Input: tca8418-keypad - switch to using managed resources
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43
44 /*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52 DEFINE_BRLOCK(vfsmount_lock);
53
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
60 }
61
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
64 /*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 int res;
71
72 retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&mnt_id_lock);
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 if (!res)
77 mnt_id_start = mnt->mnt_id + 1;
78 spin_unlock(&mnt_id_lock);
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83 }
84
85 static void mnt_free_id(struct mount *mnt)
86 {
87 int id = mnt->mnt_id;
88 spin_lock(&mnt_id_lock);
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
92 spin_unlock(&mnt_id_lock);
93 }
94
95 /*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 int res;
103
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
109 &mnt->mnt_group_id);
110 if (!res)
111 mnt_group_start = mnt->mnt_group_id + 1;
112
113 return res;
114 }
115
116 /*
117 * Release a peer group ID
118 */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
125 mnt->mnt_group_id = 0;
126 }
127
128 /*
129 * vfsmount lock must be held for read
130 */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 preempt_disable();
137 mnt->mnt_count += n;
138 preempt_enable();
139 #endif
140 }
141
142 /*
143 * vfsmount lock must be held for write
144 */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 unsigned int count = 0;
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 }
154
155 return count;
156 #else
157 return mnt->mnt_count;
158 #endif
159 }
160
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
165 int err;
166
167 err = mnt_alloc_id(mnt);
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
174 goto out_free_id;
175 }
176
177 #ifdef CONFIG_SMP
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
180 goto out_free_devname;
181
182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
186 #endif
187
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 }
200 return mnt;
201
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 mnt_free_id(mnt);
208 out_free_cache:
209 kmem_cache_free(mnt_cache, mnt);
210 return NULL;
211 }
212
213 /*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221 /*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 mnt->mnt_writers++;
248 #endif
249 }
250
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 mnt->mnt_writers--;
257 #endif
258 }
259
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 unsigned int count = 0;
264 int cpu;
265
266 for_each_possible_cpu(cpu) {
267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 }
269
270 return count;
271 #else
272 return mnt->mnt_writers;
273 #endif
274 }
275
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283 }
284
285 /*
286 * Most r/o & frozen checks on a fs are for operations that take discrete
287 * amounts of time, like a write() or unlink(). We must keep track of when
288 * those operations start (for permission checks) and when they end, so that we
289 * can determine when writes are able to occur to a filesystem.
290 */
291 /**
292 * __mnt_want_write - get write access to a mount without freeze protection
293 * @m: the mount on which to take a write
294 *
295 * This tells the low-level filesystem that a write is about to be performed to
296 * it, and makes sure that writes are allowed (mnt it read-write) before
297 * returning success. This operation does not protect against filesystem being
298 * frozen. When the write operation is finished, __mnt_drop_write() must be
299 * called. This is effectively a refcount.
300 */
301 int __mnt_want_write(struct vfsmount *m)
302 {
303 struct mount *mnt = real_mount(m);
304 int ret = 0;
305
306 preempt_disable();
307 mnt_inc_writers(mnt);
308 /*
309 * The store to mnt_inc_writers must be visible before we pass
310 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
311 * incremented count after it has set MNT_WRITE_HOLD.
312 */
313 smp_mb();
314 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
315 cpu_relax();
316 /*
317 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
318 * be set to match its requirements. So we must not load that until
319 * MNT_WRITE_HOLD is cleared.
320 */
321 smp_rmb();
322 if (mnt_is_readonly(m)) {
323 mnt_dec_writers(mnt);
324 ret = -EROFS;
325 }
326 preempt_enable();
327
328 return ret;
329 }
330
331 /**
332 * mnt_want_write - get write access to a mount
333 * @m: the mount on which to take a write
334 *
335 * This tells the low-level filesystem that a write is about to be performed to
336 * it, and makes sure that writes are allowed (mount is read-write, filesystem
337 * is not frozen) before returning success. When the write operation is
338 * finished, mnt_drop_write() must be called. This is effectively a refcount.
339 */
340 int mnt_want_write(struct vfsmount *m)
341 {
342 int ret;
343
344 sb_start_write(m->mnt_sb);
345 ret = __mnt_want_write(m);
346 if (ret)
347 sb_end_write(m->mnt_sb);
348 return ret;
349 }
350 EXPORT_SYMBOL_GPL(mnt_want_write);
351
352 /**
353 * mnt_clone_write - get write access to a mount
354 * @mnt: the mount on which to take a write
355 *
356 * This is effectively like mnt_want_write, except
357 * it must only be used to take an extra write reference
358 * on a mountpoint that we already know has a write reference
359 * on it. This allows some optimisation.
360 *
361 * After finished, mnt_drop_write must be called as usual to
362 * drop the reference.
363 */
364 int mnt_clone_write(struct vfsmount *mnt)
365 {
366 /* superblock may be r/o */
367 if (__mnt_is_readonly(mnt))
368 return -EROFS;
369 preempt_disable();
370 mnt_inc_writers(real_mount(mnt));
371 preempt_enable();
372 return 0;
373 }
374 EXPORT_SYMBOL_GPL(mnt_clone_write);
375
376 /**
377 * __mnt_want_write_file - get write access to a file's mount
378 * @file: the file who's mount on which to take a write
379 *
380 * This is like __mnt_want_write, but it takes a file and can
381 * do some optimisations if the file is open for write already
382 */
383 int __mnt_want_write_file(struct file *file)
384 {
385 struct inode *inode = file->f_dentry->d_inode;
386
387 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
388 return __mnt_want_write(file->f_path.mnt);
389 else
390 return mnt_clone_write(file->f_path.mnt);
391 }
392
393 /**
394 * mnt_want_write_file - get write access to a file's mount
395 * @file: the file who's mount on which to take a write
396 *
397 * This is like mnt_want_write, but it takes a file and can
398 * do some optimisations if the file is open for write already
399 */
400 int mnt_want_write_file(struct file *file)
401 {
402 int ret;
403
404 sb_start_write(file->f_path.mnt->mnt_sb);
405 ret = __mnt_want_write_file(file);
406 if (ret)
407 sb_end_write(file->f_path.mnt->mnt_sb);
408 return ret;
409 }
410 EXPORT_SYMBOL_GPL(mnt_want_write_file);
411
412 /**
413 * __mnt_drop_write - give up write access to a mount
414 * @mnt: the mount on which to give up write access
415 *
416 * Tells the low-level filesystem that we are done
417 * performing writes to it. Must be matched with
418 * __mnt_want_write() call above.
419 */
420 void __mnt_drop_write(struct vfsmount *mnt)
421 {
422 preempt_disable();
423 mnt_dec_writers(real_mount(mnt));
424 preempt_enable();
425 }
426
427 /**
428 * mnt_drop_write - give up write access to a mount
429 * @mnt: the mount on which to give up write access
430 *
431 * Tells the low-level filesystem that we are done performing writes to it and
432 * also allows filesystem to be frozen again. Must be matched with
433 * mnt_want_write() call above.
434 */
435 void mnt_drop_write(struct vfsmount *mnt)
436 {
437 __mnt_drop_write(mnt);
438 sb_end_write(mnt->mnt_sb);
439 }
440 EXPORT_SYMBOL_GPL(mnt_drop_write);
441
442 void __mnt_drop_write_file(struct file *file)
443 {
444 __mnt_drop_write(file->f_path.mnt);
445 }
446
447 void mnt_drop_write_file(struct file *file)
448 {
449 mnt_drop_write(file->f_path.mnt);
450 }
451 EXPORT_SYMBOL(mnt_drop_write_file);
452
453 static int mnt_make_readonly(struct mount *mnt)
454 {
455 int ret = 0;
456
457 br_write_lock(&vfsmount_lock);
458 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
459 /*
460 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
461 * should be visible before we do.
462 */
463 smp_mb();
464
465 /*
466 * With writers on hold, if this value is zero, then there are
467 * definitely no active writers (although held writers may subsequently
468 * increment the count, they'll have to wait, and decrement it after
469 * seeing MNT_READONLY).
470 *
471 * It is OK to have counter incremented on one CPU and decremented on
472 * another: the sum will add up correctly. The danger would be when we
473 * sum up each counter, if we read a counter before it is incremented,
474 * but then read another CPU's count which it has been subsequently
475 * decremented from -- we would see more decrements than we should.
476 * MNT_WRITE_HOLD protects against this scenario, because
477 * mnt_want_write first increments count, then smp_mb, then spins on
478 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
479 * we're counting up here.
480 */
481 if (mnt_get_writers(mnt) > 0)
482 ret = -EBUSY;
483 else
484 mnt->mnt.mnt_flags |= MNT_READONLY;
485 /*
486 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
487 * that become unheld will see MNT_READONLY.
488 */
489 smp_wmb();
490 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
491 br_write_unlock(&vfsmount_lock);
492 return ret;
493 }
494
495 static void __mnt_unmake_readonly(struct mount *mnt)
496 {
497 br_write_lock(&vfsmount_lock);
498 mnt->mnt.mnt_flags &= ~MNT_READONLY;
499 br_write_unlock(&vfsmount_lock);
500 }
501
502 int sb_prepare_remount_readonly(struct super_block *sb)
503 {
504 struct mount *mnt;
505 int err = 0;
506
507 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
508 if (atomic_long_read(&sb->s_remove_count))
509 return -EBUSY;
510
511 br_write_lock(&vfsmount_lock);
512 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
513 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
514 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
515 smp_mb();
516 if (mnt_get_writers(mnt) > 0) {
517 err = -EBUSY;
518 break;
519 }
520 }
521 }
522 if (!err && atomic_long_read(&sb->s_remove_count))
523 err = -EBUSY;
524
525 if (!err) {
526 sb->s_readonly_remount = 1;
527 smp_wmb();
528 }
529 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
530 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
531 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
532 }
533 br_write_unlock(&vfsmount_lock);
534
535 return err;
536 }
537
538 static void free_vfsmnt(struct mount *mnt)
539 {
540 kfree(mnt->mnt_devname);
541 mnt_free_id(mnt);
542 #ifdef CONFIG_SMP
543 free_percpu(mnt->mnt_pcp);
544 #endif
545 kmem_cache_free(mnt_cache, mnt);
546 }
547
548 /*
549 * find the first or last mount at @dentry on vfsmount @mnt depending on
550 * @dir. If @dir is set return the first mount else return the last mount.
551 * vfsmount_lock must be held for read or write.
552 */
553 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
554 int dir)
555 {
556 struct list_head *head = mount_hashtable + hash(mnt, dentry);
557 struct list_head *tmp = head;
558 struct mount *p, *found = NULL;
559
560 for (;;) {
561 tmp = dir ? tmp->next : tmp->prev;
562 p = NULL;
563 if (tmp == head)
564 break;
565 p = list_entry(tmp, struct mount, mnt_hash);
566 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
567 found = p;
568 break;
569 }
570 }
571 return found;
572 }
573
574 /*
575 * lookup_mnt - Return the first child mount mounted at path
576 *
577 * "First" means first mounted chronologically. If you create the
578 * following mounts:
579 *
580 * mount /dev/sda1 /mnt
581 * mount /dev/sda2 /mnt
582 * mount /dev/sda3 /mnt
583 *
584 * Then lookup_mnt() on the base /mnt dentry in the root mount will
585 * return successively the root dentry and vfsmount of /dev/sda1, then
586 * /dev/sda2, then /dev/sda3, then NULL.
587 *
588 * lookup_mnt takes a reference to the found vfsmount.
589 */
590 struct vfsmount *lookup_mnt(struct path *path)
591 {
592 struct mount *child_mnt;
593
594 br_read_lock(&vfsmount_lock);
595 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
596 if (child_mnt) {
597 mnt_add_count(child_mnt, 1);
598 br_read_unlock(&vfsmount_lock);
599 return &child_mnt->mnt;
600 } else {
601 br_read_unlock(&vfsmount_lock);
602 return NULL;
603 }
604 }
605
606 static inline int check_mnt(struct mount *mnt)
607 {
608 return mnt->mnt_ns == current->nsproxy->mnt_ns;
609 }
610
611 /*
612 * vfsmount lock must be held for write
613 */
614 static void touch_mnt_namespace(struct mnt_namespace *ns)
615 {
616 if (ns) {
617 ns->event = ++event;
618 wake_up_interruptible(&ns->poll);
619 }
620 }
621
622 /*
623 * vfsmount lock must be held for write
624 */
625 static void __touch_mnt_namespace(struct mnt_namespace *ns)
626 {
627 if (ns && ns->event != event) {
628 ns->event = event;
629 wake_up_interruptible(&ns->poll);
630 }
631 }
632
633 /*
634 * Clear dentry's mounted state if it has no remaining mounts.
635 * vfsmount_lock must be held for write.
636 */
637 static void dentry_reset_mounted(struct dentry *dentry)
638 {
639 unsigned u;
640
641 for (u = 0; u < HASH_SIZE; u++) {
642 struct mount *p;
643
644 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
645 if (p->mnt_mountpoint == dentry)
646 return;
647 }
648 }
649 spin_lock(&dentry->d_lock);
650 dentry->d_flags &= ~DCACHE_MOUNTED;
651 spin_unlock(&dentry->d_lock);
652 }
653
654 /*
655 * vfsmount lock must be held for write
656 */
657 static void detach_mnt(struct mount *mnt, struct path *old_path)
658 {
659 old_path->dentry = mnt->mnt_mountpoint;
660 old_path->mnt = &mnt->mnt_parent->mnt;
661 mnt->mnt_parent = mnt;
662 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
663 list_del_init(&mnt->mnt_child);
664 list_del_init(&mnt->mnt_hash);
665 dentry_reset_mounted(old_path->dentry);
666 }
667
668 /*
669 * vfsmount lock must be held for write
670 */
671 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
672 struct mount *child_mnt)
673 {
674 mnt_add_count(mnt, 1); /* essentially, that's mntget */
675 child_mnt->mnt_mountpoint = dget(dentry);
676 child_mnt->mnt_parent = mnt;
677 spin_lock(&dentry->d_lock);
678 dentry->d_flags |= DCACHE_MOUNTED;
679 spin_unlock(&dentry->d_lock);
680 }
681
682 /*
683 * vfsmount lock must be held for write
684 */
685 static void attach_mnt(struct mount *mnt, struct path *path)
686 {
687 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
688 list_add_tail(&mnt->mnt_hash, mount_hashtable +
689 hash(path->mnt, path->dentry));
690 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
691 }
692
693 /*
694 * vfsmount lock must be held for write
695 */
696 static void commit_tree(struct mount *mnt)
697 {
698 struct mount *parent = mnt->mnt_parent;
699 struct mount *m;
700 LIST_HEAD(head);
701 struct mnt_namespace *n = parent->mnt_ns;
702
703 BUG_ON(parent == mnt);
704
705 list_add_tail(&head, &mnt->mnt_list);
706 list_for_each_entry(m, &head, mnt_list)
707 m->mnt_ns = n;
708
709 list_splice(&head, n->list.prev);
710
711 list_add_tail(&mnt->mnt_hash, mount_hashtable +
712 hash(&parent->mnt, mnt->mnt_mountpoint));
713 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
714 touch_mnt_namespace(n);
715 }
716
717 static struct mount *next_mnt(struct mount *p, struct mount *root)
718 {
719 struct list_head *next = p->mnt_mounts.next;
720 if (next == &p->mnt_mounts) {
721 while (1) {
722 if (p == root)
723 return NULL;
724 next = p->mnt_child.next;
725 if (next != &p->mnt_parent->mnt_mounts)
726 break;
727 p = p->mnt_parent;
728 }
729 }
730 return list_entry(next, struct mount, mnt_child);
731 }
732
733 static struct mount *skip_mnt_tree(struct mount *p)
734 {
735 struct list_head *prev = p->mnt_mounts.prev;
736 while (prev != &p->mnt_mounts) {
737 p = list_entry(prev, struct mount, mnt_child);
738 prev = p->mnt_mounts.prev;
739 }
740 return p;
741 }
742
743 struct vfsmount *
744 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
745 {
746 struct mount *mnt;
747 struct dentry *root;
748
749 if (!type)
750 return ERR_PTR(-ENODEV);
751
752 mnt = alloc_vfsmnt(name);
753 if (!mnt)
754 return ERR_PTR(-ENOMEM);
755
756 if (flags & MS_KERNMOUNT)
757 mnt->mnt.mnt_flags = MNT_INTERNAL;
758
759 root = mount_fs(type, flags, name, data);
760 if (IS_ERR(root)) {
761 free_vfsmnt(mnt);
762 return ERR_CAST(root);
763 }
764
765 mnt->mnt.mnt_root = root;
766 mnt->mnt.mnt_sb = root->d_sb;
767 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
768 mnt->mnt_parent = mnt;
769 br_write_lock(&vfsmount_lock);
770 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
771 br_write_unlock(&vfsmount_lock);
772 return &mnt->mnt;
773 }
774 EXPORT_SYMBOL_GPL(vfs_kern_mount);
775
776 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
777 int flag)
778 {
779 struct super_block *sb = old->mnt.mnt_sb;
780 struct mount *mnt;
781 int err;
782
783 mnt = alloc_vfsmnt(old->mnt_devname);
784 if (!mnt)
785 return ERR_PTR(-ENOMEM);
786
787 if (flag & (CL_SLAVE | CL_PRIVATE))
788 mnt->mnt_group_id = 0; /* not a peer of original */
789 else
790 mnt->mnt_group_id = old->mnt_group_id;
791
792 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
793 err = mnt_alloc_group_id(mnt);
794 if (err)
795 goto out_free;
796 }
797
798 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
799 atomic_inc(&sb->s_active);
800 mnt->mnt.mnt_sb = sb;
801 mnt->mnt.mnt_root = dget(root);
802 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
803 mnt->mnt_parent = mnt;
804 br_write_lock(&vfsmount_lock);
805 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
806 br_write_unlock(&vfsmount_lock);
807
808 if (flag & CL_SLAVE) {
809 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
810 mnt->mnt_master = old;
811 CLEAR_MNT_SHARED(mnt);
812 } else if (!(flag & CL_PRIVATE)) {
813 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
814 list_add(&mnt->mnt_share, &old->mnt_share);
815 if (IS_MNT_SLAVE(old))
816 list_add(&mnt->mnt_slave, &old->mnt_slave);
817 mnt->mnt_master = old->mnt_master;
818 }
819 if (flag & CL_MAKE_SHARED)
820 set_mnt_shared(mnt);
821
822 /* stick the duplicate mount on the same expiry list
823 * as the original if that was on one */
824 if (flag & CL_EXPIRE) {
825 if (!list_empty(&old->mnt_expire))
826 list_add(&mnt->mnt_expire, &old->mnt_expire);
827 }
828
829 return mnt;
830
831 out_free:
832 free_vfsmnt(mnt);
833 return ERR_PTR(err);
834 }
835
836 static inline void mntfree(struct mount *mnt)
837 {
838 struct vfsmount *m = &mnt->mnt;
839 struct super_block *sb = m->mnt_sb;
840
841 /*
842 * This probably indicates that somebody messed
843 * up a mnt_want/drop_write() pair. If this
844 * happens, the filesystem was probably unable
845 * to make r/w->r/o transitions.
846 */
847 /*
848 * The locking used to deal with mnt_count decrement provides barriers,
849 * so mnt_get_writers() below is safe.
850 */
851 WARN_ON(mnt_get_writers(mnt));
852 fsnotify_vfsmount_delete(m);
853 dput(m->mnt_root);
854 free_vfsmnt(mnt);
855 deactivate_super(sb);
856 }
857
858 static void mntput_no_expire(struct mount *mnt)
859 {
860 put_again:
861 #ifdef CONFIG_SMP
862 br_read_lock(&vfsmount_lock);
863 if (likely(mnt->mnt_ns)) {
864 /* shouldn't be the last one */
865 mnt_add_count(mnt, -1);
866 br_read_unlock(&vfsmount_lock);
867 return;
868 }
869 br_read_unlock(&vfsmount_lock);
870
871 br_write_lock(&vfsmount_lock);
872 mnt_add_count(mnt, -1);
873 if (mnt_get_count(mnt)) {
874 br_write_unlock(&vfsmount_lock);
875 return;
876 }
877 #else
878 mnt_add_count(mnt, -1);
879 if (likely(mnt_get_count(mnt)))
880 return;
881 br_write_lock(&vfsmount_lock);
882 #endif
883 if (unlikely(mnt->mnt_pinned)) {
884 mnt_add_count(mnt, mnt->mnt_pinned + 1);
885 mnt->mnt_pinned = 0;
886 br_write_unlock(&vfsmount_lock);
887 acct_auto_close_mnt(&mnt->mnt);
888 goto put_again;
889 }
890
891 list_del(&mnt->mnt_instance);
892 br_write_unlock(&vfsmount_lock);
893 mntfree(mnt);
894 }
895
896 void mntput(struct vfsmount *mnt)
897 {
898 if (mnt) {
899 struct mount *m = real_mount(mnt);
900 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
901 if (unlikely(m->mnt_expiry_mark))
902 m->mnt_expiry_mark = 0;
903 mntput_no_expire(m);
904 }
905 }
906 EXPORT_SYMBOL(mntput);
907
908 struct vfsmount *mntget(struct vfsmount *mnt)
909 {
910 if (mnt)
911 mnt_add_count(real_mount(mnt), 1);
912 return mnt;
913 }
914 EXPORT_SYMBOL(mntget);
915
916 void mnt_pin(struct vfsmount *mnt)
917 {
918 br_write_lock(&vfsmount_lock);
919 real_mount(mnt)->mnt_pinned++;
920 br_write_unlock(&vfsmount_lock);
921 }
922 EXPORT_SYMBOL(mnt_pin);
923
924 void mnt_unpin(struct vfsmount *m)
925 {
926 struct mount *mnt = real_mount(m);
927 br_write_lock(&vfsmount_lock);
928 if (mnt->mnt_pinned) {
929 mnt_add_count(mnt, 1);
930 mnt->mnt_pinned--;
931 }
932 br_write_unlock(&vfsmount_lock);
933 }
934 EXPORT_SYMBOL(mnt_unpin);
935
936 static inline void mangle(struct seq_file *m, const char *s)
937 {
938 seq_escape(m, s, " \t\n\\");
939 }
940
941 /*
942 * Simple .show_options callback for filesystems which don't want to
943 * implement more complex mount option showing.
944 *
945 * See also save_mount_options().
946 */
947 int generic_show_options(struct seq_file *m, struct dentry *root)
948 {
949 const char *options;
950
951 rcu_read_lock();
952 options = rcu_dereference(root->d_sb->s_options);
953
954 if (options != NULL && options[0]) {
955 seq_putc(m, ',');
956 mangle(m, options);
957 }
958 rcu_read_unlock();
959
960 return 0;
961 }
962 EXPORT_SYMBOL(generic_show_options);
963
964 /*
965 * If filesystem uses generic_show_options(), this function should be
966 * called from the fill_super() callback.
967 *
968 * The .remount_fs callback usually needs to be handled in a special
969 * way, to make sure, that previous options are not overwritten if the
970 * remount fails.
971 *
972 * Also note, that if the filesystem's .remount_fs function doesn't
973 * reset all options to their default value, but changes only newly
974 * given options, then the displayed options will not reflect reality
975 * any more.
976 */
977 void save_mount_options(struct super_block *sb, char *options)
978 {
979 BUG_ON(sb->s_options);
980 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
981 }
982 EXPORT_SYMBOL(save_mount_options);
983
984 void replace_mount_options(struct super_block *sb, char *options)
985 {
986 char *old = sb->s_options;
987 rcu_assign_pointer(sb->s_options, options);
988 if (old) {
989 synchronize_rcu();
990 kfree(old);
991 }
992 }
993 EXPORT_SYMBOL(replace_mount_options);
994
995 #ifdef CONFIG_PROC_FS
996 /* iterator; we want it to have access to namespace_sem, thus here... */
997 static void *m_start(struct seq_file *m, loff_t *pos)
998 {
999 struct proc_mounts *p = proc_mounts(m);
1000
1001 down_read(&namespace_sem);
1002 return seq_list_start(&p->ns->list, *pos);
1003 }
1004
1005 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1006 {
1007 struct proc_mounts *p = proc_mounts(m);
1008
1009 return seq_list_next(v, &p->ns->list, pos);
1010 }
1011
1012 static void m_stop(struct seq_file *m, void *v)
1013 {
1014 up_read(&namespace_sem);
1015 }
1016
1017 static int m_show(struct seq_file *m, void *v)
1018 {
1019 struct proc_mounts *p = proc_mounts(m);
1020 struct mount *r = list_entry(v, struct mount, mnt_list);
1021 return p->show(m, &r->mnt);
1022 }
1023
1024 const struct seq_operations mounts_op = {
1025 .start = m_start,
1026 .next = m_next,
1027 .stop = m_stop,
1028 .show = m_show,
1029 };
1030 #endif /* CONFIG_PROC_FS */
1031
1032 /**
1033 * may_umount_tree - check if a mount tree is busy
1034 * @mnt: root of mount tree
1035 *
1036 * This is called to check if a tree of mounts has any
1037 * open files, pwds, chroots or sub mounts that are
1038 * busy.
1039 */
1040 int may_umount_tree(struct vfsmount *m)
1041 {
1042 struct mount *mnt = real_mount(m);
1043 int actual_refs = 0;
1044 int minimum_refs = 0;
1045 struct mount *p;
1046 BUG_ON(!m);
1047
1048 /* write lock needed for mnt_get_count */
1049 br_write_lock(&vfsmount_lock);
1050 for (p = mnt; p; p = next_mnt(p, mnt)) {
1051 actual_refs += mnt_get_count(p);
1052 minimum_refs += 2;
1053 }
1054 br_write_unlock(&vfsmount_lock);
1055
1056 if (actual_refs > minimum_refs)
1057 return 0;
1058
1059 return 1;
1060 }
1061
1062 EXPORT_SYMBOL(may_umount_tree);
1063
1064 /**
1065 * may_umount - check if a mount point is busy
1066 * @mnt: root of mount
1067 *
1068 * This is called to check if a mount point has any
1069 * open files, pwds, chroots or sub mounts. If the
1070 * mount has sub mounts this will return busy
1071 * regardless of whether the sub mounts are busy.
1072 *
1073 * Doesn't take quota and stuff into account. IOW, in some cases it will
1074 * give false negatives. The main reason why it's here is that we need
1075 * a non-destructive way to look for easily umountable filesystems.
1076 */
1077 int may_umount(struct vfsmount *mnt)
1078 {
1079 int ret = 1;
1080 down_read(&namespace_sem);
1081 br_write_lock(&vfsmount_lock);
1082 if (propagate_mount_busy(real_mount(mnt), 2))
1083 ret = 0;
1084 br_write_unlock(&vfsmount_lock);
1085 up_read(&namespace_sem);
1086 return ret;
1087 }
1088
1089 EXPORT_SYMBOL(may_umount);
1090
1091 void release_mounts(struct list_head *head)
1092 {
1093 struct mount *mnt;
1094 while (!list_empty(head)) {
1095 mnt = list_first_entry(head, struct mount, mnt_hash);
1096 list_del_init(&mnt->mnt_hash);
1097 if (mnt_has_parent(mnt)) {
1098 struct dentry *dentry;
1099 struct mount *m;
1100
1101 br_write_lock(&vfsmount_lock);
1102 dentry = mnt->mnt_mountpoint;
1103 m = mnt->mnt_parent;
1104 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1105 mnt->mnt_parent = mnt;
1106 m->mnt_ghosts--;
1107 br_write_unlock(&vfsmount_lock);
1108 dput(dentry);
1109 mntput(&m->mnt);
1110 }
1111 mntput(&mnt->mnt);
1112 }
1113 }
1114
1115 /*
1116 * vfsmount lock must be held for write
1117 * namespace_sem must be held for write
1118 */
1119 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1120 {
1121 LIST_HEAD(tmp_list);
1122 struct mount *p;
1123
1124 for (p = mnt; p; p = next_mnt(p, mnt))
1125 list_move(&p->mnt_hash, &tmp_list);
1126
1127 if (propagate)
1128 propagate_umount(&tmp_list);
1129
1130 list_for_each_entry(p, &tmp_list, mnt_hash) {
1131 list_del_init(&p->mnt_expire);
1132 list_del_init(&p->mnt_list);
1133 __touch_mnt_namespace(p->mnt_ns);
1134 p->mnt_ns = NULL;
1135 list_del_init(&p->mnt_child);
1136 if (mnt_has_parent(p)) {
1137 p->mnt_parent->mnt_ghosts++;
1138 dentry_reset_mounted(p->mnt_mountpoint);
1139 }
1140 change_mnt_propagation(p, MS_PRIVATE);
1141 }
1142 list_splice(&tmp_list, kill);
1143 }
1144
1145 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1146
1147 static int do_umount(struct mount *mnt, int flags)
1148 {
1149 struct super_block *sb = mnt->mnt.mnt_sb;
1150 int retval;
1151 LIST_HEAD(umount_list);
1152
1153 retval = security_sb_umount(&mnt->mnt, flags);
1154 if (retval)
1155 return retval;
1156
1157 /*
1158 * Allow userspace to request a mountpoint be expired rather than
1159 * unmounting unconditionally. Unmount only happens if:
1160 * (1) the mark is already set (the mark is cleared by mntput())
1161 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1162 */
1163 if (flags & MNT_EXPIRE) {
1164 if (&mnt->mnt == current->fs->root.mnt ||
1165 flags & (MNT_FORCE | MNT_DETACH))
1166 return -EINVAL;
1167
1168 /*
1169 * probably don't strictly need the lock here if we examined
1170 * all race cases, but it's a slowpath.
1171 */
1172 br_write_lock(&vfsmount_lock);
1173 if (mnt_get_count(mnt) != 2) {
1174 br_write_unlock(&vfsmount_lock);
1175 return -EBUSY;
1176 }
1177 br_write_unlock(&vfsmount_lock);
1178
1179 if (!xchg(&mnt->mnt_expiry_mark, 1))
1180 return -EAGAIN;
1181 }
1182
1183 /*
1184 * If we may have to abort operations to get out of this
1185 * mount, and they will themselves hold resources we must
1186 * allow the fs to do things. In the Unix tradition of
1187 * 'Gee thats tricky lets do it in userspace' the umount_begin
1188 * might fail to complete on the first run through as other tasks
1189 * must return, and the like. Thats for the mount program to worry
1190 * about for the moment.
1191 */
1192
1193 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1194 sb->s_op->umount_begin(sb);
1195 }
1196
1197 /*
1198 * No sense to grab the lock for this test, but test itself looks
1199 * somewhat bogus. Suggestions for better replacement?
1200 * Ho-hum... In principle, we might treat that as umount + switch
1201 * to rootfs. GC would eventually take care of the old vfsmount.
1202 * Actually it makes sense, especially if rootfs would contain a
1203 * /reboot - static binary that would close all descriptors and
1204 * call reboot(9). Then init(8) could umount root and exec /reboot.
1205 */
1206 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1207 /*
1208 * Special case for "unmounting" root ...
1209 * we just try to remount it readonly.
1210 */
1211 down_write(&sb->s_umount);
1212 if (!(sb->s_flags & MS_RDONLY))
1213 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1214 up_write(&sb->s_umount);
1215 return retval;
1216 }
1217
1218 down_write(&namespace_sem);
1219 br_write_lock(&vfsmount_lock);
1220 event++;
1221
1222 if (!(flags & MNT_DETACH))
1223 shrink_submounts(mnt, &umount_list);
1224
1225 retval = -EBUSY;
1226 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1227 if (!list_empty(&mnt->mnt_list))
1228 umount_tree(mnt, 1, &umount_list);
1229 retval = 0;
1230 }
1231 br_write_unlock(&vfsmount_lock);
1232 up_write(&namespace_sem);
1233 release_mounts(&umount_list);
1234 return retval;
1235 }
1236
1237 /*
1238 * Now umount can handle mount points as well as block devices.
1239 * This is important for filesystems which use unnamed block devices.
1240 *
1241 * We now support a flag for forced unmount like the other 'big iron'
1242 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1243 */
1244
1245 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1246 {
1247 struct path path;
1248 struct mount *mnt;
1249 int retval;
1250 int lookup_flags = 0;
1251
1252 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1253 return -EINVAL;
1254
1255 if (!(flags & UMOUNT_NOFOLLOW))
1256 lookup_flags |= LOOKUP_FOLLOW;
1257
1258 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1259 if (retval)
1260 goto out;
1261 mnt = real_mount(path.mnt);
1262 retval = -EINVAL;
1263 if (path.dentry != path.mnt->mnt_root)
1264 goto dput_and_out;
1265 if (!check_mnt(mnt))
1266 goto dput_and_out;
1267
1268 retval = -EPERM;
1269 if (!capable(CAP_SYS_ADMIN))
1270 goto dput_and_out;
1271
1272 retval = do_umount(mnt, flags);
1273 dput_and_out:
1274 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1275 dput(path.dentry);
1276 mntput_no_expire(mnt);
1277 out:
1278 return retval;
1279 }
1280
1281 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1282
1283 /*
1284 * The 2.0 compatible umount. No flags.
1285 */
1286 SYSCALL_DEFINE1(oldumount, char __user *, name)
1287 {
1288 return sys_umount(name, 0);
1289 }
1290
1291 #endif
1292
1293 static int mount_is_safe(struct path *path)
1294 {
1295 if (capable(CAP_SYS_ADMIN))
1296 return 0;
1297 return -EPERM;
1298 #ifdef notyet
1299 if (S_ISLNK(path->dentry->d_inode->i_mode))
1300 return -EPERM;
1301 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1302 if (current_uid() != path->dentry->d_inode->i_uid)
1303 return -EPERM;
1304 }
1305 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1306 return -EPERM;
1307 return 0;
1308 #endif
1309 }
1310
1311 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1312 int flag)
1313 {
1314 struct mount *res, *p, *q, *r;
1315 struct path path;
1316
1317 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1318 return ERR_PTR(-EINVAL);
1319
1320 res = q = clone_mnt(mnt, dentry, flag);
1321 if (IS_ERR(q))
1322 return q;
1323
1324 q->mnt_mountpoint = mnt->mnt_mountpoint;
1325
1326 p = mnt;
1327 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1328 struct mount *s;
1329 if (!is_subdir(r->mnt_mountpoint, dentry))
1330 continue;
1331
1332 for (s = r; s; s = next_mnt(s, r)) {
1333 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1334 s = skip_mnt_tree(s);
1335 continue;
1336 }
1337 while (p != s->mnt_parent) {
1338 p = p->mnt_parent;
1339 q = q->mnt_parent;
1340 }
1341 p = s;
1342 path.mnt = &q->mnt;
1343 path.dentry = p->mnt_mountpoint;
1344 q = clone_mnt(p, p->mnt.mnt_root, flag);
1345 if (IS_ERR(q))
1346 goto out;
1347 br_write_lock(&vfsmount_lock);
1348 list_add_tail(&q->mnt_list, &res->mnt_list);
1349 attach_mnt(q, &path);
1350 br_write_unlock(&vfsmount_lock);
1351 }
1352 }
1353 return res;
1354 out:
1355 if (res) {
1356 LIST_HEAD(umount_list);
1357 br_write_lock(&vfsmount_lock);
1358 umount_tree(res, 0, &umount_list);
1359 br_write_unlock(&vfsmount_lock);
1360 release_mounts(&umount_list);
1361 }
1362 return q;
1363 }
1364
1365 /* Caller should check returned pointer for errors */
1366
1367 struct vfsmount *collect_mounts(struct path *path)
1368 {
1369 struct mount *tree;
1370 down_write(&namespace_sem);
1371 tree = copy_tree(real_mount(path->mnt), path->dentry,
1372 CL_COPY_ALL | CL_PRIVATE);
1373 up_write(&namespace_sem);
1374 if (IS_ERR(tree))
1375 return NULL;
1376 return &tree->mnt;
1377 }
1378
1379 void drop_collected_mounts(struct vfsmount *mnt)
1380 {
1381 LIST_HEAD(umount_list);
1382 down_write(&namespace_sem);
1383 br_write_lock(&vfsmount_lock);
1384 umount_tree(real_mount(mnt), 0, &umount_list);
1385 br_write_unlock(&vfsmount_lock);
1386 up_write(&namespace_sem);
1387 release_mounts(&umount_list);
1388 }
1389
1390 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1391 struct vfsmount *root)
1392 {
1393 struct mount *mnt;
1394 int res = f(root, arg);
1395 if (res)
1396 return res;
1397 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1398 res = f(&mnt->mnt, arg);
1399 if (res)
1400 return res;
1401 }
1402 return 0;
1403 }
1404
1405 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1406 {
1407 struct mount *p;
1408
1409 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1410 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1411 mnt_release_group_id(p);
1412 }
1413 }
1414
1415 static int invent_group_ids(struct mount *mnt, bool recurse)
1416 {
1417 struct mount *p;
1418
1419 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1420 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1421 int err = mnt_alloc_group_id(p);
1422 if (err) {
1423 cleanup_group_ids(mnt, p);
1424 return err;
1425 }
1426 }
1427 }
1428
1429 return 0;
1430 }
1431
1432 /*
1433 * @source_mnt : mount tree to be attached
1434 * @nd : place the mount tree @source_mnt is attached
1435 * @parent_nd : if non-null, detach the source_mnt from its parent and
1436 * store the parent mount and mountpoint dentry.
1437 * (done when source_mnt is moved)
1438 *
1439 * NOTE: in the table below explains the semantics when a source mount
1440 * of a given type is attached to a destination mount of a given type.
1441 * ---------------------------------------------------------------------------
1442 * | BIND MOUNT OPERATION |
1443 * |**************************************************************************
1444 * | source-->| shared | private | slave | unbindable |
1445 * | dest | | | | |
1446 * | | | | | | |
1447 * | v | | | | |
1448 * |**************************************************************************
1449 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1450 * | | | | | |
1451 * |non-shared| shared (+) | private | slave (*) | invalid |
1452 * ***************************************************************************
1453 * A bind operation clones the source mount and mounts the clone on the
1454 * destination mount.
1455 *
1456 * (++) the cloned mount is propagated to all the mounts in the propagation
1457 * tree of the destination mount and the cloned mount is added to
1458 * the peer group of the source mount.
1459 * (+) the cloned mount is created under the destination mount and is marked
1460 * as shared. The cloned mount is added to the peer group of the source
1461 * mount.
1462 * (+++) the mount is propagated to all the mounts in the propagation tree
1463 * of the destination mount and the cloned mount is made slave
1464 * of the same master as that of the source mount. The cloned mount
1465 * is marked as 'shared and slave'.
1466 * (*) the cloned mount is made a slave of the same master as that of the
1467 * source mount.
1468 *
1469 * ---------------------------------------------------------------------------
1470 * | MOVE MOUNT OPERATION |
1471 * |**************************************************************************
1472 * | source-->| shared | private | slave | unbindable |
1473 * | dest | | | | |
1474 * | | | | | | |
1475 * | v | | | | |
1476 * |**************************************************************************
1477 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1478 * | | | | | |
1479 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1480 * ***************************************************************************
1481 *
1482 * (+) the mount is moved to the destination. And is then propagated to
1483 * all the mounts in the propagation tree of the destination mount.
1484 * (+*) the mount is moved to the destination.
1485 * (+++) the mount is moved to the destination and is then propagated to
1486 * all the mounts belonging to the destination mount's propagation tree.
1487 * the mount is marked as 'shared and slave'.
1488 * (*) the mount continues to be a slave at the new location.
1489 *
1490 * if the source mount is a tree, the operations explained above is
1491 * applied to each mount in the tree.
1492 * Must be called without spinlocks held, since this function can sleep
1493 * in allocations.
1494 */
1495 static int attach_recursive_mnt(struct mount *source_mnt,
1496 struct path *path, struct path *parent_path)
1497 {
1498 LIST_HEAD(tree_list);
1499 struct mount *dest_mnt = real_mount(path->mnt);
1500 struct dentry *dest_dentry = path->dentry;
1501 struct mount *child, *p;
1502 int err;
1503
1504 if (IS_MNT_SHARED(dest_mnt)) {
1505 err = invent_group_ids(source_mnt, true);
1506 if (err)
1507 goto out;
1508 }
1509 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1510 if (err)
1511 goto out_cleanup_ids;
1512
1513 br_write_lock(&vfsmount_lock);
1514
1515 if (IS_MNT_SHARED(dest_mnt)) {
1516 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1517 set_mnt_shared(p);
1518 }
1519 if (parent_path) {
1520 detach_mnt(source_mnt, parent_path);
1521 attach_mnt(source_mnt, path);
1522 touch_mnt_namespace(source_mnt->mnt_ns);
1523 } else {
1524 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1525 commit_tree(source_mnt);
1526 }
1527
1528 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1529 list_del_init(&child->mnt_hash);
1530 commit_tree(child);
1531 }
1532 br_write_unlock(&vfsmount_lock);
1533
1534 return 0;
1535
1536 out_cleanup_ids:
1537 if (IS_MNT_SHARED(dest_mnt))
1538 cleanup_group_ids(source_mnt, NULL);
1539 out:
1540 return err;
1541 }
1542
1543 static int lock_mount(struct path *path)
1544 {
1545 struct vfsmount *mnt;
1546 retry:
1547 mutex_lock(&path->dentry->d_inode->i_mutex);
1548 if (unlikely(cant_mount(path->dentry))) {
1549 mutex_unlock(&path->dentry->d_inode->i_mutex);
1550 return -ENOENT;
1551 }
1552 down_write(&namespace_sem);
1553 mnt = lookup_mnt(path);
1554 if (likely(!mnt))
1555 return 0;
1556 up_write(&namespace_sem);
1557 mutex_unlock(&path->dentry->d_inode->i_mutex);
1558 path_put(path);
1559 path->mnt = mnt;
1560 path->dentry = dget(mnt->mnt_root);
1561 goto retry;
1562 }
1563
1564 static void unlock_mount(struct path *path)
1565 {
1566 up_write(&namespace_sem);
1567 mutex_unlock(&path->dentry->d_inode->i_mutex);
1568 }
1569
1570 static int graft_tree(struct mount *mnt, struct path *path)
1571 {
1572 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1573 return -EINVAL;
1574
1575 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1576 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1577 return -ENOTDIR;
1578
1579 if (d_unlinked(path->dentry))
1580 return -ENOENT;
1581
1582 return attach_recursive_mnt(mnt, path, NULL);
1583 }
1584
1585 /*
1586 * Sanity check the flags to change_mnt_propagation.
1587 */
1588
1589 static int flags_to_propagation_type(int flags)
1590 {
1591 int type = flags & ~(MS_REC | MS_SILENT);
1592
1593 /* Fail if any non-propagation flags are set */
1594 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1595 return 0;
1596 /* Only one propagation flag should be set */
1597 if (!is_power_of_2(type))
1598 return 0;
1599 return type;
1600 }
1601
1602 /*
1603 * recursively change the type of the mountpoint.
1604 */
1605 static int do_change_type(struct path *path, int flag)
1606 {
1607 struct mount *m;
1608 struct mount *mnt = real_mount(path->mnt);
1609 int recurse = flag & MS_REC;
1610 int type;
1611 int err = 0;
1612
1613 if (!capable(CAP_SYS_ADMIN))
1614 return -EPERM;
1615
1616 if (path->dentry != path->mnt->mnt_root)
1617 return -EINVAL;
1618
1619 type = flags_to_propagation_type(flag);
1620 if (!type)
1621 return -EINVAL;
1622
1623 down_write(&namespace_sem);
1624 if (type == MS_SHARED) {
1625 err = invent_group_ids(mnt, recurse);
1626 if (err)
1627 goto out_unlock;
1628 }
1629
1630 br_write_lock(&vfsmount_lock);
1631 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1632 change_mnt_propagation(m, type);
1633 br_write_unlock(&vfsmount_lock);
1634
1635 out_unlock:
1636 up_write(&namespace_sem);
1637 return err;
1638 }
1639
1640 /*
1641 * do loopback mount.
1642 */
1643 static int do_loopback(struct path *path, const char *old_name,
1644 int recurse)
1645 {
1646 LIST_HEAD(umount_list);
1647 struct path old_path;
1648 struct mount *mnt = NULL, *old;
1649 int err = mount_is_safe(path);
1650 if (err)
1651 return err;
1652 if (!old_name || !*old_name)
1653 return -EINVAL;
1654 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1655 if (err)
1656 return err;
1657
1658 err = lock_mount(path);
1659 if (err)
1660 goto out;
1661
1662 old = real_mount(old_path.mnt);
1663
1664 err = -EINVAL;
1665 if (IS_MNT_UNBINDABLE(old))
1666 goto out2;
1667
1668 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1669 goto out2;
1670
1671 if (recurse)
1672 mnt = copy_tree(old, old_path.dentry, 0);
1673 else
1674 mnt = clone_mnt(old, old_path.dentry, 0);
1675
1676 if (IS_ERR(mnt)) {
1677 err = PTR_ERR(mnt);
1678 goto out;
1679 }
1680
1681 err = graft_tree(mnt, path);
1682 if (err) {
1683 br_write_lock(&vfsmount_lock);
1684 umount_tree(mnt, 0, &umount_list);
1685 br_write_unlock(&vfsmount_lock);
1686 }
1687 out2:
1688 unlock_mount(path);
1689 release_mounts(&umount_list);
1690 out:
1691 path_put(&old_path);
1692 return err;
1693 }
1694
1695 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1696 {
1697 int error = 0;
1698 int readonly_request = 0;
1699
1700 if (ms_flags & MS_RDONLY)
1701 readonly_request = 1;
1702 if (readonly_request == __mnt_is_readonly(mnt))
1703 return 0;
1704
1705 if (readonly_request)
1706 error = mnt_make_readonly(real_mount(mnt));
1707 else
1708 __mnt_unmake_readonly(real_mount(mnt));
1709 return error;
1710 }
1711
1712 /*
1713 * change filesystem flags. dir should be a physical root of filesystem.
1714 * If you've mounted a non-root directory somewhere and want to do remount
1715 * on it - tough luck.
1716 */
1717 static int do_remount(struct path *path, int flags, int mnt_flags,
1718 void *data)
1719 {
1720 int err;
1721 struct super_block *sb = path->mnt->mnt_sb;
1722 struct mount *mnt = real_mount(path->mnt);
1723
1724 if (!capable(CAP_SYS_ADMIN))
1725 return -EPERM;
1726
1727 if (!check_mnt(mnt))
1728 return -EINVAL;
1729
1730 if (path->dentry != path->mnt->mnt_root)
1731 return -EINVAL;
1732
1733 err = security_sb_remount(sb, data);
1734 if (err)
1735 return err;
1736
1737 down_write(&sb->s_umount);
1738 if (flags & MS_BIND)
1739 err = change_mount_flags(path->mnt, flags);
1740 else
1741 err = do_remount_sb(sb, flags, data, 0);
1742 if (!err) {
1743 br_write_lock(&vfsmount_lock);
1744 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1745 mnt->mnt.mnt_flags = mnt_flags;
1746 br_write_unlock(&vfsmount_lock);
1747 }
1748 up_write(&sb->s_umount);
1749 if (!err) {
1750 br_write_lock(&vfsmount_lock);
1751 touch_mnt_namespace(mnt->mnt_ns);
1752 br_write_unlock(&vfsmount_lock);
1753 }
1754 return err;
1755 }
1756
1757 static inline int tree_contains_unbindable(struct mount *mnt)
1758 {
1759 struct mount *p;
1760 for (p = mnt; p; p = next_mnt(p, mnt)) {
1761 if (IS_MNT_UNBINDABLE(p))
1762 return 1;
1763 }
1764 return 0;
1765 }
1766
1767 static int do_move_mount(struct path *path, const char *old_name)
1768 {
1769 struct path old_path, parent_path;
1770 struct mount *p;
1771 struct mount *old;
1772 int err = 0;
1773 if (!capable(CAP_SYS_ADMIN))
1774 return -EPERM;
1775 if (!old_name || !*old_name)
1776 return -EINVAL;
1777 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1778 if (err)
1779 return err;
1780
1781 err = lock_mount(path);
1782 if (err < 0)
1783 goto out;
1784
1785 old = real_mount(old_path.mnt);
1786 p = real_mount(path->mnt);
1787
1788 err = -EINVAL;
1789 if (!check_mnt(p) || !check_mnt(old))
1790 goto out1;
1791
1792 if (d_unlinked(path->dentry))
1793 goto out1;
1794
1795 err = -EINVAL;
1796 if (old_path.dentry != old_path.mnt->mnt_root)
1797 goto out1;
1798
1799 if (!mnt_has_parent(old))
1800 goto out1;
1801
1802 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1803 S_ISDIR(old_path.dentry->d_inode->i_mode))
1804 goto out1;
1805 /*
1806 * Don't move a mount residing in a shared parent.
1807 */
1808 if (IS_MNT_SHARED(old->mnt_parent))
1809 goto out1;
1810 /*
1811 * Don't move a mount tree containing unbindable mounts to a destination
1812 * mount which is shared.
1813 */
1814 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1815 goto out1;
1816 err = -ELOOP;
1817 for (; mnt_has_parent(p); p = p->mnt_parent)
1818 if (p == old)
1819 goto out1;
1820
1821 err = attach_recursive_mnt(old, path, &parent_path);
1822 if (err)
1823 goto out1;
1824
1825 /* if the mount is moved, it should no longer be expire
1826 * automatically */
1827 list_del_init(&old->mnt_expire);
1828 out1:
1829 unlock_mount(path);
1830 out:
1831 if (!err)
1832 path_put(&parent_path);
1833 path_put(&old_path);
1834 return err;
1835 }
1836
1837 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1838 {
1839 int err;
1840 const char *subtype = strchr(fstype, '.');
1841 if (subtype) {
1842 subtype++;
1843 err = -EINVAL;
1844 if (!subtype[0])
1845 goto err;
1846 } else
1847 subtype = "";
1848
1849 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1850 err = -ENOMEM;
1851 if (!mnt->mnt_sb->s_subtype)
1852 goto err;
1853 return mnt;
1854
1855 err:
1856 mntput(mnt);
1857 return ERR_PTR(err);
1858 }
1859
1860 static struct vfsmount *
1861 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1862 {
1863 struct file_system_type *type = get_fs_type(fstype);
1864 struct vfsmount *mnt;
1865 if (!type)
1866 return ERR_PTR(-ENODEV);
1867 mnt = vfs_kern_mount(type, flags, name, data);
1868 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1869 !mnt->mnt_sb->s_subtype)
1870 mnt = fs_set_subtype(mnt, fstype);
1871 put_filesystem(type);
1872 return mnt;
1873 }
1874
1875 /*
1876 * add a mount into a namespace's mount tree
1877 */
1878 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1879 {
1880 int err;
1881
1882 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1883
1884 err = lock_mount(path);
1885 if (err)
1886 return err;
1887
1888 err = -EINVAL;
1889 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1890 /* that's acceptable only for automounts done in private ns */
1891 if (!(mnt_flags & MNT_SHRINKABLE))
1892 goto unlock;
1893 /* ... and for those we'd better have mountpoint still alive */
1894 if (!real_mount(path->mnt)->mnt_ns)
1895 goto unlock;
1896 }
1897
1898 /* Refuse the same filesystem on the same mount point */
1899 err = -EBUSY;
1900 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1901 path->mnt->mnt_root == path->dentry)
1902 goto unlock;
1903
1904 err = -EINVAL;
1905 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1906 goto unlock;
1907
1908 newmnt->mnt.mnt_flags = mnt_flags;
1909 err = graft_tree(newmnt, path);
1910
1911 unlock:
1912 unlock_mount(path);
1913 return err;
1914 }
1915
1916 /*
1917 * create a new mount for userspace and request it to be added into the
1918 * namespace's tree
1919 */
1920 static int do_new_mount(struct path *path, const char *type, int flags,
1921 int mnt_flags, const char *name, void *data)
1922 {
1923 struct vfsmount *mnt;
1924 int err;
1925
1926 if (!type)
1927 return -EINVAL;
1928
1929 /* we need capabilities... */
1930 if (!capable(CAP_SYS_ADMIN))
1931 return -EPERM;
1932
1933 mnt = do_kern_mount(type, flags, name, data);
1934 if (IS_ERR(mnt))
1935 return PTR_ERR(mnt);
1936
1937 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1938 if (err)
1939 mntput(mnt);
1940 return err;
1941 }
1942
1943 int finish_automount(struct vfsmount *m, struct path *path)
1944 {
1945 struct mount *mnt = real_mount(m);
1946 int err;
1947 /* The new mount record should have at least 2 refs to prevent it being
1948 * expired before we get a chance to add it
1949 */
1950 BUG_ON(mnt_get_count(mnt) < 2);
1951
1952 if (m->mnt_sb == path->mnt->mnt_sb &&
1953 m->mnt_root == path->dentry) {
1954 err = -ELOOP;
1955 goto fail;
1956 }
1957
1958 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1959 if (!err)
1960 return 0;
1961 fail:
1962 /* remove m from any expiration list it may be on */
1963 if (!list_empty(&mnt->mnt_expire)) {
1964 down_write(&namespace_sem);
1965 br_write_lock(&vfsmount_lock);
1966 list_del_init(&mnt->mnt_expire);
1967 br_write_unlock(&vfsmount_lock);
1968 up_write(&namespace_sem);
1969 }
1970 mntput(m);
1971 mntput(m);
1972 return err;
1973 }
1974
1975 /**
1976 * mnt_set_expiry - Put a mount on an expiration list
1977 * @mnt: The mount to list.
1978 * @expiry_list: The list to add the mount to.
1979 */
1980 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1981 {
1982 down_write(&namespace_sem);
1983 br_write_lock(&vfsmount_lock);
1984
1985 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1986
1987 br_write_unlock(&vfsmount_lock);
1988 up_write(&namespace_sem);
1989 }
1990 EXPORT_SYMBOL(mnt_set_expiry);
1991
1992 /*
1993 * process a list of expirable mountpoints with the intent of discarding any
1994 * mountpoints that aren't in use and haven't been touched since last we came
1995 * here
1996 */
1997 void mark_mounts_for_expiry(struct list_head *mounts)
1998 {
1999 struct mount *mnt, *next;
2000 LIST_HEAD(graveyard);
2001 LIST_HEAD(umounts);
2002
2003 if (list_empty(mounts))
2004 return;
2005
2006 down_write(&namespace_sem);
2007 br_write_lock(&vfsmount_lock);
2008
2009 /* extract from the expiration list every vfsmount that matches the
2010 * following criteria:
2011 * - only referenced by its parent vfsmount
2012 * - still marked for expiry (marked on the last call here; marks are
2013 * cleared by mntput())
2014 */
2015 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2016 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2017 propagate_mount_busy(mnt, 1))
2018 continue;
2019 list_move(&mnt->mnt_expire, &graveyard);
2020 }
2021 while (!list_empty(&graveyard)) {
2022 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2023 touch_mnt_namespace(mnt->mnt_ns);
2024 umount_tree(mnt, 1, &umounts);
2025 }
2026 br_write_unlock(&vfsmount_lock);
2027 up_write(&namespace_sem);
2028
2029 release_mounts(&umounts);
2030 }
2031
2032 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2033
2034 /*
2035 * Ripoff of 'select_parent()'
2036 *
2037 * search the list of submounts for a given mountpoint, and move any
2038 * shrinkable submounts to the 'graveyard' list.
2039 */
2040 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2041 {
2042 struct mount *this_parent = parent;
2043 struct list_head *next;
2044 int found = 0;
2045
2046 repeat:
2047 next = this_parent->mnt_mounts.next;
2048 resume:
2049 while (next != &this_parent->mnt_mounts) {
2050 struct list_head *tmp = next;
2051 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2052
2053 next = tmp->next;
2054 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2055 continue;
2056 /*
2057 * Descend a level if the d_mounts list is non-empty.
2058 */
2059 if (!list_empty(&mnt->mnt_mounts)) {
2060 this_parent = mnt;
2061 goto repeat;
2062 }
2063
2064 if (!propagate_mount_busy(mnt, 1)) {
2065 list_move_tail(&mnt->mnt_expire, graveyard);
2066 found++;
2067 }
2068 }
2069 /*
2070 * All done at this level ... ascend and resume the search
2071 */
2072 if (this_parent != parent) {
2073 next = this_parent->mnt_child.next;
2074 this_parent = this_parent->mnt_parent;
2075 goto resume;
2076 }
2077 return found;
2078 }
2079
2080 /*
2081 * process a list of expirable mountpoints with the intent of discarding any
2082 * submounts of a specific parent mountpoint
2083 *
2084 * vfsmount_lock must be held for write
2085 */
2086 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2087 {
2088 LIST_HEAD(graveyard);
2089 struct mount *m;
2090
2091 /* extract submounts of 'mountpoint' from the expiration list */
2092 while (select_submounts(mnt, &graveyard)) {
2093 while (!list_empty(&graveyard)) {
2094 m = list_first_entry(&graveyard, struct mount,
2095 mnt_expire);
2096 touch_mnt_namespace(m->mnt_ns);
2097 umount_tree(m, 1, umounts);
2098 }
2099 }
2100 }
2101
2102 /*
2103 * Some copy_from_user() implementations do not return the exact number of
2104 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2105 * Note that this function differs from copy_from_user() in that it will oops
2106 * on bad values of `to', rather than returning a short copy.
2107 */
2108 static long exact_copy_from_user(void *to, const void __user * from,
2109 unsigned long n)
2110 {
2111 char *t = to;
2112 const char __user *f = from;
2113 char c;
2114
2115 if (!access_ok(VERIFY_READ, from, n))
2116 return n;
2117
2118 while (n) {
2119 if (__get_user(c, f)) {
2120 memset(t, 0, n);
2121 break;
2122 }
2123 *t++ = c;
2124 f++;
2125 n--;
2126 }
2127 return n;
2128 }
2129
2130 int copy_mount_options(const void __user * data, unsigned long *where)
2131 {
2132 int i;
2133 unsigned long page;
2134 unsigned long size;
2135
2136 *where = 0;
2137 if (!data)
2138 return 0;
2139
2140 if (!(page = __get_free_page(GFP_KERNEL)))
2141 return -ENOMEM;
2142
2143 /* We only care that *some* data at the address the user
2144 * gave us is valid. Just in case, we'll zero
2145 * the remainder of the page.
2146 */
2147 /* copy_from_user cannot cross TASK_SIZE ! */
2148 size = TASK_SIZE - (unsigned long)data;
2149 if (size > PAGE_SIZE)
2150 size = PAGE_SIZE;
2151
2152 i = size - exact_copy_from_user((void *)page, data, size);
2153 if (!i) {
2154 free_page(page);
2155 return -EFAULT;
2156 }
2157 if (i != PAGE_SIZE)
2158 memset((char *)page + i, 0, PAGE_SIZE - i);
2159 *where = page;
2160 return 0;
2161 }
2162
2163 int copy_mount_string(const void __user *data, char **where)
2164 {
2165 char *tmp;
2166
2167 if (!data) {
2168 *where = NULL;
2169 return 0;
2170 }
2171
2172 tmp = strndup_user(data, PAGE_SIZE);
2173 if (IS_ERR(tmp))
2174 return PTR_ERR(tmp);
2175
2176 *where = tmp;
2177 return 0;
2178 }
2179
2180 /*
2181 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2182 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2183 *
2184 * data is a (void *) that can point to any structure up to
2185 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2186 * information (or be NULL).
2187 *
2188 * Pre-0.97 versions of mount() didn't have a flags word.
2189 * When the flags word was introduced its top half was required
2190 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2191 * Therefore, if this magic number is present, it carries no information
2192 * and must be discarded.
2193 */
2194 long do_mount(const char *dev_name, const char *dir_name,
2195 const char *type_page, unsigned long flags, void *data_page)
2196 {
2197 struct path path;
2198 int retval = 0;
2199 int mnt_flags = 0;
2200
2201 /* Discard magic */
2202 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2203 flags &= ~MS_MGC_MSK;
2204
2205 /* Basic sanity checks */
2206
2207 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2208 return -EINVAL;
2209
2210 if (data_page)
2211 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2212
2213 /* ... and get the mountpoint */
2214 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2215 if (retval)
2216 return retval;
2217
2218 retval = security_sb_mount(dev_name, &path,
2219 type_page, flags, data_page);
2220 if (retval)
2221 goto dput_out;
2222
2223 /* Default to relatime unless overriden */
2224 if (!(flags & MS_NOATIME))
2225 mnt_flags |= MNT_RELATIME;
2226
2227 /* Separate the per-mountpoint flags */
2228 if (flags & MS_NOSUID)
2229 mnt_flags |= MNT_NOSUID;
2230 if (flags & MS_NODEV)
2231 mnt_flags |= MNT_NODEV;
2232 if (flags & MS_NOEXEC)
2233 mnt_flags |= MNT_NOEXEC;
2234 if (flags & MS_NOATIME)
2235 mnt_flags |= MNT_NOATIME;
2236 if (flags & MS_NODIRATIME)
2237 mnt_flags |= MNT_NODIRATIME;
2238 if (flags & MS_STRICTATIME)
2239 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2240 if (flags & MS_RDONLY)
2241 mnt_flags |= MNT_READONLY;
2242
2243 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2244 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2245 MS_STRICTATIME);
2246
2247 if (flags & MS_REMOUNT)
2248 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2249 data_page);
2250 else if (flags & MS_BIND)
2251 retval = do_loopback(&path, dev_name, flags & MS_REC);
2252 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2253 retval = do_change_type(&path, flags);
2254 else if (flags & MS_MOVE)
2255 retval = do_move_mount(&path, dev_name);
2256 else
2257 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2258 dev_name, data_page);
2259 dput_out:
2260 path_put(&path);
2261 return retval;
2262 }
2263
2264 static struct mnt_namespace *alloc_mnt_ns(void)
2265 {
2266 struct mnt_namespace *new_ns;
2267
2268 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2269 if (!new_ns)
2270 return ERR_PTR(-ENOMEM);
2271 atomic_set(&new_ns->count, 1);
2272 new_ns->root = NULL;
2273 INIT_LIST_HEAD(&new_ns->list);
2274 init_waitqueue_head(&new_ns->poll);
2275 new_ns->event = 0;
2276 return new_ns;
2277 }
2278
2279 /*
2280 * Allocate a new namespace structure and populate it with contents
2281 * copied from the namespace of the passed in task structure.
2282 */
2283 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2284 struct fs_struct *fs)
2285 {
2286 struct mnt_namespace *new_ns;
2287 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2288 struct mount *p, *q;
2289 struct mount *old = mnt_ns->root;
2290 struct mount *new;
2291
2292 new_ns = alloc_mnt_ns();
2293 if (IS_ERR(new_ns))
2294 return new_ns;
2295
2296 down_write(&namespace_sem);
2297 /* First pass: copy the tree topology */
2298 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2299 if (IS_ERR(new)) {
2300 up_write(&namespace_sem);
2301 kfree(new_ns);
2302 return ERR_CAST(new);
2303 }
2304 new_ns->root = new;
2305 br_write_lock(&vfsmount_lock);
2306 list_add_tail(&new_ns->list, &new->mnt_list);
2307 br_write_unlock(&vfsmount_lock);
2308
2309 /*
2310 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2311 * as belonging to new namespace. We have already acquired a private
2312 * fs_struct, so tsk->fs->lock is not needed.
2313 */
2314 p = old;
2315 q = new;
2316 while (p) {
2317 q->mnt_ns = new_ns;
2318 if (fs) {
2319 if (&p->mnt == fs->root.mnt) {
2320 fs->root.mnt = mntget(&q->mnt);
2321 rootmnt = &p->mnt;
2322 }
2323 if (&p->mnt == fs->pwd.mnt) {
2324 fs->pwd.mnt = mntget(&q->mnt);
2325 pwdmnt = &p->mnt;
2326 }
2327 }
2328 p = next_mnt(p, old);
2329 q = next_mnt(q, new);
2330 }
2331 up_write(&namespace_sem);
2332
2333 if (rootmnt)
2334 mntput(rootmnt);
2335 if (pwdmnt)
2336 mntput(pwdmnt);
2337
2338 return new_ns;
2339 }
2340
2341 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2342 struct fs_struct *new_fs)
2343 {
2344 struct mnt_namespace *new_ns;
2345
2346 BUG_ON(!ns);
2347 get_mnt_ns(ns);
2348
2349 if (!(flags & CLONE_NEWNS))
2350 return ns;
2351
2352 new_ns = dup_mnt_ns(ns, new_fs);
2353
2354 put_mnt_ns(ns);
2355 return new_ns;
2356 }
2357
2358 /**
2359 * create_mnt_ns - creates a private namespace and adds a root filesystem
2360 * @mnt: pointer to the new root filesystem mountpoint
2361 */
2362 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2363 {
2364 struct mnt_namespace *new_ns = alloc_mnt_ns();
2365 if (!IS_ERR(new_ns)) {
2366 struct mount *mnt = real_mount(m);
2367 mnt->mnt_ns = new_ns;
2368 new_ns->root = mnt;
2369 list_add(&new_ns->list, &mnt->mnt_list);
2370 } else {
2371 mntput(m);
2372 }
2373 return new_ns;
2374 }
2375
2376 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2377 {
2378 struct mnt_namespace *ns;
2379 struct super_block *s;
2380 struct path path;
2381 int err;
2382
2383 ns = create_mnt_ns(mnt);
2384 if (IS_ERR(ns))
2385 return ERR_CAST(ns);
2386
2387 err = vfs_path_lookup(mnt->mnt_root, mnt,
2388 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2389
2390 put_mnt_ns(ns);
2391
2392 if (err)
2393 return ERR_PTR(err);
2394
2395 /* trade a vfsmount reference for active sb one */
2396 s = path.mnt->mnt_sb;
2397 atomic_inc(&s->s_active);
2398 mntput(path.mnt);
2399 /* lock the sucker */
2400 down_write(&s->s_umount);
2401 /* ... and return the root of (sub)tree on it */
2402 return path.dentry;
2403 }
2404 EXPORT_SYMBOL(mount_subtree);
2405
2406 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2407 char __user *, type, unsigned long, flags, void __user *, data)
2408 {
2409 int ret;
2410 char *kernel_type;
2411 struct filename *kernel_dir;
2412 char *kernel_dev;
2413 unsigned long data_page;
2414
2415 ret = copy_mount_string(type, &kernel_type);
2416 if (ret < 0)
2417 goto out_type;
2418
2419 kernel_dir = getname(dir_name);
2420 if (IS_ERR(kernel_dir)) {
2421 ret = PTR_ERR(kernel_dir);
2422 goto out_dir;
2423 }
2424
2425 ret = copy_mount_string(dev_name, &kernel_dev);
2426 if (ret < 0)
2427 goto out_dev;
2428
2429 ret = copy_mount_options(data, &data_page);
2430 if (ret < 0)
2431 goto out_data;
2432
2433 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2434 (void *) data_page);
2435
2436 free_page(data_page);
2437 out_data:
2438 kfree(kernel_dev);
2439 out_dev:
2440 putname(kernel_dir);
2441 out_dir:
2442 kfree(kernel_type);
2443 out_type:
2444 return ret;
2445 }
2446
2447 /*
2448 * Return true if path is reachable from root
2449 *
2450 * namespace_sem or vfsmount_lock is held
2451 */
2452 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2453 const struct path *root)
2454 {
2455 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2456 dentry = mnt->mnt_mountpoint;
2457 mnt = mnt->mnt_parent;
2458 }
2459 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2460 }
2461
2462 int path_is_under(struct path *path1, struct path *path2)
2463 {
2464 int res;
2465 br_read_lock(&vfsmount_lock);
2466 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2467 br_read_unlock(&vfsmount_lock);
2468 return res;
2469 }
2470 EXPORT_SYMBOL(path_is_under);
2471
2472 /*
2473 * pivot_root Semantics:
2474 * Moves the root file system of the current process to the directory put_old,
2475 * makes new_root as the new root file system of the current process, and sets
2476 * root/cwd of all processes which had them on the current root to new_root.
2477 *
2478 * Restrictions:
2479 * The new_root and put_old must be directories, and must not be on the
2480 * same file system as the current process root. The put_old must be
2481 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2482 * pointed to by put_old must yield the same directory as new_root. No other
2483 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2484 *
2485 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2486 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2487 * in this situation.
2488 *
2489 * Notes:
2490 * - we don't move root/cwd if they are not at the root (reason: if something
2491 * cared enough to change them, it's probably wrong to force them elsewhere)
2492 * - it's okay to pick a root that isn't the root of a file system, e.g.
2493 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2494 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2495 * first.
2496 */
2497 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2498 const char __user *, put_old)
2499 {
2500 struct path new, old, parent_path, root_parent, root;
2501 struct mount *new_mnt, *root_mnt;
2502 int error;
2503
2504 if (!capable(CAP_SYS_ADMIN))
2505 return -EPERM;
2506
2507 error = user_path_dir(new_root, &new);
2508 if (error)
2509 goto out0;
2510
2511 error = user_path_dir(put_old, &old);
2512 if (error)
2513 goto out1;
2514
2515 error = security_sb_pivotroot(&old, &new);
2516 if (error)
2517 goto out2;
2518
2519 get_fs_root(current->fs, &root);
2520 error = lock_mount(&old);
2521 if (error)
2522 goto out3;
2523
2524 error = -EINVAL;
2525 new_mnt = real_mount(new.mnt);
2526 root_mnt = real_mount(root.mnt);
2527 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2528 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2529 IS_MNT_SHARED(root_mnt->mnt_parent))
2530 goto out4;
2531 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2532 goto out4;
2533 error = -ENOENT;
2534 if (d_unlinked(new.dentry))
2535 goto out4;
2536 if (d_unlinked(old.dentry))
2537 goto out4;
2538 error = -EBUSY;
2539 if (new.mnt == root.mnt ||
2540 old.mnt == root.mnt)
2541 goto out4; /* loop, on the same file system */
2542 error = -EINVAL;
2543 if (root.mnt->mnt_root != root.dentry)
2544 goto out4; /* not a mountpoint */
2545 if (!mnt_has_parent(root_mnt))
2546 goto out4; /* not attached */
2547 if (new.mnt->mnt_root != new.dentry)
2548 goto out4; /* not a mountpoint */
2549 if (!mnt_has_parent(new_mnt))
2550 goto out4; /* not attached */
2551 /* make sure we can reach put_old from new_root */
2552 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2553 goto out4;
2554 br_write_lock(&vfsmount_lock);
2555 detach_mnt(new_mnt, &parent_path);
2556 detach_mnt(root_mnt, &root_parent);
2557 /* mount old root on put_old */
2558 attach_mnt(root_mnt, &old);
2559 /* mount new_root on / */
2560 attach_mnt(new_mnt, &root_parent);
2561 touch_mnt_namespace(current->nsproxy->mnt_ns);
2562 br_write_unlock(&vfsmount_lock);
2563 chroot_fs_refs(&root, &new);
2564 error = 0;
2565 out4:
2566 unlock_mount(&old);
2567 if (!error) {
2568 path_put(&root_parent);
2569 path_put(&parent_path);
2570 }
2571 out3:
2572 path_put(&root);
2573 out2:
2574 path_put(&old);
2575 out1:
2576 path_put(&new);
2577 out0:
2578 return error;
2579 }
2580
2581 static void __init init_mount_tree(void)
2582 {
2583 struct vfsmount *mnt;
2584 struct mnt_namespace *ns;
2585 struct path root;
2586
2587 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2588 if (IS_ERR(mnt))
2589 panic("Can't create rootfs");
2590
2591 ns = create_mnt_ns(mnt);
2592 if (IS_ERR(ns))
2593 panic("Can't allocate initial namespace");
2594
2595 init_task.nsproxy->mnt_ns = ns;
2596 get_mnt_ns(ns);
2597
2598 root.mnt = mnt;
2599 root.dentry = mnt->mnt_root;
2600
2601 set_fs_pwd(current->fs, &root);
2602 set_fs_root(current->fs, &root);
2603 }
2604
2605 void __init mnt_init(void)
2606 {
2607 unsigned u;
2608 int err;
2609
2610 init_rwsem(&namespace_sem);
2611
2612 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2613 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2614
2615 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2616
2617 if (!mount_hashtable)
2618 panic("Failed to allocate mount hash table\n");
2619
2620 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2621
2622 for (u = 0; u < HASH_SIZE; u++)
2623 INIT_LIST_HEAD(&mount_hashtable[u]);
2624
2625 br_lock_init(&vfsmount_lock);
2626
2627 err = sysfs_init();
2628 if (err)
2629 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2630 __func__, err);
2631 fs_kobj = kobject_create_and_add("fs", NULL);
2632 if (!fs_kobj)
2633 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2634 init_rootfs();
2635 init_mount_tree();
2636 }
2637
2638 void put_mnt_ns(struct mnt_namespace *ns)
2639 {
2640 LIST_HEAD(umount_list);
2641
2642 if (!atomic_dec_and_test(&ns->count))
2643 return;
2644 down_write(&namespace_sem);
2645 br_write_lock(&vfsmount_lock);
2646 umount_tree(ns->root, 0, &umount_list);
2647 br_write_unlock(&vfsmount_lock);
2648 up_write(&namespace_sem);
2649 release_mounts(&umount_list);
2650 kfree(ns);
2651 }
2652
2653 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2654 {
2655 struct vfsmount *mnt;
2656 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2657 if (!IS_ERR(mnt)) {
2658 /*
2659 * it is a longterm mount, don't release mnt until
2660 * we unmount before file sys is unregistered
2661 */
2662 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2663 }
2664 return mnt;
2665 }
2666 EXPORT_SYMBOL_GPL(kern_mount_data);
2667
2668 void kern_unmount(struct vfsmount *mnt)
2669 {
2670 /* release long term mount so mount point can be released */
2671 if (!IS_ERR_OR_NULL(mnt)) {
2672 br_write_lock(&vfsmount_lock);
2673 real_mount(mnt)->mnt_ns = NULL;
2674 br_write_unlock(&vfsmount_lock);
2675 mntput(mnt);
2676 }
2677 }
2678 EXPORT_SYMBOL(kern_unmount);
2679
2680 bool our_mnt(struct vfsmount *mnt)
2681 {
2682 return check_mnt(real_mount(mnt));
2683 }