c38f318eb9df133b0e87e88abb84505123195ec1
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199 }
200
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
206
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
215 }
216
217 #ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
221
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226 #endif
227
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440 int mnt_want_write_file(struct file *file)
441 {
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452 /**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
459 */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
465 }
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree(mnt->mnt.data);
581 kfree_const(mnt->mnt_devname);
582 #ifdef CONFIG_SMP
583 free_percpu(mnt->mnt_pcp);
584 #endif
585 kmem_cache_free(mnt_cache, mnt);
586 }
587
588 static void delayed_free_vfsmnt(struct rcu_head *head)
589 {
590 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
591 }
592
593 /* call under rcu_read_lock */
594 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
595 {
596 struct mount *mnt;
597 if (read_seqretry(&mount_lock, seq))
598 return 1;
599 if (bastard == NULL)
600 return 0;
601 mnt = real_mount(bastard);
602 mnt_add_count(mnt, 1);
603 if (likely(!read_seqretry(&mount_lock, seq)))
604 return 0;
605 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
606 mnt_add_count(mnt, -1);
607 return 1;
608 }
609 return -1;
610 }
611
612 /* call under rcu_read_lock */
613 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
614 {
615 int res = __legitimize_mnt(bastard, seq);
616 if (likely(!res))
617 return true;
618 if (unlikely(res < 0)) {
619 rcu_read_unlock();
620 mntput(bastard);
621 rcu_read_lock();
622 }
623 return false;
624 }
625
626 /*
627 * find the first mount at @dentry on vfsmount @mnt.
628 * call under rcu_read_lock()
629 */
630 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
631 {
632 struct hlist_head *head = m_hash(mnt, dentry);
633 struct mount *p;
634
635 hlist_for_each_entry_rcu(p, head, mnt_hash)
636 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
637 return p;
638 return NULL;
639 }
640
641 /*
642 * find the last mount at @dentry on vfsmount @mnt.
643 * mount_lock must be held.
644 */
645 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
646 {
647 struct mount *p, *res = NULL;
648 p = __lookup_mnt(mnt, dentry);
649 if (!p)
650 goto out;
651 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
652 res = p;
653 hlist_for_each_entry_continue(p, mnt_hash) {
654 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
655 break;
656 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
657 res = p;
658 }
659 out:
660 return res;
661 }
662
663 /*
664 * lookup_mnt - Return the first child mount mounted at path
665 *
666 * "First" means first mounted chronologically. If you create the
667 * following mounts:
668 *
669 * mount /dev/sda1 /mnt
670 * mount /dev/sda2 /mnt
671 * mount /dev/sda3 /mnt
672 *
673 * Then lookup_mnt() on the base /mnt dentry in the root mount will
674 * return successively the root dentry and vfsmount of /dev/sda1, then
675 * /dev/sda2, then /dev/sda3, then NULL.
676 *
677 * lookup_mnt takes a reference to the found vfsmount.
678 */
679 struct vfsmount *lookup_mnt(struct path *path)
680 {
681 struct mount *child_mnt;
682 struct vfsmount *m;
683 unsigned seq;
684
685 rcu_read_lock();
686 do {
687 seq = read_seqbegin(&mount_lock);
688 child_mnt = __lookup_mnt(path->mnt, path->dentry);
689 m = child_mnt ? &child_mnt->mnt : NULL;
690 } while (!legitimize_mnt(m, seq));
691 rcu_read_unlock();
692 return m;
693 }
694
695 /*
696 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
697 * current mount namespace.
698 *
699 * The common case is dentries are not mountpoints at all and that
700 * test is handled inline. For the slow case when we are actually
701 * dealing with a mountpoint of some kind, walk through all of the
702 * mounts in the current mount namespace and test to see if the dentry
703 * is a mountpoint.
704 *
705 * The mount_hashtable is not usable in the context because we
706 * need to identify all mounts that may be in the current mount
707 * namespace not just a mount that happens to have some specified
708 * parent mount.
709 */
710 bool __is_local_mountpoint(struct dentry *dentry)
711 {
712 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
713 struct mount *mnt;
714 bool is_covered = false;
715
716 if (!d_mountpoint(dentry))
717 goto out;
718
719 down_read(&namespace_sem);
720 list_for_each_entry(mnt, &ns->list, mnt_list) {
721 is_covered = (mnt->mnt_mountpoint == dentry);
722 if (is_covered)
723 break;
724 }
725 up_read(&namespace_sem);
726 out:
727 return is_covered;
728 }
729
730 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
731 {
732 struct hlist_head *chain = mp_hash(dentry);
733 struct mountpoint *mp;
734
735 hlist_for_each_entry(mp, chain, m_hash) {
736 if (mp->m_dentry == dentry) {
737 /* might be worth a WARN_ON() */
738 if (d_unlinked(dentry))
739 return ERR_PTR(-ENOENT);
740 mp->m_count++;
741 return mp;
742 }
743 }
744 return NULL;
745 }
746
747 static struct mountpoint *new_mountpoint(struct dentry *dentry)
748 {
749 struct hlist_head *chain = mp_hash(dentry);
750 struct mountpoint *mp;
751 int ret;
752
753 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
754 if (!mp)
755 return ERR_PTR(-ENOMEM);
756
757 ret = d_set_mounted(dentry);
758 if (ret) {
759 kfree(mp);
760 return ERR_PTR(ret);
761 }
762
763 mp->m_dentry = dentry;
764 mp->m_count = 1;
765 hlist_add_head(&mp->m_hash, chain);
766 INIT_HLIST_HEAD(&mp->m_list);
767 return mp;
768 }
769
770 static void put_mountpoint(struct mountpoint *mp)
771 {
772 if (!--mp->m_count) {
773 struct dentry *dentry = mp->m_dentry;
774 BUG_ON(!hlist_empty(&mp->m_list));
775 spin_lock(&dentry->d_lock);
776 dentry->d_flags &= ~DCACHE_MOUNTED;
777 spin_unlock(&dentry->d_lock);
778 hlist_del(&mp->m_hash);
779 kfree(mp);
780 }
781 }
782
783 static inline int check_mnt(struct mount *mnt)
784 {
785 return mnt->mnt_ns == current->nsproxy->mnt_ns;
786 }
787
788 /*
789 * vfsmount lock must be held for write
790 */
791 static void touch_mnt_namespace(struct mnt_namespace *ns)
792 {
793 if (ns) {
794 ns->event = ++event;
795 wake_up_interruptible(&ns->poll);
796 }
797 }
798
799 /*
800 * vfsmount lock must be held for write
801 */
802 static void __touch_mnt_namespace(struct mnt_namespace *ns)
803 {
804 if (ns && ns->event != event) {
805 ns->event = event;
806 wake_up_interruptible(&ns->poll);
807 }
808 }
809
810 /*
811 * vfsmount lock must be held for write
812 */
813 static void unhash_mnt(struct mount *mnt)
814 {
815 mnt->mnt_parent = mnt;
816 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
817 list_del_init(&mnt->mnt_child);
818 hlist_del_init_rcu(&mnt->mnt_hash);
819 hlist_del_init(&mnt->mnt_mp_list);
820 put_mountpoint(mnt->mnt_mp);
821 mnt->mnt_mp = NULL;
822 }
823
824 /*
825 * vfsmount lock must be held for write
826 */
827 static void detach_mnt(struct mount *mnt, struct path *old_path)
828 {
829 old_path->dentry = mnt->mnt_mountpoint;
830 old_path->mnt = &mnt->mnt_parent->mnt;
831 unhash_mnt(mnt);
832 }
833
834 /*
835 * vfsmount lock must be held for write
836 */
837 static void umount_mnt(struct mount *mnt)
838 {
839 /* old mountpoint will be dropped when we can do that */
840 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
841 unhash_mnt(mnt);
842 }
843
844 /*
845 * vfsmount lock must be held for write
846 */
847 void mnt_set_mountpoint(struct mount *mnt,
848 struct mountpoint *mp,
849 struct mount *child_mnt)
850 {
851 mp->m_count++;
852 mnt_add_count(mnt, 1); /* essentially, that's mntget */
853 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
854 child_mnt->mnt_parent = mnt;
855 child_mnt->mnt_mp = mp;
856 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
857 }
858
859 /*
860 * vfsmount lock must be held for write
861 */
862 static void attach_mnt(struct mount *mnt,
863 struct mount *parent,
864 struct mountpoint *mp)
865 {
866 mnt_set_mountpoint(parent, mp, mnt);
867 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
868 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
869 }
870
871 static void attach_shadowed(struct mount *mnt,
872 struct mount *parent,
873 struct mount *shadows)
874 {
875 if (shadows) {
876 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
877 list_add(&mnt->mnt_child, &shadows->mnt_child);
878 } else {
879 hlist_add_head_rcu(&mnt->mnt_hash,
880 m_hash(&parent->mnt, mnt->mnt_mountpoint));
881 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
882 }
883 }
884
885 /*
886 * vfsmount lock must be held for write
887 */
888 static void commit_tree(struct mount *mnt, struct mount *shadows)
889 {
890 struct mount *parent = mnt->mnt_parent;
891 struct mount *m;
892 LIST_HEAD(head);
893 struct mnt_namespace *n = parent->mnt_ns;
894
895 BUG_ON(parent == mnt);
896
897 list_add_tail(&head, &mnt->mnt_list);
898 list_for_each_entry(m, &head, mnt_list)
899 m->mnt_ns = n;
900
901 list_splice(&head, n->list.prev);
902
903 attach_shadowed(mnt, parent, shadows);
904 touch_mnt_namespace(n);
905 }
906
907 static struct mount *next_mnt(struct mount *p, struct mount *root)
908 {
909 struct list_head *next = p->mnt_mounts.next;
910 if (next == &p->mnt_mounts) {
911 while (1) {
912 if (p == root)
913 return NULL;
914 next = p->mnt_child.next;
915 if (next != &p->mnt_parent->mnt_mounts)
916 break;
917 p = p->mnt_parent;
918 }
919 }
920 return list_entry(next, struct mount, mnt_child);
921 }
922
923 static struct mount *skip_mnt_tree(struct mount *p)
924 {
925 struct list_head *prev = p->mnt_mounts.prev;
926 while (prev != &p->mnt_mounts) {
927 p = list_entry(prev, struct mount, mnt_child);
928 prev = p->mnt_mounts.prev;
929 }
930 return p;
931 }
932
933 struct vfsmount *
934 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
935 {
936 struct mount *mnt;
937 struct dentry *root;
938
939 if (!type)
940 return ERR_PTR(-ENODEV);
941
942 mnt = alloc_vfsmnt(name);
943 if (!mnt)
944 return ERR_PTR(-ENOMEM);
945
946 mnt->mnt.data = NULL;
947 if (type->alloc_mnt_data) {
948 mnt->mnt.data = type->alloc_mnt_data();
949 if (!mnt->mnt.data) {
950 mnt_free_id(mnt);
951 free_vfsmnt(mnt);
952 return ERR_PTR(-ENOMEM);
953 }
954 }
955 if (flags & MS_KERNMOUNT)
956 mnt->mnt.mnt_flags = MNT_INTERNAL;
957
958 root = mount_fs(type, flags, name, data);
959 if (IS_ERR(root)) {
960 kfree(mnt->mnt.data);
961 mnt_free_id(mnt);
962 free_vfsmnt(mnt);
963 return ERR_CAST(root);
964 }
965
966 mnt->mnt.mnt_root = root;
967 mnt->mnt.mnt_sb = root->d_sb;
968 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
969 mnt->mnt_parent = mnt;
970 lock_mount_hash();
971 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
972 unlock_mount_hash();
973 return &mnt->mnt;
974 }
975 EXPORT_SYMBOL_GPL(vfs_kern_mount);
976
977 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
978 int flag)
979 {
980 struct super_block *sb = old->mnt.mnt_sb;
981 struct mount *mnt;
982 int err;
983
984 mnt = alloc_vfsmnt(old->mnt_devname);
985 if (!mnt)
986 return ERR_PTR(-ENOMEM);
987
988 if (sb->s_op->clone_mnt_data) {
989 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
990 if (!mnt->mnt.data) {
991 err = -ENOMEM;
992 goto out_free;
993 }
994 }
995
996 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
997 mnt->mnt_group_id = 0; /* not a peer of original */
998 else
999 mnt->mnt_group_id = old->mnt_group_id;
1000
1001 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1002 err = mnt_alloc_group_id(mnt);
1003 if (err)
1004 goto out_free;
1005 }
1006
1007 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1008 /* Don't allow unprivileged users to change mount flags */
1009 if (flag & CL_UNPRIVILEGED) {
1010 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1011
1012 if (mnt->mnt.mnt_flags & MNT_READONLY)
1013 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1014
1015 if (mnt->mnt.mnt_flags & MNT_NODEV)
1016 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1017
1018 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1019 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1020
1021 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1022 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1023 }
1024
1025 /* Don't allow unprivileged users to reveal what is under a mount */
1026 if ((flag & CL_UNPRIVILEGED) &&
1027 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1028 mnt->mnt.mnt_flags |= MNT_LOCKED;
1029
1030 atomic_inc(&sb->s_active);
1031 mnt->mnt.mnt_sb = sb;
1032 mnt->mnt.mnt_root = dget(root);
1033 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1034 mnt->mnt_parent = mnt;
1035 lock_mount_hash();
1036 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1037 unlock_mount_hash();
1038
1039 if ((flag & CL_SLAVE) ||
1040 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1041 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1042 mnt->mnt_master = old;
1043 CLEAR_MNT_SHARED(mnt);
1044 } else if (!(flag & CL_PRIVATE)) {
1045 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1046 list_add(&mnt->mnt_share, &old->mnt_share);
1047 if (IS_MNT_SLAVE(old))
1048 list_add(&mnt->mnt_slave, &old->mnt_slave);
1049 mnt->mnt_master = old->mnt_master;
1050 }
1051 if (flag & CL_MAKE_SHARED)
1052 set_mnt_shared(mnt);
1053
1054 /* stick the duplicate mount on the same expiry list
1055 * as the original if that was on one */
1056 if (flag & CL_EXPIRE) {
1057 if (!list_empty(&old->mnt_expire))
1058 list_add(&mnt->mnt_expire, &old->mnt_expire);
1059 }
1060
1061 return mnt;
1062
1063 out_free:
1064 kfree(mnt->mnt.data);
1065 mnt_free_id(mnt);
1066 free_vfsmnt(mnt);
1067 return ERR_PTR(err);
1068 }
1069
1070 static void cleanup_mnt(struct mount *mnt)
1071 {
1072 /*
1073 * This probably indicates that somebody messed
1074 * up a mnt_want/drop_write() pair. If this
1075 * happens, the filesystem was probably unable
1076 * to make r/w->r/o transitions.
1077 */
1078 /*
1079 * The locking used to deal with mnt_count decrement provides barriers,
1080 * so mnt_get_writers() below is safe.
1081 */
1082 WARN_ON(mnt_get_writers(mnt));
1083 if (unlikely(mnt->mnt_pins.first))
1084 mnt_pin_kill(mnt);
1085 fsnotify_vfsmount_delete(&mnt->mnt);
1086 dput(mnt->mnt.mnt_root);
1087 deactivate_super(mnt->mnt.mnt_sb);
1088 mnt_free_id(mnt);
1089 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1090 }
1091
1092 static void __cleanup_mnt(struct rcu_head *head)
1093 {
1094 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1095 }
1096
1097 static LLIST_HEAD(delayed_mntput_list);
1098 static void delayed_mntput(struct work_struct *unused)
1099 {
1100 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1101 struct llist_node *next;
1102
1103 for (; node; node = next) {
1104 next = llist_next(node);
1105 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1106 }
1107 }
1108 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1109
1110 static void mntput_no_expire(struct mount *mnt)
1111 {
1112 rcu_read_lock();
1113 mnt_add_count(mnt, -1);
1114 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1115 rcu_read_unlock();
1116 return;
1117 }
1118 lock_mount_hash();
1119 if (mnt_get_count(mnt)) {
1120 rcu_read_unlock();
1121 unlock_mount_hash();
1122 return;
1123 }
1124 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1125 rcu_read_unlock();
1126 unlock_mount_hash();
1127 return;
1128 }
1129 mnt->mnt.mnt_flags |= MNT_DOOMED;
1130 rcu_read_unlock();
1131
1132 list_del(&mnt->mnt_instance);
1133
1134 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1135 struct mount *p, *tmp;
1136 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1137 umount_mnt(p);
1138 }
1139 }
1140 unlock_mount_hash();
1141
1142 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1143 struct task_struct *task = current;
1144 if (likely(!(task->flags & PF_KTHREAD))) {
1145 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1146 if (!task_work_add(task, &mnt->mnt_rcu, true))
1147 return;
1148 }
1149 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1150 schedule_delayed_work(&delayed_mntput_work, 1);
1151 return;
1152 }
1153 cleanup_mnt(mnt);
1154 }
1155
1156 void mntput(struct vfsmount *mnt)
1157 {
1158 if (mnt) {
1159 struct mount *m = real_mount(mnt);
1160 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1161 if (unlikely(m->mnt_expiry_mark))
1162 m->mnt_expiry_mark = 0;
1163 mntput_no_expire(m);
1164 }
1165 }
1166 EXPORT_SYMBOL(mntput);
1167
1168 struct vfsmount *mntget(struct vfsmount *mnt)
1169 {
1170 if (mnt)
1171 mnt_add_count(real_mount(mnt), 1);
1172 return mnt;
1173 }
1174 EXPORT_SYMBOL(mntget);
1175
1176 struct vfsmount *mnt_clone_internal(struct path *path)
1177 {
1178 struct mount *p;
1179 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1180 if (IS_ERR(p))
1181 return ERR_CAST(p);
1182 p->mnt.mnt_flags |= MNT_INTERNAL;
1183 return &p->mnt;
1184 }
1185
1186 static inline void mangle(struct seq_file *m, const char *s)
1187 {
1188 seq_escape(m, s, " \t\n\\");
1189 }
1190
1191 /*
1192 * Simple .show_options callback for filesystems which don't want to
1193 * implement more complex mount option showing.
1194 *
1195 * See also save_mount_options().
1196 */
1197 int generic_show_options(struct seq_file *m, struct dentry *root)
1198 {
1199 const char *options;
1200
1201 rcu_read_lock();
1202 options = rcu_dereference(root->d_sb->s_options);
1203
1204 if (options != NULL && options[0]) {
1205 seq_putc(m, ',');
1206 mangle(m, options);
1207 }
1208 rcu_read_unlock();
1209
1210 return 0;
1211 }
1212 EXPORT_SYMBOL(generic_show_options);
1213
1214 /*
1215 * If filesystem uses generic_show_options(), this function should be
1216 * called from the fill_super() callback.
1217 *
1218 * The .remount_fs callback usually needs to be handled in a special
1219 * way, to make sure, that previous options are not overwritten if the
1220 * remount fails.
1221 *
1222 * Also note, that if the filesystem's .remount_fs function doesn't
1223 * reset all options to their default value, but changes only newly
1224 * given options, then the displayed options will not reflect reality
1225 * any more.
1226 */
1227 void save_mount_options(struct super_block *sb, char *options)
1228 {
1229 BUG_ON(sb->s_options);
1230 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1231 }
1232 EXPORT_SYMBOL(save_mount_options);
1233
1234 void replace_mount_options(struct super_block *sb, char *options)
1235 {
1236 char *old = sb->s_options;
1237 rcu_assign_pointer(sb->s_options, options);
1238 if (old) {
1239 synchronize_rcu();
1240 kfree(old);
1241 }
1242 }
1243 EXPORT_SYMBOL(replace_mount_options);
1244
1245 #ifdef CONFIG_PROC_FS
1246 /* iterator; we want it to have access to namespace_sem, thus here... */
1247 static void *m_start(struct seq_file *m, loff_t *pos)
1248 {
1249 struct proc_mounts *p = m->private;
1250
1251 down_read(&namespace_sem);
1252 if (p->cached_event == p->ns->event) {
1253 void *v = p->cached_mount;
1254 if (*pos == p->cached_index)
1255 return v;
1256 if (*pos == p->cached_index + 1) {
1257 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1258 return p->cached_mount = v;
1259 }
1260 }
1261
1262 p->cached_event = p->ns->event;
1263 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1264 p->cached_index = *pos;
1265 return p->cached_mount;
1266 }
1267
1268 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1269 {
1270 struct proc_mounts *p = m->private;
1271
1272 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1273 p->cached_index = *pos;
1274 return p->cached_mount;
1275 }
1276
1277 static void m_stop(struct seq_file *m, void *v)
1278 {
1279 up_read(&namespace_sem);
1280 }
1281
1282 static int m_show(struct seq_file *m, void *v)
1283 {
1284 struct proc_mounts *p = m->private;
1285 struct mount *r = list_entry(v, struct mount, mnt_list);
1286 return p->show(m, &r->mnt);
1287 }
1288
1289 const struct seq_operations mounts_op = {
1290 .start = m_start,
1291 .next = m_next,
1292 .stop = m_stop,
1293 .show = m_show,
1294 };
1295 #endif /* CONFIG_PROC_FS */
1296
1297 /**
1298 * may_umount_tree - check if a mount tree is busy
1299 * @mnt: root of mount tree
1300 *
1301 * This is called to check if a tree of mounts has any
1302 * open files, pwds, chroots or sub mounts that are
1303 * busy.
1304 */
1305 int may_umount_tree(struct vfsmount *m)
1306 {
1307 struct mount *mnt = real_mount(m);
1308 int actual_refs = 0;
1309 int minimum_refs = 0;
1310 struct mount *p;
1311 BUG_ON(!m);
1312
1313 /* write lock needed for mnt_get_count */
1314 lock_mount_hash();
1315 for (p = mnt; p; p = next_mnt(p, mnt)) {
1316 actual_refs += mnt_get_count(p);
1317 minimum_refs += 2;
1318 }
1319 unlock_mount_hash();
1320
1321 if (actual_refs > minimum_refs)
1322 return 0;
1323
1324 return 1;
1325 }
1326
1327 EXPORT_SYMBOL(may_umount_tree);
1328
1329 /**
1330 * may_umount - check if a mount point is busy
1331 * @mnt: root of mount
1332 *
1333 * This is called to check if a mount point has any
1334 * open files, pwds, chroots or sub mounts. If the
1335 * mount has sub mounts this will return busy
1336 * regardless of whether the sub mounts are busy.
1337 *
1338 * Doesn't take quota and stuff into account. IOW, in some cases it will
1339 * give false negatives. The main reason why it's here is that we need
1340 * a non-destructive way to look for easily umountable filesystems.
1341 */
1342 int may_umount(struct vfsmount *mnt)
1343 {
1344 int ret = 1;
1345 down_read(&namespace_sem);
1346 lock_mount_hash();
1347 if (propagate_mount_busy(real_mount(mnt), 2))
1348 ret = 0;
1349 unlock_mount_hash();
1350 up_read(&namespace_sem);
1351 return ret;
1352 }
1353
1354 EXPORT_SYMBOL(may_umount);
1355
1356 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1357
1358 static void namespace_unlock(void)
1359 {
1360 struct hlist_head head;
1361
1362 hlist_move_list(&unmounted, &head);
1363
1364 up_write(&namespace_sem);
1365
1366 if (likely(hlist_empty(&head)))
1367 return;
1368
1369 synchronize_rcu();
1370
1371 group_pin_kill(&head);
1372 }
1373
1374 static inline void namespace_lock(void)
1375 {
1376 down_write(&namespace_sem);
1377 }
1378
1379 enum umount_tree_flags {
1380 UMOUNT_SYNC = 1,
1381 UMOUNT_PROPAGATE = 2,
1382 UMOUNT_CONNECTED = 4,
1383 };
1384
1385 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1386 {
1387 /* Leaving mounts connected is only valid for lazy umounts */
1388 if (how & UMOUNT_SYNC)
1389 return true;
1390
1391 /* A mount without a parent has nothing to be connected to */
1392 if (!mnt_has_parent(mnt))
1393 return true;
1394
1395 /* Because the reference counting rules change when mounts are
1396 * unmounted and connected, umounted mounts may not be
1397 * connected to mounted mounts.
1398 */
1399 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1400 return true;
1401
1402 /* Has it been requested that the mount remain connected? */
1403 if (how & UMOUNT_CONNECTED)
1404 return false;
1405
1406 /* Is the mount locked such that it needs to remain connected? */
1407 if (IS_MNT_LOCKED(mnt))
1408 return false;
1409
1410 /* By default disconnect the mount */
1411 return true;
1412 }
1413
1414 /*
1415 * mount_lock must be held
1416 * namespace_sem must be held for write
1417 */
1418 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1419 {
1420 LIST_HEAD(tmp_list);
1421 struct mount *p;
1422
1423 if (how & UMOUNT_PROPAGATE)
1424 propagate_mount_unlock(mnt);
1425
1426 /* Gather the mounts to umount */
1427 for (p = mnt; p; p = next_mnt(p, mnt)) {
1428 p->mnt.mnt_flags |= MNT_UMOUNT;
1429 list_move(&p->mnt_list, &tmp_list);
1430 }
1431
1432 /* Hide the mounts from mnt_mounts */
1433 list_for_each_entry(p, &tmp_list, mnt_list) {
1434 list_del_init(&p->mnt_child);
1435 }
1436
1437 /* Add propogated mounts to the tmp_list */
1438 if (how & UMOUNT_PROPAGATE)
1439 propagate_umount(&tmp_list);
1440
1441 while (!list_empty(&tmp_list)) {
1442 bool disconnect;
1443 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1444 list_del_init(&p->mnt_expire);
1445 list_del_init(&p->mnt_list);
1446 __touch_mnt_namespace(p->mnt_ns);
1447 p->mnt_ns = NULL;
1448 if (how & UMOUNT_SYNC)
1449 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1450
1451 disconnect = disconnect_mount(p, how);
1452
1453 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1454 disconnect ? &unmounted : NULL);
1455 if (mnt_has_parent(p)) {
1456 mnt_add_count(p->mnt_parent, -1);
1457 if (!disconnect) {
1458 /* Don't forget about p */
1459 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1460 } else {
1461 umount_mnt(p);
1462 }
1463 }
1464 change_mnt_propagation(p, MS_PRIVATE);
1465 }
1466 }
1467
1468 static void shrink_submounts(struct mount *mnt);
1469
1470 static int do_umount(struct mount *mnt, int flags)
1471 {
1472 struct super_block *sb = mnt->mnt.mnt_sb;
1473 int retval;
1474
1475 retval = security_sb_umount(&mnt->mnt, flags);
1476 if (retval)
1477 return retval;
1478
1479 /*
1480 * Allow userspace to request a mountpoint be expired rather than
1481 * unmounting unconditionally. Unmount only happens if:
1482 * (1) the mark is already set (the mark is cleared by mntput())
1483 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1484 */
1485 if (flags & MNT_EXPIRE) {
1486 if (&mnt->mnt == current->fs->root.mnt ||
1487 flags & (MNT_FORCE | MNT_DETACH))
1488 return -EINVAL;
1489
1490 /*
1491 * probably don't strictly need the lock here if we examined
1492 * all race cases, but it's a slowpath.
1493 */
1494 lock_mount_hash();
1495 if (mnt_get_count(mnt) != 2) {
1496 unlock_mount_hash();
1497 return -EBUSY;
1498 }
1499 unlock_mount_hash();
1500
1501 if (!xchg(&mnt->mnt_expiry_mark, 1))
1502 return -EAGAIN;
1503 }
1504
1505 /*
1506 * If we may have to abort operations to get out of this
1507 * mount, and they will themselves hold resources we must
1508 * allow the fs to do things. In the Unix tradition of
1509 * 'Gee thats tricky lets do it in userspace' the umount_begin
1510 * might fail to complete on the first run through as other tasks
1511 * must return, and the like. Thats for the mount program to worry
1512 * about for the moment.
1513 */
1514
1515 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1516 sb->s_op->umount_begin(sb);
1517 }
1518
1519 /*
1520 * No sense to grab the lock for this test, but test itself looks
1521 * somewhat bogus. Suggestions for better replacement?
1522 * Ho-hum... In principle, we might treat that as umount + switch
1523 * to rootfs. GC would eventually take care of the old vfsmount.
1524 * Actually it makes sense, especially if rootfs would contain a
1525 * /reboot - static binary that would close all descriptors and
1526 * call reboot(9). Then init(8) could umount root and exec /reboot.
1527 */
1528 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1529 /*
1530 * Special case for "unmounting" root ...
1531 * we just try to remount it readonly.
1532 */
1533 if (!capable(CAP_SYS_ADMIN))
1534 return -EPERM;
1535 down_write(&sb->s_umount);
1536 if (!(sb->s_flags & MS_RDONLY))
1537 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1538 up_write(&sb->s_umount);
1539 return retval;
1540 }
1541
1542 namespace_lock();
1543 lock_mount_hash();
1544 event++;
1545
1546 if (flags & MNT_DETACH) {
1547 if (!list_empty(&mnt->mnt_list))
1548 umount_tree(mnt, UMOUNT_PROPAGATE);
1549 retval = 0;
1550 } else {
1551 shrink_submounts(mnt);
1552 retval = -EBUSY;
1553 if (!propagate_mount_busy(mnt, 2)) {
1554 if (!list_empty(&mnt->mnt_list))
1555 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1556 retval = 0;
1557 }
1558 }
1559 unlock_mount_hash();
1560 namespace_unlock();
1561 return retval;
1562 }
1563
1564 /*
1565 * __detach_mounts - lazily unmount all mounts on the specified dentry
1566 *
1567 * During unlink, rmdir, and d_drop it is possible to loose the path
1568 * to an existing mountpoint, and wind up leaking the mount.
1569 * detach_mounts allows lazily unmounting those mounts instead of
1570 * leaking them.
1571 *
1572 * The caller may hold dentry->d_inode->i_mutex.
1573 */
1574 void __detach_mounts(struct dentry *dentry)
1575 {
1576 struct mountpoint *mp;
1577 struct mount *mnt;
1578
1579 namespace_lock();
1580 mp = lookup_mountpoint(dentry);
1581 if (IS_ERR_OR_NULL(mp))
1582 goto out_unlock;
1583
1584 lock_mount_hash();
1585 while (!hlist_empty(&mp->m_list)) {
1586 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1587 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1588 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1589 umount_mnt(mnt);
1590 }
1591 else umount_tree(mnt, UMOUNT_CONNECTED);
1592 }
1593 unlock_mount_hash();
1594 put_mountpoint(mp);
1595 out_unlock:
1596 namespace_unlock();
1597 }
1598
1599 /*
1600 * Is the caller allowed to modify his namespace?
1601 */
1602 static inline bool may_mount(void)
1603 {
1604 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1605 }
1606
1607 /*
1608 * Now umount can handle mount points as well as block devices.
1609 * This is important for filesystems which use unnamed block devices.
1610 *
1611 * We now support a flag for forced unmount like the other 'big iron'
1612 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1613 */
1614
1615 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1616 {
1617 struct path path;
1618 struct mount *mnt;
1619 int retval;
1620 int lookup_flags = 0;
1621
1622 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1623 return -EINVAL;
1624
1625 if (!may_mount())
1626 return -EPERM;
1627
1628 if (!(flags & UMOUNT_NOFOLLOW))
1629 lookup_flags |= LOOKUP_FOLLOW;
1630
1631 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1632 if (retval)
1633 goto out;
1634 mnt = real_mount(path.mnt);
1635 retval = -EINVAL;
1636 if (path.dentry != path.mnt->mnt_root)
1637 goto dput_and_out;
1638 if (!check_mnt(mnt))
1639 goto dput_and_out;
1640 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1641 goto dput_and_out;
1642 retval = -EPERM;
1643 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1644 goto dput_and_out;
1645
1646 retval = do_umount(mnt, flags);
1647 dput_and_out:
1648 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1649 dput(path.dentry);
1650 mntput_no_expire(mnt);
1651 out:
1652 return retval;
1653 }
1654
1655 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1656
1657 /*
1658 * The 2.0 compatible umount. No flags.
1659 */
1660 SYSCALL_DEFINE1(oldumount, char __user *, name)
1661 {
1662 return sys_umount(name, 0);
1663 }
1664
1665 #endif
1666
1667 static bool is_mnt_ns_file(struct dentry *dentry)
1668 {
1669 /* Is this a proxy for a mount namespace? */
1670 return dentry->d_op == &ns_dentry_operations &&
1671 dentry->d_fsdata == &mntns_operations;
1672 }
1673
1674 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1675 {
1676 return container_of(ns, struct mnt_namespace, ns);
1677 }
1678
1679 static bool mnt_ns_loop(struct dentry *dentry)
1680 {
1681 /* Could bind mounting the mount namespace inode cause a
1682 * mount namespace loop?
1683 */
1684 struct mnt_namespace *mnt_ns;
1685 if (!is_mnt_ns_file(dentry))
1686 return false;
1687
1688 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1689 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1690 }
1691
1692 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1693 int flag)
1694 {
1695 struct mount *res, *p, *q, *r, *parent;
1696
1697 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1698 return ERR_PTR(-EINVAL);
1699
1700 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1701 return ERR_PTR(-EINVAL);
1702
1703 res = q = clone_mnt(mnt, dentry, flag);
1704 if (IS_ERR(q))
1705 return q;
1706
1707 q->mnt_mountpoint = mnt->mnt_mountpoint;
1708
1709 p = mnt;
1710 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1711 struct mount *s;
1712 if (!is_subdir(r->mnt_mountpoint, dentry))
1713 continue;
1714
1715 for (s = r; s; s = next_mnt(s, r)) {
1716 struct mount *t = NULL;
1717 if (!(flag & CL_COPY_UNBINDABLE) &&
1718 IS_MNT_UNBINDABLE(s)) {
1719 s = skip_mnt_tree(s);
1720 continue;
1721 }
1722 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1723 is_mnt_ns_file(s->mnt.mnt_root)) {
1724 s = skip_mnt_tree(s);
1725 continue;
1726 }
1727 while (p != s->mnt_parent) {
1728 p = p->mnt_parent;
1729 q = q->mnt_parent;
1730 }
1731 p = s;
1732 parent = q;
1733 q = clone_mnt(p, p->mnt.mnt_root, flag);
1734 if (IS_ERR(q))
1735 goto out;
1736 lock_mount_hash();
1737 list_add_tail(&q->mnt_list, &res->mnt_list);
1738 mnt_set_mountpoint(parent, p->mnt_mp, q);
1739 if (!list_empty(&parent->mnt_mounts)) {
1740 t = list_last_entry(&parent->mnt_mounts,
1741 struct mount, mnt_child);
1742 if (t->mnt_mp != p->mnt_mp)
1743 t = NULL;
1744 }
1745 attach_shadowed(q, parent, t);
1746 unlock_mount_hash();
1747 }
1748 }
1749 return res;
1750 out:
1751 if (res) {
1752 lock_mount_hash();
1753 umount_tree(res, UMOUNT_SYNC);
1754 unlock_mount_hash();
1755 }
1756 return q;
1757 }
1758
1759 /* Caller should check returned pointer for errors */
1760
1761 struct vfsmount *collect_mounts(struct path *path)
1762 {
1763 struct mount *tree;
1764 namespace_lock();
1765 if (!check_mnt(real_mount(path->mnt)))
1766 tree = ERR_PTR(-EINVAL);
1767 else
1768 tree = copy_tree(real_mount(path->mnt), path->dentry,
1769 CL_COPY_ALL | CL_PRIVATE);
1770 namespace_unlock();
1771 if (IS_ERR(tree))
1772 return ERR_CAST(tree);
1773 return &tree->mnt;
1774 }
1775
1776 void drop_collected_mounts(struct vfsmount *mnt)
1777 {
1778 namespace_lock();
1779 lock_mount_hash();
1780 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1781 unlock_mount_hash();
1782 namespace_unlock();
1783 }
1784
1785 /**
1786 * clone_private_mount - create a private clone of a path
1787 *
1788 * This creates a new vfsmount, which will be the clone of @path. The new will
1789 * not be attached anywhere in the namespace and will be private (i.e. changes
1790 * to the originating mount won't be propagated into this).
1791 *
1792 * Release with mntput().
1793 */
1794 struct vfsmount *clone_private_mount(struct path *path)
1795 {
1796 struct mount *old_mnt = real_mount(path->mnt);
1797 struct mount *new_mnt;
1798
1799 if (IS_MNT_UNBINDABLE(old_mnt))
1800 return ERR_PTR(-EINVAL);
1801
1802 down_read(&namespace_sem);
1803 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1804 up_read(&namespace_sem);
1805 if (IS_ERR(new_mnt))
1806 return ERR_CAST(new_mnt);
1807
1808 return &new_mnt->mnt;
1809 }
1810 EXPORT_SYMBOL_GPL(clone_private_mount);
1811
1812 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1813 struct vfsmount *root)
1814 {
1815 struct mount *mnt;
1816 int res = f(root, arg);
1817 if (res)
1818 return res;
1819 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1820 res = f(&mnt->mnt, arg);
1821 if (res)
1822 return res;
1823 }
1824 return 0;
1825 }
1826
1827 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1828 {
1829 struct mount *p;
1830
1831 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1832 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1833 mnt_release_group_id(p);
1834 }
1835 }
1836
1837 static int invent_group_ids(struct mount *mnt, bool recurse)
1838 {
1839 struct mount *p;
1840
1841 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1842 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1843 int err = mnt_alloc_group_id(p);
1844 if (err) {
1845 cleanup_group_ids(mnt, p);
1846 return err;
1847 }
1848 }
1849 }
1850
1851 return 0;
1852 }
1853
1854 /*
1855 * @source_mnt : mount tree to be attached
1856 * @nd : place the mount tree @source_mnt is attached
1857 * @parent_nd : if non-null, detach the source_mnt from its parent and
1858 * store the parent mount and mountpoint dentry.
1859 * (done when source_mnt is moved)
1860 *
1861 * NOTE: in the table below explains the semantics when a source mount
1862 * of a given type is attached to a destination mount of a given type.
1863 * ---------------------------------------------------------------------------
1864 * | BIND MOUNT OPERATION |
1865 * |**************************************************************************
1866 * | source-->| shared | private | slave | unbindable |
1867 * | dest | | | | |
1868 * | | | | | | |
1869 * | v | | | | |
1870 * |**************************************************************************
1871 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1872 * | | | | | |
1873 * |non-shared| shared (+) | private | slave (*) | invalid |
1874 * ***************************************************************************
1875 * A bind operation clones the source mount and mounts the clone on the
1876 * destination mount.
1877 *
1878 * (++) the cloned mount is propagated to all the mounts in the propagation
1879 * tree of the destination mount and the cloned mount is added to
1880 * the peer group of the source mount.
1881 * (+) the cloned mount is created under the destination mount and is marked
1882 * as shared. The cloned mount is added to the peer group of the source
1883 * mount.
1884 * (+++) the mount is propagated to all the mounts in the propagation tree
1885 * of the destination mount and the cloned mount is made slave
1886 * of the same master as that of the source mount. The cloned mount
1887 * is marked as 'shared and slave'.
1888 * (*) the cloned mount is made a slave of the same master as that of the
1889 * source mount.
1890 *
1891 * ---------------------------------------------------------------------------
1892 * | MOVE MOUNT OPERATION |
1893 * |**************************************************************************
1894 * | source-->| shared | private | slave | unbindable |
1895 * | dest | | | | |
1896 * | | | | | | |
1897 * | v | | | | |
1898 * |**************************************************************************
1899 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1900 * | | | | | |
1901 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1902 * ***************************************************************************
1903 *
1904 * (+) the mount is moved to the destination. And is then propagated to
1905 * all the mounts in the propagation tree of the destination mount.
1906 * (+*) the mount is moved to the destination.
1907 * (+++) the mount is moved to the destination and is then propagated to
1908 * all the mounts belonging to the destination mount's propagation tree.
1909 * the mount is marked as 'shared and slave'.
1910 * (*) the mount continues to be a slave at the new location.
1911 *
1912 * if the source mount is a tree, the operations explained above is
1913 * applied to each mount in the tree.
1914 * Must be called without spinlocks held, since this function can sleep
1915 * in allocations.
1916 */
1917 static int attach_recursive_mnt(struct mount *source_mnt,
1918 struct mount *dest_mnt,
1919 struct mountpoint *dest_mp,
1920 struct path *parent_path)
1921 {
1922 HLIST_HEAD(tree_list);
1923 struct mount *child, *p;
1924 struct hlist_node *n;
1925 int err;
1926
1927 if (IS_MNT_SHARED(dest_mnt)) {
1928 err = invent_group_ids(source_mnt, true);
1929 if (err)
1930 goto out;
1931 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1932 lock_mount_hash();
1933 if (err)
1934 goto out_cleanup_ids;
1935 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1936 set_mnt_shared(p);
1937 } else {
1938 lock_mount_hash();
1939 }
1940 if (parent_path) {
1941 detach_mnt(source_mnt, parent_path);
1942 attach_mnt(source_mnt, dest_mnt, dest_mp);
1943 touch_mnt_namespace(source_mnt->mnt_ns);
1944 } else {
1945 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1946 commit_tree(source_mnt, NULL);
1947 }
1948
1949 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1950 struct mount *q;
1951 hlist_del_init(&child->mnt_hash);
1952 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1953 child->mnt_mountpoint);
1954 commit_tree(child, q);
1955 }
1956 unlock_mount_hash();
1957
1958 return 0;
1959
1960 out_cleanup_ids:
1961 while (!hlist_empty(&tree_list)) {
1962 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1963 umount_tree(child, UMOUNT_SYNC);
1964 }
1965 unlock_mount_hash();
1966 cleanup_group_ids(source_mnt, NULL);
1967 out:
1968 return err;
1969 }
1970
1971 static struct mountpoint *lock_mount(struct path *path)
1972 {
1973 struct vfsmount *mnt;
1974 struct dentry *dentry = path->dentry;
1975 retry:
1976 mutex_lock(&dentry->d_inode->i_mutex);
1977 if (unlikely(cant_mount(dentry))) {
1978 mutex_unlock(&dentry->d_inode->i_mutex);
1979 return ERR_PTR(-ENOENT);
1980 }
1981 namespace_lock();
1982 mnt = lookup_mnt(path);
1983 if (likely(!mnt)) {
1984 struct mountpoint *mp = lookup_mountpoint(dentry);
1985 if (!mp)
1986 mp = new_mountpoint(dentry);
1987 if (IS_ERR(mp)) {
1988 namespace_unlock();
1989 mutex_unlock(&dentry->d_inode->i_mutex);
1990 return mp;
1991 }
1992 return mp;
1993 }
1994 namespace_unlock();
1995 mutex_unlock(&path->dentry->d_inode->i_mutex);
1996 path_put(path);
1997 path->mnt = mnt;
1998 dentry = path->dentry = dget(mnt->mnt_root);
1999 goto retry;
2000 }
2001
2002 static void unlock_mount(struct mountpoint *where)
2003 {
2004 struct dentry *dentry = where->m_dentry;
2005 put_mountpoint(where);
2006 namespace_unlock();
2007 mutex_unlock(&dentry->d_inode->i_mutex);
2008 }
2009
2010 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2011 {
2012 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2013 return -EINVAL;
2014
2015 if (d_is_dir(mp->m_dentry) !=
2016 d_is_dir(mnt->mnt.mnt_root))
2017 return -ENOTDIR;
2018
2019 return attach_recursive_mnt(mnt, p, mp, NULL);
2020 }
2021
2022 /*
2023 * Sanity check the flags to change_mnt_propagation.
2024 */
2025
2026 static int flags_to_propagation_type(int flags)
2027 {
2028 int type = flags & ~(MS_REC | MS_SILENT);
2029
2030 /* Fail if any non-propagation flags are set */
2031 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2032 return 0;
2033 /* Only one propagation flag should be set */
2034 if (!is_power_of_2(type))
2035 return 0;
2036 return type;
2037 }
2038
2039 /*
2040 * recursively change the type of the mountpoint.
2041 */
2042 static int do_change_type(struct path *path, int flag)
2043 {
2044 struct mount *m;
2045 struct mount *mnt = real_mount(path->mnt);
2046 int recurse = flag & MS_REC;
2047 int type;
2048 int err = 0;
2049
2050 if (path->dentry != path->mnt->mnt_root)
2051 return -EINVAL;
2052
2053 type = flags_to_propagation_type(flag);
2054 if (!type)
2055 return -EINVAL;
2056
2057 namespace_lock();
2058 if (type == MS_SHARED) {
2059 err = invent_group_ids(mnt, recurse);
2060 if (err)
2061 goto out_unlock;
2062 }
2063
2064 lock_mount_hash();
2065 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2066 change_mnt_propagation(m, type);
2067 unlock_mount_hash();
2068
2069 out_unlock:
2070 namespace_unlock();
2071 return err;
2072 }
2073
2074 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2075 {
2076 struct mount *child;
2077 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2078 if (!is_subdir(child->mnt_mountpoint, dentry))
2079 continue;
2080
2081 if (child->mnt.mnt_flags & MNT_LOCKED)
2082 return true;
2083 }
2084 return false;
2085 }
2086
2087 /*
2088 * do loopback mount.
2089 */
2090 static int do_loopback(struct path *path, const char *old_name,
2091 int recurse)
2092 {
2093 struct path old_path;
2094 struct mount *mnt = NULL, *old, *parent;
2095 struct mountpoint *mp;
2096 int err;
2097 if (!old_name || !*old_name)
2098 return -EINVAL;
2099 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2100 if (err)
2101 return err;
2102
2103 err = -EINVAL;
2104 if (mnt_ns_loop(old_path.dentry))
2105 goto out;
2106
2107 mp = lock_mount(path);
2108 err = PTR_ERR(mp);
2109 if (IS_ERR(mp))
2110 goto out;
2111
2112 old = real_mount(old_path.mnt);
2113 parent = real_mount(path->mnt);
2114
2115 err = -EINVAL;
2116 if (IS_MNT_UNBINDABLE(old))
2117 goto out2;
2118
2119 if (!check_mnt(parent))
2120 goto out2;
2121
2122 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2123 goto out2;
2124
2125 if (!recurse && has_locked_children(old, old_path.dentry))
2126 goto out2;
2127
2128 if (recurse)
2129 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2130 else
2131 mnt = clone_mnt(old, old_path.dentry, 0);
2132
2133 if (IS_ERR(mnt)) {
2134 err = PTR_ERR(mnt);
2135 goto out2;
2136 }
2137
2138 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2139
2140 err = graft_tree(mnt, parent, mp);
2141 if (err) {
2142 lock_mount_hash();
2143 umount_tree(mnt, UMOUNT_SYNC);
2144 unlock_mount_hash();
2145 }
2146 out2:
2147 unlock_mount(mp);
2148 out:
2149 path_put(&old_path);
2150 return err;
2151 }
2152
2153 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2154 {
2155 int error = 0;
2156 int readonly_request = 0;
2157
2158 if (ms_flags & MS_RDONLY)
2159 readonly_request = 1;
2160 if (readonly_request == __mnt_is_readonly(mnt))
2161 return 0;
2162
2163 if (readonly_request)
2164 error = mnt_make_readonly(real_mount(mnt));
2165 else
2166 __mnt_unmake_readonly(real_mount(mnt));
2167 return error;
2168 }
2169
2170 /*
2171 * change filesystem flags. dir should be a physical root of filesystem.
2172 * If you've mounted a non-root directory somewhere and want to do remount
2173 * on it - tough luck.
2174 */
2175 static int do_remount(struct path *path, int flags, int mnt_flags,
2176 void *data)
2177 {
2178 int err;
2179 struct super_block *sb = path->mnt->mnt_sb;
2180 struct mount *mnt = real_mount(path->mnt);
2181
2182 if (!check_mnt(mnt))
2183 return -EINVAL;
2184
2185 if (path->dentry != path->mnt->mnt_root)
2186 return -EINVAL;
2187
2188 /* Don't allow changing of locked mnt flags.
2189 *
2190 * No locks need to be held here while testing the various
2191 * MNT_LOCK flags because those flags can never be cleared
2192 * once they are set.
2193 */
2194 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2195 !(mnt_flags & MNT_READONLY)) {
2196 return -EPERM;
2197 }
2198 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2199 !(mnt_flags & MNT_NODEV)) {
2200 /* Was the nodev implicitly added in mount? */
2201 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2202 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2203 mnt_flags |= MNT_NODEV;
2204 } else {
2205 return -EPERM;
2206 }
2207 }
2208 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2209 !(mnt_flags & MNT_NOSUID)) {
2210 return -EPERM;
2211 }
2212 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2213 !(mnt_flags & MNT_NOEXEC)) {
2214 return -EPERM;
2215 }
2216 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2217 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2218 return -EPERM;
2219 }
2220
2221 err = security_sb_remount(sb, data);
2222 if (err)
2223 return err;
2224
2225 down_write(&sb->s_umount);
2226 if (flags & MS_BIND)
2227 err = change_mount_flags(path->mnt, flags);
2228 else if (!capable(CAP_SYS_ADMIN))
2229 err = -EPERM;
2230 else {
2231 err = do_remount_sb(sb, flags, data, 0);
2232 namespace_lock();
2233 lock_mount_hash();
2234 propagate_remount(mnt);
2235 unlock_mount_hash();
2236 namespace_unlock();
2237 }
2238 if (!err) {
2239 lock_mount_hash();
2240 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2241 mnt->mnt.mnt_flags = mnt_flags;
2242 touch_mnt_namespace(mnt->mnt_ns);
2243 unlock_mount_hash();
2244 }
2245 up_write(&sb->s_umount);
2246 return err;
2247 }
2248
2249 static inline int tree_contains_unbindable(struct mount *mnt)
2250 {
2251 struct mount *p;
2252 for (p = mnt; p; p = next_mnt(p, mnt)) {
2253 if (IS_MNT_UNBINDABLE(p))
2254 return 1;
2255 }
2256 return 0;
2257 }
2258
2259 static int do_move_mount(struct path *path, const char *old_name)
2260 {
2261 struct path old_path, parent_path;
2262 struct mount *p;
2263 struct mount *old;
2264 struct mountpoint *mp;
2265 int err;
2266 if (!old_name || !*old_name)
2267 return -EINVAL;
2268 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2269 if (err)
2270 return err;
2271
2272 mp = lock_mount(path);
2273 err = PTR_ERR(mp);
2274 if (IS_ERR(mp))
2275 goto out;
2276
2277 old = real_mount(old_path.mnt);
2278 p = real_mount(path->mnt);
2279
2280 err = -EINVAL;
2281 if (!check_mnt(p) || !check_mnt(old))
2282 goto out1;
2283
2284 if (old->mnt.mnt_flags & MNT_LOCKED)
2285 goto out1;
2286
2287 err = -EINVAL;
2288 if (old_path.dentry != old_path.mnt->mnt_root)
2289 goto out1;
2290
2291 if (!mnt_has_parent(old))
2292 goto out1;
2293
2294 if (d_is_dir(path->dentry) !=
2295 d_is_dir(old_path.dentry))
2296 goto out1;
2297 /*
2298 * Don't move a mount residing in a shared parent.
2299 */
2300 if (IS_MNT_SHARED(old->mnt_parent))
2301 goto out1;
2302 /*
2303 * Don't move a mount tree containing unbindable mounts to a destination
2304 * mount which is shared.
2305 */
2306 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2307 goto out1;
2308 err = -ELOOP;
2309 for (; mnt_has_parent(p); p = p->mnt_parent)
2310 if (p == old)
2311 goto out1;
2312
2313 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2314 if (err)
2315 goto out1;
2316
2317 /* if the mount is moved, it should no longer be expire
2318 * automatically */
2319 list_del_init(&old->mnt_expire);
2320 out1:
2321 unlock_mount(mp);
2322 out:
2323 if (!err)
2324 path_put(&parent_path);
2325 path_put(&old_path);
2326 return err;
2327 }
2328
2329 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2330 {
2331 int err;
2332 const char *subtype = strchr(fstype, '.');
2333 if (subtype) {
2334 subtype++;
2335 err = -EINVAL;
2336 if (!subtype[0])
2337 goto err;
2338 } else
2339 subtype = "";
2340
2341 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2342 err = -ENOMEM;
2343 if (!mnt->mnt_sb->s_subtype)
2344 goto err;
2345 return mnt;
2346
2347 err:
2348 mntput(mnt);
2349 return ERR_PTR(err);
2350 }
2351
2352 /*
2353 * add a mount into a namespace's mount tree
2354 */
2355 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2356 {
2357 struct mountpoint *mp;
2358 struct mount *parent;
2359 int err;
2360
2361 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2362
2363 mp = lock_mount(path);
2364 if (IS_ERR(mp))
2365 return PTR_ERR(mp);
2366
2367 parent = real_mount(path->mnt);
2368 err = -EINVAL;
2369 if (unlikely(!check_mnt(parent))) {
2370 /* that's acceptable only for automounts done in private ns */
2371 if (!(mnt_flags & MNT_SHRINKABLE))
2372 goto unlock;
2373 /* ... and for those we'd better have mountpoint still alive */
2374 if (!parent->mnt_ns)
2375 goto unlock;
2376 }
2377
2378 /* Refuse the same filesystem on the same mount point */
2379 err = -EBUSY;
2380 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2381 path->mnt->mnt_root == path->dentry)
2382 goto unlock;
2383
2384 err = -EINVAL;
2385 if (d_is_symlink(newmnt->mnt.mnt_root))
2386 goto unlock;
2387
2388 newmnt->mnt.mnt_flags = mnt_flags;
2389 err = graft_tree(newmnt, parent, mp);
2390
2391 unlock:
2392 unlock_mount(mp);
2393 return err;
2394 }
2395
2396 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2397
2398 /*
2399 * create a new mount for userspace and request it to be added into the
2400 * namespace's tree
2401 */
2402 static int do_new_mount(struct path *path, const char *fstype, int flags,
2403 int mnt_flags, const char *name, void *data)
2404 {
2405 struct file_system_type *type;
2406 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2407 struct vfsmount *mnt;
2408 int err;
2409
2410 if (!fstype)
2411 return -EINVAL;
2412
2413 type = get_fs_type(fstype);
2414 if (!type)
2415 return -ENODEV;
2416
2417 if (user_ns != &init_user_ns) {
2418 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2419 put_filesystem(type);
2420 return -EPERM;
2421 }
2422 /* Only in special cases allow devices from mounts
2423 * created outside the initial user namespace.
2424 */
2425 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2426 flags |= MS_NODEV;
2427 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2428 }
2429 if (type->fs_flags & FS_USERNS_VISIBLE) {
2430 if (!fs_fully_visible(type, &mnt_flags))
2431 return -EPERM;
2432 }
2433 }
2434
2435 mnt = vfs_kern_mount(type, flags, name, data);
2436 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2437 !mnt->mnt_sb->s_subtype)
2438 mnt = fs_set_subtype(mnt, fstype);
2439
2440 put_filesystem(type);
2441 if (IS_ERR(mnt))
2442 return PTR_ERR(mnt);
2443
2444 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2445 if (err)
2446 mntput(mnt);
2447 return err;
2448 }
2449
2450 int finish_automount(struct vfsmount *m, struct path *path)
2451 {
2452 struct mount *mnt = real_mount(m);
2453 int err;
2454 /* The new mount record should have at least 2 refs to prevent it being
2455 * expired before we get a chance to add it
2456 */
2457 BUG_ON(mnt_get_count(mnt) < 2);
2458
2459 if (m->mnt_sb == path->mnt->mnt_sb &&
2460 m->mnt_root == path->dentry) {
2461 err = -ELOOP;
2462 goto fail;
2463 }
2464
2465 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2466 if (!err)
2467 return 0;
2468 fail:
2469 /* remove m from any expiration list it may be on */
2470 if (!list_empty(&mnt->mnt_expire)) {
2471 namespace_lock();
2472 list_del_init(&mnt->mnt_expire);
2473 namespace_unlock();
2474 }
2475 mntput(m);
2476 mntput(m);
2477 return err;
2478 }
2479
2480 /**
2481 * mnt_set_expiry - Put a mount on an expiration list
2482 * @mnt: The mount to list.
2483 * @expiry_list: The list to add the mount to.
2484 */
2485 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2486 {
2487 namespace_lock();
2488
2489 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2490
2491 namespace_unlock();
2492 }
2493 EXPORT_SYMBOL(mnt_set_expiry);
2494
2495 /*
2496 * process a list of expirable mountpoints with the intent of discarding any
2497 * mountpoints that aren't in use and haven't been touched since last we came
2498 * here
2499 */
2500 void mark_mounts_for_expiry(struct list_head *mounts)
2501 {
2502 struct mount *mnt, *next;
2503 LIST_HEAD(graveyard);
2504
2505 if (list_empty(mounts))
2506 return;
2507
2508 namespace_lock();
2509 lock_mount_hash();
2510
2511 /* extract from the expiration list every vfsmount that matches the
2512 * following criteria:
2513 * - only referenced by its parent vfsmount
2514 * - still marked for expiry (marked on the last call here; marks are
2515 * cleared by mntput())
2516 */
2517 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2518 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2519 propagate_mount_busy(mnt, 1))
2520 continue;
2521 list_move(&mnt->mnt_expire, &graveyard);
2522 }
2523 while (!list_empty(&graveyard)) {
2524 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2525 touch_mnt_namespace(mnt->mnt_ns);
2526 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2527 }
2528 unlock_mount_hash();
2529 namespace_unlock();
2530 }
2531
2532 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2533
2534 /*
2535 * Ripoff of 'select_parent()'
2536 *
2537 * search the list of submounts for a given mountpoint, and move any
2538 * shrinkable submounts to the 'graveyard' list.
2539 */
2540 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2541 {
2542 struct mount *this_parent = parent;
2543 struct list_head *next;
2544 int found = 0;
2545
2546 repeat:
2547 next = this_parent->mnt_mounts.next;
2548 resume:
2549 while (next != &this_parent->mnt_mounts) {
2550 struct list_head *tmp = next;
2551 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2552
2553 next = tmp->next;
2554 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2555 continue;
2556 /*
2557 * Descend a level if the d_mounts list is non-empty.
2558 */
2559 if (!list_empty(&mnt->mnt_mounts)) {
2560 this_parent = mnt;
2561 goto repeat;
2562 }
2563
2564 if (!propagate_mount_busy(mnt, 1)) {
2565 list_move_tail(&mnt->mnt_expire, graveyard);
2566 found++;
2567 }
2568 }
2569 /*
2570 * All done at this level ... ascend and resume the search
2571 */
2572 if (this_parent != parent) {
2573 next = this_parent->mnt_child.next;
2574 this_parent = this_parent->mnt_parent;
2575 goto resume;
2576 }
2577 return found;
2578 }
2579
2580 /*
2581 * process a list of expirable mountpoints with the intent of discarding any
2582 * submounts of a specific parent mountpoint
2583 *
2584 * mount_lock must be held for write
2585 */
2586 static void shrink_submounts(struct mount *mnt)
2587 {
2588 LIST_HEAD(graveyard);
2589 struct mount *m;
2590
2591 /* extract submounts of 'mountpoint' from the expiration list */
2592 while (select_submounts(mnt, &graveyard)) {
2593 while (!list_empty(&graveyard)) {
2594 m = list_first_entry(&graveyard, struct mount,
2595 mnt_expire);
2596 touch_mnt_namespace(m->mnt_ns);
2597 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2598 }
2599 }
2600 }
2601
2602 /*
2603 * Some copy_from_user() implementations do not return the exact number of
2604 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2605 * Note that this function differs from copy_from_user() in that it will oops
2606 * on bad values of `to', rather than returning a short copy.
2607 */
2608 static long exact_copy_from_user(void *to, const void __user * from,
2609 unsigned long n)
2610 {
2611 char *t = to;
2612 const char __user *f = from;
2613 char c;
2614
2615 if (!access_ok(VERIFY_READ, from, n))
2616 return n;
2617
2618 while (n) {
2619 if (__get_user(c, f)) {
2620 memset(t, 0, n);
2621 break;
2622 }
2623 *t++ = c;
2624 f++;
2625 n--;
2626 }
2627 return n;
2628 }
2629
2630 int copy_mount_options(const void __user * data, unsigned long *where)
2631 {
2632 int i;
2633 unsigned long page;
2634 unsigned long size;
2635
2636 *where = 0;
2637 if (!data)
2638 return 0;
2639
2640 if (!(page = __get_free_page(GFP_KERNEL)))
2641 return -ENOMEM;
2642
2643 /* We only care that *some* data at the address the user
2644 * gave us is valid. Just in case, we'll zero
2645 * the remainder of the page.
2646 */
2647 /* copy_from_user cannot cross TASK_SIZE ! */
2648 size = TASK_SIZE - (unsigned long)data;
2649 if (size > PAGE_SIZE)
2650 size = PAGE_SIZE;
2651
2652 i = size - exact_copy_from_user((void *)page, data, size);
2653 if (!i) {
2654 free_page(page);
2655 return -EFAULT;
2656 }
2657 if (i != PAGE_SIZE)
2658 memset((char *)page + i, 0, PAGE_SIZE - i);
2659 *where = page;
2660 return 0;
2661 }
2662
2663 char *copy_mount_string(const void __user *data)
2664 {
2665 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2666 }
2667
2668 /*
2669 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2670 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2671 *
2672 * data is a (void *) that can point to any structure up to
2673 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2674 * information (or be NULL).
2675 *
2676 * Pre-0.97 versions of mount() didn't have a flags word.
2677 * When the flags word was introduced its top half was required
2678 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2679 * Therefore, if this magic number is present, it carries no information
2680 * and must be discarded.
2681 */
2682 long do_mount(const char *dev_name, const char __user *dir_name,
2683 const char *type_page, unsigned long flags, void *data_page)
2684 {
2685 struct path path;
2686 int retval = 0;
2687 int mnt_flags = 0;
2688
2689 /* Discard magic */
2690 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2691 flags &= ~MS_MGC_MSK;
2692
2693 /* Basic sanity checks */
2694 if (data_page)
2695 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2696
2697 /* ... and get the mountpoint */
2698 retval = user_path(dir_name, &path);
2699 if (retval)
2700 return retval;
2701
2702 retval = security_sb_mount(dev_name, &path,
2703 type_page, flags, data_page);
2704 if (!retval && !may_mount())
2705 retval = -EPERM;
2706 if (retval)
2707 goto dput_out;
2708
2709 /* Default to relatime unless overriden */
2710 if (!(flags & MS_NOATIME))
2711 mnt_flags |= MNT_RELATIME;
2712
2713 /* Separate the per-mountpoint flags */
2714 if (flags & MS_NOSUID)
2715 mnt_flags |= MNT_NOSUID;
2716 if (flags & MS_NODEV)
2717 mnt_flags |= MNT_NODEV;
2718 if (flags & MS_NOEXEC)
2719 mnt_flags |= MNT_NOEXEC;
2720 if (flags & MS_NOATIME)
2721 mnt_flags |= MNT_NOATIME;
2722 if (flags & MS_NODIRATIME)
2723 mnt_flags |= MNT_NODIRATIME;
2724 if (flags & MS_STRICTATIME)
2725 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2726 if (flags & MS_RDONLY)
2727 mnt_flags |= MNT_READONLY;
2728
2729 /* The default atime for remount is preservation */
2730 if ((flags & MS_REMOUNT) &&
2731 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2732 MS_STRICTATIME)) == 0)) {
2733 mnt_flags &= ~MNT_ATIME_MASK;
2734 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2735 }
2736
2737 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2738 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2739 MS_STRICTATIME);
2740
2741 if (flags & MS_REMOUNT)
2742 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2743 data_page);
2744 else if (flags & MS_BIND)
2745 retval = do_loopback(&path, dev_name, flags & MS_REC);
2746 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2747 retval = do_change_type(&path, flags);
2748 else if (flags & MS_MOVE)
2749 retval = do_move_mount(&path, dev_name);
2750 else
2751 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2752 dev_name, data_page);
2753 dput_out:
2754 path_put(&path);
2755 return retval;
2756 }
2757
2758 static void free_mnt_ns(struct mnt_namespace *ns)
2759 {
2760 ns_free_inum(&ns->ns);
2761 put_user_ns(ns->user_ns);
2762 kfree(ns);
2763 }
2764
2765 /*
2766 * Assign a sequence number so we can detect when we attempt to bind
2767 * mount a reference to an older mount namespace into the current
2768 * mount namespace, preventing reference counting loops. A 64bit
2769 * number incrementing at 10Ghz will take 12,427 years to wrap which
2770 * is effectively never, so we can ignore the possibility.
2771 */
2772 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2773
2774 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2775 {
2776 struct mnt_namespace *new_ns;
2777 int ret;
2778
2779 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2780 if (!new_ns)
2781 return ERR_PTR(-ENOMEM);
2782 ret = ns_alloc_inum(&new_ns->ns);
2783 if (ret) {
2784 kfree(new_ns);
2785 return ERR_PTR(ret);
2786 }
2787 new_ns->ns.ops = &mntns_operations;
2788 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2789 atomic_set(&new_ns->count, 1);
2790 new_ns->root = NULL;
2791 INIT_LIST_HEAD(&new_ns->list);
2792 init_waitqueue_head(&new_ns->poll);
2793 new_ns->event = 0;
2794 new_ns->user_ns = get_user_ns(user_ns);
2795 return new_ns;
2796 }
2797
2798 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2799 struct user_namespace *user_ns, struct fs_struct *new_fs)
2800 {
2801 struct mnt_namespace *new_ns;
2802 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2803 struct mount *p, *q;
2804 struct mount *old;
2805 struct mount *new;
2806 int copy_flags;
2807
2808 BUG_ON(!ns);
2809
2810 if (likely(!(flags & CLONE_NEWNS))) {
2811 get_mnt_ns(ns);
2812 return ns;
2813 }
2814
2815 old = ns->root;
2816
2817 new_ns = alloc_mnt_ns(user_ns);
2818 if (IS_ERR(new_ns))
2819 return new_ns;
2820
2821 namespace_lock();
2822 /* First pass: copy the tree topology */
2823 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2824 if (user_ns != ns->user_ns)
2825 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2826 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2827 if (IS_ERR(new)) {
2828 namespace_unlock();
2829 free_mnt_ns(new_ns);
2830 return ERR_CAST(new);
2831 }
2832 new_ns->root = new;
2833 list_add_tail(&new_ns->list, &new->mnt_list);
2834
2835 /*
2836 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2837 * as belonging to new namespace. We have already acquired a private
2838 * fs_struct, so tsk->fs->lock is not needed.
2839 */
2840 p = old;
2841 q = new;
2842 while (p) {
2843 q->mnt_ns = new_ns;
2844 if (new_fs) {
2845 if (&p->mnt == new_fs->root.mnt) {
2846 new_fs->root.mnt = mntget(&q->mnt);
2847 rootmnt = &p->mnt;
2848 }
2849 if (&p->mnt == new_fs->pwd.mnt) {
2850 new_fs->pwd.mnt = mntget(&q->mnt);
2851 pwdmnt = &p->mnt;
2852 }
2853 }
2854 p = next_mnt(p, old);
2855 q = next_mnt(q, new);
2856 if (!q)
2857 break;
2858 while (p->mnt.mnt_root != q->mnt.mnt_root)
2859 p = next_mnt(p, old);
2860 }
2861 namespace_unlock();
2862
2863 if (rootmnt)
2864 mntput(rootmnt);
2865 if (pwdmnt)
2866 mntput(pwdmnt);
2867
2868 return new_ns;
2869 }
2870
2871 /**
2872 * create_mnt_ns - creates a private namespace and adds a root filesystem
2873 * @mnt: pointer to the new root filesystem mountpoint
2874 */
2875 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2876 {
2877 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2878 if (!IS_ERR(new_ns)) {
2879 struct mount *mnt = real_mount(m);
2880 mnt->mnt_ns = new_ns;
2881 new_ns->root = mnt;
2882 list_add(&mnt->mnt_list, &new_ns->list);
2883 } else {
2884 mntput(m);
2885 }
2886 return new_ns;
2887 }
2888
2889 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2890 {
2891 struct mnt_namespace *ns;
2892 struct super_block *s;
2893 struct path path;
2894 int err;
2895
2896 ns = create_mnt_ns(mnt);
2897 if (IS_ERR(ns))
2898 return ERR_CAST(ns);
2899
2900 err = vfs_path_lookup(mnt->mnt_root, mnt,
2901 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2902
2903 put_mnt_ns(ns);
2904
2905 if (err)
2906 return ERR_PTR(err);
2907
2908 /* trade a vfsmount reference for active sb one */
2909 s = path.mnt->mnt_sb;
2910 atomic_inc(&s->s_active);
2911 mntput(path.mnt);
2912 /* lock the sucker */
2913 down_write(&s->s_umount);
2914 /* ... and return the root of (sub)tree on it */
2915 return path.dentry;
2916 }
2917 EXPORT_SYMBOL(mount_subtree);
2918
2919 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2920 char __user *, type, unsigned long, flags, void __user *, data)
2921 {
2922 int ret;
2923 char *kernel_type;
2924 char *kernel_dev;
2925 unsigned long data_page;
2926
2927 kernel_type = copy_mount_string(type);
2928 ret = PTR_ERR(kernel_type);
2929 if (IS_ERR(kernel_type))
2930 goto out_type;
2931
2932 kernel_dev = copy_mount_string(dev_name);
2933 ret = PTR_ERR(kernel_dev);
2934 if (IS_ERR(kernel_dev))
2935 goto out_dev;
2936
2937 ret = copy_mount_options(data, &data_page);
2938 if (ret < 0)
2939 goto out_data;
2940
2941 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2942 (void *) data_page);
2943
2944 free_page(data_page);
2945 out_data:
2946 kfree(kernel_dev);
2947 out_dev:
2948 kfree(kernel_type);
2949 out_type:
2950 return ret;
2951 }
2952
2953 /*
2954 * Return true if path is reachable from root
2955 *
2956 * namespace_sem or mount_lock is held
2957 */
2958 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2959 const struct path *root)
2960 {
2961 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2962 dentry = mnt->mnt_mountpoint;
2963 mnt = mnt->mnt_parent;
2964 }
2965 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2966 }
2967
2968 int path_is_under(struct path *path1, struct path *path2)
2969 {
2970 int res;
2971 read_seqlock_excl(&mount_lock);
2972 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2973 read_sequnlock_excl(&mount_lock);
2974 return res;
2975 }
2976 EXPORT_SYMBOL(path_is_under);
2977
2978 /*
2979 * pivot_root Semantics:
2980 * Moves the root file system of the current process to the directory put_old,
2981 * makes new_root as the new root file system of the current process, and sets
2982 * root/cwd of all processes which had them on the current root to new_root.
2983 *
2984 * Restrictions:
2985 * The new_root and put_old must be directories, and must not be on the
2986 * same file system as the current process root. The put_old must be
2987 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2988 * pointed to by put_old must yield the same directory as new_root. No other
2989 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2990 *
2991 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2992 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2993 * in this situation.
2994 *
2995 * Notes:
2996 * - we don't move root/cwd if they are not at the root (reason: if something
2997 * cared enough to change them, it's probably wrong to force them elsewhere)
2998 * - it's okay to pick a root that isn't the root of a file system, e.g.
2999 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3000 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3001 * first.
3002 */
3003 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3004 const char __user *, put_old)
3005 {
3006 struct path new, old, parent_path, root_parent, root;
3007 struct mount *new_mnt, *root_mnt, *old_mnt;
3008 struct mountpoint *old_mp, *root_mp;
3009 int error;
3010
3011 if (!may_mount())
3012 return -EPERM;
3013
3014 error = user_path_dir(new_root, &new);
3015 if (error)
3016 goto out0;
3017
3018 error = user_path_dir(put_old, &old);
3019 if (error)
3020 goto out1;
3021
3022 error = security_sb_pivotroot(&old, &new);
3023 if (error)
3024 goto out2;
3025
3026 get_fs_root(current->fs, &root);
3027 old_mp = lock_mount(&old);
3028 error = PTR_ERR(old_mp);
3029 if (IS_ERR(old_mp))
3030 goto out3;
3031
3032 error = -EINVAL;
3033 new_mnt = real_mount(new.mnt);
3034 root_mnt = real_mount(root.mnt);
3035 old_mnt = real_mount(old.mnt);
3036 if (IS_MNT_SHARED(old_mnt) ||
3037 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3038 IS_MNT_SHARED(root_mnt->mnt_parent))
3039 goto out4;
3040 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3041 goto out4;
3042 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3043 goto out4;
3044 error = -ENOENT;
3045 if (d_unlinked(new.dentry))
3046 goto out4;
3047 error = -EBUSY;
3048 if (new_mnt == root_mnt || old_mnt == root_mnt)
3049 goto out4; /* loop, on the same file system */
3050 error = -EINVAL;
3051 if (root.mnt->mnt_root != root.dentry)
3052 goto out4; /* not a mountpoint */
3053 if (!mnt_has_parent(root_mnt))
3054 goto out4; /* not attached */
3055 root_mp = root_mnt->mnt_mp;
3056 if (new.mnt->mnt_root != new.dentry)
3057 goto out4; /* not a mountpoint */
3058 if (!mnt_has_parent(new_mnt))
3059 goto out4; /* not attached */
3060 /* make sure we can reach put_old from new_root */
3061 if (!is_path_reachable(old_mnt, old.dentry, &new))
3062 goto out4;
3063 /* make certain new is below the root */
3064 if (!is_path_reachable(new_mnt, new.dentry, &root))
3065 goto out4;
3066 root_mp->m_count++; /* pin it so it won't go away */
3067 lock_mount_hash();
3068 detach_mnt(new_mnt, &parent_path);
3069 detach_mnt(root_mnt, &root_parent);
3070 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3071 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3072 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3073 }
3074 /* mount old root on put_old */
3075 attach_mnt(root_mnt, old_mnt, old_mp);
3076 /* mount new_root on / */
3077 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3078 touch_mnt_namespace(current->nsproxy->mnt_ns);
3079 /* A moved mount should not expire automatically */
3080 list_del_init(&new_mnt->mnt_expire);
3081 unlock_mount_hash();
3082 chroot_fs_refs(&root, &new);
3083 put_mountpoint(root_mp);
3084 error = 0;
3085 out4:
3086 unlock_mount(old_mp);
3087 if (!error) {
3088 path_put(&root_parent);
3089 path_put(&parent_path);
3090 }
3091 out3:
3092 path_put(&root);
3093 out2:
3094 path_put(&old);
3095 out1:
3096 path_put(&new);
3097 out0:
3098 return error;
3099 }
3100
3101 static void __init init_mount_tree(void)
3102 {
3103 struct vfsmount *mnt;
3104 struct mnt_namespace *ns;
3105 struct path root;
3106 struct file_system_type *type;
3107
3108 type = get_fs_type("rootfs");
3109 if (!type)
3110 panic("Can't find rootfs type");
3111 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3112 put_filesystem(type);
3113 if (IS_ERR(mnt))
3114 panic("Can't create rootfs");
3115
3116 ns = create_mnt_ns(mnt);
3117 if (IS_ERR(ns))
3118 panic("Can't allocate initial namespace");
3119
3120 init_task.nsproxy->mnt_ns = ns;
3121 get_mnt_ns(ns);
3122
3123 root.mnt = mnt;
3124 root.dentry = mnt->mnt_root;
3125 mnt->mnt_flags |= MNT_LOCKED;
3126
3127 set_fs_pwd(current->fs, &root);
3128 set_fs_root(current->fs, &root);
3129 }
3130
3131 void __init mnt_init(void)
3132 {
3133 unsigned u;
3134 int err;
3135
3136 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3137 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3138
3139 mount_hashtable = alloc_large_system_hash("Mount-cache",
3140 sizeof(struct hlist_head),
3141 mhash_entries, 19,
3142 0,
3143 &m_hash_shift, &m_hash_mask, 0, 0);
3144 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3145 sizeof(struct hlist_head),
3146 mphash_entries, 19,
3147 0,
3148 &mp_hash_shift, &mp_hash_mask, 0, 0);
3149
3150 if (!mount_hashtable || !mountpoint_hashtable)
3151 panic("Failed to allocate mount hash table\n");
3152
3153 for (u = 0; u <= m_hash_mask; u++)
3154 INIT_HLIST_HEAD(&mount_hashtable[u]);
3155 for (u = 0; u <= mp_hash_mask; u++)
3156 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3157
3158 kernfs_init();
3159
3160 err = sysfs_init();
3161 if (err)
3162 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3163 __func__, err);
3164 fs_kobj = kobject_create_and_add("fs", NULL);
3165 if (!fs_kobj)
3166 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3167 init_rootfs();
3168 init_mount_tree();
3169 }
3170
3171 void put_mnt_ns(struct mnt_namespace *ns)
3172 {
3173 if (!atomic_dec_and_test(&ns->count))
3174 return;
3175 drop_collected_mounts(&ns->root->mnt);
3176 free_mnt_ns(ns);
3177 }
3178
3179 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3180 {
3181 struct vfsmount *mnt;
3182 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3183 if (!IS_ERR(mnt)) {
3184 /*
3185 * it is a longterm mount, don't release mnt until
3186 * we unmount before file sys is unregistered
3187 */
3188 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3189 }
3190 return mnt;
3191 }
3192 EXPORT_SYMBOL_GPL(kern_mount_data);
3193
3194 void kern_unmount(struct vfsmount *mnt)
3195 {
3196 /* release long term mount so mount point can be released */
3197 if (!IS_ERR_OR_NULL(mnt)) {
3198 real_mount(mnt)->mnt_ns = NULL;
3199 synchronize_rcu(); /* yecchhh... */
3200 mntput(mnt);
3201 }
3202 }
3203 EXPORT_SYMBOL(kern_unmount);
3204
3205 bool our_mnt(struct vfsmount *mnt)
3206 {
3207 return check_mnt(real_mount(mnt));
3208 }
3209
3210 bool current_chrooted(void)
3211 {
3212 /* Does the current process have a non-standard root */
3213 struct path ns_root;
3214 struct path fs_root;
3215 bool chrooted;
3216
3217 /* Find the namespace root */
3218 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3219 ns_root.dentry = ns_root.mnt->mnt_root;
3220 path_get(&ns_root);
3221 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3222 ;
3223
3224 get_fs_root(current->fs, &fs_root);
3225
3226 chrooted = !path_equal(&fs_root, &ns_root);
3227
3228 path_put(&fs_root);
3229 path_put(&ns_root);
3230
3231 return chrooted;
3232 }
3233
3234 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3235 {
3236 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3237 int new_flags = *new_mnt_flags;
3238 struct mount *mnt;
3239 bool visible = false;
3240
3241 if (unlikely(!ns))
3242 return false;
3243
3244 down_read(&namespace_sem);
3245 list_for_each_entry(mnt, &ns->list, mnt_list) {
3246 struct mount *child;
3247 int mnt_flags;
3248
3249 if (mnt->mnt.mnt_sb->s_type != type)
3250 continue;
3251
3252 /* This mount is not fully visible if it's root directory
3253 * is not the root directory of the filesystem.
3254 */
3255 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3256 continue;
3257
3258 /* Read the mount flags and filter out flags that
3259 * may safely be ignored.
3260 */
3261 mnt_flags = mnt->mnt.mnt_flags;
3262 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3263 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3264
3265 /* Verify the mount flags are equal to or more permissive
3266 * than the proposed new mount.
3267 */
3268 if ((mnt_flags & MNT_LOCK_READONLY) &&
3269 !(new_flags & MNT_READONLY))
3270 continue;
3271 if ((mnt_flags & MNT_LOCK_NODEV) &&
3272 !(new_flags & MNT_NODEV))
3273 continue;
3274 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3275 !(new_flags & MNT_NOSUID))
3276 continue;
3277 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3278 !(new_flags & MNT_NOEXEC))
3279 continue;
3280 if ((mnt_flags & MNT_LOCK_ATIME) &&
3281 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3282 continue;
3283
3284 /* This mount is not fully visible if there are any
3285 * locked child mounts that cover anything except for
3286 * empty directories.
3287 */
3288 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3289 struct inode *inode = child->mnt_mountpoint->d_inode;
3290 /* Only worry about locked mounts */
3291 if (!(mnt_flags & MNT_LOCKED))
3292 continue;
3293 /* Is the directory permanetly empty? */
3294 if (!is_empty_dir_inode(inode))
3295 goto next;
3296 }
3297 /* Preserve the locked attributes */
3298 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3299 MNT_LOCK_NODEV | \
3300 MNT_LOCK_NOSUID | \
3301 MNT_LOCK_NOEXEC | \
3302 MNT_LOCK_ATIME);
3303 visible = true;
3304 goto found;
3305 next: ;
3306 }
3307 found:
3308 up_read(&namespace_sem);
3309 return visible;
3310 }
3311
3312 static struct ns_common *mntns_get(struct task_struct *task)
3313 {
3314 struct ns_common *ns = NULL;
3315 struct nsproxy *nsproxy;
3316
3317 task_lock(task);
3318 nsproxy = task->nsproxy;
3319 if (nsproxy) {
3320 ns = &nsproxy->mnt_ns->ns;
3321 get_mnt_ns(to_mnt_ns(ns));
3322 }
3323 task_unlock(task);
3324
3325 return ns;
3326 }
3327
3328 static void mntns_put(struct ns_common *ns)
3329 {
3330 put_mnt_ns(to_mnt_ns(ns));
3331 }
3332
3333 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3334 {
3335 struct fs_struct *fs = current->fs;
3336 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3337 struct path root;
3338
3339 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3340 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3341 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3342 return -EPERM;
3343
3344 if (fs->users != 1)
3345 return -EINVAL;
3346
3347 get_mnt_ns(mnt_ns);
3348 put_mnt_ns(nsproxy->mnt_ns);
3349 nsproxy->mnt_ns = mnt_ns;
3350
3351 /* Find the root */
3352 root.mnt = &mnt_ns->root->mnt;
3353 root.dentry = mnt_ns->root->mnt.mnt_root;
3354 path_get(&root);
3355 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3356 ;
3357
3358 /* Update the pwd and root */
3359 set_fs_pwd(fs, &root);
3360 set_fs_root(fs, &root);
3361
3362 path_put(&root);
3363 return 0;
3364 }
3365
3366 const struct proc_ns_operations mntns_operations = {
3367 .name = "mnt",
3368 .type = CLONE_NEWNS,
3369 .get = mntns_get,
3370 .put = mntns_put,
3371 .install = mntns_install,
3372 };