *page = NULL;
766 int status;
767 struct inode *inode = desc->file->f_path.dentry->d_inode;
768 struct nfs_open_dir_context *ctx = desc->file->private_data;
769
770 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
771 (unsigned long long)*desc->dir_cookie);
772
773 page = alloc_page(GFP_HIGHUSER);
774 if (!page) {
775 status = -ENOMEM;
776 goto out;
777 }
778
779 desc->page_index = 0;
780 desc->last_cookie = *desc->dir_cookie;
781 desc->page = page;
782 ctx->duped = 0;
783
784 status = nfs_readdir_xdr_to_array(desc, page, inode);
785 if (status < 0)
786 goto out_release;
787
788 status = nfs_do_filldir(desc, dirent, filldir);
789
790 out:
791 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
792 __func__, status);
793 return status;
794 out_release:
795 cache_page_release(desc);
796 goto out;
797 }
798
799 /* The file offset position represents the dirent entry number. A
800 last cookie cache takes care of the common case of reading the
801 whole directory.
802 */
803 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
804 {
805 struct dentry *dentry = filp->f_path.dentry;
806 struct inode *inode = dentry->d_inode;
807 nfs_readdir_descriptor_t my_desc,
808 *desc = &my_desc;
809 struct nfs_open_dir_context *dir_ctx = filp->private_data;
810 int res;
811
812 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
813 dentry->d_parent->d_name.name, dentry->d_name.name,
814 (long long)filp->f_pos);
815 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
816
817 /*
818 * filp->f_pos points to the dirent entry number.
819 * *desc->dir_cookie has the cookie for the next entry. We have
820 * to either find the entry with the appropriate number or
821 * revalidate the cookie.
822 */
823 memset(desc, 0, sizeof(*desc));
824
825 desc->file = filp;
826 desc->dir_cookie = &dir_ctx->dir_cookie;
827 desc->decode = NFS_PROTO(inode)->decode_dirent;
828 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
829
830 nfs_block_sillyrename(dentry);
831 res = nfs_revalidate_mapping(inode, filp->f_mapping);
832 if (res < 0)
833 goto out;
834
835 do {
836 res = readdir_search_pagecache(desc);
837
838 if (res == -EBADCOOKIE) {
839 res = 0;
840 /* This means either end of directory */
841 if (*desc->dir_cookie && desc->eof == 0) {
842 /* Or that the server has 'lost' a cookie */
843 res = uncached_readdir(desc, dirent, filldir);
844 if (res == 0)
845 continue;
846 }
847 break;
848 }
849 if (res == -ETOOSMALL && desc->plus) {
850 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
851 nfs_zap_caches(inode);
852 desc->page_index = 0;
853 desc->plus = 0;
854 desc->eof = 0;
855 continue;
856 }
857 if (res < 0)
858 break;
859
860 res = nfs_do_filldir(desc, dirent, filldir);
861 if (res < 0)
862 break;
863 } while (!desc->eof);
864 out:
865 nfs_unblock_sillyrename(dentry);
866 if (res > 0)
867 res = 0;
868 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
869 dentry->d_parent->d_name.name, dentry->d_name.name,
870 res);
871 return res;
872 }
873
874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
875 {
876 struct dentry *dentry = filp->f_path.dentry;
877 struct inode *inode = dentry->d_inode;
878 struct nfs_open_dir_context *dir_ctx = filp->private_data;
879
880 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
881 dentry->d_parent->d_name.name,
882 dentry->d_name.name,
883 offset, whence);
884
885 mutex_lock(&inode->i_mutex);
886 switch (whence) {
887 case 1:
888 offset += filp->f_pos;
889 case 0:
890 if (offset >= 0)
891 break;
892 default:
893 offset = -EINVAL;
894 goto out;
895 }
896 if (offset != filp->f_pos) {
897 filp->f_pos = offset;
898 dir_ctx->dir_cookie = 0;
899 dir_ctx->duped = 0;
900 }
901 out:
902 mutex_unlock(&inode->i_mutex);
903 return offset;
904 }
905
906 /*
907 * All directory operations under NFS are synchronous, so fsync()
908 * is a dummy operation.
909 */
910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
911 int datasync)
912 {
913 struct dentry *dentry = filp->f_path.dentry;
914 struct inode *inode = dentry->d_inode;
915
916 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
917 dentry->d_parent->d_name.name, dentry->d_name.name,
918 datasync);
919
920 mutex_lock(&inode->i_mutex);
921 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
922 mutex_unlock(&inode->i_mutex);
923 return 0;
924 }
925
926 /**
927 * nfs_force_lookup_revalidate - Mark the directory as having changed
928 * @dir - pointer to directory inode
929 *
930 * This forces the revalidation code in nfs_lookup_revalidate() to do a
931 * full lookup on all child dentries of 'dir' whenever a change occurs
932 * on the server that might have invalidated our dcache.
933 *
934 * The caller should be holding dir->i_lock
935 */
936 void nfs_force_lookup_revalidate(struct inode *dir)
937 {
938 NFS_I(dir)->cache_change_attribute++;
939 }
940 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
941
942 /*
943 * A check for whether or not the parent directory has changed.
944 * In the case it has, we assume that the dentries are untrustworthy
945 * and may need to be looked up again.
946 */
947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
948 {
949 if (IS_ROOT(dentry))
950 return 1;
951 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
952 return 0;
953 if (!nfs_verify_change_attribute(dir, dentry->d_time))
954 return 0;
955 /* Revalidate nfsi->cache_change_attribute before we declare a match */
956 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
957 return 0;
958 if (!nfs_verify_change_attribute(dir, dentry->d_time))
959 return 0;
960 return 1;
961 }
962
963 /*
964 * Use intent information to check whether or not we're going to do
965 * an O_EXCL create using this path component.
966 */
967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
968 {
969 if (NFS_PROTO(dir)->version == 2)
970 return 0;
971 return flags & LOOKUP_EXCL;
972 }
973
974 /*
975 * Inode and filehandle revalidation for lookups.
976 *
977 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
978 * or if the intent information indicates that we're about to open this
979 * particular file and the "nocto" mount flag is not set.
980 *
981 */
982 static
983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
984 {
985 struct nfs_server *server = NFS_SERVER(inode);
986 int ret;
987
988 if (IS_AUTOMOUNT(inode))
989 return 0;
990 /* VFS wants an on-the-wire revalidation */
991 if (flags & LOOKUP_REVAL)
992 goto out_force;
993 /* This is an open(2) */
994 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
995 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
996 goto out_force;
997 out:
998 return (inode->i_nlink == 0) ? -ENOENT : 0;
999 out_force:
1000 ret = __nfs_revalidate_inode(server, inode);
1001 if (ret != 0)
1002 return ret;
1003 goto out;
1004 }
1005
1006 /*
1007 * We judge how long we want to trust negative
1008 * dentries by looking at the parent inode mtime.
1009 *
1010 * If parent mtime has changed, we revalidate, else we wait for a
1011 * period corresponding to the parent's attribute cache timeout value.
1012 */
1013 static inline
1014 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1015 unsigned int flags)
1016 {
1017 /* Don't revalidate a negative dentry if we're creating a new file */
1018 if (flags & LOOKUP_CREATE)
1019 return 0;
1020 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1021 return 1;
1022 return !nfs_check_verifier(dir, dentry);
1023 }
1024
1025 /*
1026 * This is called every time the dcache has a lookup hit,
1027 * and we should check whether we can really trust that
1028 * lookup.
1029 *
1030 * NOTE! The hit can be a negative hit too, don't assume
1031 * we have an inode!
1032 *
1033 * If the parent directory is seen to have changed, we throw out the
1034 * cached dentry and do a new lookup.
1035 */
1036 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1037 {
1038 struct inode *dir;
1039 struct inode *inode;
1040 struct dentry *parent;
1041 struct nfs_fh *fhandle = NULL;
1042 struct nfs_fattr *fattr = NULL;
1043 int error;
1044
1045 if (flags & LOOKUP_RCU)
1046 return -ECHILD;
1047
1048 parent = dget_parent(dentry);
1049 dir = parent->d_inode;
1050 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1051 inode = dentry->d_inode;
1052
1053 if (!inode) {
1054 if (nfs_neg_need_reval(dir, dentry, flags))
1055 goto out_bad;
1056 goto out_valid_noent;
1057 }
1058
1059 if (is_bad_inode(inode)) {
1060 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1061 __func__, dentry->d_parent->d_name.name,
1062 dentry->d_name.name);
1063 goto out_bad;
1064 }
1065
1066 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1067 goto out_set_verifier;
1068
1069 /* Force a full look up iff the parent directory has changed */
1070 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1071 if (nfs_lookup_verify_inode(inode, flags))
1072 goto out_zap_parent;
1073 goto out_valid;
1074 }
1075
1076 if (NFS_STALE(inode))
1077 goto out_bad;
1078
1079 error = -ENOMEM;
1080 fhandle = nfs_alloc_fhandle();
1081 fattr = nfs_alloc_fattr();
1082 if (fhandle == NULL || fattr == NULL)
1083 goto out_error;
1084
1085 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1086 if (error)
1087 goto out_bad;
1088 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1089 goto out_bad;
1090 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1091 goto out_bad;
1092
1093 nfs_free_fattr(fattr);
1094 nfs_free_fhandle(fhandle);
1095 out_set_verifier:
1096 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1097 out_valid:
1098 /* Success: notify readdir to use READDIRPLUS */
1099 nfs_advise_use_readdirplus(dir);
1100 out_valid_noent:
1101 dput(parent);
1102 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1103 __func__, dentry->d_parent->d_name.name,
1104 dentry->d_name.name);
1105 return 1;
1106 out_zap_parent:
1107 nfs_zap_caches(dir);
1108 out_bad:
1109 nfs_free_fattr(fattr);
1110 nfs_free_fhandle(fhandle);
1111 nfs_mark_for_revalidate(dir);
1112 if (inode && S_ISDIR(inode->i_mode)) {
1113 /* Purge readdir caches. */
1114 nfs_zap_caches(inode);
1115 /* If we have submounts, don't unhash ! */
1116 if (have_submounts(dentry))
1117 goto out_valid;
1118 if (dentry->d_flags & DCACHE_DISCONNECTED)
1119 goto out_valid;
1120 shrink_dcache_parent(dentry);
1121 }
1122 d_drop(dentry);
1123 dput(parent);
1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1125 __func__, dentry->d_parent->d_name.name,
1126 dentry->d_name.name);
1127 return 0;
1128 out_error:
1129 nfs_free_fattr(fattr);
1130 nfs_free_fhandle(fhandle);
1131 dput(parent);
1132 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1133 __func__, dentry->d_parent->d_name.name,
1134 dentry->d_name.name, error);
1135 return error;
1136 }
1137
1138 /*
1139 * This is called from dput() when d_count is going to 0.
1140 */
1141 static int nfs_dentry_delete(const struct dentry *dentry)
1142 {
1143 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1144 dentry->d_parent->d_name.name, dentry->d_name.name,
1145 dentry->d_flags);
1146
1147 /* Unhash any dentry with a stale inode */
1148 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1149 return 1;
1150
1151 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1152 /* Unhash it, so that ->d_iput() would be called */
1153 return 1;
1154 }
1155 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1156 /* Unhash it, so that ancestors of killed async unlink
1157 * files will be cleaned up during umount */
1158 return 1;
1159 }
1160 return 0;
1161
1162 }
1163
1164 /* Ensure that we revalidate inode->i_nlink */
1165 static void nfs_drop_nlink(struct inode *inode)
1166 {
1167 spin_lock(&inode->i_lock);
1168 /* drop the inode if we're reasonably sure this is the last link */
1169 if (inode->i_nlink == 1)
1170 clear_nlink(inode);
1171 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1172 spin_unlock(&inode->i_lock);
1173 }
1174
1175 /*
1176 * Called when the dentry loses inode.
1177 * We use it to clean up silly-renamed files.
1178 */
1179 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1180 {
1181 if (S_ISDIR(inode->i_mode))
1182 /* drop any readdir cache as it could easily be old */
1183 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1184
1185 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1186 nfs_complete_unlink(dentry, inode);
1187 nfs_drop_nlink(inode);
1188 }
1189 iput(inode);
1190 }
1191
1192 static void nfs_d_release(struct dentry *dentry)
1193 {
1194 /* free cached devname value, if it survived that far */
1195 if (unlikely(dentry->d_fsdata)) {
1196 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1197 WARN_ON(1);
1198 else
1199 kfree(dentry->d_fsdata);
1200 }
1201 }
1202
1203 const struct dentry_operations nfs_dentry_operations = {
1204 .d_revalidate = nfs_lookup_revalidate,
1205 .d_delete = nfs_dentry_delete,
1206 .d_iput = nfs_dentry_iput,
1207 .d_automount = nfs_d_automount,
1208 .d_release = nfs_d_release,
1209 };
1210 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1211
1212 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1213 {
1214 struct dentry *res;
1215 struct dentry *parent;
1216 struct inode *inode = NULL;
1217 struct nfs_fh *fhandle = NULL;
1218 struct nfs_fattr *fattr = NULL;
1219 int error;
1220
1221 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1222 dentry->d_parent->d_name.name, dentry->d_name.name);
1223 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1224
1225 res = ERR_PTR(-ENAMETOOLONG);
1226 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1227 goto out;
1228
1229 /*
1230 * If we're doing an exclusive create, optimize away the lookup
1231 * but don't hash the dentry.
1232 */
1233 if (nfs_is_exclusive_create(dir, flags)) {
1234 d_instantiate(dentry, NULL);
1235 res = NULL;
1236 goto out;
1237 }
1238
1239 res = ERR_PTR(-ENOMEM);
1240 fhandle = nfs_alloc_fhandle();
1241 fattr = nfs_alloc_fattr();
1242 if (fhandle == NULL || fattr == NULL)
1243 goto out;
1244
1245 parent = dentry->d_parent;
1246 /* Protect against concurrent sillydeletes */
1247 nfs_block_sillyrename(parent);
1248 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1249 if (error == -ENOENT)
1250 goto no_entry;
1251 if (error < 0) {
1252 res = ERR_PTR(error);
1253 goto out_unblock_sillyrename;
1254 }
1255 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1256 res = ERR_CAST(inode);
1257 if (IS_ERR(res))
1258 goto out_unblock_sillyrename;
1259
1260 /* Success: notify readdir to use READDIRPLUS */
1261 nfs_advise_use_readdirplus(dir);
1262
1263 no_entry:
1264 res = d_materialise_unique(dentry, inode);
1265 if (res != NULL) {
1266 if (IS_ERR(res))
1267 goto out_unblock_sillyrename;
1268 dentry = res;
1269 }
1270 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1271 out_unblock_sillyrename:
1272 nfs_unblock_sillyrename(parent);
1273 out:
1274 nfs_free_fattr(fattr);
1275 nfs_free_fhandle(fhandle);
1276 return res;
1277 }
1278 EXPORT_SYMBOL_GPL(nfs_lookup);
1279
1280 #if IS_ENABLED(CONFIG_NFS_V4)
1281 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1282
1283 const struct dentry_operations nfs4_dentry_operations = {
1284 .d_revalidate = nfs4_lookup_revalidate,
1285 .d_delete = nfs_dentry_delete,
1286 .d_iput = nfs_dentry_iput,
1287 .d_automount = nfs_d_automount,
1288 .d_release = nfs_d_release,
1289 };
1290 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1291
1292 static fmode_t flags_to_mode(int flags)
1293 {
1294 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1295 if ((flags & O_ACCMODE) != O_WRONLY)
1296 res |= FMODE_READ;
1297 if ((flags & O_ACCMODE) != O_RDONLY)
1298 res |= FMODE_WRITE;
1299 return res;
1300 }
1301
1302 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1303 {
1304 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1305 }
1306
1307 static int do_open(struct inode *inode, struct file *filp)
1308 {
1309 nfs_fscache_set_inode_cookie(inode, filp);
1310 return 0;
1311 }
1312
1313 static int nfs_finish_open(struct nfs_open_context *ctx,
1314 struct dentry *dentry,
1315 struct file *file, unsigned open_flags,
1316 int *opened)
1317 {
1318 int err;
1319
1320 if (ctx->dentry != dentry) {
1321 dput(ctx->dentry);
1322 ctx->dentry = dget(dentry);
1323 }
1324
1325 /* If the open_intent is for execute, we have an extra check to make */
1326 if (ctx->mode & FMODE_EXEC) {
1327 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1328 if (err < 0)
1329 goto out;
1330 }
1331
1332 err = finish_open(file, dentry, do_open, opened);
1333 if (err)
1334 goto out;
1335 nfs_file_set_open_context(file, ctx);
1336
1337 out:
1338 put_nfs_open_context(ctx);
1339 return err;
1340 }
1341
1342 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1343 struct file *file, unsigned open_flags,
1344 umode_t mode, int *opened)
1345 {
1346 struct nfs_open_context *ctx;
1347 struct dentry *res;
1348 struct iattr attr = { .ia_valid = ATTR_OPEN };
1349 struct inode *inode;
1350 int err;
1351
1352 /* Expect a negative dentry */
1353 BUG_ON(dentry->d_inode);
1354
1355 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1356 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1357
1358 /* NFS only supports OPEN on regular files */
1359 if ((open_flags & O_DIRECTORY)) {
1360 if (!d_unhashed(dentry)) {
1361 /*
1362 * Hashed negative dentry with O_DIRECTORY: dentry was
1363 * revalidated and is fine, no need to perform lookup
1364 * again
1365 */
1366 return -ENOENT;
1367 }
1368 goto no_open;
1369 }
1370
1371 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1372 return -ENAMETOOLONG;
1373
1374 if (open_flags & O_CREAT) {
1375 attr.ia_valid |= ATTR_MODE;
1376 attr.ia_mode = mode & ~current_umask();
1377 }
1378 if (open_flags & O_TRUNC) {
1379 attr.ia_valid |= ATTR_SIZE;
1380 attr.ia_size = 0;
1381 }
1382
1383 ctx = create_nfs_open_context(dentry, open_flags);
1384 err = PTR_ERR(ctx);
1385 if (IS_ERR(ctx))
1386 goto out;
1387
1388 nfs_block_sillyrename(dentry->d_parent);
1389 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1390 d_drop(dentry);
1391 if (IS_ERR(inode)) {
1392 nfs_unblock_sillyrename(dentry->d_parent);
1393 put_nfs_open_context(ctx);
1394 err = PTR_ERR(inode);
1395 switch (err) {
1396 case -ENOENT:
1397 d_add(dentry, NULL);
1398 break;
1399 case -EISDIR:
1400 case -ENOTDIR:
1401 goto no_open;
1402 case -ELOOP:
1403 if (!(open_flags & O_NOFOLLOW))
1404 goto no_open;
1405 break;
1406 /* case -EINVAL: */
1407 default:
1408 break;
1409 }
1410 goto out;
1411 }
1412 res = d_add_unique(dentry, inode);
1413 if (res != NULL)
1414 dentry = res;
1415
1416 nfs_unblock_sillyrename(dentry->d_parent);
1417 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1418
1419 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1420
1421 dput(res);
1422 out:
1423 return err;
1424
1425 no_open:
1426 res = nfs_lookup(dir, dentry, 0);
1427 err = PTR_ERR(res);
1428 if (IS_ERR(res))
1429 goto out;
1430
1431 return finish_no_open(file, res);
1432 }
1433 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1434
1435 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1436 {
1437 struct dentry *parent = NULL;
1438 struct inode *inode;
1439 struct inode *dir;
1440 int ret = 0;
1441
1442 if (flags & LOOKUP_RCU)
1443 return -ECHILD;
1444
1445 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1446 goto no_open;
1447 if (d_mountpoint(dentry))
1448 goto no_open;
1449
1450 inode = dentry->d_inode;
1451 parent = dget_parent(dentry);
1452 dir = parent->d_inode;
1453
1454 /* We can't create new files in nfs_open_revalidate(), so we
1455 * optimize away revalidation of negative dentries.
1456 */
1457 if (inode == NULL) {
1458 if (!nfs_neg_need_reval(dir, dentry, flags))
1459 ret = 1;
1460 goto out;
1461 }
1462
1463 /* NFS only supports OPEN on regular files */
1464 if (!S_ISREG(inode->i_mode))
1465 goto no_open_dput;
1466 /* We cannot do exclusive creation on a positive dentry */
1467 if (flags & LOOKUP_EXCL)
1468 goto no_open_dput;
1469
1470 /* Let f_op->open() actually open (and revalidate) the file */
1471 ret = 1;
1472
1473 out:
1474 dput(parent);
1475 return ret;
1476
1477 no_open_dput:
1478 dput(parent);
1479 no_open:
1480 return nfs_lookup_revalidate(dentry, flags);
1481 }
1482
1483 #endif /* CONFIG_NFSV4 */
1484
1485 /*
1486 * Code common to create, mkdir, and mknod.
1487 */
1488 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1489 struct nfs_fattr *fattr)
1490 {
1491 struct dentry *parent = dget_parent(dentry);
1492 struct inode *dir = parent->d_inode;
1493 struct inode *inode;
1494 int error = -EACCES;
1495
1496 d_drop(dentry);
1497
1498 /* We may have been initialized further down */
1499 if (dentry->d_inode)
1500 goto out;
1501 if (fhandle->size == 0) {
1502 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1503 if (error)
1504 goto out_error;
1505 }
1506 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1507 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1508 struct nfs_server *server = NFS_SB(dentry->d_sb);
1509 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1510 if (error < 0)
1511 goto out_error;
1512 }
1513 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1514 error = PTR_ERR(inode);
1515 if (IS_ERR(inode))
1516 goto out_error;
1517 d_add(dentry, inode);
1518 out:
1519 dput(parent);
1520 return 0;
1521 out_error:
1522 nfs_mark_for_revalidate(dir);
1523 dput(parent);
1524 return error;
1525 }
1526 EXPORT_SYMBOL_GPL(nfs_instantiate);
1527
1528 /*
1529 * Following a failed create operation, we drop the dentry rather
1530 * than retain a negative dentry. This avoids a problem in the event
1531 * that the operation succeeded on the server, but an error in the
1532 * reply path made it appear to have failed.
1533 */
1534 int nfs_create(struct inode *dir, struct dentry *dentry,
1535 umode_t mode, bool excl)
1536 {
1537 struct iattr attr;
1538 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1539 int error;
1540
1541 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1542 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1543
1544 attr.ia_mode = mode;
1545 attr.ia_valid = ATTR_MODE;
1546
1547 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1548 if (error != 0)
1549 goto out_err;
1550 return 0;
1551 out_err:
1552 d_drop(dentry);
1553 return error;
1554 }
1555 EXPORT_SYMBOL_GPL(nfs_create);
1556
1557 /*
1558 * See comments for nfs_proc_create regarding failed operations.
1559 */
1560 int
1561 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1562 {
1563 struct iattr attr;
1564 int status;
1565
1566 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1567 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1568
1569 if (!new_valid_dev(rdev))
1570 return -EINVAL;
1571
1572 attr.ia_mode = mode;
1573 attr.ia_valid = ATTR_MODE;
1574
1575 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1576 if (status != 0)
1577 goto out_err;
1578 return 0;
1579 out_err:
1580 d_drop(dentry);
1581 return status;
1582 }
1583 EXPORT_SYMBOL_GPL(nfs_mknod);
1584
1585 /*
1586 * See comments for nfs_proc_create regarding failed operations.
1587 */
1588 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1589 {
1590 struct iattr attr;
1591 int error;
1592
1593 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1594 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1595
1596 attr.ia_valid = ATTR_MODE;
1597 attr.ia_mode = mode | S_IFDIR;
1598
1599 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1600 if (error != 0)
1601 goto out_err;
1602 return 0;
1603 out_err:
1604 d_drop(dentry);
1605 return error;
1606 }
1607 EXPORT_SYMBOL_GPL(nfs_mkdir);
1608
1609 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1610 {
1611 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1612 d_delete(dentry);
1613 }
1614
1615 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1616 {
1617 int error;
1618
1619 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1620 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1621
1622 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1623 /* Ensure the VFS deletes this inode */
1624 if (error == 0 && dentry->d_inode != NULL)
1625 clear_nlink(dentry->d_inode);
1626 else if (error == -ENOENT)
1627 nfs_dentry_handle_enoent(dentry);
1628
1629 return error;
1630 }
1631 EXPORT_SYMBOL_GPL(nfs_rmdir);
1632
1633 /*
1634 * Remove a file after making sure there are no pending writes,
1635 * and after checking that the file has only one user.
1636 *
1637 * We invalidate the attribute cache and free the inode prior to the operation
1638 * to avoid possible races if the server reuses the inode.
1639 */
1640 static int nfs_safe_remove(struct dentry *dentry)
1641 {
1642 struct inode *dir = dentry->d_parent->d_inode;
1643 struct inode *inode = dentry->d_inode;
1644 int error = -EBUSY;
1645
1646 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1647 dentry->d_parent->d_name.name, dentry->d_name.name);
1648
1649 /* If the dentry was sillyrenamed, we simply call d_delete() */
1650 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1651 error = 0;
1652 goto out;
1653 }
1654
1655 if (inode != NULL) {
1656 NFS_PROTO(inode)->return_delegation(inode);
1657 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1658 if (error == 0)
1659 nfs_drop_nlink(inode);
1660 } else
1661 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1662 if (error == -ENOENT)
1663 nfs_dentry_handle_enoent(dentry);
1664 out:
1665 return error;
1666 }
1667
1668 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1669 * belongs to an active ".nfs..." file and we return -EBUSY.
1670 *
1671 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1672 */
1673 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1674 {
1675 int error;
1676 int need_rehash = 0;
1677
1678 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1679 dir->i_ino, dentry->d_name.name);
1680
1681 spin_lock(&dentry->d_lock);
1682 if (dentry->d_count > 1) {
1683 spin_unlock(&dentry->d_lock);
1684 /* Start asynchronous writeout of the inode */
1685 write_inode_now(dentry->d_inode, 0);
1686 error = nfs_sillyrename(dir, dentry);
1687 return error;
1688 }
1689 if (!d_unhashed(dentry)) {
1690 __d_drop(dentry);
1691 need_rehash = 1;
1692 }
1693 spin_unlock(&dentry->d_lock);
1694 error = nfs_safe_remove(dentry);
1695 if (!error || error == -ENOENT) {
1696 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1697 } else if (need_rehash)
1698 d_rehash(dentry);
1699 return error;
1700 }
1701 EXPORT_SYMBOL_GPL(nfs_unlink);
1702
1703 /*
1704 * To create a symbolic link, most file systems instantiate a new inode,
1705 * add a page to it containing the path, then write it out to the disk
1706 * using prepare_write/commit_write.
1707 *
1708 * Unfortunately the NFS client can't create the in-core inode first
1709 * because it needs a file handle to create an in-core inode (see
1710 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1711 * symlink request has completed on the server.
1712 *
1713 * So instead we allocate a raw page, copy the symname into it, then do
1714 * the SYMLINK request with the page as the buffer. If it succeeds, we
1715 * now have a new file handle and can instantiate an in-core NFS inode
1716 * and move the raw page into its mapping.
1717 */
1718 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1719 {
1720 struct pagevec lru_pvec;
1721 struct page *page;
1722 char *kaddr;
1723 struct iattr attr;
1724 unsigned int pathlen = strlen(symname);
1725 int error;
1726
1727 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1728 dir->i_ino, dentry->d_name.name, symname);
1729
1730 if (pathlen > PAGE_SIZE)
1731 return -ENAMETOOLONG;
1732
1733 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1734 attr.ia_valid = ATTR_MODE;
1735
1736 page = alloc_page(GFP_HIGHUSER);
1737 if (!page)
1738 return -ENOMEM;
1739
1740 kaddr = kmap_atomic(page);
1741 memcpy(kaddr, symname, pathlen);
1742 if (pathlen < PAGE_SIZE)
1743 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1744 kunmap_atomic(kaddr);
1745
1746 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1747 if (error != 0) {
1748 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1749 dir->i_sb->s_id, dir->i_ino,
1750 dentry->d_name.name, symname, error);
1751 d_drop(dentry);
1752 __free_page(page);
1753 return error;
1754 }
1755
1756 /*
1757 * No big deal if we can't add this page to the page cache here.
1758 * READLINK will get the missing page from the server if needed.
1759 */
1760 pagevec_init(&lru_pvec, 0);
1761 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1762 GFP_KERNEL)) {
1763 pagevec_add(&lru_pvec, page);
1764 pagevec_lru_add_file(&lru_pvec);
1765 SetPageUptodate(page);
1766 unlock_page(page);
1767 } else
1768 __free_page(page);
1769
1770 return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(nfs_symlink);
1773
1774 int
1775 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1776 {
1777 struct inode *inode = old_dentry->d_inode;
1778 int error;
1779
1780 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1781 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1782 dentry->d_parent->d_name.name, dentry->d_name.name);
1783
1784 NFS_PROTO(inode)->return_delegation(inode);
1785
1786 d_drop(dentry);
1787 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1788 if (error == 0) {
1789 ihold(inode);
1790 d_add(dentry, inode);
1791 }
1792 return error;
1793 }
1794 EXPORT_SYMBOL_GPL(nfs_link);
1795
1796 /*
1797 * RENAME
1798 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1799 * different file handle for the same inode after a rename (e.g. when
1800 * moving to a different directory). A fail-safe method to do so would
1801 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1802 * rename the old file using the sillyrename stuff. This way, the original
1803 * file in old_dir will go away when the last process iput()s the inode.
1804 *
1805 * FIXED.
1806 *
1807 * It actually works quite well. One needs to have the possibility for
1808 * at least one ".nfs..." file in each directory the file ever gets
1809 * moved or linked to which happens automagically with the new
1810 * implementation that only depends on the dcache stuff instead of
1811 * using the inode layer
1812 *
1813 * Unfortunately, things are a little more complicated than indicated
1814 * above. For a cross-directory move, we want to make sure we can get
1815 * rid of the old inode after the operation. This means there must be
1816 * no pending writes (if it's a file), and the use count must be 1.
1817 * If these conditions are met, we can drop the dentries before doing
1818 * the rename.
1819 */
1820 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1821 struct inode *new_dir, struct dentry *new_dentry)
1822 {
1823 struct inode *old_inode = old_dentry->d_inode;
1824 struct inode *new_inode = new_dentry->d_inode;
1825 struct dentry *dentry = NULL, *rehash = NULL;
1826 int error = -EBUSY;
1827
1828 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1829 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1830 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1831 new_dentry->d_count);
1832
1833 /*
1834 * For non-directories, check whether the target is busy and if so,
1835 * make a copy of the dentry and then do a silly-rename. If the
1836 * silly-rename succeeds, the copied dentry is hashed and becomes
1837 * the new target.
1838 */
1839 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1840 /*
1841 * To prevent any new references to the target during the
1842 * rename, we unhash the dentry in advance.
1843 */
1844 if (!d_unhashed(new_dentry)) {
1845 d_drop(new_dentry);
1846 rehash = new_dentry;
1847 }
1848
1849 if (new_dentry->d_count > 2) {
1850 int err;
1851
1852 /* copy the target dentry's name */
1853 dentry = d_alloc(new_dentry->d_parent,
1854 &new_dentry->d_name);
1855 if (!dentry)
1856 goto out;
1857
1858 /* silly-rename the existing target ... */
1859 err = nfs_sillyrename(new_dir, new_dentry);
1860 if (err)
1861 goto out;
1862
1863 new_dentry = dentry;
1864 rehash = NULL;
1865 new_inode = NULL;
1866 }
1867 }
1868
1869 NFS_PROTO(old_inode)->return_delegation(old_inode);
1870 if (new_inode != NULL)
1871 NFS_PROTO(new_inode)->return_delegation(new_inode);
1872
1873 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1874 new_dir, &new_dentry->d_name);
1875 nfs_mark_for_revalidate(old_inode);
1876 out:
1877 if (rehash)
1878 d_rehash(rehash);
1879 if (!error) {
1880 if (new_inode != NULL)
1881 nfs_drop_nlink(new_inode);
1882 d_move(old_dentry, new_dentry);
1883 nfs_set_verifier(new_dentry,
1884 nfs_save_change_attribute(new_dir));
1885 } else if (error == -ENOENT)
1886 nfs_dentry_handle_enoent(old_dentry);
1887
1888 /* new dentry created? */
1889 if (dentry)
1890 dput(dentry);
1891 return error;
1892 }
1893 EXPORT_SYMBOL_GPL(nfs_rename);
1894
1895 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1896 static LIST_HEAD(nfs_access_lru_list);
1897 static atomic_long_t nfs_access_nr_entries;
1898
1899 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1900 {
1901 put_rpccred(entry->cred);
1902 kfree(entry);
1903 smp_mb__before_atomic_dec();
1904 atomic_long_dec(&nfs_access_nr_entries);
1905 smp_mb__after_atomic_dec();
1906 }
1907
1908 static void nfs_access_free_list(struct list_head *head)
1909 {
1910 struct nfs_access_entry *cache;
1911
1912 while (!list_empty(head)) {
1913 cache = list_entry(head->next, struct nfs_access_entry, lru);
1914 list_del(&cache->lru);
1915 nfs_access_free_entry(cache);
1916 }
1917 }
1918
1919 int nfs_access_cache_shrinker(struct shrinker *shrink,
1920 struct shrink_control *sc)
1921 {
1922 LIST_HEAD(head);
1923 struct nfs_inode *nfsi, *next;
1924 struct nfs_access_entry *cache;
1925 int nr_to_scan = sc->nr_to_scan;
1926 gfp_t gfp_mask = sc->gfp_mask;
1927
1928 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1929 return (nr_to_scan == 0) ? 0 : -1;
1930
1931 spin_lock(&nfs_access_lru_lock);
1932 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1933 struct inode *inode;
1934
1935 if (nr_to_scan-- == 0)
1936 break;
1937 inode = &nfsi->vfs_inode;
1938 spin_lock(&inode->i_lock);
1939 if (list_empty(&nfsi->access_cache_entry_lru))
1940 goto remove_lru_entry;
1941 cache = list_entry(nfsi->access_cache_entry_lru.next,
1942 struct nfs_access_entry, lru);
1943 list_move(&cache->lru, &head);
1944 rb_erase(&cache->rb_node, &nfsi->access_cache);
1945 if (!list_empty(&nfsi->access_cache_entry_lru))
1946 list_move_tail(&nfsi->access_cache_inode_lru,
1947 &nfs_access_lru_list);
1948 else {
1949 remove_lru_entry:
1950 list_del_init(&nfsi->access_cache_inode_lru);
1951 smp_mb__before_clear_bit();
1952 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1953 smp_mb__after_clear_bit();
1954 }
1955 spin_unlock(&inode->i_lock);
1956 }
1957 spin_unlock(&nfs_access_lru_lock);
1958 nfs_access_free_list(&head);
1959 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1960 }
1961
1962 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1963 {
1964 struct rb_root *root_node = &nfsi->access_cache;
1965 struct rb_node *n;
1966 struct nfs_access_entry *entry;
1967
1968 /* Unhook entries from the cache */
1969 while ((n = rb_first(root_node)) != NULL) {
1970 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1971 rb_erase(n, root_node);
1972 list_move(&entry->lru, head);
1973 }
1974 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1975 }
1976
1977 void nfs_access_zap_cache(struct inode *inode)
1978 {
1979 LIST_HEAD(head);
1980
1981 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1982 return;
1983 /* Remove from global LRU init */
1984 spin_lock(&nfs_access_lru_lock);
1985 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1986 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1987
1988 spin_lock(&inode->i_lock);
1989 __nfs_access_zap_cache(NFS_I(inode), &head);
1990 spin_unlock(&inode->i_lock);
1991 spin_unlock(&nfs_access_lru_lock);
1992 nfs_access_free_list(&head);
1993 }
1994 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
1995
1996 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1997 {
1998 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1999 struct nfs_access_entry *entry;
2000
2001 while (n != NULL) {
2002 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2003
2004 if (cred < entry->cred)
2005 n = n->rb_left;
2006 else if (cred > entry->cred)
2007 n = n->rb_right;
2008 else
2009 return entry;
2010 }
2011 return NULL;
2012 }
2013
2014 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2015 {
2016 struct nfs_inode *nfsi = NFS_I(inode);
2017 struct nfs_access_entry *cache;
2018 int err = -ENOENT;
2019
2020 spin_lock(&inode->i_lock);
2021 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2022 goto out_zap;
2023 cache = nfs_access_search_rbtree(inode, cred);
2024 if (cache == NULL)
2025 goto out;
2026 if (!nfs_have_delegated_attributes(inode) &&
2027 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2028 goto out_stale;
2029 res->jiffies = cache->jiffies;
2030 res->cred = cache->cred;
2031 res->mask = cache->mask;
2032 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2033 err = 0;
2034 out:
2035 spin_unlock(&inode->i_lock);
2036 return err;
2037 out_stale:
2038 rb_erase(&cache->rb_node, &nfsi->access_cache);
2039 list_del(&cache->lru);
2040 spin_unlock(&inode->i_lock);
2041 nfs_access_free_entry(cache);
2042 return -ENOENT;
2043 out_zap:
2044 spin_unlock(&inode->i_lock);
2045 nfs_access_zap_cache(inode);
2046 return -ENOENT;
2047 }
2048
2049 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2050 {
2051 struct nfs_inode *nfsi = NFS_I(inode);
2052 struct rb_root *root_node = &nfsi->access_cache;
2053 struct rb_node **p = &root_node->rb_node;
2054 struct rb_node *parent = NULL;
2055 struct nfs_access_entry *entry;
2056
2057 spin_lock(&inode->i_lock);
2058 while (*p != NULL) {
2059 parent = *p;
2060 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2061
2062 if (set->cred < entry->cred)
2063 p = &parent->rb_left;
2064 else if (set->cred > entry->cred)
2065 p = &parent->rb_right;
2066 else
2067 goto found;
2068 }
2069 rb_link_node(&set->rb_node, parent, p);
2070 rb_insert_color(&set->rb_node, root_node);
2071 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2072 spin_unlock(&inode->i_lock);
2073 return;
2074 found:
2075 rb_replace_node(parent, &set->rb_node, root_node);
2076 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2077 list_del(&entry->lru);
2078 spin_unlock(&inode->i_lock);
2079 nfs_access_free_entry(entry);
2080 }
2081
2082 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2083 {
2084 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2085 if (cache == NULL)
2086 return;
2087 RB_CLEAR_NODE(&cache->rb_node);
2088 cache->jiffies = set->jiffies;
2089 cache->cred = get_rpccred(set->cred);
2090 cache->mask = set->mask;
2091
2092 nfs_access_add_rbtree(inode, cache);
2093
2094 /* Update accounting */
2095 smp_mb__before_atomic_inc();
2096 atomic_long_inc(&nfs_access_nr_entries);
2097 smp_mb__after_atomic_inc();
2098
2099 /* Add inode to global LRU list */
2100 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2101 spin_lock(&nfs_access_lru_lock);
2102 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2103 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2104 &nfs_access_lru_list);
2105 spin_unlock(&nfs_access_lru_lock);
2106 }
2107 }
2108 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2109
2110 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2111 {
2112 entry->mask = 0;
2113 if (access_result & NFS4_ACCESS_READ)
2114 entry->mask |= MAY_READ;
2115 if (access_result &
2116 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2117 entry->mask |= MAY_WRITE;
2118 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2119 entry->mask |= MAY_EXEC;
2120 }
2121 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2122
2123 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2124 {
2125 struct nfs_access_entry cache;
2126 int status;
2127
2128 status = nfs_access_get_cached(inode, cred, &cache);
2129 if (status == 0)
2130 goto out;
2131
2132 /* Be clever: ask server to check for all possible rights */
2133 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2134 cache.cred = cred;
2135 cache.jiffies = jiffies;
2136 status = NFS_PROTO(inode)->access(inode, &cache);
2137 if (status != 0) {
2138 if (status == -ESTALE) {
2139 nfs_zap_caches(inode);
2140 if (!S_ISDIR(inode->i_mode))
2141 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2142 }
2143 return status;
2144 }
2145 nfs_access_add_cache(inode, &cache);
2146 out:
2147 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2148 return 0;
2149 return -EACCES;
2150 }
2151
2152 static int nfs_open_permission_mask(int openflags)
2153 {
2154 int mask = 0;
2155
2156 if ((openflags & O_ACCMODE) != O_WRONLY)
2157 mask |= MAY_READ;
2158 if ((openflags & O_ACCMODE) != O_RDONLY)
2159 mask |= MAY_WRITE;
2160 if (openflags & __FMODE_EXEC)
2161 mask |= MAY_EXEC;
2162 return mask;
2163 }
2164
2165 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2166 {
2167 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2168 }
2169 EXPORT_SYMBOL_GPL(nfs_may_open);
2170
2171 int nfs_permission(struct inode *inode, int mask)
2172 {
2173 struct rpc_cred *cred;
2174 int res = 0;
2175
2176 if (mask & MAY_NOT_BLOCK)
2177 return -ECHILD;
2178
2179 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2180
2181 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2182 goto out;
2183 /* Is this sys_access() ? */
2184 if (mask & (MAY_ACCESS | MAY_CHDIR))
2185 goto force_lookup;
2186
2187 switch (inode->i_mode & S_IFMT) {
2188 case S_IFLNK:
2189 goto out;
2190 case S_IFREG:
2191 /* NFSv4 has atomic_open... */
2192 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2193 && (mask & MAY_OPEN)
2194 && !(mask & MAY_EXEC))
2195 goto out;
2196 break;
2197 case S_IFDIR:
2198 /*
2199 * Optimize away all write operations, since the server
2200 * will check permissions when we perform the op.
2201 */
2202 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2203 goto out;
2204 }
2205
2206 force_lookup:
2207 if (!NFS_PROTO(inode)->access)
2208 goto out_notsup;
2209
2210 cred = rpc_lookup_cred();
2211 if (!IS_ERR(cred)) {
2212 res = nfs_do_access(inode, cred, mask);
2213 put_rpccred(cred);
2214 } else
2215 res = PTR_ERR(cred);
2216 out:
2217 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2218 res = -EACCES;
2219
2220 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2221 inode->i_sb->s_id, inode->i_ino, mask, res);
2222 return res;
2223 out_notsup:
2224 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2225 if (res == 0)
2226 res = generic_permission(inode, mask);
2227 goto out;
2228 }
2229 EXPORT_SYMBOL_GPL(nfs_permission);
2230
2231 /*
2232 * Local variables:
2233 * version-control: t
2234 * kept-new-versions: 5
2235 * End:
2236 */