Merge 4.14.41 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229 mnt->mnt.data = NULL;
230
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 INIT_LIST_HEAD(&mnt->mnt_umounting);
241 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
242 }
243 return mnt;
244
245 #ifdef CONFIG_SMP
246 out_free_devname:
247 kfree_const(mnt->mnt_devname);
248 #endif
249 out_free_id:
250 mnt_free_id(mnt);
251 out_free_cache:
252 kmem_cache_free(mnt_cache, mnt);
253 return NULL;
254 }
255
256 /*
257 * Most r/o checks on a fs are for operations that take
258 * discrete amounts of time, like a write() or unlink().
259 * We must keep track of when those operations start
260 * (for permission checks) and when they end, so that
261 * we can determine when writes are able to occur to
262 * a filesystem.
263 */
264 /*
265 * __mnt_is_readonly: check whether a mount is read-only
266 * @mnt: the mount to check for its write status
267 *
268 * This shouldn't be used directly ouside of the VFS.
269 * It does not guarantee that the filesystem will stay
270 * r/w, just that it is right *now*. This can not and
271 * should not be used in place of IS_RDONLY(inode).
272 * mnt_want/drop_write() will _keep_ the filesystem
273 * r/w.
274 */
275 int __mnt_is_readonly(struct vfsmount *mnt)
276 {
277 if (mnt->mnt_flags & MNT_READONLY)
278 return 1;
279 if (sb_rdonly(mnt->mnt_sb))
280 return 1;
281 return 0;
282 }
283 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
284
285 static inline void mnt_inc_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
289 #else
290 mnt->mnt_writers++;
291 #endif
292 }
293
294 static inline void mnt_dec_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
298 #else
299 mnt->mnt_writers--;
300 #endif
301 }
302
303 static unsigned int mnt_get_writers(struct mount *mnt)
304 {
305 #ifdef CONFIG_SMP
306 unsigned int count = 0;
307 int cpu;
308
309 for_each_possible_cpu(cpu) {
310 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
311 }
312
313 return count;
314 #else
315 return mnt->mnt_writers;
316 #endif
317 }
318
319 static int mnt_is_readonly(struct vfsmount *mnt)
320 {
321 if (mnt->mnt_sb->s_readonly_remount)
322 return 1;
323 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 smp_rmb();
325 return __mnt_is_readonly(mnt);
326 }
327
328 /*
329 * Most r/o & frozen checks on a fs are for operations that take discrete
330 * amounts of time, like a write() or unlink(). We must keep track of when
331 * those operations start (for permission checks) and when they end, so that we
332 * can determine when writes are able to occur to a filesystem.
333 */
334 /**
335 * __mnt_want_write - get write access to a mount without freeze protection
336 * @m: the mount on which to take a write
337 *
338 * This tells the low-level filesystem that a write is about to be performed to
339 * it, and makes sure that writes are allowed (mnt it read-write) before
340 * returning success. This operation does not protect against filesystem being
341 * frozen. When the write operation is finished, __mnt_drop_write() must be
342 * called. This is effectively a refcount.
343 */
344 int __mnt_want_write(struct vfsmount *m)
345 {
346 struct mount *mnt = real_mount(m);
347 int ret = 0;
348
349 preempt_disable();
350 mnt_inc_writers(mnt);
351 /*
352 * The store to mnt_inc_writers must be visible before we pass
353 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
354 * incremented count after it has set MNT_WRITE_HOLD.
355 */
356 smp_mb();
357 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
358 cpu_relax();
359 /*
360 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
361 * be set to match its requirements. So we must not load that until
362 * MNT_WRITE_HOLD is cleared.
363 */
364 smp_rmb();
365 if (mnt_is_readonly(m)) {
366 mnt_dec_writers(mnt);
367 ret = -EROFS;
368 }
369 preempt_enable();
370
371 return ret;
372 }
373
374 /**
375 * mnt_want_write - get write access to a mount
376 * @m: the mount on which to take a write
377 *
378 * This tells the low-level filesystem that a write is about to be performed to
379 * it, and makes sure that writes are allowed (mount is read-write, filesystem
380 * is not frozen) before returning success. When the write operation is
381 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 */
383 int mnt_want_write(struct vfsmount *m)
384 {
385 int ret;
386
387 sb_start_write(m->mnt_sb);
388 ret = __mnt_want_write(m);
389 if (ret)
390 sb_end_write(m->mnt_sb);
391 return ret;
392 }
393 EXPORT_SYMBOL_GPL(mnt_want_write);
394
395 /**
396 * mnt_clone_write - get write access to a mount
397 * @mnt: the mount on which to take a write
398 *
399 * This is effectively like mnt_want_write, except
400 * it must only be used to take an extra write reference
401 * on a mountpoint that we already know has a write reference
402 * on it. This allows some optimisation.
403 *
404 * After finished, mnt_drop_write must be called as usual to
405 * drop the reference.
406 */
407 int mnt_clone_write(struct vfsmount *mnt)
408 {
409 /* superblock may be r/o */
410 if (__mnt_is_readonly(mnt))
411 return -EROFS;
412 preempt_disable();
413 mnt_inc_writers(real_mount(mnt));
414 preempt_enable();
415 return 0;
416 }
417 EXPORT_SYMBOL_GPL(mnt_clone_write);
418
419 /**
420 * __mnt_want_write_file - get write access to a file's mount
421 * @file: the file who's mount on which to take a write
422 *
423 * This is like __mnt_want_write, but it takes a file and can
424 * do some optimisations if the file is open for write already
425 */
426 int __mnt_want_write_file(struct file *file)
427 {
428 if (!(file->f_mode & FMODE_WRITER))
429 return __mnt_want_write(file->f_path.mnt);
430 else
431 return mnt_clone_write(file->f_path.mnt);
432 }
433
434 /**
435 * mnt_want_write_file_path - get write access to a file's mount
436 * @file: the file who's mount on which to take a write
437 *
438 * This is like mnt_want_write, but it takes a file and can
439 * do some optimisations if the file is open for write already
440 *
441 * Called by the vfs for cases when we have an open file at hand, but will do an
442 * inode operation on it (important distinction for files opened on overlayfs,
443 * since the file operations will come from the real underlying file, while
444 * inode operations come from the overlay).
445 */
446 int mnt_want_write_file_path(struct file *file)
447 {
448 int ret;
449
450 sb_start_write(file->f_path.mnt->mnt_sb);
451 ret = __mnt_want_write_file(file);
452 if (ret)
453 sb_end_write(file->f_path.mnt->mnt_sb);
454 return ret;
455 }
456
457 static inline int may_write_real(struct file *file)
458 {
459 struct dentry *dentry = file->f_path.dentry;
460 struct dentry *upperdentry;
461
462 /* Writable file? */
463 if (file->f_mode & FMODE_WRITER)
464 return 0;
465
466 /* Not overlayfs? */
467 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
468 return 0;
469
470 /* File refers to upper, writable layer? */
471 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
472 if (upperdentry &&
473 (file_inode(file) == d_inode(upperdentry) ||
474 file_inode(file) == d_inode(dentry)))
475 return 0;
476
477 /* Lower layer: can't write to real file, sorry... */
478 return -EPERM;
479 }
480
481 /**
482 * mnt_want_write_file - get write access to a file's mount
483 * @file: the file who's mount on which to take a write
484 *
485 * This is like mnt_want_write, but it takes a file and can
486 * do some optimisations if the file is open for write already
487 *
488 * Mostly called by filesystems from their ioctl operation before performing
489 * modification. On overlayfs this needs to check if the file is on a read-only
490 * lower layer and deny access in that case.
491 */
492 int mnt_want_write_file(struct file *file)
493 {
494 int ret;
495
496 ret = may_write_real(file);
497 if (!ret) {
498 sb_start_write(file_inode(file)->i_sb);
499 ret = __mnt_want_write_file(file);
500 if (ret)
501 sb_end_write(file_inode(file)->i_sb);
502 }
503 return ret;
504 }
505 EXPORT_SYMBOL_GPL(mnt_want_write_file);
506
507 /**
508 * __mnt_drop_write - give up write access to a mount
509 * @mnt: the mount on which to give up write access
510 *
511 * Tells the low-level filesystem that we are done
512 * performing writes to it. Must be matched with
513 * __mnt_want_write() call above.
514 */
515 void __mnt_drop_write(struct vfsmount *mnt)
516 {
517 preempt_disable();
518 mnt_dec_writers(real_mount(mnt));
519 preempt_enable();
520 }
521
522 /**
523 * mnt_drop_write - give up write access to a mount
524 * @mnt: the mount on which to give up write access
525 *
526 * Tells the low-level filesystem that we are done performing writes to it and
527 * also allows filesystem to be frozen again. Must be matched with
528 * mnt_want_write() call above.
529 */
530 void mnt_drop_write(struct vfsmount *mnt)
531 {
532 __mnt_drop_write(mnt);
533 sb_end_write(mnt->mnt_sb);
534 }
535 EXPORT_SYMBOL_GPL(mnt_drop_write);
536
537 void __mnt_drop_write_file(struct file *file)
538 {
539 __mnt_drop_write(file->f_path.mnt);
540 }
541
542 void mnt_drop_write_file_path(struct file *file)
543 {
544 mnt_drop_write(file->f_path.mnt);
545 }
546
547 void mnt_drop_write_file(struct file *file)
548 {
549 __mnt_drop_write(file->f_path.mnt);
550 sb_end_write(file_inode(file)->i_sb);
551 }
552 EXPORT_SYMBOL(mnt_drop_write_file);
553
554 static int mnt_make_readonly(struct mount *mnt)
555 {
556 int ret = 0;
557
558 lock_mount_hash();
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 /*
561 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
562 * should be visible before we do.
563 */
564 smp_mb();
565
566 /*
567 * With writers on hold, if this value is zero, then there are
568 * definitely no active writers (although held writers may subsequently
569 * increment the count, they'll have to wait, and decrement it after
570 * seeing MNT_READONLY).
571 *
572 * It is OK to have counter incremented on one CPU and decremented on
573 * another: the sum will add up correctly. The danger would be when we
574 * sum up each counter, if we read a counter before it is incremented,
575 * but then read another CPU's count which it has been subsequently
576 * decremented from -- we would see more decrements than we should.
577 * MNT_WRITE_HOLD protects against this scenario, because
578 * mnt_want_write first increments count, then smp_mb, then spins on
579 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
580 * we're counting up here.
581 */
582 if (mnt_get_writers(mnt) > 0)
583 ret = -EBUSY;
584 else
585 mnt->mnt.mnt_flags |= MNT_READONLY;
586 /*
587 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
588 * that become unheld will see MNT_READONLY.
589 */
590 smp_wmb();
591 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
592 unlock_mount_hash();
593 return ret;
594 }
595
596 static void __mnt_unmake_readonly(struct mount *mnt)
597 {
598 lock_mount_hash();
599 mnt->mnt.mnt_flags &= ~MNT_READONLY;
600 unlock_mount_hash();
601 }
602
603 int sb_prepare_remount_readonly(struct super_block *sb)
604 {
605 struct mount *mnt;
606 int err = 0;
607
608 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
609 if (atomic_long_read(&sb->s_remove_count))
610 return -EBUSY;
611
612 lock_mount_hash();
613 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
614 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
615 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
616 smp_mb();
617 if (mnt_get_writers(mnt) > 0) {
618 err = -EBUSY;
619 break;
620 }
621 }
622 }
623 if (!err && atomic_long_read(&sb->s_remove_count))
624 err = -EBUSY;
625
626 if (!err) {
627 sb->s_readonly_remount = 1;
628 smp_wmb();
629 }
630 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
631 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
632 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
633 }
634 unlock_mount_hash();
635
636 return err;
637 }
638
639 static void free_vfsmnt(struct mount *mnt)
640 {
641 kfree(mnt->mnt.data);
642 kfree_const(mnt->mnt_devname);
643 #ifdef CONFIG_SMP
644 free_percpu(mnt->mnt_pcp);
645 #endif
646 kmem_cache_free(mnt_cache, mnt);
647 }
648
649 static void delayed_free_vfsmnt(struct rcu_head *head)
650 {
651 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
652 }
653
654 /* call under rcu_read_lock */
655 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
656 {
657 struct mount *mnt;
658 if (read_seqretry(&mount_lock, seq))
659 return 1;
660 if (bastard == NULL)
661 return 0;
662 mnt = real_mount(bastard);
663 mnt_add_count(mnt, 1);
664 if (likely(!read_seqretry(&mount_lock, seq)))
665 return 0;
666 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
667 mnt_add_count(mnt, -1);
668 return 1;
669 }
670 return -1;
671 }
672
673 /* call under rcu_read_lock */
674 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
675 {
676 int res = __legitimize_mnt(bastard, seq);
677 if (likely(!res))
678 return true;
679 if (unlikely(res < 0)) {
680 rcu_read_unlock();
681 mntput(bastard);
682 rcu_read_lock();
683 }
684 return false;
685 }
686
687 /*
688 * find the first mount at @dentry on vfsmount @mnt.
689 * call under rcu_read_lock()
690 */
691 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
692 {
693 struct hlist_head *head = m_hash(mnt, dentry);
694 struct mount *p;
695
696 hlist_for_each_entry_rcu(p, head, mnt_hash)
697 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
698 return p;
699 return NULL;
700 }
701
702 /*
703 * lookup_mnt - Return the first child mount mounted at path
704 *
705 * "First" means first mounted chronologically. If you create the
706 * following mounts:
707 *
708 * mount /dev/sda1 /mnt
709 * mount /dev/sda2 /mnt
710 * mount /dev/sda3 /mnt
711 *
712 * Then lookup_mnt() on the base /mnt dentry in the root mount will
713 * return successively the root dentry and vfsmount of /dev/sda1, then
714 * /dev/sda2, then /dev/sda3, then NULL.
715 *
716 * lookup_mnt takes a reference to the found vfsmount.
717 */
718 struct vfsmount *lookup_mnt(const struct path *path)
719 {
720 struct mount *child_mnt;
721 struct vfsmount *m;
722 unsigned seq;
723
724 rcu_read_lock();
725 do {
726 seq = read_seqbegin(&mount_lock);
727 child_mnt = __lookup_mnt(path->mnt, path->dentry);
728 m = child_mnt ? &child_mnt->mnt : NULL;
729 } while (!legitimize_mnt(m, seq));
730 rcu_read_unlock();
731 return m;
732 }
733
734 /*
735 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
736 * current mount namespace.
737 *
738 * The common case is dentries are not mountpoints at all and that
739 * test is handled inline. For the slow case when we are actually
740 * dealing with a mountpoint of some kind, walk through all of the
741 * mounts in the current mount namespace and test to see if the dentry
742 * is a mountpoint.
743 *
744 * The mount_hashtable is not usable in the context because we
745 * need to identify all mounts that may be in the current mount
746 * namespace not just a mount that happens to have some specified
747 * parent mount.
748 */
749 bool __is_local_mountpoint(struct dentry *dentry)
750 {
751 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
752 struct mount *mnt;
753 bool is_covered = false;
754
755 if (!d_mountpoint(dentry))
756 goto out;
757
758 down_read(&namespace_sem);
759 list_for_each_entry(mnt, &ns->list, mnt_list) {
760 is_covered = (mnt->mnt_mountpoint == dentry);
761 if (is_covered)
762 break;
763 }
764 up_read(&namespace_sem);
765 out:
766 return is_covered;
767 }
768
769 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
770 {
771 struct hlist_head *chain = mp_hash(dentry);
772 struct mountpoint *mp;
773
774 hlist_for_each_entry(mp, chain, m_hash) {
775 if (mp->m_dentry == dentry) {
776 /* might be worth a WARN_ON() */
777 if (d_unlinked(dentry))
778 return ERR_PTR(-ENOENT);
779 mp->m_count++;
780 return mp;
781 }
782 }
783 return NULL;
784 }
785
786 static struct mountpoint *get_mountpoint(struct dentry *dentry)
787 {
788 struct mountpoint *mp, *new = NULL;
789 int ret;
790
791 if (d_mountpoint(dentry)) {
792 mountpoint:
793 read_seqlock_excl(&mount_lock);
794 mp = lookup_mountpoint(dentry);
795 read_sequnlock_excl(&mount_lock);
796 if (mp)
797 goto done;
798 }
799
800 if (!new)
801 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
802 if (!new)
803 return ERR_PTR(-ENOMEM);
804
805
806 /* Exactly one processes may set d_mounted */
807 ret = d_set_mounted(dentry);
808
809 /* Someone else set d_mounted? */
810 if (ret == -EBUSY)
811 goto mountpoint;
812
813 /* The dentry is not available as a mountpoint? */
814 mp = ERR_PTR(ret);
815 if (ret)
816 goto done;
817
818 /* Add the new mountpoint to the hash table */
819 read_seqlock_excl(&mount_lock);
820 new->m_dentry = dentry;
821 new->m_count = 1;
822 hlist_add_head(&new->m_hash, mp_hash(dentry));
823 INIT_HLIST_HEAD(&new->m_list);
824 read_sequnlock_excl(&mount_lock);
825
826 mp = new;
827 new = NULL;
828 done:
829 kfree(new);
830 return mp;
831 }
832
833 static void put_mountpoint(struct mountpoint *mp)
834 {
835 if (!--mp->m_count) {
836 struct dentry *dentry = mp->m_dentry;
837 BUG_ON(!hlist_empty(&mp->m_list));
838 spin_lock(&dentry->d_lock);
839 dentry->d_flags &= ~DCACHE_MOUNTED;
840 spin_unlock(&dentry->d_lock);
841 hlist_del(&mp->m_hash);
842 kfree(mp);
843 }
844 }
845
846 static inline int check_mnt(struct mount *mnt)
847 {
848 return mnt->mnt_ns == current->nsproxy->mnt_ns;
849 }
850
851 /*
852 * vfsmount lock must be held for write
853 */
854 static void touch_mnt_namespace(struct mnt_namespace *ns)
855 {
856 if (ns) {
857 ns->event = ++event;
858 wake_up_interruptible(&ns->poll);
859 }
860 }
861
862 /*
863 * vfsmount lock must be held for write
864 */
865 static void __touch_mnt_namespace(struct mnt_namespace *ns)
866 {
867 if (ns && ns->event != event) {
868 ns->event = event;
869 wake_up_interruptible(&ns->poll);
870 }
871 }
872
873 /*
874 * vfsmount lock must be held for write
875 */
876 static void unhash_mnt(struct mount *mnt)
877 {
878 mnt->mnt_parent = mnt;
879 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
880 list_del_init(&mnt->mnt_child);
881 hlist_del_init_rcu(&mnt->mnt_hash);
882 hlist_del_init(&mnt->mnt_mp_list);
883 put_mountpoint(mnt->mnt_mp);
884 mnt->mnt_mp = NULL;
885 }
886
887 /*
888 * vfsmount lock must be held for write
889 */
890 static void detach_mnt(struct mount *mnt, struct path *old_path)
891 {
892 old_path->dentry = mnt->mnt_mountpoint;
893 old_path->mnt = &mnt->mnt_parent->mnt;
894 unhash_mnt(mnt);
895 }
896
897 /*
898 * vfsmount lock must be held for write
899 */
900 static void umount_mnt(struct mount *mnt)
901 {
902 /* old mountpoint will be dropped when we can do that */
903 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
904 unhash_mnt(mnt);
905 }
906
907 /*
908 * vfsmount lock must be held for write
909 */
910 void mnt_set_mountpoint(struct mount *mnt,
911 struct mountpoint *mp,
912 struct mount *child_mnt)
913 {
914 mp->m_count++;
915 mnt_add_count(mnt, 1); /* essentially, that's mntget */
916 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
917 child_mnt->mnt_parent = mnt;
918 child_mnt->mnt_mp = mp;
919 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
920 }
921
922 static void __attach_mnt(struct mount *mnt, struct mount *parent)
923 {
924 hlist_add_head_rcu(&mnt->mnt_hash,
925 m_hash(&parent->mnt, mnt->mnt_mountpoint));
926 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
927 }
928
929 /*
930 * vfsmount lock must be held for write
931 */
932 static void attach_mnt(struct mount *mnt,
933 struct mount *parent,
934 struct mountpoint *mp)
935 {
936 mnt_set_mountpoint(parent, mp, mnt);
937 __attach_mnt(mnt, parent);
938 }
939
940 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
941 {
942 struct mountpoint *old_mp = mnt->mnt_mp;
943 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
944 struct mount *old_parent = mnt->mnt_parent;
945
946 list_del_init(&mnt->mnt_child);
947 hlist_del_init(&mnt->mnt_mp_list);
948 hlist_del_init_rcu(&mnt->mnt_hash);
949
950 attach_mnt(mnt, parent, mp);
951
952 put_mountpoint(old_mp);
953
954 /*
955 * Safely avoid even the suggestion this code might sleep or
956 * lock the mount hash by taking advantage of the knowledge that
957 * mnt_change_mountpoint will not release the final reference
958 * to a mountpoint.
959 *
960 * During mounting, the mount passed in as the parent mount will
961 * continue to use the old mountpoint and during unmounting, the
962 * old mountpoint will continue to exist until namespace_unlock,
963 * which happens well after mnt_change_mountpoint.
964 */
965 spin_lock(&old_mountpoint->d_lock);
966 old_mountpoint->d_lockref.count--;
967 spin_unlock(&old_mountpoint->d_lock);
968
969 mnt_add_count(old_parent, -1);
970 }
971
972 /*
973 * vfsmount lock must be held for write
974 */
975 static void commit_tree(struct mount *mnt)
976 {
977 struct mount *parent = mnt->mnt_parent;
978 struct mount *m;
979 LIST_HEAD(head);
980 struct mnt_namespace *n = parent->mnt_ns;
981
982 BUG_ON(parent == mnt);
983
984 list_add_tail(&head, &mnt->mnt_list);
985 list_for_each_entry(m, &head, mnt_list)
986 m->mnt_ns = n;
987
988 list_splice(&head, n->list.prev);
989
990 n->mounts += n->pending_mounts;
991 n->pending_mounts = 0;
992
993 __attach_mnt(mnt, parent);
994 touch_mnt_namespace(n);
995 }
996
997 static struct mount *next_mnt(struct mount *p, struct mount *root)
998 {
999 struct list_head *next = p->mnt_mounts.next;
1000 if (next == &p->mnt_mounts) {
1001 while (1) {
1002 if (p == root)
1003 return NULL;
1004 next = p->mnt_child.next;
1005 if (next != &p->mnt_parent->mnt_mounts)
1006 break;
1007 p = p->mnt_parent;
1008 }
1009 }
1010 return list_entry(next, struct mount, mnt_child);
1011 }
1012
1013 static struct mount *skip_mnt_tree(struct mount *p)
1014 {
1015 struct list_head *prev = p->mnt_mounts.prev;
1016 while (prev != &p->mnt_mounts) {
1017 p = list_entry(prev, struct mount, mnt_child);
1018 prev = p->mnt_mounts.prev;
1019 }
1020 return p;
1021 }
1022
1023 struct vfsmount *
1024 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1025 {
1026 struct mount *mnt;
1027 struct dentry *root;
1028
1029 if (!type)
1030 return ERR_PTR(-ENODEV);
1031
1032 mnt = alloc_vfsmnt(name);
1033 if (!mnt)
1034 return ERR_PTR(-ENOMEM);
1035
1036 if (type->alloc_mnt_data) {
1037 mnt->mnt.data = type->alloc_mnt_data();
1038 if (!mnt->mnt.data) {
1039 mnt_free_id(mnt);
1040 free_vfsmnt(mnt);
1041 return ERR_PTR(-ENOMEM);
1042 }
1043 }
1044 if (flags & SB_KERNMOUNT)
1045 mnt->mnt.mnt_flags = MNT_INTERNAL;
1046
1047 root = mount_fs(type, flags, name, &mnt->mnt, data);
1048 if (IS_ERR(root)) {
1049 mnt_free_id(mnt);
1050 free_vfsmnt(mnt);
1051 return ERR_CAST(root);
1052 }
1053
1054 mnt->mnt.mnt_root = root;
1055 mnt->mnt.mnt_sb = root->d_sb;
1056 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1057 mnt->mnt_parent = mnt;
1058 lock_mount_hash();
1059 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1060 unlock_mount_hash();
1061 return &mnt->mnt;
1062 }
1063 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1064
1065 struct vfsmount *
1066 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1067 const char *name, void *data)
1068 {
1069 /* Until it is worked out how to pass the user namespace
1070 * through from the parent mount to the submount don't support
1071 * unprivileged mounts with submounts.
1072 */
1073 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1074 return ERR_PTR(-EPERM);
1075
1076 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1077 }
1078 EXPORT_SYMBOL_GPL(vfs_submount);
1079
1080 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1081 int flag)
1082 {
1083 struct super_block *sb = old->mnt.mnt_sb;
1084 struct mount *mnt;
1085 int err;
1086
1087 mnt = alloc_vfsmnt(old->mnt_devname);
1088 if (!mnt)
1089 return ERR_PTR(-ENOMEM);
1090
1091 if (sb->s_op->clone_mnt_data) {
1092 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1093 if (!mnt->mnt.data) {
1094 err = -ENOMEM;
1095 goto out_free;
1096 }
1097 }
1098
1099 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1100 mnt->mnt_group_id = 0; /* not a peer of original */
1101 else
1102 mnt->mnt_group_id = old->mnt_group_id;
1103
1104 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1105 err = mnt_alloc_group_id(mnt);
1106 if (err)
1107 goto out_free;
1108 }
1109
1110 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1111 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1112 /* Don't allow unprivileged users to change mount flags */
1113 if (flag & CL_UNPRIVILEGED) {
1114 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1115
1116 if (mnt->mnt.mnt_flags & MNT_READONLY)
1117 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1118
1119 if (mnt->mnt.mnt_flags & MNT_NODEV)
1120 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1121
1122 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1123 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1124
1125 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1126 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1127 }
1128
1129 /* Don't allow unprivileged users to reveal what is under a mount */
1130 if ((flag & CL_UNPRIVILEGED) &&
1131 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1132 mnt->mnt.mnt_flags |= MNT_LOCKED;
1133
1134 atomic_inc(&sb->s_active);
1135 mnt->mnt.mnt_sb = sb;
1136 mnt->mnt.mnt_root = dget(root);
1137 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1138 mnt->mnt_parent = mnt;
1139 lock_mount_hash();
1140 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1141 unlock_mount_hash();
1142
1143 if ((flag & CL_SLAVE) ||
1144 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1145 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1146 mnt->mnt_master = old;
1147 CLEAR_MNT_SHARED(mnt);
1148 } else if (!(flag & CL_PRIVATE)) {
1149 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1150 list_add(&mnt->mnt_share, &old->mnt_share);
1151 if (IS_MNT_SLAVE(old))
1152 list_add(&mnt->mnt_slave, &old->mnt_slave);
1153 mnt->mnt_master = old->mnt_master;
1154 } else {
1155 CLEAR_MNT_SHARED(mnt);
1156 }
1157 if (flag & CL_MAKE_SHARED)
1158 set_mnt_shared(mnt);
1159
1160 /* stick the duplicate mount on the same expiry list
1161 * as the original if that was on one */
1162 if (flag & CL_EXPIRE) {
1163 if (!list_empty(&old->mnt_expire))
1164 list_add(&mnt->mnt_expire, &old->mnt_expire);
1165 }
1166
1167 return mnt;
1168
1169 out_free:
1170 mnt_free_id(mnt);
1171 free_vfsmnt(mnt);
1172 return ERR_PTR(err);
1173 }
1174
1175 static void cleanup_mnt(struct mount *mnt)
1176 {
1177 /*
1178 * This probably indicates that somebody messed
1179 * up a mnt_want/drop_write() pair. If this
1180 * happens, the filesystem was probably unable
1181 * to make r/w->r/o transitions.
1182 */
1183 /*
1184 * The locking used to deal with mnt_count decrement provides barriers,
1185 * so mnt_get_writers() below is safe.
1186 */
1187 WARN_ON(mnt_get_writers(mnt));
1188 if (unlikely(mnt->mnt_pins.first))
1189 mnt_pin_kill(mnt);
1190 fsnotify_vfsmount_delete(&mnt->mnt);
1191 dput(mnt->mnt.mnt_root);
1192 deactivate_super(mnt->mnt.mnt_sb);
1193 mnt_free_id(mnt);
1194 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1195 }
1196
1197 static void __cleanup_mnt(struct rcu_head *head)
1198 {
1199 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1200 }
1201
1202 static LLIST_HEAD(delayed_mntput_list);
1203 static void delayed_mntput(struct work_struct *unused)
1204 {
1205 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1206 struct mount *m, *t;
1207
1208 llist_for_each_entry_safe(m, t, node, mnt_llist)
1209 cleanup_mnt(m);
1210 }
1211 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1212
1213 static void mntput_no_expire(struct mount *mnt)
1214 {
1215 rcu_read_lock();
1216 mnt_add_count(mnt, -1);
1217 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1218 rcu_read_unlock();
1219 return;
1220 }
1221 lock_mount_hash();
1222 if (mnt_get_count(mnt)) {
1223 rcu_read_unlock();
1224 unlock_mount_hash();
1225 return;
1226 }
1227 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1228 rcu_read_unlock();
1229 unlock_mount_hash();
1230 return;
1231 }
1232 mnt->mnt.mnt_flags |= MNT_DOOMED;
1233 rcu_read_unlock();
1234
1235 list_del(&mnt->mnt_instance);
1236
1237 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1238 struct mount *p, *tmp;
1239 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1240 umount_mnt(p);
1241 }
1242 }
1243 unlock_mount_hash();
1244
1245 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1246 struct task_struct *task = current;
1247 if (likely(!(task->flags & PF_KTHREAD))) {
1248 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1249 if (!task_work_add(task, &mnt->mnt_rcu, true))
1250 return;
1251 }
1252 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1253 schedule_delayed_work(&delayed_mntput_work, 1);
1254 return;
1255 }
1256 cleanup_mnt(mnt);
1257 }
1258
1259 void mntput(struct vfsmount *mnt)
1260 {
1261 if (mnt) {
1262 struct mount *m = real_mount(mnt);
1263 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1264 if (unlikely(m->mnt_expiry_mark))
1265 m->mnt_expiry_mark = 0;
1266 mntput_no_expire(m);
1267 }
1268 }
1269 EXPORT_SYMBOL(mntput);
1270
1271 struct vfsmount *mntget(struct vfsmount *mnt)
1272 {
1273 if (mnt)
1274 mnt_add_count(real_mount(mnt), 1);
1275 return mnt;
1276 }
1277 EXPORT_SYMBOL(mntget);
1278
1279 /* path_is_mountpoint() - Check if path is a mount in the current
1280 * namespace.
1281 *
1282 * d_mountpoint() can only be used reliably to establish if a dentry is
1283 * not mounted in any namespace and that common case is handled inline.
1284 * d_mountpoint() isn't aware of the possibility there may be multiple
1285 * mounts using a given dentry in a different namespace. This function
1286 * checks if the passed in path is a mountpoint rather than the dentry
1287 * alone.
1288 */
1289 bool path_is_mountpoint(const struct path *path)
1290 {
1291 unsigned seq;
1292 bool res;
1293
1294 if (!d_mountpoint(path->dentry))
1295 return false;
1296
1297 rcu_read_lock();
1298 do {
1299 seq = read_seqbegin(&mount_lock);
1300 res = __path_is_mountpoint(path);
1301 } while (read_seqretry(&mount_lock, seq));
1302 rcu_read_unlock();
1303
1304 return res;
1305 }
1306 EXPORT_SYMBOL(path_is_mountpoint);
1307
1308 struct vfsmount *mnt_clone_internal(const struct path *path)
1309 {
1310 struct mount *p;
1311 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1312 if (IS_ERR(p))
1313 return ERR_CAST(p);
1314 p->mnt.mnt_flags |= MNT_INTERNAL;
1315 return &p->mnt;
1316 }
1317
1318 #ifdef CONFIG_PROC_FS
1319 /* iterator; we want it to have access to namespace_sem, thus here... */
1320 static void *m_start(struct seq_file *m, loff_t *pos)
1321 {
1322 struct proc_mounts *p = m->private;
1323
1324 down_read(&namespace_sem);
1325 if (p->cached_event == p->ns->event) {
1326 void *v = p->cached_mount;
1327 if (*pos == p->cached_index)
1328 return v;
1329 if (*pos == p->cached_index + 1) {
1330 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1331 return p->cached_mount = v;
1332 }
1333 }
1334
1335 p->cached_event = p->ns->event;
1336 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1337 p->cached_index = *pos;
1338 return p->cached_mount;
1339 }
1340
1341 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1342 {
1343 struct proc_mounts *p = m->private;
1344
1345 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1346 p->cached_index = *pos;
1347 return p->cached_mount;
1348 }
1349
1350 static void m_stop(struct seq_file *m, void *v)
1351 {
1352 up_read(&namespace_sem);
1353 }
1354
1355 static int m_show(struct seq_file *m, void *v)
1356 {
1357 struct proc_mounts *p = m->private;
1358 struct mount *r = list_entry(v, struct mount, mnt_list);
1359 return p->show(m, &r->mnt);
1360 }
1361
1362 const struct seq_operations mounts_op = {
1363 .start = m_start,
1364 .next = m_next,
1365 .stop = m_stop,
1366 .show = m_show,
1367 };
1368 #endif /* CONFIG_PROC_FS */
1369
1370 /**
1371 * may_umount_tree - check if a mount tree is busy
1372 * @mnt: root of mount tree
1373 *
1374 * This is called to check if a tree of mounts has any
1375 * open files, pwds, chroots or sub mounts that are
1376 * busy.
1377 */
1378 int may_umount_tree(struct vfsmount *m)
1379 {
1380 struct mount *mnt = real_mount(m);
1381 int actual_refs = 0;
1382 int minimum_refs = 0;
1383 struct mount *p;
1384 BUG_ON(!m);
1385
1386 /* write lock needed for mnt_get_count */
1387 lock_mount_hash();
1388 for (p = mnt; p; p = next_mnt(p, mnt)) {
1389 actual_refs += mnt_get_count(p);
1390 minimum_refs += 2;
1391 }
1392 unlock_mount_hash();
1393
1394 if (actual_refs > minimum_refs)
1395 return 0;
1396
1397 return 1;
1398 }
1399
1400 EXPORT_SYMBOL(may_umount_tree);
1401
1402 /**
1403 * may_umount - check if a mount point is busy
1404 * @mnt: root of mount
1405 *
1406 * This is called to check if a mount point has any
1407 * open files, pwds, chroots or sub mounts. If the
1408 * mount has sub mounts this will return busy
1409 * regardless of whether the sub mounts are busy.
1410 *
1411 * Doesn't take quota and stuff into account. IOW, in some cases it will
1412 * give false negatives. The main reason why it's here is that we need
1413 * a non-destructive way to look for easily umountable filesystems.
1414 */
1415 int may_umount(struct vfsmount *mnt)
1416 {
1417 int ret = 1;
1418 down_read(&namespace_sem);
1419 lock_mount_hash();
1420 if (propagate_mount_busy(real_mount(mnt), 2))
1421 ret = 0;
1422 unlock_mount_hash();
1423 up_read(&namespace_sem);
1424 return ret;
1425 }
1426
1427 EXPORT_SYMBOL(may_umount);
1428
1429 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1430
1431 static void namespace_unlock(void)
1432 {
1433 struct hlist_head head;
1434
1435 hlist_move_list(&unmounted, &head);
1436
1437 up_write(&namespace_sem);
1438
1439 if (likely(hlist_empty(&head)))
1440 return;
1441
1442 synchronize_rcu();
1443
1444 group_pin_kill(&head);
1445 }
1446
1447 static inline void namespace_lock(void)
1448 {
1449 down_write(&namespace_sem);
1450 }
1451
1452 enum umount_tree_flags {
1453 UMOUNT_SYNC = 1,
1454 UMOUNT_PROPAGATE = 2,
1455 UMOUNT_CONNECTED = 4,
1456 };
1457
1458 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1459 {
1460 /* Leaving mounts connected is only valid for lazy umounts */
1461 if (how & UMOUNT_SYNC)
1462 return true;
1463
1464 /* A mount without a parent has nothing to be connected to */
1465 if (!mnt_has_parent(mnt))
1466 return true;
1467
1468 /* Because the reference counting rules change when mounts are
1469 * unmounted and connected, umounted mounts may not be
1470 * connected to mounted mounts.
1471 */
1472 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1473 return true;
1474
1475 /* Has it been requested that the mount remain connected? */
1476 if (how & UMOUNT_CONNECTED)
1477 return false;
1478
1479 /* Is the mount locked such that it needs to remain connected? */
1480 if (IS_MNT_LOCKED(mnt))
1481 return false;
1482
1483 /* By default disconnect the mount */
1484 return true;
1485 }
1486
1487 /*
1488 * mount_lock must be held
1489 * namespace_sem must be held for write
1490 */
1491 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1492 {
1493 LIST_HEAD(tmp_list);
1494 struct mount *p;
1495
1496 if (how & UMOUNT_PROPAGATE)
1497 propagate_mount_unlock(mnt);
1498
1499 /* Gather the mounts to umount */
1500 for (p = mnt; p; p = next_mnt(p, mnt)) {
1501 p->mnt.mnt_flags |= MNT_UMOUNT;
1502 list_move(&p->mnt_list, &tmp_list);
1503 }
1504
1505 /* Hide the mounts from mnt_mounts */
1506 list_for_each_entry(p, &tmp_list, mnt_list) {
1507 list_del_init(&p->mnt_child);
1508 }
1509
1510 /* Add propogated mounts to the tmp_list */
1511 if (how & UMOUNT_PROPAGATE)
1512 propagate_umount(&tmp_list);
1513
1514 while (!list_empty(&tmp_list)) {
1515 struct mnt_namespace *ns;
1516 bool disconnect;
1517 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1518 list_del_init(&p->mnt_expire);
1519 list_del_init(&p->mnt_list);
1520 ns = p->mnt_ns;
1521 if (ns) {
1522 ns->mounts--;
1523 __touch_mnt_namespace(ns);
1524 }
1525 p->mnt_ns = NULL;
1526 if (how & UMOUNT_SYNC)
1527 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1528
1529 disconnect = disconnect_mount(p, how);
1530
1531 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1532 disconnect ? &unmounted : NULL);
1533 if (mnt_has_parent(p)) {
1534 mnt_add_count(p->mnt_parent, -1);
1535 if (!disconnect) {
1536 /* Don't forget about p */
1537 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1538 } else {
1539 umount_mnt(p);
1540 }
1541 }
1542 change_mnt_propagation(p, MS_PRIVATE);
1543 }
1544 }
1545
1546 static void shrink_submounts(struct mount *mnt);
1547
1548 static int do_umount(struct mount *mnt, int flags)
1549 {
1550 struct super_block *sb = mnt->mnt.mnt_sb;
1551 int retval;
1552
1553 retval = security_sb_umount(&mnt->mnt, flags);
1554 if (retval)
1555 return retval;
1556
1557 /*
1558 * Allow userspace to request a mountpoint be expired rather than
1559 * unmounting unconditionally. Unmount only happens if:
1560 * (1) the mark is already set (the mark is cleared by mntput())
1561 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1562 */
1563 if (flags & MNT_EXPIRE) {
1564 if (&mnt->mnt == current->fs->root.mnt ||
1565 flags & (MNT_FORCE | MNT_DETACH))
1566 return -EINVAL;
1567
1568 /*
1569 * probably don't strictly need the lock here if we examined
1570 * all race cases, but it's a slowpath.
1571 */
1572 lock_mount_hash();
1573 if (mnt_get_count(mnt) != 2) {
1574 unlock_mount_hash();
1575 return -EBUSY;
1576 }
1577 unlock_mount_hash();
1578
1579 if (!xchg(&mnt->mnt_expiry_mark, 1))
1580 return -EAGAIN;
1581 }
1582
1583 /*
1584 * If we may have to abort operations to get out of this
1585 * mount, and they will themselves hold resources we must
1586 * allow the fs to do things. In the Unix tradition of
1587 * 'Gee thats tricky lets do it in userspace' the umount_begin
1588 * might fail to complete on the first run through as other tasks
1589 * must return, and the like. Thats for the mount program to worry
1590 * about for the moment.
1591 */
1592
1593 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1594 sb->s_op->umount_begin(sb);
1595 }
1596
1597 /*
1598 * No sense to grab the lock for this test, but test itself looks
1599 * somewhat bogus. Suggestions for better replacement?
1600 * Ho-hum... In principle, we might treat that as umount + switch
1601 * to rootfs. GC would eventually take care of the old vfsmount.
1602 * Actually it makes sense, especially if rootfs would contain a
1603 * /reboot - static binary that would close all descriptors and
1604 * call reboot(9). Then init(8) could umount root and exec /reboot.
1605 */
1606 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1607 /*
1608 * Special case for "unmounting" root ...
1609 * we just try to remount it readonly.
1610 */
1611 if (!capable(CAP_SYS_ADMIN))
1612 return -EPERM;
1613 down_write(&sb->s_umount);
1614 if (!sb_rdonly(sb))
1615 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1616 up_write(&sb->s_umount);
1617 return retval;
1618 }
1619
1620 namespace_lock();
1621 lock_mount_hash();
1622 event++;
1623
1624 if (flags & MNT_DETACH) {
1625 if (!list_empty(&mnt->mnt_list))
1626 umount_tree(mnt, UMOUNT_PROPAGATE);
1627 retval = 0;
1628 } else {
1629 shrink_submounts(mnt);
1630 retval = -EBUSY;
1631 if (!propagate_mount_busy(mnt, 2)) {
1632 if (!list_empty(&mnt->mnt_list))
1633 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1634 retval = 0;
1635 }
1636 }
1637 unlock_mount_hash();
1638 namespace_unlock();
1639 return retval;
1640 }
1641
1642 /*
1643 * __detach_mounts - lazily unmount all mounts on the specified dentry
1644 *
1645 * During unlink, rmdir, and d_drop it is possible to loose the path
1646 * to an existing mountpoint, and wind up leaking the mount.
1647 * detach_mounts allows lazily unmounting those mounts instead of
1648 * leaking them.
1649 *
1650 * The caller may hold dentry->d_inode->i_mutex.
1651 */
1652 void __detach_mounts(struct dentry *dentry)
1653 {
1654 struct mountpoint *mp;
1655 struct mount *mnt;
1656
1657 namespace_lock();
1658 lock_mount_hash();
1659 mp = lookup_mountpoint(dentry);
1660 if (IS_ERR_OR_NULL(mp))
1661 goto out_unlock;
1662
1663 event++;
1664 while (!hlist_empty(&mp->m_list)) {
1665 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1666 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1667 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1668 umount_mnt(mnt);
1669 }
1670 else umount_tree(mnt, UMOUNT_CONNECTED);
1671 }
1672 put_mountpoint(mp);
1673 out_unlock:
1674 unlock_mount_hash();
1675 namespace_unlock();
1676 }
1677
1678 /*
1679 * Is the caller allowed to modify his namespace?
1680 */
1681 static inline bool may_mount(void)
1682 {
1683 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1684 }
1685
1686 static inline bool may_mandlock(void)
1687 {
1688 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1689 return false;
1690 #endif
1691 return capable(CAP_SYS_ADMIN);
1692 }
1693
1694 /*
1695 * Now umount can handle mount points as well as block devices.
1696 * This is important for filesystems which use unnamed block devices.
1697 *
1698 * We now support a flag for forced unmount like the other 'big iron'
1699 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1700 */
1701
1702 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1703 {
1704 struct path path;
1705 struct mount *mnt;
1706 int retval;
1707 int lookup_flags = 0;
1708
1709 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1710 return -EINVAL;
1711
1712 if (!may_mount())
1713 return -EPERM;
1714
1715 if (!(flags & UMOUNT_NOFOLLOW))
1716 lookup_flags |= LOOKUP_FOLLOW;
1717
1718 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1719 if (retval)
1720 goto out;
1721 mnt = real_mount(path.mnt);
1722 retval = -EINVAL;
1723 if (path.dentry != path.mnt->mnt_root)
1724 goto dput_and_out;
1725 if (!check_mnt(mnt))
1726 goto dput_and_out;
1727 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1728 goto dput_and_out;
1729 retval = -EPERM;
1730 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1731 goto dput_and_out;
1732
1733 retval = do_umount(mnt, flags);
1734 dput_and_out:
1735 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1736 dput(path.dentry);
1737 mntput_no_expire(mnt);
1738 out:
1739 return retval;
1740 }
1741
1742 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1743
1744 /*
1745 * The 2.0 compatible umount. No flags.
1746 */
1747 SYSCALL_DEFINE1(oldumount, char __user *, name)
1748 {
1749 return sys_umount(name, 0);
1750 }
1751
1752 #endif
1753
1754 static bool is_mnt_ns_file(struct dentry *dentry)
1755 {
1756 /* Is this a proxy for a mount namespace? */
1757 return dentry->d_op == &ns_dentry_operations &&
1758 dentry->d_fsdata == &mntns_operations;
1759 }
1760
1761 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1762 {
1763 return container_of(ns, struct mnt_namespace, ns);
1764 }
1765
1766 static bool mnt_ns_loop(struct dentry *dentry)
1767 {
1768 /* Could bind mounting the mount namespace inode cause a
1769 * mount namespace loop?
1770 */
1771 struct mnt_namespace *mnt_ns;
1772 if (!is_mnt_ns_file(dentry))
1773 return false;
1774
1775 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1776 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1777 }
1778
1779 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1780 int flag)
1781 {
1782 struct mount *res, *p, *q, *r, *parent;
1783
1784 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1785 return ERR_PTR(-EINVAL);
1786
1787 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1788 return ERR_PTR(-EINVAL);
1789
1790 res = q = clone_mnt(mnt, dentry, flag);
1791 if (IS_ERR(q))
1792 return q;
1793
1794 q->mnt_mountpoint = mnt->mnt_mountpoint;
1795
1796 p = mnt;
1797 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1798 struct mount *s;
1799 if (!is_subdir(r->mnt_mountpoint, dentry))
1800 continue;
1801
1802 for (s = r; s; s = next_mnt(s, r)) {
1803 if (!(flag & CL_COPY_UNBINDABLE) &&
1804 IS_MNT_UNBINDABLE(s)) {
1805 s = skip_mnt_tree(s);
1806 continue;
1807 }
1808 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1809 is_mnt_ns_file(s->mnt.mnt_root)) {
1810 s = skip_mnt_tree(s);
1811 continue;
1812 }
1813 while (p != s->mnt_parent) {
1814 p = p->mnt_parent;
1815 q = q->mnt_parent;
1816 }
1817 p = s;
1818 parent = q;
1819 q = clone_mnt(p, p->mnt.mnt_root, flag);
1820 if (IS_ERR(q))
1821 goto out;
1822 lock_mount_hash();
1823 list_add_tail(&q->mnt_list, &res->mnt_list);
1824 attach_mnt(q, parent, p->mnt_mp);
1825 unlock_mount_hash();
1826 }
1827 }
1828 return res;
1829 out:
1830 if (res) {
1831 lock_mount_hash();
1832 umount_tree(res, UMOUNT_SYNC);
1833 unlock_mount_hash();
1834 }
1835 return q;
1836 }
1837
1838 /* Caller should check returned pointer for errors */
1839
1840 struct vfsmount *collect_mounts(const struct path *path)
1841 {
1842 struct mount *tree;
1843 namespace_lock();
1844 if (!check_mnt(real_mount(path->mnt)))
1845 tree = ERR_PTR(-EINVAL);
1846 else
1847 tree = copy_tree(real_mount(path->mnt), path->dentry,
1848 CL_COPY_ALL | CL_PRIVATE);
1849 namespace_unlock();
1850 if (IS_ERR(tree))
1851 return ERR_CAST(tree);
1852 return &tree->mnt;
1853 }
1854
1855 void drop_collected_mounts(struct vfsmount *mnt)
1856 {
1857 namespace_lock();
1858 lock_mount_hash();
1859 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1860 unlock_mount_hash();
1861 namespace_unlock();
1862 }
1863
1864 /**
1865 * clone_private_mount - create a private clone of a path
1866 *
1867 * This creates a new vfsmount, which will be the clone of @path. The new will
1868 * not be attached anywhere in the namespace and will be private (i.e. changes
1869 * to the originating mount won't be propagated into this).
1870 *
1871 * Release with mntput().
1872 */
1873 struct vfsmount *clone_private_mount(const struct path *path)
1874 {
1875 struct mount *old_mnt = real_mount(path->mnt);
1876 struct mount *new_mnt;
1877
1878 if (IS_MNT_UNBINDABLE(old_mnt))
1879 return ERR_PTR(-EINVAL);
1880
1881 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1882 if (IS_ERR(new_mnt))
1883 return ERR_CAST(new_mnt);
1884
1885 return &new_mnt->mnt;
1886 }
1887 EXPORT_SYMBOL_GPL(clone_private_mount);
1888
1889 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1890 struct vfsmount *root)
1891 {
1892 struct mount *mnt;
1893 int res = f(root, arg);
1894 if (res)
1895 return res;
1896 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1897 res = f(&mnt->mnt, arg);
1898 if (res)
1899 return res;
1900 }
1901 return 0;
1902 }
1903
1904 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1905 {
1906 struct mount *p;
1907
1908 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1909 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1910 mnt_release_group_id(p);
1911 }
1912 }
1913
1914 static int invent_group_ids(struct mount *mnt, bool recurse)
1915 {
1916 struct mount *p;
1917
1918 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1919 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1920 int err = mnt_alloc_group_id(p);
1921 if (err) {
1922 cleanup_group_ids(mnt, p);
1923 return err;
1924 }
1925 }
1926 }
1927
1928 return 0;
1929 }
1930
1931 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1932 {
1933 unsigned int max = READ_ONCE(sysctl_mount_max);
1934 unsigned int mounts = 0, old, pending, sum;
1935 struct mount *p;
1936
1937 for (p = mnt; p; p = next_mnt(p, mnt))
1938 mounts++;
1939
1940 old = ns->mounts;
1941 pending = ns->pending_mounts;
1942 sum = old + pending;
1943 if ((old > sum) ||
1944 (pending > sum) ||
1945 (max < sum) ||
1946 (mounts > (max - sum)))
1947 return -ENOSPC;
1948
1949 ns->pending_mounts = pending + mounts;
1950 return 0;
1951 }
1952
1953 /*
1954 * @source_mnt : mount tree to be attached
1955 * @nd : place the mount tree @source_mnt is attached
1956 * @parent_nd : if non-null, detach the source_mnt from its parent and
1957 * store the parent mount and mountpoint dentry.
1958 * (done when source_mnt is moved)
1959 *
1960 * NOTE: in the table below explains the semantics when a source mount
1961 * of a given type is attached to a destination mount of a given type.
1962 * ---------------------------------------------------------------------------
1963 * | BIND MOUNT OPERATION |
1964 * |**************************************************************************
1965 * | source-->| shared | private | slave | unbindable |
1966 * | dest | | | | |
1967 * | | | | | | |
1968 * | v | | | | |
1969 * |**************************************************************************
1970 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1971 * | | | | | |
1972 * |non-shared| shared (+) | private | slave (*) | invalid |
1973 * ***************************************************************************
1974 * A bind operation clones the source mount and mounts the clone on the
1975 * destination mount.
1976 *
1977 * (++) the cloned mount is propagated to all the mounts in the propagation
1978 * tree of the destination mount and the cloned mount is added to
1979 * the peer group of the source mount.
1980 * (+) the cloned mount is created under the destination mount and is marked
1981 * as shared. The cloned mount is added to the peer group of the source
1982 * mount.
1983 * (+++) the mount is propagated to all the mounts in the propagation tree
1984 * of the destination mount and the cloned mount is made slave
1985 * of the same master as that of the source mount. The cloned mount
1986 * is marked as 'shared and slave'.
1987 * (*) the cloned mount is made a slave of the same master as that of the
1988 * source mount.
1989 *
1990 * ---------------------------------------------------------------------------
1991 * | MOVE MOUNT OPERATION |
1992 * |**************************************************************************
1993 * | source-->| shared | private | slave | unbindable |
1994 * | dest | | | | |
1995 * | | | | | | |
1996 * | v | | | | |
1997 * |**************************************************************************
1998 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1999 * | | | | | |
2000 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2001 * ***************************************************************************
2002 *
2003 * (+) the mount is moved to the destination. And is then propagated to
2004 * all the mounts in the propagation tree of the destination mount.
2005 * (+*) the mount is moved to the destination.
2006 * (+++) the mount is moved to the destination and is then propagated to
2007 * all the mounts belonging to the destination mount's propagation tree.
2008 * the mount is marked as 'shared and slave'.
2009 * (*) the mount continues to be a slave at the new location.
2010 *
2011 * if the source mount is a tree, the operations explained above is
2012 * applied to each mount in the tree.
2013 * Must be called without spinlocks held, since this function can sleep
2014 * in allocations.
2015 */
2016 static int attach_recursive_mnt(struct mount *source_mnt,
2017 struct mount *dest_mnt,
2018 struct mountpoint *dest_mp,
2019 struct path *parent_path)
2020 {
2021 HLIST_HEAD(tree_list);
2022 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2023 struct mountpoint *smp;
2024 struct mount *child, *p;
2025 struct hlist_node *n;
2026 int err;
2027
2028 /* Preallocate a mountpoint in case the new mounts need
2029 * to be tucked under other mounts.
2030 */
2031 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2032 if (IS_ERR(smp))
2033 return PTR_ERR(smp);
2034
2035 /* Is there space to add these mounts to the mount namespace? */
2036 if (!parent_path) {
2037 err = count_mounts(ns, source_mnt);
2038 if (err)
2039 goto out;
2040 }
2041
2042 if (IS_MNT_SHARED(dest_mnt)) {
2043 err = invent_group_ids(source_mnt, true);
2044 if (err)
2045 goto out;
2046 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2047 lock_mount_hash();
2048 if (err)
2049 goto out_cleanup_ids;
2050 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2051 set_mnt_shared(p);
2052 } else {
2053 lock_mount_hash();
2054 }
2055 if (parent_path) {
2056 detach_mnt(source_mnt, parent_path);
2057 attach_mnt(source_mnt, dest_mnt, dest_mp);
2058 touch_mnt_namespace(source_mnt->mnt_ns);
2059 } else {
2060 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2061 commit_tree(source_mnt);
2062 }
2063
2064 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2065 struct mount *q;
2066 hlist_del_init(&child->mnt_hash);
2067 q = __lookup_mnt(&child->mnt_parent->mnt,
2068 child->mnt_mountpoint);
2069 if (q)
2070 mnt_change_mountpoint(child, smp, q);
2071 commit_tree(child);
2072 }
2073 put_mountpoint(smp);
2074 unlock_mount_hash();
2075
2076 return 0;
2077
2078 out_cleanup_ids:
2079 while (!hlist_empty(&tree_list)) {
2080 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2081 child->mnt_parent->mnt_ns->pending_mounts = 0;
2082 umount_tree(child, UMOUNT_SYNC);
2083 }
2084 unlock_mount_hash();
2085 cleanup_group_ids(source_mnt, NULL);
2086 out:
2087 ns->pending_mounts = 0;
2088
2089 read_seqlock_excl(&mount_lock);
2090 put_mountpoint(smp);
2091 read_sequnlock_excl(&mount_lock);
2092
2093 return err;
2094 }
2095
2096 static struct mountpoint *lock_mount(struct path *path)
2097 {
2098 struct vfsmount *mnt;
2099 struct dentry *dentry = path->dentry;
2100 retry:
2101 inode_lock(dentry->d_inode);
2102 if (unlikely(cant_mount(dentry))) {
2103 inode_unlock(dentry->d_inode);
2104 return ERR_PTR(-ENOENT);
2105 }
2106 namespace_lock();
2107 mnt = lookup_mnt(path);
2108 if (likely(!mnt)) {
2109 struct mountpoint *mp = get_mountpoint(dentry);
2110 if (IS_ERR(mp)) {
2111 namespace_unlock();
2112 inode_unlock(dentry->d_inode);
2113 return mp;
2114 }
2115 return mp;
2116 }
2117 namespace_unlock();
2118 inode_unlock(path->dentry->d_inode);
2119 path_put(path);
2120 path->mnt = mnt;
2121 dentry = path->dentry = dget(mnt->mnt_root);
2122 goto retry;
2123 }
2124
2125 static void unlock_mount(struct mountpoint *where)
2126 {
2127 struct dentry *dentry = where->m_dentry;
2128
2129 read_seqlock_excl(&mount_lock);
2130 put_mountpoint(where);
2131 read_sequnlock_excl(&mount_lock);
2132
2133 namespace_unlock();
2134 inode_unlock(dentry->d_inode);
2135 }
2136
2137 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2138 {
2139 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2140 return -EINVAL;
2141
2142 if (d_is_dir(mp->m_dentry) !=
2143 d_is_dir(mnt->mnt.mnt_root))
2144 return -ENOTDIR;
2145
2146 return attach_recursive_mnt(mnt, p, mp, NULL);
2147 }
2148
2149 /*
2150 * Sanity check the flags to change_mnt_propagation.
2151 */
2152
2153 static int flags_to_propagation_type(int ms_flags)
2154 {
2155 int type = ms_flags & ~(MS_REC | MS_SILENT);
2156
2157 /* Fail if any non-propagation flags are set */
2158 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2159 return 0;
2160 /* Only one propagation flag should be set */
2161 if (!is_power_of_2(type))
2162 return 0;
2163 return type;
2164 }
2165
2166 /*
2167 * recursively change the type of the mountpoint.
2168 */
2169 static int do_change_type(struct path *path, int ms_flags)
2170 {
2171 struct mount *m;
2172 struct mount *mnt = real_mount(path->mnt);
2173 int recurse = ms_flags & MS_REC;
2174 int type;
2175 int err = 0;
2176
2177 if (path->dentry != path->mnt->mnt_root)
2178 return -EINVAL;
2179
2180 type = flags_to_propagation_type(ms_flags);
2181 if (!type)
2182 return -EINVAL;
2183
2184 namespace_lock();
2185 if (type == MS_SHARED) {
2186 err = invent_group_ids(mnt, recurse);
2187 if (err)
2188 goto out_unlock;
2189 }
2190
2191 lock_mount_hash();
2192 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2193 change_mnt_propagation(m, type);
2194 unlock_mount_hash();
2195
2196 out_unlock:
2197 namespace_unlock();
2198 return err;
2199 }
2200
2201 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2202 {
2203 struct mount *child;
2204 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2205 if (!is_subdir(child->mnt_mountpoint, dentry))
2206 continue;
2207
2208 if (child->mnt.mnt_flags & MNT_LOCKED)
2209 return true;
2210 }
2211 return false;
2212 }
2213
2214 /*
2215 * do loopback mount.
2216 */
2217 static int do_loopback(struct path *path, const char *old_name,
2218 int recurse)
2219 {
2220 struct path old_path;
2221 struct mount *mnt = NULL, *old, *parent;
2222 struct mountpoint *mp;
2223 int err;
2224 if (!old_name || !*old_name)
2225 return -EINVAL;
2226 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2227 if (err)
2228 return err;
2229
2230 err = -EINVAL;
2231 if (mnt_ns_loop(old_path.dentry))
2232 goto out;
2233
2234 mp = lock_mount(path);
2235 err = PTR_ERR(mp);
2236 if (IS_ERR(mp))
2237 goto out;
2238
2239 old = real_mount(old_path.mnt);
2240 parent = real_mount(path->mnt);
2241
2242 err = -EINVAL;
2243 if (IS_MNT_UNBINDABLE(old))
2244 goto out2;
2245
2246 if (!check_mnt(parent))
2247 goto out2;
2248
2249 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2250 goto out2;
2251
2252 if (!recurse && has_locked_children(old, old_path.dentry))
2253 goto out2;
2254
2255 if (recurse)
2256 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2257 else
2258 mnt = clone_mnt(old, old_path.dentry, 0);
2259
2260 if (IS_ERR(mnt)) {
2261 err = PTR_ERR(mnt);
2262 goto out2;
2263 }
2264
2265 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2266
2267 err = graft_tree(mnt, parent, mp);
2268 if (err) {
2269 lock_mount_hash();
2270 umount_tree(mnt, UMOUNT_SYNC);
2271 unlock_mount_hash();
2272 }
2273 out2:
2274 unlock_mount(mp);
2275 out:
2276 path_put(&old_path);
2277 return err;
2278 }
2279
2280 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2281 {
2282 int error = 0;
2283 int readonly_request = 0;
2284
2285 if (ms_flags & MS_RDONLY)
2286 readonly_request = 1;
2287 if (readonly_request == __mnt_is_readonly(mnt))
2288 return 0;
2289
2290 if (readonly_request)
2291 error = mnt_make_readonly(real_mount(mnt));
2292 else
2293 __mnt_unmake_readonly(real_mount(mnt));
2294 return error;
2295 }
2296
2297 /*
2298 * change filesystem flags. dir should be a physical root of filesystem.
2299 * If you've mounted a non-root directory somewhere and want to do remount
2300 * on it - tough luck.
2301 */
2302 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2303 int mnt_flags, void *data)
2304 {
2305 int err;
2306 struct super_block *sb = path->mnt->mnt_sb;
2307 struct mount *mnt = real_mount(path->mnt);
2308
2309 if (!check_mnt(mnt))
2310 return -EINVAL;
2311
2312 if (path->dentry != path->mnt->mnt_root)
2313 return -EINVAL;
2314
2315 /* Don't allow changing of locked mnt flags.
2316 *
2317 * No locks need to be held here while testing the various
2318 * MNT_LOCK flags because those flags can never be cleared
2319 * once they are set.
2320 */
2321 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2322 !(mnt_flags & MNT_READONLY)) {
2323 return -EPERM;
2324 }
2325 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2326 !(mnt_flags & MNT_NODEV)) {
2327 return -EPERM;
2328 }
2329 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2330 !(mnt_flags & MNT_NOSUID)) {
2331 return -EPERM;
2332 }
2333 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2334 !(mnt_flags & MNT_NOEXEC)) {
2335 return -EPERM;
2336 }
2337 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2338 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2339 return -EPERM;
2340 }
2341
2342 err = security_sb_remount(sb, data);
2343 if (err)
2344 return err;
2345
2346 down_write(&sb->s_umount);
2347 if (ms_flags & MS_BIND)
2348 err = change_mount_flags(path->mnt, ms_flags);
2349 else if (!capable(CAP_SYS_ADMIN))
2350 err = -EPERM;
2351 else {
2352 err = do_remount_sb2(path->mnt, sb, sb_flags, data, 0);
2353 namespace_lock();
2354 lock_mount_hash();
2355 propagate_remount(mnt);
2356 unlock_mount_hash();
2357 namespace_unlock();
2358 }
2359 if (!err) {
2360 lock_mount_hash();
2361 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2362 mnt->mnt.mnt_flags = mnt_flags;
2363 touch_mnt_namespace(mnt->mnt_ns);
2364 unlock_mount_hash();
2365 }
2366 up_write(&sb->s_umount);
2367 return err;
2368 }
2369
2370 static inline int tree_contains_unbindable(struct mount *mnt)
2371 {
2372 struct mount *p;
2373 for (p = mnt; p; p = next_mnt(p, mnt)) {
2374 if (IS_MNT_UNBINDABLE(p))
2375 return 1;
2376 }
2377 return 0;
2378 }
2379
2380 static int do_move_mount(struct path *path, const char *old_name)
2381 {
2382 struct path old_path, parent_path;
2383 struct mount *p;
2384 struct mount *old;
2385 struct mountpoint *mp;
2386 int err;
2387 if (!old_name || !*old_name)
2388 return -EINVAL;
2389 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2390 if (err)
2391 return err;
2392
2393 mp = lock_mount(path);
2394 err = PTR_ERR(mp);
2395 if (IS_ERR(mp))
2396 goto out;
2397
2398 old = real_mount(old_path.mnt);
2399 p = real_mount(path->mnt);
2400
2401 err = -EINVAL;
2402 if (!check_mnt(p) || !check_mnt(old))
2403 goto out1;
2404
2405 if (old->mnt.mnt_flags & MNT_LOCKED)
2406 goto out1;
2407
2408 err = -EINVAL;
2409 if (old_path.dentry != old_path.mnt->mnt_root)
2410 goto out1;
2411
2412 if (!mnt_has_parent(old))
2413 goto out1;
2414
2415 if (d_is_dir(path->dentry) !=
2416 d_is_dir(old_path.dentry))
2417 goto out1;
2418 /*
2419 * Don't move a mount residing in a shared parent.
2420 */
2421 if (IS_MNT_SHARED(old->mnt_parent))
2422 goto out1;
2423 /*
2424 * Don't move a mount tree containing unbindable mounts to a destination
2425 * mount which is shared.
2426 */
2427 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2428 goto out1;
2429 err = -ELOOP;
2430 for (; mnt_has_parent(p); p = p->mnt_parent)
2431 if (p == old)
2432 goto out1;
2433
2434 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2435 if (err)
2436 goto out1;
2437
2438 /* if the mount is moved, it should no longer be expire
2439 * automatically */
2440 list_del_init(&old->mnt_expire);
2441 out1:
2442 unlock_mount(mp);
2443 out:
2444 if (!err)
2445 path_put(&parent_path);
2446 path_put(&old_path);
2447 return err;
2448 }
2449
2450 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2451 {
2452 int err;
2453 const char *subtype = strchr(fstype, '.');
2454 if (subtype) {
2455 subtype++;
2456 err = -EINVAL;
2457 if (!subtype[0])
2458 goto err;
2459 } else
2460 subtype = "";
2461
2462 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2463 err = -ENOMEM;
2464 if (!mnt->mnt_sb->s_subtype)
2465 goto err;
2466 return mnt;
2467
2468 err:
2469 mntput(mnt);
2470 return ERR_PTR(err);
2471 }
2472
2473 /*
2474 * add a mount into a namespace's mount tree
2475 */
2476 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2477 {
2478 struct mountpoint *mp;
2479 struct mount *parent;
2480 int err;
2481
2482 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2483
2484 mp = lock_mount(path);
2485 if (IS_ERR(mp))
2486 return PTR_ERR(mp);
2487
2488 parent = real_mount(path->mnt);
2489 err = -EINVAL;
2490 if (unlikely(!check_mnt(parent))) {
2491 /* that's acceptable only for automounts done in private ns */
2492 if (!(mnt_flags & MNT_SHRINKABLE))
2493 goto unlock;
2494 /* ... and for those we'd better have mountpoint still alive */
2495 if (!parent->mnt_ns)
2496 goto unlock;
2497 }
2498
2499 /* Refuse the same filesystem on the same mount point */
2500 err = -EBUSY;
2501 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2502 path->mnt->mnt_root == path->dentry)
2503 goto unlock;
2504
2505 err = -EINVAL;
2506 if (d_is_symlink(newmnt->mnt.mnt_root))
2507 goto unlock;
2508
2509 newmnt->mnt.mnt_flags = mnt_flags;
2510 err = graft_tree(newmnt, parent, mp);
2511
2512 unlock:
2513 unlock_mount(mp);
2514 return err;
2515 }
2516
2517 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2518
2519 /*
2520 * create a new mount for userspace and request it to be added into the
2521 * namespace's tree
2522 */
2523 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2524 int mnt_flags, const char *name, void *data)
2525 {
2526 struct file_system_type *type;
2527 struct vfsmount *mnt;
2528 int err;
2529
2530 if (!fstype)
2531 return -EINVAL;
2532
2533 type = get_fs_type(fstype);
2534 if (!type)
2535 return -ENODEV;
2536
2537 mnt = vfs_kern_mount(type, sb_flags, name, data);
2538 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2539 !mnt->mnt_sb->s_subtype)
2540 mnt = fs_set_subtype(mnt, fstype);
2541
2542 put_filesystem(type);
2543 if (IS_ERR(mnt))
2544 return PTR_ERR(mnt);
2545
2546 if (mount_too_revealing(mnt, &mnt_flags)) {
2547 mntput(mnt);
2548 return -EPERM;
2549 }
2550
2551 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2552 if (err)
2553 mntput(mnt);
2554 return err;
2555 }
2556
2557 int finish_automount(struct vfsmount *m, struct path *path)
2558 {
2559 struct mount *mnt = real_mount(m);
2560 int err;
2561 /* The new mount record should have at least 2 refs to prevent it being
2562 * expired before we get a chance to add it
2563 */
2564 BUG_ON(mnt_get_count(mnt) < 2);
2565
2566 if (m->mnt_sb == path->mnt->mnt_sb &&
2567 m->mnt_root == path->dentry) {
2568 err = -ELOOP;
2569 goto fail;
2570 }
2571
2572 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2573 if (!err)
2574 return 0;
2575 fail:
2576 /* remove m from any expiration list it may be on */
2577 if (!list_empty(&mnt->mnt_expire)) {
2578 namespace_lock();
2579 list_del_init(&mnt->mnt_expire);
2580 namespace_unlock();
2581 }
2582 mntput(m);
2583 mntput(m);
2584 return err;
2585 }
2586
2587 /**
2588 * mnt_set_expiry - Put a mount on an expiration list
2589 * @mnt: The mount to list.
2590 * @expiry_list: The list to add the mount to.
2591 */
2592 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2593 {
2594 namespace_lock();
2595
2596 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2597
2598 namespace_unlock();
2599 }
2600 EXPORT_SYMBOL(mnt_set_expiry);
2601
2602 /*
2603 * process a list of expirable mountpoints with the intent of discarding any
2604 * mountpoints that aren't in use and haven't been touched since last we came
2605 * here
2606 */
2607 void mark_mounts_for_expiry(struct list_head *mounts)
2608 {
2609 struct mount *mnt, *next;
2610 LIST_HEAD(graveyard);
2611
2612 if (list_empty(mounts))
2613 return;
2614
2615 namespace_lock();
2616 lock_mount_hash();
2617
2618 /* extract from the expiration list every vfsmount that matches the
2619 * following criteria:
2620 * - only referenced by its parent vfsmount
2621 * - still marked for expiry (marked on the last call here; marks are
2622 * cleared by mntput())
2623 */
2624 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2625 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2626 propagate_mount_busy(mnt, 1))
2627 continue;
2628 list_move(&mnt->mnt_expire, &graveyard);
2629 }
2630 while (!list_empty(&graveyard)) {
2631 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2632 touch_mnt_namespace(mnt->mnt_ns);
2633 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2634 }
2635 unlock_mount_hash();
2636 namespace_unlock();
2637 }
2638
2639 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2640
2641 /*
2642 * Ripoff of 'select_parent()'
2643 *
2644 * search the list of submounts for a given mountpoint, and move any
2645 * shrinkable submounts to the 'graveyard' list.
2646 */
2647 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2648 {
2649 struct mount *this_parent = parent;
2650 struct list_head *next;
2651 int found = 0;
2652
2653 repeat:
2654 next = this_parent->mnt_mounts.next;
2655 resume:
2656 while (next != &this_parent->mnt_mounts) {
2657 struct list_head *tmp = next;
2658 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2659
2660 next = tmp->next;
2661 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2662 continue;
2663 /*
2664 * Descend a level if the d_mounts list is non-empty.
2665 */
2666 if (!list_empty(&mnt->mnt_mounts)) {
2667 this_parent = mnt;
2668 goto repeat;
2669 }
2670
2671 if (!propagate_mount_busy(mnt, 1)) {
2672 list_move_tail(&mnt->mnt_expire, graveyard);
2673 found++;
2674 }
2675 }
2676 /*
2677 * All done at this level ... ascend and resume the search
2678 */
2679 if (this_parent != parent) {
2680 next = this_parent->mnt_child.next;
2681 this_parent = this_parent->mnt_parent;
2682 goto resume;
2683 }
2684 return found;
2685 }
2686
2687 /*
2688 * process a list of expirable mountpoints with the intent of discarding any
2689 * submounts of a specific parent mountpoint
2690 *
2691 * mount_lock must be held for write
2692 */
2693 static void shrink_submounts(struct mount *mnt)
2694 {
2695 LIST_HEAD(graveyard);
2696 struct mount *m;
2697
2698 /* extract submounts of 'mountpoint' from the expiration list */
2699 while (select_submounts(mnt, &graveyard)) {
2700 while (!list_empty(&graveyard)) {
2701 m = list_first_entry(&graveyard, struct mount,
2702 mnt_expire);
2703 touch_mnt_namespace(m->mnt_ns);
2704 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2705 }
2706 }
2707 }
2708
2709 /*
2710 * Some copy_from_user() implementations do not return the exact number of
2711 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2712 * Note that this function differs from copy_from_user() in that it will oops
2713 * on bad values of `to', rather than returning a short copy.
2714 */
2715 static long exact_copy_from_user(void *to, const void __user * from,
2716 unsigned long n)
2717 {
2718 char *t = to;
2719 const char __user *f = from;
2720 char c;
2721
2722 if (!access_ok(VERIFY_READ, from, n))
2723 return n;
2724
2725 while (n) {
2726 if (__get_user(c, f)) {
2727 memset(t, 0, n);
2728 break;
2729 }
2730 *t++ = c;
2731 f++;
2732 n--;
2733 }
2734 return n;
2735 }
2736
2737 void *copy_mount_options(const void __user * data)
2738 {
2739 int i;
2740 unsigned long size;
2741 char *copy;
2742
2743 if (!data)
2744 return NULL;
2745
2746 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2747 if (!copy)
2748 return ERR_PTR(-ENOMEM);
2749
2750 /* We only care that *some* data at the address the user
2751 * gave us is valid. Just in case, we'll zero
2752 * the remainder of the page.
2753 */
2754 /* copy_from_user cannot cross TASK_SIZE ! */
2755 size = TASK_SIZE - (unsigned long)data;
2756 if (size > PAGE_SIZE)
2757 size = PAGE_SIZE;
2758
2759 i = size - exact_copy_from_user(copy, data, size);
2760 if (!i) {
2761 kfree(copy);
2762 return ERR_PTR(-EFAULT);
2763 }
2764 if (i != PAGE_SIZE)
2765 memset(copy + i, 0, PAGE_SIZE - i);
2766 return copy;
2767 }
2768
2769 char *copy_mount_string(const void __user *data)
2770 {
2771 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2772 }
2773
2774 /*
2775 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2776 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2777 *
2778 * data is a (void *) that can point to any structure up to
2779 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2780 * information (or be NULL).
2781 *
2782 * Pre-0.97 versions of mount() didn't have a flags word.
2783 * When the flags word was introduced its top half was required
2784 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2785 * Therefore, if this magic number is present, it carries no information
2786 * and must be discarded.
2787 */
2788 long do_mount(const char *dev_name, const char __user *dir_name,
2789 const char *type_page, unsigned long flags, void *data_page)
2790 {
2791 struct path path;
2792 unsigned int mnt_flags = 0, sb_flags;
2793 int retval = 0;
2794
2795 /* Discard magic */
2796 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2797 flags &= ~MS_MGC_MSK;
2798
2799 /* Basic sanity checks */
2800 if (data_page)
2801 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2802
2803 if (flags & MS_NOUSER)
2804 return -EINVAL;
2805
2806 /* ... and get the mountpoint */
2807 retval = user_path(dir_name, &path);
2808 if (retval)
2809 return retval;
2810
2811 retval = security_sb_mount(dev_name, &path,
2812 type_page, flags, data_page);
2813 if (!retval && !may_mount())
2814 retval = -EPERM;
2815 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2816 retval = -EPERM;
2817 if (retval)
2818 goto dput_out;
2819
2820 /* Default to relatime unless overriden */
2821 if (!(flags & MS_NOATIME))
2822 mnt_flags |= MNT_RELATIME;
2823
2824 /* Separate the per-mountpoint flags */
2825 if (flags & MS_NOSUID)
2826 mnt_flags |= MNT_NOSUID;
2827 if (flags & MS_NODEV)
2828 mnt_flags |= MNT_NODEV;
2829 if (flags & MS_NOEXEC)
2830 mnt_flags |= MNT_NOEXEC;
2831 if (flags & MS_NOATIME)
2832 mnt_flags |= MNT_NOATIME;
2833 if (flags & MS_NODIRATIME)
2834 mnt_flags |= MNT_NODIRATIME;
2835 if (flags & MS_STRICTATIME)
2836 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2837 if (flags & SB_RDONLY)
2838 mnt_flags |= MNT_READONLY;
2839
2840 /* The default atime for remount is preservation */
2841 if ((flags & MS_REMOUNT) &&
2842 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2843 MS_STRICTATIME)) == 0)) {
2844 mnt_flags &= ~MNT_ATIME_MASK;
2845 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2846 }
2847
2848 sb_flags = flags & (SB_RDONLY |
2849 SB_SYNCHRONOUS |
2850 SB_MANDLOCK |
2851 SB_DIRSYNC |
2852 SB_SILENT |
2853 SB_POSIXACL |
2854 SB_LAZYTIME |
2855 SB_I_VERSION);
2856
2857 if (flags & MS_REMOUNT)
2858 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2859 data_page);
2860 else if (flags & MS_BIND)
2861 retval = do_loopback(&path, dev_name, flags & MS_REC);
2862 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2863 retval = do_change_type(&path, flags);
2864 else if (flags & MS_MOVE)
2865 retval = do_move_mount(&path, dev_name);
2866 else
2867 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2868 dev_name, data_page);
2869 dput_out:
2870 path_put(&path);
2871 return retval;
2872 }
2873
2874 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2875 {
2876 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2877 }
2878
2879 static void dec_mnt_namespaces(struct ucounts *ucounts)
2880 {
2881 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2882 }
2883
2884 static void free_mnt_ns(struct mnt_namespace *ns)
2885 {
2886 ns_free_inum(&ns->ns);
2887 dec_mnt_namespaces(ns->ucounts);
2888 put_user_ns(ns->user_ns);
2889 kfree(ns);
2890 }
2891
2892 /*
2893 * Assign a sequence number so we can detect when we attempt to bind
2894 * mount a reference to an older mount namespace into the current
2895 * mount namespace, preventing reference counting loops. A 64bit
2896 * number incrementing at 10Ghz will take 12,427 years to wrap which
2897 * is effectively never, so we can ignore the possibility.
2898 */
2899 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2900
2901 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2902 {
2903 struct mnt_namespace *new_ns;
2904 struct ucounts *ucounts;
2905 int ret;
2906
2907 ucounts = inc_mnt_namespaces(user_ns);
2908 if (!ucounts)
2909 return ERR_PTR(-ENOSPC);
2910
2911 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2912 if (!new_ns) {
2913 dec_mnt_namespaces(ucounts);
2914 return ERR_PTR(-ENOMEM);
2915 }
2916 ret = ns_alloc_inum(&new_ns->ns);
2917 if (ret) {
2918 kfree(new_ns);
2919 dec_mnt_namespaces(ucounts);
2920 return ERR_PTR(ret);
2921 }
2922 new_ns->ns.ops = &mntns_operations;
2923 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2924 atomic_set(&new_ns->count, 1);
2925 new_ns->root = NULL;
2926 INIT_LIST_HEAD(&new_ns->list);
2927 init_waitqueue_head(&new_ns->poll);
2928 new_ns->event = 0;
2929 new_ns->user_ns = get_user_ns(user_ns);
2930 new_ns->ucounts = ucounts;
2931 new_ns->mounts = 0;
2932 new_ns->pending_mounts = 0;
2933 return new_ns;
2934 }
2935
2936 __latent_entropy
2937 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2938 struct user_namespace *user_ns, struct fs_struct *new_fs)
2939 {
2940 struct mnt_namespace *new_ns;
2941 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2942 struct mount *p, *q;
2943 struct mount *old;
2944 struct mount *new;
2945 int copy_flags;
2946
2947 BUG_ON(!ns);
2948
2949 if (likely(!(flags & CLONE_NEWNS))) {
2950 get_mnt_ns(ns);
2951 return ns;
2952 }
2953
2954 old = ns->root;
2955
2956 new_ns = alloc_mnt_ns(user_ns);
2957 if (IS_ERR(new_ns))
2958 return new_ns;
2959
2960 namespace_lock();
2961 /* First pass: copy the tree topology */
2962 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2963 if (user_ns != ns->user_ns)
2964 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2965 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2966 if (IS_ERR(new)) {
2967 namespace_unlock();
2968 free_mnt_ns(new_ns);
2969 return ERR_CAST(new);
2970 }
2971 new_ns->root = new;
2972 list_add_tail(&new_ns->list, &new->mnt_list);
2973
2974 /*
2975 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2976 * as belonging to new namespace. We have already acquired a private
2977 * fs_struct, so tsk->fs->lock is not needed.
2978 */
2979 p = old;
2980 q = new;
2981 while (p) {
2982 q->mnt_ns = new_ns;
2983 new_ns->mounts++;
2984 if (new_fs) {
2985 if (&p->mnt == new_fs->root.mnt) {
2986 new_fs->root.mnt = mntget(&q->mnt);
2987 rootmnt = &p->mnt;
2988 }
2989 if (&p->mnt == new_fs->pwd.mnt) {
2990 new_fs->pwd.mnt = mntget(&q->mnt);
2991 pwdmnt = &p->mnt;
2992 }
2993 }
2994 p = next_mnt(p, old);
2995 q = next_mnt(q, new);
2996 if (!q)
2997 break;
2998 while (p->mnt.mnt_root != q->mnt.mnt_root)
2999 p = next_mnt(p, old);
3000 }
3001 namespace_unlock();
3002
3003 if (rootmnt)
3004 mntput(rootmnt);
3005 if (pwdmnt)
3006 mntput(pwdmnt);
3007
3008 return new_ns;
3009 }
3010
3011 /**
3012 * create_mnt_ns - creates a private namespace and adds a root filesystem
3013 * @mnt: pointer to the new root filesystem mountpoint
3014 */
3015 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3016 {
3017 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3018 if (!IS_ERR(new_ns)) {
3019 struct mount *mnt = real_mount(m);
3020 mnt->mnt_ns = new_ns;
3021 new_ns->root = mnt;
3022 new_ns->mounts++;
3023 list_add(&mnt->mnt_list, &new_ns->list);
3024 } else {
3025 mntput(m);
3026 }
3027 return new_ns;
3028 }
3029
3030 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3031 {
3032 struct mnt_namespace *ns;
3033 struct super_block *s;
3034 struct path path;
3035 int err;
3036
3037 ns = create_mnt_ns(mnt);
3038 if (IS_ERR(ns))
3039 return ERR_CAST(ns);
3040
3041 err = vfs_path_lookup(mnt->mnt_root, mnt,
3042 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3043
3044 put_mnt_ns(ns);
3045
3046 if (err)
3047 return ERR_PTR(err);
3048
3049 /* trade a vfsmount reference for active sb one */
3050 s = path.mnt->mnt_sb;
3051 atomic_inc(&s->s_active);
3052 mntput(path.mnt);
3053 /* lock the sucker */
3054 down_write(&s->s_umount);
3055 /* ... and return the root of (sub)tree on it */
3056 return path.dentry;
3057 }
3058 EXPORT_SYMBOL(mount_subtree);
3059
3060 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3061 char __user *, type, unsigned long, flags, void __user *, data)
3062 {
3063 int ret;
3064 char *kernel_type;
3065 char *kernel_dev;
3066 void *options;
3067
3068 kernel_type = copy_mount_string(type);
3069 ret = PTR_ERR(kernel_type);
3070 if (IS_ERR(kernel_type))
3071 goto out_type;
3072
3073 kernel_dev = copy_mount_string(dev_name);
3074 ret = PTR_ERR(kernel_dev);
3075 if (IS_ERR(kernel_dev))
3076 goto out_dev;
3077
3078 options = copy_mount_options(data);
3079 ret = PTR_ERR(options);
3080 if (IS_ERR(options))
3081 goto out_data;
3082
3083 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3084
3085 kfree(options);
3086 out_data:
3087 kfree(kernel_dev);
3088 out_dev:
3089 kfree(kernel_type);
3090 out_type:
3091 return ret;
3092 }
3093
3094 /*
3095 * Return true if path is reachable from root
3096 *
3097 * namespace_sem or mount_lock is held
3098 */
3099 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3100 const struct path *root)
3101 {
3102 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3103 dentry = mnt->mnt_mountpoint;
3104 mnt = mnt->mnt_parent;
3105 }
3106 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3107 }
3108
3109 bool path_is_under(const struct path *path1, const struct path *path2)
3110 {
3111 bool res;
3112 read_seqlock_excl(&mount_lock);
3113 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3114 read_sequnlock_excl(&mount_lock);
3115 return res;
3116 }
3117 EXPORT_SYMBOL(path_is_under);
3118
3119 /*
3120 * pivot_root Semantics:
3121 * Moves the root file system of the current process to the directory put_old,
3122 * makes new_root as the new root file system of the current process, and sets
3123 * root/cwd of all processes which had them on the current root to new_root.
3124 *
3125 * Restrictions:
3126 * The new_root and put_old must be directories, and must not be on the
3127 * same file system as the current process root. The put_old must be
3128 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3129 * pointed to by put_old must yield the same directory as new_root. No other
3130 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3131 *
3132 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3133 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3134 * in this situation.
3135 *
3136 * Notes:
3137 * - we don't move root/cwd if they are not at the root (reason: if something
3138 * cared enough to change them, it's probably wrong to force them elsewhere)
3139 * - it's okay to pick a root that isn't the root of a file system, e.g.
3140 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3141 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3142 * first.
3143 */
3144 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3145 const char __user *, put_old)
3146 {
3147 struct path new, old, parent_path, root_parent, root;
3148 struct mount *new_mnt, *root_mnt, *old_mnt;
3149 struct mountpoint *old_mp, *root_mp;
3150 int error;
3151
3152 if (!may_mount())
3153 return -EPERM;
3154
3155 error = user_path_dir(new_root, &new);
3156 if (error)
3157 goto out0;
3158
3159 error = user_path_dir(put_old, &old);
3160 if (error)
3161 goto out1;
3162
3163 error = security_sb_pivotroot(&old, &new);
3164 if (error)
3165 goto out2;
3166
3167 get_fs_root(current->fs, &root);
3168 old_mp = lock_mount(&old);
3169 error = PTR_ERR(old_mp);
3170 if (IS_ERR(old_mp))
3171 goto out3;
3172
3173 error = -EINVAL;
3174 new_mnt = real_mount(new.mnt);
3175 root_mnt = real_mount(root.mnt);
3176 old_mnt = real_mount(old.mnt);
3177 if (IS_MNT_SHARED(old_mnt) ||
3178 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3179 IS_MNT_SHARED(root_mnt->mnt_parent))
3180 goto out4;
3181 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3182 goto out4;
3183 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3184 goto out4;
3185 error = -ENOENT;
3186 if (d_unlinked(new.dentry))
3187 goto out4;
3188 error = -EBUSY;
3189 if (new_mnt == root_mnt || old_mnt == root_mnt)
3190 goto out4; /* loop, on the same file system */
3191 error = -EINVAL;
3192 if (root.mnt->mnt_root != root.dentry)
3193 goto out4; /* not a mountpoint */
3194 if (!mnt_has_parent(root_mnt))
3195 goto out4; /* not attached */
3196 root_mp = root_mnt->mnt_mp;
3197 if (new.mnt->mnt_root != new.dentry)
3198 goto out4; /* not a mountpoint */
3199 if (!mnt_has_parent(new_mnt))
3200 goto out4; /* not attached */
3201 /* make sure we can reach put_old from new_root */
3202 if (!is_path_reachable(old_mnt, old.dentry, &new))
3203 goto out4;
3204 /* make certain new is below the root */
3205 if (!is_path_reachable(new_mnt, new.dentry, &root))
3206 goto out4;
3207 root_mp->m_count++; /* pin it so it won't go away */
3208 lock_mount_hash();
3209 detach_mnt(new_mnt, &parent_path);
3210 detach_mnt(root_mnt, &root_parent);
3211 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3212 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3213 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3214 }
3215 /* mount old root on put_old */
3216 attach_mnt(root_mnt, old_mnt, old_mp);
3217 /* mount new_root on / */
3218 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3219 touch_mnt_namespace(current->nsproxy->mnt_ns);
3220 /* A moved mount should not expire automatically */
3221 list_del_init(&new_mnt->mnt_expire);
3222 put_mountpoint(root_mp);
3223 unlock_mount_hash();
3224 chroot_fs_refs(&root, &new);
3225 error = 0;
3226 out4:
3227 unlock_mount(old_mp);
3228 if (!error) {
3229 path_put(&root_parent);
3230 path_put(&parent_path);
3231 }
3232 out3:
3233 path_put(&root);
3234 out2:
3235 path_put(&old);
3236 out1:
3237 path_put(&new);
3238 out0:
3239 return error;
3240 }
3241
3242 static void __init init_mount_tree(void)
3243 {
3244 struct vfsmount *mnt;
3245 struct mnt_namespace *ns;
3246 struct path root;
3247 struct file_system_type *type;
3248
3249 type = get_fs_type("rootfs");
3250 if (!type)
3251 panic("Can't find rootfs type");
3252 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3253 put_filesystem(type);
3254 if (IS_ERR(mnt))
3255 panic("Can't create rootfs");
3256
3257 ns = create_mnt_ns(mnt);
3258 if (IS_ERR(ns))
3259 panic("Can't allocate initial namespace");
3260
3261 init_task.nsproxy->mnt_ns = ns;
3262 get_mnt_ns(ns);
3263
3264 root.mnt = mnt;
3265 root.dentry = mnt->mnt_root;
3266 mnt->mnt_flags |= MNT_LOCKED;
3267
3268 set_fs_pwd(current->fs, &root);
3269 set_fs_root(current->fs, &root);
3270 }
3271
3272 void __init mnt_init(void)
3273 {
3274 int err;
3275
3276 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3277 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3278
3279 mount_hashtable = alloc_large_system_hash("Mount-cache",
3280 sizeof(struct hlist_head),
3281 mhash_entries, 19,
3282 HASH_ZERO,
3283 &m_hash_shift, &m_hash_mask, 0, 0);
3284 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3285 sizeof(struct hlist_head),
3286 mphash_entries, 19,
3287 HASH_ZERO,
3288 &mp_hash_shift, &mp_hash_mask, 0, 0);
3289
3290 if (!mount_hashtable || !mountpoint_hashtable)
3291 panic("Failed to allocate mount hash table\n");
3292
3293 kernfs_init();
3294
3295 err = sysfs_init();
3296 if (err)
3297 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3298 __func__, err);
3299 fs_kobj = kobject_create_and_add("fs", NULL);
3300 if (!fs_kobj)
3301 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3302 init_rootfs();
3303 init_mount_tree();
3304 }
3305
3306 void put_mnt_ns(struct mnt_namespace *ns)
3307 {
3308 if (!atomic_dec_and_test(&ns->count))
3309 return;
3310 drop_collected_mounts(&ns->root->mnt);
3311 free_mnt_ns(ns);
3312 }
3313
3314 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3315 {
3316 struct vfsmount *mnt;
3317 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3318 if (!IS_ERR(mnt)) {
3319 /*
3320 * it is a longterm mount, don't release mnt until
3321 * we unmount before file sys is unregistered
3322 */
3323 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3324 }
3325 return mnt;
3326 }
3327 EXPORT_SYMBOL_GPL(kern_mount_data);
3328
3329 void kern_unmount(struct vfsmount *mnt)
3330 {
3331 /* release long term mount so mount point can be released */
3332 if (!IS_ERR_OR_NULL(mnt)) {
3333 real_mount(mnt)->mnt_ns = NULL;
3334 synchronize_rcu(); /* yecchhh... */
3335 mntput(mnt);
3336 }
3337 }
3338 EXPORT_SYMBOL(kern_unmount);
3339
3340 bool our_mnt(struct vfsmount *mnt)
3341 {
3342 return check_mnt(real_mount(mnt));
3343 }
3344
3345 bool current_chrooted(void)
3346 {
3347 /* Does the current process have a non-standard root */
3348 struct path ns_root;
3349 struct path fs_root;
3350 bool chrooted;
3351
3352 /* Find the namespace root */
3353 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3354 ns_root.dentry = ns_root.mnt->mnt_root;
3355 path_get(&ns_root);
3356 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3357 ;
3358
3359 get_fs_root(current->fs, &fs_root);
3360
3361 chrooted = !path_equal(&fs_root, &ns_root);
3362
3363 path_put(&fs_root);
3364 path_put(&ns_root);
3365
3366 return chrooted;
3367 }
3368
3369 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3370 int *new_mnt_flags)
3371 {
3372 int new_flags = *new_mnt_flags;
3373 struct mount *mnt;
3374 bool visible = false;
3375
3376 down_read(&namespace_sem);
3377 list_for_each_entry(mnt, &ns->list, mnt_list) {
3378 struct mount *child;
3379 int mnt_flags;
3380
3381 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3382 continue;
3383
3384 /* This mount is not fully visible if it's root directory
3385 * is not the root directory of the filesystem.
3386 */
3387 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3388 continue;
3389
3390 /* A local view of the mount flags */
3391 mnt_flags = mnt->mnt.mnt_flags;
3392
3393 /* Don't miss readonly hidden in the superblock flags */
3394 if (sb_rdonly(mnt->mnt.mnt_sb))
3395 mnt_flags |= MNT_LOCK_READONLY;
3396
3397 /* Verify the mount flags are equal to or more permissive
3398 * than the proposed new mount.
3399 */
3400 if ((mnt_flags & MNT_LOCK_READONLY) &&
3401 !(new_flags & MNT_READONLY))
3402 continue;
3403 if ((mnt_flags & MNT_LOCK_ATIME) &&
3404 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3405 continue;
3406
3407 /* This mount is not fully visible if there are any
3408 * locked child mounts that cover anything except for
3409 * empty directories.
3410 */
3411 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3412 struct inode *inode = child->mnt_mountpoint->d_inode;
3413 /* Only worry about locked mounts */
3414 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3415 continue;
3416 /* Is the directory permanetly empty? */
3417 if (!is_empty_dir_inode(inode))
3418 goto next;
3419 }
3420 /* Preserve the locked attributes */
3421 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3422 MNT_LOCK_ATIME);
3423 visible = true;
3424 goto found;
3425 next: ;
3426 }
3427 found:
3428 up_read(&namespace_sem);
3429 return visible;
3430 }
3431
3432 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3433 {
3434 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3435 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3436 unsigned long s_iflags;
3437
3438 if (ns->user_ns == &init_user_ns)
3439 return false;
3440
3441 /* Can this filesystem be too revealing? */
3442 s_iflags = mnt->mnt_sb->s_iflags;
3443 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3444 return false;
3445
3446 if ((s_iflags & required_iflags) != required_iflags) {
3447 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3448 required_iflags);
3449 return true;
3450 }
3451
3452 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3453 }
3454
3455 bool mnt_may_suid(struct vfsmount *mnt)
3456 {
3457 /*
3458 * Foreign mounts (accessed via fchdir or through /proc
3459 * symlinks) are always treated as if they are nosuid. This
3460 * prevents namespaces from trusting potentially unsafe
3461 * suid/sgid bits, file caps, or security labels that originate
3462 * in other namespaces.
3463 */
3464 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3465 current_in_userns(mnt->mnt_sb->s_user_ns);
3466 }
3467
3468 static struct ns_common *mntns_get(struct task_struct *task)
3469 {
3470 struct ns_common *ns = NULL;
3471 struct nsproxy *nsproxy;
3472
3473 task_lock(task);
3474 nsproxy = task->nsproxy;
3475 if (nsproxy) {
3476 ns = &nsproxy->mnt_ns->ns;
3477 get_mnt_ns(to_mnt_ns(ns));
3478 }
3479 task_unlock(task);
3480
3481 return ns;
3482 }
3483
3484 static void mntns_put(struct ns_common *ns)
3485 {
3486 put_mnt_ns(to_mnt_ns(ns));
3487 }
3488
3489 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3490 {
3491 struct fs_struct *fs = current->fs;
3492 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3493 struct path root;
3494 int err;
3495
3496 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3497 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3498 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3499 return -EPERM;
3500
3501 if (fs->users != 1)
3502 return -EINVAL;
3503
3504 get_mnt_ns(mnt_ns);
3505 old_mnt_ns = nsproxy->mnt_ns;
3506 nsproxy->mnt_ns = mnt_ns;
3507
3508 /* Find the root */
3509 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3510 "/", LOOKUP_DOWN, &root);
3511 if (err) {
3512 /* revert to old namespace */
3513 nsproxy->mnt_ns = old_mnt_ns;
3514 put_mnt_ns(mnt_ns);
3515 return err;
3516 }
3517
3518 put_mnt_ns(old_mnt_ns);
3519
3520 /* Update the pwd and root */
3521 set_fs_pwd(fs, &root);
3522 set_fs_root(fs, &root);
3523
3524 path_put(&root);
3525 return 0;
3526 }
3527
3528 static struct user_namespace *mntns_owner(struct ns_common *ns)
3529 {
3530 return to_mnt_ns(ns)->user_ns;
3531 }
3532
3533 const struct proc_ns_operations mntns_operations = {
3534 .name = "mnt",
3535 .type = CLONE_NEWNS,
3536 .get = mntns_get,
3537 .put = mntns_put,
3538 .install = mntns_install,
3539 .owner = mntns_owner,
3540 };