Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 struct filename *tmp;
226
227 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
228 if (unlikely(!tmp)) {
229 __putname(result);
230 return ERR_PTR(-ENOMEM);
231 }
232 tmp->name = (char *)result;
233 result = tmp;
234 } else {
235 __putname(result);
236 return ERR_PTR(-ENAMETOOLONG);
237 }
238 memcpy((char *)result->name, filename, len);
239 result->uptr = NULL;
240 result->aname = NULL;
241 result->refcnt = 1;
242 audit_getname(result);
243
244 return result;
245 }
246
247 void putname(struct filename *name)
248 {
249 BUG_ON(name->refcnt <= 0);
250
251 if (--name->refcnt > 0)
252 return;
253
254 if (name->name != name->iname) {
255 __putname(name->name);
256 kfree(name);
257 } else
258 __putname(name);
259 }
260
261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264 struct posix_acl *acl;
265
266 if (mask & MAY_NOT_BLOCK) {
267 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 if (!acl)
269 return -EAGAIN;
270 /* no ->get_acl() calls in RCU mode... */
271 if (is_uncached_acl(acl))
272 return -ECHILD;
273 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274 }
275
276 acl = get_acl(inode, ACL_TYPE_ACCESS);
277 if (IS_ERR(acl))
278 return PTR_ERR(acl);
279 if (acl) {
280 int error = posix_acl_permission(inode, acl, mask);
281 posix_acl_release(acl);
282 return error;
283 }
284 #endif
285
286 return -EAGAIN;
287 }
288
289 /*
290 * This does the basic permission checking
291 */
292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294 unsigned int mode = inode->i_mode;
295
296 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 mode >>= 6;
298 else {
299 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300 int error = check_acl(inode, mask);
301 if (error != -EAGAIN)
302 return error;
303 }
304
305 if (in_group_p(inode->i_gid))
306 mode >>= 3;
307 }
308
309 /*
310 * If the DACs are ok we don't need any capability check.
311 */
312 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313 return 0;
314 return -EACCES;
315 }
316
317 /**
318 * generic_permission - check for access rights on a Posix-like filesystem
319 * @inode: inode to check access rights for
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 *
322 * Used to check for read/write/execute permissions on a file.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
326 *
327 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328 * request cannot be satisfied (eg. requires blocking or too much complexity).
329 * It would then be called again in ref-walk mode.
330 */
331 int generic_permission(struct inode *inode, int mask)
332 {
333 int ret;
334
335 /*
336 * Do the basic permission checks.
337 */
338 ret = acl_permission_check(inode, mask);
339 if (ret != -EACCES)
340 return ret;
341
342 if (S_ISDIR(inode->i_mode)) {
343 /* DACs are overridable for directories */
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
349 return 0;
350 return -EACCES;
351 }
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360 /*
361 * Read/write DACs are always overridable.
362 * Executable DACs are overridable when there is
363 * at least one exec bit set.
364 */
365 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
366 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367 return 0;
368
369 return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372
373 /*
374 * We _really_ want to just do "generic_permission()" without
375 * even looking at the inode->i_op values. So we keep a cache
376 * flag in inode->i_opflags, that says "this has not special
377 * permission function, use the fast case".
378 */
379 static inline int do_inode_permission(struct inode *inode, int mask)
380 {
381 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382 if (likely(inode->i_op->permission))
383 return inode->i_op->permission(inode, mask);
384
385 /* This gets set once for the inode lifetime */
386 spin_lock(&inode->i_lock);
387 inode->i_opflags |= IOP_FASTPERM;
388 spin_unlock(&inode->i_lock);
389 }
390 return generic_permission(inode, mask);
391 }
392
393 /**
394 * __inode_permission - Check for access rights to a given inode
395 * @inode: Inode to check permission on
396 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397 *
398 * Check for read/write/execute permissions on an inode.
399 *
400 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401 *
402 * This does not check for a read-only file system. You probably want
403 * inode_permission().
404 */
405 int __inode_permission(struct inode *inode, int mask)
406 {
407 int retval;
408
409 if (unlikely(mask & MAY_WRITE)) {
410 /*
411 * Nobody gets write access to an immutable file.
412 */
413 if (IS_IMMUTABLE(inode))
414 return -EPERM;
415
416 /*
417 * Updating mtime will likely cause i_uid and i_gid to be
418 * written back improperly if their true value is unknown
419 * to the vfs.
420 */
421 if (HAS_UNMAPPED_ID(inode))
422 return -EACCES;
423 }
424
425 retval = do_inode_permission(inode, mask);
426 if (retval)
427 return retval;
428
429 retval = devcgroup_inode_permission(inode, mask);
430 if (retval)
431 return retval;
432
433 return security_inode_permission(inode, mask);
434 }
435 EXPORT_SYMBOL(__inode_permission);
436
437 /**
438 * sb_permission - Check superblock-level permissions
439 * @sb: Superblock of inode to check permission on
440 * @inode: Inode to check permission on
441 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442 *
443 * Separate out file-system wide checks from inode-specific permission checks.
444 */
445 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 {
447 if (unlikely(mask & MAY_WRITE)) {
448 umode_t mode = inode->i_mode;
449
450 /* Nobody gets write access to a read-only fs. */
451 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
453 }
454 return 0;
455 }
456
457 /**
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 *
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
465 *
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 int retval;
471
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
482 *
483 * Given a path increment the reference count to the dentry and the vfsmount.
484 */
485 void path_get(const struct path *path)
486 {
487 mntget(path->mnt);
488 dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
495 *
496 * Given a path decrement the reference count to the dentry and the vfsmount.
497 */
498 void path_put(const struct path *path)
499 {
500 dput(path->dentry);
501 mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
527 } __randomize_layout;
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542 struct nameidata *now = current->nameidata, *old = now->saved;
543
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 struct saved *p;
554
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
565 }
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
569 }
570
571 /**
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
574 *
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
577 */
578 static bool path_connected(const struct path *path)
579 {
580 struct vfsmount *mnt = path->mnt;
581
582 /* Only bind mounts can have disconnected paths */
583 if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 return true;
585
586 return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 if (likely(nd->depth != EMBEDDED_LEVELS))
592 return 0;
593 if (likely(nd->stack != nd->internal))
594 return 0;
595 return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600 int i = nd->depth;
601 while (i--) {
602 struct saved *last = nd->stack + i;
603 do_delayed_call(&last->done);
604 clear_delayed_call(&last->done);
605 }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610 drop_links(nd);
611 if (!(nd->flags & LOOKUP_RCU)) {
612 int i;
613 path_put(&nd->path);
614 for (i = 0; i < nd->depth; i++)
615 path_put(&nd->stack[i].link);
616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 path_put(&nd->root);
618 nd->root.mnt = NULL;
619 }
620 } else {
621 nd->flags &= ~LOOKUP_RCU;
622 if (!(nd->flags & LOOKUP_ROOT))
623 nd->root.mnt = NULL;
624 rcu_read_unlock();
625 }
626 nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 struct path *path, unsigned seq)
632 {
633 int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 if (unlikely(res)) {
635 if (res > 0)
636 path->mnt = NULL;
637 path->dentry = NULL;
638 return false;
639 }
640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 path->dentry = NULL;
642 return false;
643 }
644 return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 int i;
650 for (i = 0; i < nd->depth; i++) {
651 struct saved *last = nd->stack + i;
652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 drop_links(nd);
654 nd->depth = i + 1;
655 return false;
656 }
657 }
658 return true;
659 }
660
661 /*
662 * Path walking has 2 modes, rcu-walk and ref-walk (see
663 * Documentation/filesystems/path-lookup.txt). In situations when we can't
664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
666 * mode. Refcounts are grabbed at the last known good point before rcu-walk
667 * got stuck, so ref-walk may continue from there. If this is not successful
668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
669 * to restart the path walk from the beginning in ref-walk mode.
670 */
671
672 /**
673 * unlazy_walk - try to switch to ref-walk mode.
674 * @nd: nameidata pathwalk data
675 * Returns: 0 on success, -ECHILD on failure
676 *
677 * unlazy_walk attempts to legitimize the current nd->path and nd->root
678 * for ref-walk mode.
679 * Must be called from rcu-walk context.
680 * Nothing should touch nameidata between unlazy_walk() failure and
681 * terminate_walk().
682 */
683 static int unlazy_walk(struct nameidata *nd)
684 {
685 struct dentry *parent = nd->path.dentry;
686
687 BUG_ON(!(nd->flags & LOOKUP_RCU));
688
689 nd->flags &= ~LOOKUP_RCU;
690 if (unlikely(!legitimize_links(nd)))
691 goto out2;
692 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693 goto out1;
694 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696 goto out;
697 }
698 rcu_read_unlock();
699 BUG_ON(nd->inode != parent->d_inode);
700 return 0;
701
702 out2:
703 nd->path.mnt = NULL;
704 nd->path.dentry = NULL;
705 out1:
706 if (!(nd->flags & LOOKUP_ROOT))
707 nd->root.mnt = NULL;
708 out:
709 rcu_read_unlock();
710 return -ECHILD;
711 }
712
713 /**
714 * unlazy_child - try to switch to ref-walk mode.
715 * @nd: nameidata pathwalk data
716 * @dentry: child of nd->path.dentry
717 * @seq: seq number to check dentry against
718 * Returns: 0 on success, -ECHILD on failure
719 *
720 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
722 * @nd. Must be called from rcu-walk context.
723 * Nothing should touch nameidata between unlazy_child() failure and
724 * terminate_walk().
725 */
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 {
728 BUG_ON(!(nd->flags & LOOKUP_RCU));
729
730 nd->flags &= ~LOOKUP_RCU;
731 if (unlikely(!legitimize_links(nd)))
732 goto out2;
733 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734 goto out2;
735 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736 goto out1;
737
738 /*
739 * We need to move both the parent and the dentry from the RCU domain
740 * to be properly refcounted. And the sequence number in the dentry
741 * validates *both* dentry counters, since we checked the sequence
742 * number of the parent after we got the child sequence number. So we
743 * know the parent must still be valid if the child sequence number is
744 */
745 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746 goto out;
747 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748 rcu_read_unlock();
749 dput(dentry);
750 goto drop_root_mnt;
751 }
752 /*
753 * Sequence counts matched. Now make sure that the root is
754 * still valid and get it if required.
755 */
756 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758 rcu_read_unlock();
759 dput(dentry);
760 return -ECHILD;
761 }
762 }
763
764 rcu_read_unlock();
765 return 0;
766
767 out2:
768 nd->path.mnt = NULL;
769 out1:
770 nd->path.dentry = NULL;
771 out:
772 rcu_read_unlock();
773 drop_root_mnt:
774 if (!(nd->flags & LOOKUP_ROOT))
775 nd->root.mnt = NULL;
776 return -ECHILD;
777 }
778
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 {
781 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782 return dentry->d_op->d_revalidate(dentry, flags);
783 else
784 return 1;
785 }
786
787 /**
788 * complete_walk - successful completion of path walk
789 * @nd: pointer nameidata
790 *
791 * If we had been in RCU mode, drop out of it and legitimize nd->path.
792 * Revalidate the final result, unless we'd already done that during
793 * the path walk or the filesystem doesn't ask for it. Return 0 on
794 * success, -error on failure. In case of failure caller does not
795 * need to drop nd->path.
796 */
797 static int complete_walk(struct nameidata *nd)
798 {
799 struct dentry *dentry = nd->path.dentry;
800 int status;
801
802 if (nd->flags & LOOKUP_RCU) {
803 if (!(nd->flags & LOOKUP_ROOT))
804 nd->root.mnt = NULL;
805 if (unlikely(unlazy_walk(nd)))
806 return -ECHILD;
807 }
808
809 if (likely(!(nd->flags & LOOKUP_JUMPED)))
810 return 0;
811
812 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813 return 0;
814
815 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816 if (status > 0)
817 return 0;
818
819 if (!status)
820 status = -ESTALE;
821
822 return status;
823 }
824
825 static void set_root(struct nameidata *nd)
826 {
827 struct fs_struct *fs = current->fs;
828
829 if (nd->flags & LOOKUP_RCU) {
830 unsigned seq;
831
832 do {
833 seq = read_seqcount_begin(&fs->seq);
834 nd->root = fs->root;
835 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836 } while (read_seqcount_retry(&fs->seq, seq));
837 } else {
838 get_fs_root(fs, &nd->root);
839 }
840 }
841
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844 dput(path->dentry);
845 if (path->mnt != nd->path.mnt)
846 mntput(path->mnt);
847 }
848
849 static inline void path_to_nameidata(const struct path *path,
850 struct nameidata *nd)
851 {
852 if (!(nd->flags & LOOKUP_RCU)) {
853 dput(nd->path.dentry);
854 if (nd->path.mnt != path->mnt)
855 mntput(nd->path.mnt);
856 }
857 nd->path.mnt = path->mnt;
858 nd->path.dentry = path->dentry;
859 }
860
861 static int nd_jump_root(struct nameidata *nd)
862 {
863 if (nd->flags & LOOKUP_RCU) {
864 struct dentry *d;
865 nd->path = nd->root;
866 d = nd->path.dentry;
867 nd->inode = d->d_inode;
868 nd->seq = nd->root_seq;
869 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870 return -ECHILD;
871 } else {
872 path_put(&nd->path);
873 nd->path = nd->root;
874 path_get(&nd->path);
875 nd->inode = nd->path.dentry->d_inode;
876 }
877 nd->flags |= LOOKUP_JUMPED;
878 return 0;
879 }
880
881 /*
882 * Helper to directly jump to a known parsed path from ->get_link,
883 * caller must have taken a reference to path beforehand.
884 */
885 void nd_jump_link(struct path *path)
886 {
887 struct nameidata *nd = current->nameidata;
888 path_put(&nd->path);
889
890 nd->path = *path;
891 nd->inode = nd->path.dentry->d_inode;
892 nd->flags |= LOOKUP_JUMPED;
893 }
894
895 static inline void put_link(struct nameidata *nd)
896 {
897 struct saved *last = nd->stack + --nd->depth;
898 do_delayed_call(&last->done);
899 if (!(nd->flags & LOOKUP_RCU))
900 path_put(&last->link);
901 }
902
903 int sysctl_protected_symlinks __read_mostly = 0;
904 int sysctl_protected_hardlinks __read_mostly = 0;
905
906 /**
907 * may_follow_link - Check symlink following for unsafe situations
908 * @nd: nameidata pathwalk data
909 *
910 * In the case of the sysctl_protected_symlinks sysctl being enabled,
911 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912 * in a sticky world-writable directory. This is to protect privileged
913 * processes from failing races against path names that may change out
914 * from under them by way of other users creating malicious symlinks.
915 * It will permit symlinks to be followed only when outside a sticky
916 * world-writable directory, or when the uid of the symlink and follower
917 * match, or when the directory owner matches the symlink's owner.
918 *
919 * Returns 0 if following the symlink is allowed, -ve on error.
920 */
921 static inline int may_follow_link(struct nameidata *nd)
922 {
923 const struct inode *inode;
924 const struct inode *parent;
925 kuid_t puid;
926
927 if (!sysctl_protected_symlinks)
928 return 0;
929
930 /* Allowed if owner and follower match. */
931 inode = nd->link_inode;
932 if (uid_eq(current_cred()->fsuid, inode->i_uid))
933 return 0;
934
935 /* Allowed if parent directory not sticky and world-writable. */
936 parent = nd->inode;
937 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938 return 0;
939
940 /* Allowed if parent directory and link owner match. */
941 puid = parent->i_uid;
942 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943 return 0;
944
945 if (nd->flags & LOOKUP_RCU)
946 return -ECHILD;
947
948 audit_log_link_denied("follow_link", &nd->stack[0].link);
949 return -EACCES;
950 }
951
952 /**
953 * safe_hardlink_source - Check for safe hardlink conditions
954 * @inode: the source inode to hardlink from
955 *
956 * Return false if at least one of the following conditions:
957 * - inode is not a regular file
958 * - inode is setuid
959 * - inode is setgid and group-exec
960 * - access failure for read and write
961 *
962 * Otherwise returns true.
963 */
964 static bool safe_hardlink_source(struct inode *inode)
965 {
966 umode_t mode = inode->i_mode;
967
968 /* Special files should not get pinned to the filesystem. */
969 if (!S_ISREG(mode))
970 return false;
971
972 /* Setuid files should not get pinned to the filesystem. */
973 if (mode & S_ISUID)
974 return false;
975
976 /* Executable setgid files should not get pinned to the filesystem. */
977 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978 return false;
979
980 /* Hardlinking to unreadable or unwritable sources is dangerous. */
981 if (inode_permission(inode, MAY_READ | MAY_WRITE))
982 return false;
983
984 return true;
985 }
986
987 /**
988 * may_linkat - Check permissions for creating a hardlink
989 * @link: the source to hardlink from
990 *
991 * Block hardlink when all of:
992 * - sysctl_protected_hardlinks enabled
993 * - fsuid does not match inode
994 * - hardlink source is unsafe (see safe_hardlink_source() above)
995 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
996 *
997 * Returns 0 if successful, -ve on error.
998 */
999 static int may_linkat(struct path *link)
1000 {
1001 struct inode *inode;
1002
1003 if (!sysctl_protected_hardlinks)
1004 return 0;
1005
1006 inode = link->dentry->d_inode;
1007
1008 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009 * otherwise, it must be a safe source.
1010 */
1011 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1012 return 0;
1013
1014 audit_log_link_denied("linkat", link);
1015 return -EPERM;
1016 }
1017
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1020 {
1021 struct saved *last = nd->stack + nd->depth - 1;
1022 struct dentry *dentry = last->link.dentry;
1023 struct inode *inode = nd->link_inode;
1024 int error;
1025 const char *res;
1026
1027 if (!(nd->flags & LOOKUP_RCU)) {
1028 touch_atime(&last->link);
1029 cond_resched();
1030 } else if (atime_needs_update_rcu(&last->link, inode)) {
1031 if (unlikely(unlazy_walk(nd)))
1032 return ERR_PTR(-ECHILD);
1033 touch_atime(&last->link);
1034 }
1035
1036 error = security_inode_follow_link(dentry, inode,
1037 nd->flags & LOOKUP_RCU);
1038 if (unlikely(error))
1039 return ERR_PTR(error);
1040
1041 nd->last_type = LAST_BIND;
1042 res = inode->i_link;
1043 if (!res) {
1044 const char * (*get)(struct dentry *, struct inode *,
1045 struct delayed_call *);
1046 get = inode->i_op->get_link;
1047 if (nd->flags & LOOKUP_RCU) {
1048 res = get(NULL, inode, &last->done);
1049 if (res == ERR_PTR(-ECHILD)) {
1050 if (unlikely(unlazy_walk(nd)))
1051 return ERR_PTR(-ECHILD);
1052 res = get(dentry, inode, &last->done);
1053 }
1054 } else {
1055 res = get(dentry, inode, &last->done);
1056 }
1057 if (IS_ERR_OR_NULL(res))
1058 return res;
1059 }
1060 if (*res == '/') {
1061 if (!nd->root.mnt)
1062 set_root(nd);
1063 if (unlikely(nd_jump_root(nd)))
1064 return ERR_PTR(-ECHILD);
1065 while (unlikely(*++res == '/'))
1066 ;
1067 }
1068 if (!*res)
1069 res = NULL;
1070 return res;
1071 }
1072
1073 /*
1074 * follow_up - Find the mountpoint of path's vfsmount
1075 *
1076 * Given a path, find the mountpoint of its source file system.
1077 * Replace @path with the path of the mountpoint in the parent mount.
1078 * Up is towards /.
1079 *
1080 * Return 1 if we went up a level and 0 if we were already at the
1081 * root.
1082 */
1083 int follow_up(struct path *path)
1084 {
1085 struct mount *mnt = real_mount(path->mnt);
1086 struct mount *parent;
1087 struct dentry *mountpoint;
1088
1089 read_seqlock_excl(&mount_lock);
1090 parent = mnt->mnt_parent;
1091 if (parent == mnt) {
1092 read_sequnlock_excl(&mount_lock);
1093 return 0;
1094 }
1095 mntget(&parent->mnt);
1096 mountpoint = dget(mnt->mnt_mountpoint);
1097 read_sequnlock_excl(&mount_lock);
1098 dput(path->dentry);
1099 path->dentry = mountpoint;
1100 mntput(path->mnt);
1101 path->mnt = &parent->mnt;
1102 return 1;
1103 }
1104 EXPORT_SYMBOL(follow_up);
1105
1106 /*
1107 * Perform an automount
1108 * - return -EISDIR to tell follow_managed() to stop and return the path we
1109 * were called with.
1110 */
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112 bool *need_mntput)
1113 {
1114 struct vfsmount *mnt;
1115 int err;
1116
1117 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118 return -EREMOTE;
1119
1120 /* We don't want to mount if someone's just doing a stat -
1121 * unless they're stat'ing a directory and appended a '/' to
1122 * the name.
1123 *
1124 * We do, however, want to mount if someone wants to open or
1125 * create a file of any type under the mountpoint, wants to
1126 * traverse through the mountpoint or wants to open the
1127 * mounted directory. Also, autofs may mark negative dentries
1128 * as being automount points. These will need the attentions
1129 * of the daemon to instantiate them before they can be used.
1130 */
1131 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132 LOOKUP_OPEN | LOOKUP_CREATE |
1133 LOOKUP_AUTOMOUNT))) {
1134 /* Positive dentry that isn't meant to trigger an
1135 * automount, EISDIR will allow it to be used,
1136 * otherwise there's no mount here "now" so return
1137 * ENOENT.
1138 */
1139 if (path->dentry->d_inode)
1140 return -EISDIR;
1141 else
1142 return -ENOENT;
1143 }
1144
1145 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1146 return -EACCES;
1147
1148 nd->total_link_count++;
1149 if (nd->total_link_count >= 40)
1150 return -ELOOP;
1151
1152 mnt = path->dentry->d_op->d_automount(path);
1153 if (IS_ERR(mnt)) {
1154 /*
1155 * The filesystem is allowed to return -EISDIR here to indicate
1156 * it doesn't want to automount. For instance, autofs would do
1157 * this so that its userspace daemon can mount on this dentry.
1158 *
1159 * However, we can only permit this if it's a terminal point in
1160 * the path being looked up; if it wasn't then the remainder of
1161 * the path is inaccessible and we should say so.
1162 */
1163 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1164 return -EREMOTE;
1165 return PTR_ERR(mnt);
1166 }
1167
1168 if (!mnt) /* mount collision */
1169 return 0;
1170
1171 if (!*need_mntput) {
1172 /* lock_mount() may release path->mnt on error */
1173 mntget(path->mnt);
1174 *need_mntput = true;
1175 }
1176 err = finish_automount(mnt, path);
1177
1178 switch (err) {
1179 case -EBUSY:
1180 /* Someone else made a mount here whilst we were busy */
1181 return 0;
1182 case 0:
1183 path_put(path);
1184 path->mnt = mnt;
1185 path->dentry = dget(mnt->mnt_root);
1186 return 0;
1187 default:
1188 return err;
1189 }
1190
1191 }
1192
1193 /*
1194 * Handle a dentry that is managed in some way.
1195 * - Flagged for transit management (autofs)
1196 * - Flagged as mountpoint
1197 * - Flagged as automount point
1198 *
1199 * This may only be called in refwalk mode.
1200 *
1201 * Serialization is taken care of in namespace.c
1202 */
1203 static int follow_managed(struct path *path, struct nameidata *nd)
1204 {
1205 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1206 unsigned managed;
1207 bool need_mntput = false;
1208 int ret = 0;
1209
1210 /* Given that we're not holding a lock here, we retain the value in a
1211 * local variable for each dentry as we look at it so that we don't see
1212 * the components of that value change under us */
1213 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1214 managed &= DCACHE_MANAGED_DENTRY,
1215 unlikely(managed != 0)) {
1216 /* Allow the filesystem to manage the transit without i_mutex
1217 * being held. */
1218 if (managed & DCACHE_MANAGE_TRANSIT) {
1219 BUG_ON(!path->dentry->d_op);
1220 BUG_ON(!path->dentry->d_op->d_manage);
1221 ret = path->dentry->d_op->d_manage(path, false);
1222 if (ret < 0)
1223 break;
1224 }
1225
1226 /* Transit to a mounted filesystem. */
1227 if (managed & DCACHE_MOUNTED) {
1228 struct vfsmount *mounted = lookup_mnt(path);
1229 if (mounted) {
1230 dput(path->dentry);
1231 if (need_mntput)
1232 mntput(path->mnt);
1233 path->mnt = mounted;
1234 path->dentry = dget(mounted->mnt_root);
1235 need_mntput = true;
1236 continue;
1237 }
1238
1239 /* Something is mounted on this dentry in another
1240 * namespace and/or whatever was mounted there in this
1241 * namespace got unmounted before lookup_mnt() could
1242 * get it */
1243 }
1244
1245 /* Handle an automount point */
1246 if (managed & DCACHE_NEED_AUTOMOUNT) {
1247 ret = follow_automount(path, nd, &need_mntput);
1248 if (ret < 0)
1249 break;
1250 continue;
1251 }
1252
1253 /* We didn't change the current path point */
1254 break;
1255 }
1256
1257 if (need_mntput && path->mnt == mnt)
1258 mntput(path->mnt);
1259 if (ret == -EISDIR || !ret)
1260 ret = 1;
1261 if (need_mntput)
1262 nd->flags |= LOOKUP_JUMPED;
1263 if (unlikely(ret < 0))
1264 path_put_conditional(path, nd);
1265 return ret;
1266 }
1267
1268 int follow_down_one(struct path *path)
1269 {
1270 struct vfsmount *mounted;
1271
1272 mounted = lookup_mnt(path);
1273 if (mounted) {
1274 dput(path->dentry);
1275 mntput(path->mnt);
1276 path->mnt = mounted;
1277 path->dentry = dget(mounted->mnt_root);
1278 return 1;
1279 }
1280 return 0;
1281 }
1282 EXPORT_SYMBOL(follow_down_one);
1283
1284 static inline int managed_dentry_rcu(const struct path *path)
1285 {
1286 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1287 path->dentry->d_op->d_manage(path, true) : 0;
1288 }
1289
1290 /*
1291 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1292 * we meet a managed dentry that would need blocking.
1293 */
1294 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1295 struct inode **inode, unsigned *seqp)
1296 {
1297 for (;;) {
1298 struct mount *mounted;
1299 /*
1300 * Don't forget we might have a non-mountpoint managed dentry
1301 * that wants to block transit.
1302 */
1303 switch (managed_dentry_rcu(path)) {
1304 case -ECHILD:
1305 default:
1306 return false;
1307 case -EISDIR:
1308 return true;
1309 case 0:
1310 break;
1311 }
1312
1313 if (!d_mountpoint(path->dentry))
1314 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1315
1316 mounted = __lookup_mnt(path->mnt, path->dentry);
1317 if (!mounted)
1318 break;
1319 path->mnt = &mounted->mnt;
1320 path->dentry = mounted->mnt.mnt_root;
1321 nd->flags |= LOOKUP_JUMPED;
1322 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1323 /*
1324 * Update the inode too. We don't need to re-check the
1325 * dentry sequence number here after this d_inode read,
1326 * because a mount-point is always pinned.
1327 */
1328 *inode = path->dentry->d_inode;
1329 }
1330 return !read_seqretry(&mount_lock, nd->m_seq) &&
1331 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1332 }
1333
1334 static int follow_dotdot_rcu(struct nameidata *nd)
1335 {
1336 struct inode *inode = nd->inode;
1337
1338 while (1) {
1339 if (path_equal(&nd->path, &nd->root))
1340 break;
1341 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1342 struct dentry *old = nd->path.dentry;
1343 struct dentry *parent = old->d_parent;
1344 unsigned seq;
1345
1346 inode = parent->d_inode;
1347 seq = read_seqcount_begin(&parent->d_seq);
1348 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1349 return -ECHILD;
1350 nd->path.dentry = parent;
1351 nd->seq = seq;
1352 if (unlikely(!path_connected(&nd->path)))
1353 return -ENOENT;
1354 break;
1355 } else {
1356 struct mount *mnt = real_mount(nd->path.mnt);
1357 struct mount *mparent = mnt->mnt_parent;
1358 struct dentry *mountpoint = mnt->mnt_mountpoint;
1359 struct inode *inode2 = mountpoint->d_inode;
1360 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1361 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1362 return -ECHILD;
1363 if (&mparent->mnt == nd->path.mnt)
1364 break;
1365 /* we know that mountpoint was pinned */
1366 nd->path.dentry = mountpoint;
1367 nd->path.mnt = &mparent->mnt;
1368 inode = inode2;
1369 nd->seq = seq;
1370 }
1371 }
1372 while (unlikely(d_mountpoint(nd->path.dentry))) {
1373 struct mount *mounted;
1374 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1375 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1376 return -ECHILD;
1377 if (!mounted)
1378 break;
1379 nd->path.mnt = &mounted->mnt;
1380 nd->path.dentry = mounted->mnt.mnt_root;
1381 inode = nd->path.dentry->d_inode;
1382 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1383 }
1384 nd->inode = inode;
1385 return 0;
1386 }
1387
1388 /*
1389 * Follow down to the covering mount currently visible to userspace. At each
1390 * point, the filesystem owning that dentry may be queried as to whether the
1391 * caller is permitted to proceed or not.
1392 */
1393 int follow_down(struct path *path)
1394 {
1395 unsigned managed;
1396 int ret;
1397
1398 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1399 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1400 /* Allow the filesystem to manage the transit without i_mutex
1401 * being held.
1402 *
1403 * We indicate to the filesystem if someone is trying to mount
1404 * something here. This gives autofs the chance to deny anyone
1405 * other than its daemon the right to mount on its
1406 * superstructure.
1407 *
1408 * The filesystem may sleep at this point.
1409 */
1410 if (managed & DCACHE_MANAGE_TRANSIT) {
1411 BUG_ON(!path->dentry->d_op);
1412 BUG_ON(!path->dentry->d_op->d_manage);
1413 ret = path->dentry->d_op->d_manage(path, false);
1414 if (ret < 0)
1415 return ret == -EISDIR ? 0 : ret;
1416 }
1417
1418 /* Transit to a mounted filesystem. */
1419 if (managed & DCACHE_MOUNTED) {
1420 struct vfsmount *mounted = lookup_mnt(path);
1421 if (!mounted)
1422 break;
1423 dput(path->dentry);
1424 mntput(path->mnt);
1425 path->mnt = mounted;
1426 path->dentry = dget(mounted->mnt_root);
1427 continue;
1428 }
1429
1430 /* Don't handle automount points here */
1431 break;
1432 }
1433 return 0;
1434 }
1435 EXPORT_SYMBOL(follow_down);
1436
1437 /*
1438 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1439 */
1440 static void follow_mount(struct path *path)
1441 {
1442 while (d_mountpoint(path->dentry)) {
1443 struct vfsmount *mounted = lookup_mnt(path);
1444 if (!mounted)
1445 break;
1446 dput(path->dentry);
1447 mntput(path->mnt);
1448 path->mnt = mounted;
1449 path->dentry = dget(mounted->mnt_root);
1450 }
1451 }
1452
1453 static int path_parent_directory(struct path *path)
1454 {
1455 struct dentry *old = path->dentry;
1456 /* rare case of legitimate dget_parent()... */
1457 path->dentry = dget_parent(path->dentry);
1458 dput(old);
1459 if (unlikely(!path_connected(path)))
1460 return -ENOENT;
1461 return 0;
1462 }
1463
1464 static int follow_dotdot(struct nameidata *nd)
1465 {
1466 while(1) {
1467 if (nd->path.dentry == nd->root.dentry &&
1468 nd->path.mnt == nd->root.mnt) {
1469 break;
1470 }
1471 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1472 int ret = path_parent_directory(&nd->path);
1473 if (ret)
1474 return ret;
1475 break;
1476 }
1477 if (!follow_up(&nd->path))
1478 break;
1479 }
1480 follow_mount(&nd->path);
1481 nd->inode = nd->path.dentry->d_inode;
1482 return 0;
1483 }
1484
1485 /*
1486 * This looks up the name in dcache and possibly revalidates the found dentry.
1487 * NULL is returned if the dentry does not exist in the cache.
1488 */
1489 static struct dentry *lookup_dcache(const struct qstr *name,
1490 struct dentry *dir,
1491 unsigned int flags)
1492 {
1493 struct dentry *dentry = d_lookup(dir, name);
1494 if (dentry) {
1495 int error = d_revalidate(dentry, flags);
1496 if (unlikely(error <= 0)) {
1497 if (!error)
1498 d_invalidate(dentry);
1499 dput(dentry);
1500 return ERR_PTR(error);
1501 }
1502 }
1503 return dentry;
1504 }
1505
1506 /*
1507 * Call i_op->lookup on the dentry. The dentry must be negative and
1508 * unhashed.
1509 *
1510 * dir->d_inode->i_mutex must be held
1511 */
1512 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1513 unsigned int flags)
1514 {
1515 struct dentry *old;
1516
1517 /* Don't create child dentry for a dead directory. */
1518 if (unlikely(IS_DEADDIR(dir))) {
1519 dput(dentry);
1520 return ERR_PTR(-ENOENT);
1521 }
1522
1523 old = dir->i_op->lookup(dir, dentry, flags);
1524 if (unlikely(old)) {
1525 dput(dentry);
1526 dentry = old;
1527 }
1528 return dentry;
1529 }
1530
1531 static struct dentry *__lookup_hash(const struct qstr *name,
1532 struct dentry *base, unsigned int flags)
1533 {
1534 struct dentry *dentry = lookup_dcache(name, base, flags);
1535
1536 if (dentry)
1537 return dentry;
1538
1539 dentry = d_alloc(base, name);
1540 if (unlikely(!dentry))
1541 return ERR_PTR(-ENOMEM);
1542
1543 return lookup_real(base->d_inode, dentry, flags);
1544 }
1545
1546 static int lookup_fast(struct nameidata *nd,
1547 struct path *path, struct inode **inode,
1548 unsigned *seqp)
1549 {
1550 struct vfsmount *mnt = nd->path.mnt;
1551 struct dentry *dentry, *parent = nd->path.dentry;
1552 int status = 1;
1553 int err;
1554
1555 /*
1556 * Rename seqlock is not required here because in the off chance
1557 * of a false negative due to a concurrent rename, the caller is
1558 * going to fall back to non-racy lookup.
1559 */
1560 if (nd->flags & LOOKUP_RCU) {
1561 unsigned seq;
1562 bool negative;
1563 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564 if (unlikely(!dentry)) {
1565 if (unlazy_walk(nd))
1566 return -ECHILD;
1567 return 0;
1568 }
1569
1570 /*
1571 * This sequence count validates that the inode matches
1572 * the dentry name information from lookup.
1573 */
1574 *inode = d_backing_inode(dentry);
1575 negative = d_is_negative(dentry);
1576 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577 return -ECHILD;
1578
1579 /*
1580 * This sequence count validates that the parent had no
1581 * changes while we did the lookup of the dentry above.
1582 *
1583 * The memory barrier in read_seqcount_begin of child is
1584 * enough, we can use __read_seqcount_retry here.
1585 */
1586 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587 return -ECHILD;
1588
1589 *seqp = seq;
1590 status = d_revalidate(dentry, nd->flags);
1591 if (likely(status > 0)) {
1592 /*
1593 * Note: do negative dentry check after revalidation in
1594 * case that drops it.
1595 */
1596 if (unlikely(negative))
1597 return -ENOENT;
1598 path->mnt = mnt;
1599 path->dentry = dentry;
1600 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601 return 1;
1602 }
1603 if (unlazy_child(nd, dentry, seq))
1604 return -ECHILD;
1605 if (unlikely(status == -ECHILD))
1606 /* we'd been told to redo it in non-rcu mode */
1607 status = d_revalidate(dentry, nd->flags);
1608 } else {
1609 dentry = __d_lookup(parent, &nd->last);
1610 if (unlikely(!dentry))
1611 return 0;
1612 status = d_revalidate(dentry, nd->flags);
1613 }
1614 if (unlikely(status <= 0)) {
1615 if (!status)
1616 d_invalidate(dentry);
1617 dput(dentry);
1618 return status;
1619 }
1620 if (unlikely(d_is_negative(dentry))) {
1621 dput(dentry);
1622 return -ENOENT;
1623 }
1624
1625 path->mnt = mnt;
1626 path->dentry = dentry;
1627 err = follow_managed(path, nd);
1628 if (likely(err > 0))
1629 *inode = d_backing_inode(path->dentry);
1630 return err;
1631 }
1632
1633 /* Fast lookup failed, do it the slow way */
1634 static struct dentry *lookup_slow(const struct qstr *name,
1635 struct dentry *dir,
1636 unsigned int flags)
1637 {
1638 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1639 struct inode *inode = dir->d_inode;
1640 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641
1642 inode_lock_shared(inode);
1643 /* Don't go there if it's already dead */
1644 if (unlikely(IS_DEADDIR(inode)))
1645 goto out;
1646 again:
1647 dentry = d_alloc_parallel(dir, name, &wq);
1648 if (IS_ERR(dentry))
1649 goto out;
1650 if (unlikely(!d_in_lookup(dentry))) {
1651 if (!(flags & LOOKUP_NO_REVAL)) {
1652 int error = d_revalidate(dentry, flags);
1653 if (unlikely(error <= 0)) {
1654 if (!error) {
1655 d_invalidate(dentry);
1656 dput(dentry);
1657 goto again;
1658 }
1659 dput(dentry);
1660 dentry = ERR_PTR(error);
1661 }
1662 }
1663 } else {
1664 old = inode->i_op->lookup(inode, dentry, flags);
1665 d_lookup_done(dentry);
1666 if (unlikely(old)) {
1667 dput(dentry);
1668 dentry = old;
1669 }
1670 }
1671 out:
1672 inode_unlock_shared(inode);
1673 return dentry;
1674 }
1675
1676 static inline int may_lookup(struct nameidata *nd)
1677 {
1678 if (nd->flags & LOOKUP_RCU) {
1679 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1680 if (err != -ECHILD)
1681 return err;
1682 if (unlazy_walk(nd))
1683 return -ECHILD;
1684 }
1685 return inode_permission(nd->inode, MAY_EXEC);
1686 }
1687
1688 static inline int handle_dots(struct nameidata *nd, int type)
1689 {
1690 if (type == LAST_DOTDOT) {
1691 if (!nd->root.mnt)
1692 set_root(nd);
1693 if (nd->flags & LOOKUP_RCU) {
1694 return follow_dotdot_rcu(nd);
1695 } else
1696 return follow_dotdot(nd);
1697 }
1698 return 0;
1699 }
1700
1701 static int pick_link(struct nameidata *nd, struct path *link,
1702 struct inode *inode, unsigned seq)
1703 {
1704 int error;
1705 struct saved *last;
1706 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1707 path_to_nameidata(link, nd);
1708 return -ELOOP;
1709 }
1710 if (!(nd->flags & LOOKUP_RCU)) {
1711 if (link->mnt == nd->path.mnt)
1712 mntget(link->mnt);
1713 }
1714 error = nd_alloc_stack(nd);
1715 if (unlikely(error)) {
1716 if (error == -ECHILD) {
1717 if (unlikely(!legitimize_path(nd, link, seq))) {
1718 drop_links(nd);
1719 nd->depth = 0;
1720 nd->flags &= ~LOOKUP_RCU;
1721 nd->path.mnt = NULL;
1722 nd->path.dentry = NULL;
1723 if (!(nd->flags & LOOKUP_ROOT))
1724 nd->root.mnt = NULL;
1725 rcu_read_unlock();
1726 } else if (likely(unlazy_walk(nd)) == 0)
1727 error = nd_alloc_stack(nd);
1728 }
1729 if (error) {
1730 path_put(link);
1731 return error;
1732 }
1733 }
1734
1735 last = nd->stack + nd->depth++;
1736 last->link = *link;
1737 clear_delayed_call(&last->done);
1738 nd->link_inode = inode;
1739 last->seq = seq;
1740 return 1;
1741 }
1742
1743 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1744
1745 /*
1746 * Do we need to follow links? We _really_ want to be able
1747 * to do this check without having to look at inode->i_op,
1748 * so we keep a cache of "no, this doesn't need follow_link"
1749 * for the common case.
1750 */
1751 static inline int step_into(struct nameidata *nd, struct path *path,
1752 int flags, struct inode *inode, unsigned seq)
1753 {
1754 if (!(flags & WALK_MORE) && nd->depth)
1755 put_link(nd);
1756 if (likely(!d_is_symlink(path->dentry)) ||
1757 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1758 /* not a symlink or should not follow */
1759 path_to_nameidata(path, nd);
1760 nd->inode = inode;
1761 nd->seq = seq;
1762 return 0;
1763 }
1764 /* make sure that d_is_symlink above matches inode */
1765 if (nd->flags & LOOKUP_RCU) {
1766 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1767 return -ECHILD;
1768 }
1769 return pick_link(nd, path, inode, seq);
1770 }
1771
1772 static int walk_component(struct nameidata *nd, int flags)
1773 {
1774 struct path path;
1775 struct inode *inode;
1776 unsigned seq;
1777 int err;
1778 /*
1779 * "." and ".." are special - ".." especially so because it has
1780 * to be able to know about the current root directory and
1781 * parent relationships.
1782 */
1783 if (unlikely(nd->last_type != LAST_NORM)) {
1784 err = handle_dots(nd, nd->last_type);
1785 if (!(flags & WALK_MORE) && nd->depth)
1786 put_link(nd);
1787 return err;
1788 }
1789 err = lookup_fast(nd, &path, &inode, &seq);
1790 if (unlikely(err <= 0)) {
1791 if (err < 0)
1792 return err;
1793 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1794 nd->flags);
1795 if (IS_ERR(path.dentry))
1796 return PTR_ERR(path.dentry);
1797
1798 path.mnt = nd->path.mnt;
1799 err = follow_managed(&path, nd);
1800 if (unlikely(err < 0))
1801 return err;
1802
1803 if (unlikely(d_is_negative(path.dentry))) {
1804 path_to_nameidata(&path, nd);
1805 return -ENOENT;
1806 }
1807
1808 seq = 0; /* we are already out of RCU mode */
1809 inode = d_backing_inode(path.dentry);
1810 }
1811
1812 return step_into(nd, &path, flags, inode, seq);
1813 }
1814
1815 /*
1816 * We can do the critical dentry name comparison and hashing
1817 * operations one word at a time, but we are limited to:
1818 *
1819 * - Architectures with fast unaligned word accesses. We could
1820 * do a "get_unaligned()" if this helps and is sufficiently
1821 * fast.
1822 *
1823 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1824 * do not trap on the (extremely unlikely) case of a page
1825 * crossing operation.
1826 *
1827 * - Furthermore, we need an efficient 64-bit compile for the
1828 * 64-bit case in order to generate the "number of bytes in
1829 * the final mask". Again, that could be replaced with a
1830 * efficient population count instruction or similar.
1831 */
1832 #ifdef CONFIG_DCACHE_WORD_ACCESS
1833
1834 #include <asm/word-at-a-time.h>
1835
1836 #ifdef HASH_MIX
1837
1838 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1839
1840 #elif defined(CONFIG_64BIT)
1841 /*
1842 * Register pressure in the mixing function is an issue, particularly
1843 * on 32-bit x86, but almost any function requires one state value and
1844 * one temporary. Instead, use a function designed for two state values
1845 * and no temporaries.
1846 *
1847 * This function cannot create a collision in only two iterations, so
1848 * we have two iterations to achieve avalanche. In those two iterations,
1849 * we have six layers of mixing, which is enough to spread one bit's
1850 * influence out to 2^6 = 64 state bits.
1851 *
1852 * Rotate constants are scored by considering either 64 one-bit input
1853 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1854 * probability of that delta causing a change to each of the 128 output
1855 * bits, using a sample of random initial states.
1856 *
1857 * The Shannon entropy of the computed probabilities is then summed
1858 * to produce a score. Ideally, any input change has a 50% chance of
1859 * toggling any given output bit.
1860 *
1861 * Mixing scores (in bits) for (12,45):
1862 * Input delta: 1-bit 2-bit
1863 * 1 round: 713.3 42542.6
1864 * 2 rounds: 2753.7 140389.8
1865 * 3 rounds: 5954.1 233458.2
1866 * 4 rounds: 7862.6 256672.2
1867 * Perfect: 8192 258048
1868 * (64*128) (64*63/2 * 128)
1869 */
1870 #define HASH_MIX(x, y, a) \
1871 ( x ^= (a), \
1872 y ^= x, x = rol64(x,12),\
1873 x += y, y = rol64(y,45),\
1874 y *= 9 )
1875
1876 /*
1877 * Fold two longs into one 32-bit hash value. This must be fast, but
1878 * latency isn't quite as critical, as there is a fair bit of additional
1879 * work done before the hash value is used.
1880 */
1881 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1882 {
1883 y ^= x * GOLDEN_RATIO_64;
1884 y *= GOLDEN_RATIO_64;
1885 return y >> 32;
1886 }
1887
1888 #else /* 32-bit case */
1889
1890 /*
1891 * Mixing scores (in bits) for (7,20):
1892 * Input delta: 1-bit 2-bit
1893 * 1 round: 330.3 9201.6
1894 * 2 rounds: 1246.4 25475.4
1895 * 3 rounds: 1907.1 31295.1
1896 * 4 rounds: 2042.3 31718.6
1897 * Perfect: 2048 31744
1898 * (32*64) (32*31/2 * 64)
1899 */
1900 #define HASH_MIX(x, y, a) \
1901 ( x ^= (a), \
1902 y ^= x, x = rol32(x, 7),\
1903 x += y, y = rol32(y,20),\
1904 y *= 9 )
1905
1906 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1907 {
1908 /* Use arch-optimized multiply if one exists */
1909 return __hash_32(y ^ __hash_32(x));
1910 }
1911
1912 #endif
1913
1914 /*
1915 * Return the hash of a string of known length. This is carfully
1916 * designed to match hash_name(), which is the more critical function.
1917 * In particular, we must end by hashing a final word containing 0..7
1918 * payload bytes, to match the way that hash_name() iterates until it
1919 * finds the delimiter after the name.
1920 */
1921 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1922 {
1923 unsigned long a, x = 0, y = (unsigned long)salt;
1924
1925 for (;;) {
1926 if (!len)
1927 goto done;
1928 a = load_unaligned_zeropad(name);
1929 if (len < sizeof(unsigned long))
1930 break;
1931 HASH_MIX(x, y, a);
1932 name += sizeof(unsigned long);
1933 len -= sizeof(unsigned long);
1934 }
1935 x ^= a & bytemask_from_count(len);
1936 done:
1937 return fold_hash(x, y);
1938 }
1939 EXPORT_SYMBOL(full_name_hash);
1940
1941 /* Return the "hash_len" (hash and length) of a null-terminated string */
1942 u64 hashlen_string(const void *salt, const char *name)
1943 {
1944 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1945 unsigned long adata, mask, len;
1946 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1947
1948 len = 0;
1949 goto inside;
1950
1951 do {
1952 HASH_MIX(x, y, a);
1953 len += sizeof(unsigned long);
1954 inside:
1955 a = load_unaligned_zeropad(name+len);
1956 } while (!has_zero(a, &adata, &constants));
1957
1958 adata = prep_zero_mask(a, adata, &constants);
1959 mask = create_zero_mask(adata);
1960 x ^= a & zero_bytemask(mask);
1961
1962 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1963 }
1964 EXPORT_SYMBOL(hashlen_string);
1965
1966 /*
1967 * Calculate the length and hash of the path component, and
1968 * return the "hash_len" as the result.
1969 */
1970 static inline u64 hash_name(const void *salt, const char *name)
1971 {
1972 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1973 unsigned long adata, bdata, mask, len;
1974 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1975
1976 len = 0;
1977 goto inside;
1978
1979 do {
1980 HASH_MIX(x, y, a);
1981 len += sizeof(unsigned long);
1982 inside:
1983 a = load_unaligned_zeropad(name+len);
1984 b = a ^ REPEAT_BYTE('/');
1985 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1986
1987 adata = prep_zero_mask(a, adata, &constants);
1988 bdata = prep_zero_mask(b, bdata, &constants);
1989 mask = create_zero_mask(adata | bdata);
1990 x ^= a & zero_bytemask(mask);
1991
1992 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1993 }
1994
1995 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1996
1997 /* Return the hash of a string of known length */
1998 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1999 {
2000 unsigned long hash = init_name_hash(salt);
2001 while (len--)
2002 hash = partial_name_hash((unsigned char)*name++, hash);
2003 return end_name_hash(hash);
2004 }
2005 EXPORT_SYMBOL(full_name_hash);
2006
2007 /* Return the "hash_len" (hash and length) of a null-terminated string */
2008 u64 hashlen_string(const void *salt, const char *name)
2009 {
2010 unsigned long hash = init_name_hash(salt);
2011 unsigned long len = 0, c;
2012
2013 c = (unsigned char)*name;
2014 while (c) {
2015 len++;
2016 hash = partial_name_hash(c, hash);
2017 c = (unsigned char)name[len];
2018 }
2019 return hashlen_create(end_name_hash(hash), len);
2020 }
2021 EXPORT_SYMBOL(hashlen_string);
2022
2023 /*
2024 * We know there's a real path component here of at least
2025 * one character.
2026 */
2027 static inline u64 hash_name(const void *salt, const char *name)
2028 {
2029 unsigned long hash = init_name_hash(salt);
2030 unsigned long len = 0, c;
2031
2032 c = (unsigned char)*name;
2033 do {
2034 len++;
2035 hash = partial_name_hash(c, hash);
2036 c = (unsigned char)name[len];
2037 } while (c && c != '/');
2038 return hashlen_create(end_name_hash(hash), len);
2039 }
2040
2041 #endif
2042
2043 /*
2044 * Name resolution.
2045 * This is the basic name resolution function, turning a pathname into
2046 * the final dentry. We expect 'base' to be positive and a directory.
2047 *
2048 * Returns 0 and nd will have valid dentry and mnt on success.
2049 * Returns error and drops reference to input namei data on failure.
2050 */
2051 static int link_path_walk(const char *name, struct nameidata *nd)
2052 {
2053 int err;
2054
2055 while (*name=='/')
2056 name++;
2057 if (!*name)
2058 return 0;
2059
2060 /* At this point we know we have a real path component. */
2061 for(;;) {
2062 u64 hash_len;
2063 int type;
2064
2065 err = may_lookup(nd);
2066 if (err)
2067 return err;
2068
2069 hash_len = hash_name(nd->path.dentry, name);
2070
2071 type = LAST_NORM;
2072 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2073 case 2:
2074 if (name[1] == '.') {
2075 type = LAST_DOTDOT;
2076 nd->flags |= LOOKUP_JUMPED;
2077 }
2078 break;
2079 case 1:
2080 type = LAST_DOT;
2081 }
2082 if (likely(type == LAST_NORM)) {
2083 struct dentry *parent = nd->path.dentry;
2084 nd->flags &= ~LOOKUP_JUMPED;
2085 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2086 struct qstr this = { { .hash_len = hash_len }, .name = name };
2087 err = parent->d_op->d_hash(parent, &this);
2088 if (err < 0)
2089 return err;
2090 hash_len = this.hash_len;
2091 name = this.name;
2092 }
2093 }
2094
2095 nd->last.hash_len = hash_len;
2096 nd->last.name = name;
2097 nd->last_type = type;
2098
2099 name += hashlen_len(hash_len);
2100 if (!*name)
2101 goto OK;
2102 /*
2103 * If it wasn't NUL, we know it was '/'. Skip that
2104 * slash, and continue until no more slashes.
2105 */
2106 do {
2107 name++;
2108 } while (unlikely(*name == '/'));
2109 if (unlikely(!*name)) {
2110 OK:
2111 /* pathname body, done */
2112 if (!nd->depth)
2113 return 0;
2114 name = nd->stack[nd->depth - 1].name;
2115 /* trailing symlink, done */
2116 if (!name)
2117 return 0;
2118 /* last component of nested symlink */
2119 err = walk_component(nd, WALK_FOLLOW);
2120 } else {
2121 /* not the last component */
2122 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2123 }
2124 if (err < 0)
2125 return err;
2126
2127 if (err) {
2128 const char *s = get_link(nd);
2129
2130 if (IS_ERR(s))
2131 return PTR_ERR(s);
2132 err = 0;
2133 if (unlikely(!s)) {
2134 /* jumped */
2135 put_link(nd);
2136 } else {
2137 nd->stack[nd->depth - 1].name = name;
2138 name = s;
2139 continue;
2140 }
2141 }
2142 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2143 if (nd->flags & LOOKUP_RCU) {
2144 if (unlazy_walk(nd))
2145 return -ECHILD;
2146 }
2147 return -ENOTDIR;
2148 }
2149 }
2150 }
2151
2152 static const char *path_init(struct nameidata *nd, unsigned flags)
2153 {
2154 const char *s = nd->name->name;
2155
2156 if (!*s)
2157 flags &= ~LOOKUP_RCU;
2158
2159 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2160 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2161 nd->depth = 0;
2162 if (flags & LOOKUP_ROOT) {
2163 struct dentry *root = nd->root.dentry;
2164 struct inode *inode = root->d_inode;
2165 if (*s && unlikely(!d_can_lookup(root)))
2166 return ERR_PTR(-ENOTDIR);
2167 nd->path = nd->root;
2168 nd->inode = inode;
2169 if (flags & LOOKUP_RCU) {
2170 rcu_read_lock();
2171 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2172 nd->root_seq = nd->seq;
2173 nd->m_seq = read_seqbegin(&mount_lock);
2174 } else {
2175 path_get(&nd->path);
2176 }
2177 return s;
2178 }
2179
2180 nd->root.mnt = NULL;
2181 nd->path.mnt = NULL;
2182 nd->path.dentry = NULL;
2183
2184 nd->m_seq = read_seqbegin(&mount_lock);
2185 if (*s == '/') {
2186 if (flags & LOOKUP_RCU)
2187 rcu_read_lock();
2188 set_root(nd);
2189 if (likely(!nd_jump_root(nd)))
2190 return s;
2191 nd->root.mnt = NULL;
2192 rcu_read_unlock();
2193 return ERR_PTR(-ECHILD);
2194 } else if (nd->dfd == AT_FDCWD) {
2195 if (flags & LOOKUP_RCU) {
2196 struct fs_struct *fs = current->fs;
2197 unsigned seq;
2198
2199 rcu_read_lock();
2200
2201 do {
2202 seq = read_seqcount_begin(&fs->seq);
2203 nd->path = fs->pwd;
2204 nd->inode = nd->path.dentry->d_inode;
2205 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2206 } while (read_seqcount_retry(&fs->seq, seq));
2207 } else {
2208 get_fs_pwd(current->fs, &nd->path);
2209 nd->inode = nd->path.dentry->d_inode;
2210 }
2211 return s;
2212 } else {
2213 /* Caller must check execute permissions on the starting path component */
2214 struct fd f = fdget_raw(nd->dfd);
2215 struct dentry *dentry;
2216
2217 if (!f.file)
2218 return ERR_PTR(-EBADF);
2219
2220 dentry = f.file->f_path.dentry;
2221
2222 if (*s) {
2223 if (!d_can_lookup(dentry)) {
2224 fdput(f);
2225 return ERR_PTR(-ENOTDIR);
2226 }
2227 }
2228
2229 nd->path = f.file->f_path;
2230 if (flags & LOOKUP_RCU) {
2231 rcu_read_lock();
2232 nd->inode = nd->path.dentry->d_inode;
2233 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2234 } else {
2235 path_get(&nd->path);
2236 nd->inode = nd->path.dentry->d_inode;
2237 }
2238 fdput(f);
2239 return s;
2240 }
2241 }
2242
2243 static const char *trailing_symlink(struct nameidata *nd)
2244 {
2245 const char *s;
2246 int error = may_follow_link(nd);
2247 if (unlikely(error))
2248 return ERR_PTR(error);
2249 nd->flags |= LOOKUP_PARENT;
2250 nd->stack[0].name = NULL;
2251 s = get_link(nd);
2252 return s ? s : "";
2253 }
2254
2255 static inline int lookup_last(struct nameidata *nd)
2256 {
2257 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2258 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2259
2260 nd->flags &= ~LOOKUP_PARENT;
2261 return walk_component(nd, 0);
2262 }
2263
2264 static int handle_lookup_down(struct nameidata *nd)
2265 {
2266 struct path path = nd->path;
2267 struct inode *inode = nd->inode;
2268 unsigned seq = nd->seq;
2269 int err;
2270
2271 if (nd->flags & LOOKUP_RCU) {
2272 /*
2273 * don't bother with unlazy_walk on failure - we are
2274 * at the very beginning of walk, so we lose nothing
2275 * if we simply redo everything in non-RCU mode
2276 */
2277 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2278 return -ECHILD;
2279 } else {
2280 dget(path.dentry);
2281 err = follow_managed(&path, nd);
2282 if (unlikely(err < 0))
2283 return err;
2284 inode = d_backing_inode(path.dentry);
2285 seq = 0;
2286 }
2287 path_to_nameidata(&path, nd);
2288 nd->inode = inode;
2289 nd->seq = seq;
2290 return 0;
2291 }
2292
2293 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2294 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2295 {
2296 const char *s = path_init(nd, flags);
2297 int err;
2298
2299 if (IS_ERR(s))
2300 return PTR_ERR(s);
2301
2302 if (unlikely(flags & LOOKUP_DOWN)) {
2303 err = handle_lookup_down(nd);
2304 if (unlikely(err < 0)) {
2305 terminate_walk(nd);
2306 return err;
2307 }
2308 }
2309
2310 while (!(err = link_path_walk(s, nd))
2311 && ((err = lookup_last(nd)) > 0)) {
2312 s = trailing_symlink(nd);
2313 if (IS_ERR(s)) {
2314 err = PTR_ERR(s);
2315 break;
2316 }
2317 }
2318 if (!err)
2319 err = complete_walk(nd);
2320
2321 if (!err && nd->flags & LOOKUP_DIRECTORY)
2322 if (!d_can_lookup(nd->path.dentry))
2323 err = -ENOTDIR;
2324 if (!err) {
2325 *path = nd->path;
2326 nd->path.mnt = NULL;
2327 nd->path.dentry = NULL;
2328 }
2329 terminate_walk(nd);
2330 return err;
2331 }
2332
2333 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2334 struct path *path, struct path *root)
2335 {
2336 int retval;
2337 struct nameidata nd;
2338 if (IS_ERR(name))
2339 return PTR_ERR(name);
2340 if (unlikely(root)) {
2341 nd.root = *root;
2342 flags |= LOOKUP_ROOT;
2343 }
2344 set_nameidata(&nd, dfd, name);
2345 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2346 if (unlikely(retval == -ECHILD))
2347 retval = path_lookupat(&nd, flags, path);
2348 if (unlikely(retval == -ESTALE))
2349 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2350
2351 if (likely(!retval))
2352 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2353 restore_nameidata();
2354 putname(name);
2355 return retval;
2356 }
2357
2358 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2359 static int path_parentat(struct nameidata *nd, unsigned flags,
2360 struct path *parent)
2361 {
2362 const char *s = path_init(nd, flags);
2363 int err;
2364 if (IS_ERR(s))
2365 return PTR_ERR(s);
2366 err = link_path_walk(s, nd);
2367 if (!err)
2368 err = complete_walk(nd);
2369 if (!err) {
2370 *parent = nd->path;
2371 nd->path.mnt = NULL;
2372 nd->path.dentry = NULL;
2373 }
2374 terminate_walk(nd);
2375 return err;
2376 }
2377
2378 static struct filename *filename_parentat(int dfd, struct filename *name,
2379 unsigned int flags, struct path *parent,
2380 struct qstr *last, int *type)
2381 {
2382 int retval;
2383 struct nameidata nd;
2384
2385 if (IS_ERR(name))
2386 return name;
2387 set_nameidata(&nd, dfd, name);
2388 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2389 if (unlikely(retval == -ECHILD))
2390 retval = path_parentat(&nd, flags, parent);
2391 if (unlikely(retval == -ESTALE))
2392 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2393 if (likely(!retval)) {
2394 *last = nd.last;
2395 *type = nd.last_type;
2396 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2397 } else {
2398 putname(name);
2399 name = ERR_PTR(retval);
2400 }
2401 restore_nameidata();
2402 return name;
2403 }
2404
2405 /* does lookup, returns the object with parent locked */
2406 struct dentry *kern_path_locked(const char *name, struct path *path)
2407 {
2408 struct filename *filename;
2409 struct dentry *d;
2410 struct qstr last;
2411 int type;
2412
2413 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2414 &last, &type);
2415 if (IS_ERR(filename))
2416 return ERR_CAST(filename);
2417 if (unlikely(type != LAST_NORM)) {
2418 path_put(path);
2419 putname(filename);
2420 return ERR_PTR(-EINVAL);
2421 }
2422 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2423 d = __lookup_hash(&last, path->dentry, 0);
2424 if (IS_ERR(d)) {
2425 inode_unlock(path->dentry->d_inode);
2426 path_put(path);
2427 }
2428 putname(filename);
2429 return d;
2430 }
2431
2432 int kern_path(const char *name, unsigned int flags, struct path *path)
2433 {
2434 return filename_lookup(AT_FDCWD, getname_kernel(name),
2435 flags, path, NULL);
2436 }
2437 EXPORT_SYMBOL(kern_path);
2438
2439 /**
2440 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2441 * @dentry: pointer to dentry of the base directory
2442 * @mnt: pointer to vfs mount of the base directory
2443 * @name: pointer to file name
2444 * @flags: lookup flags
2445 * @path: pointer to struct path to fill
2446 */
2447 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2448 const char *name, unsigned int flags,
2449 struct path *path)
2450 {
2451 struct path root = {.mnt = mnt, .dentry = dentry};
2452 /* the first argument of filename_lookup() is ignored with root */
2453 return filename_lookup(AT_FDCWD, getname_kernel(name),
2454 flags , path, &root);
2455 }
2456 EXPORT_SYMBOL(vfs_path_lookup);
2457
2458 /**
2459 * lookup_one_len - filesystem helper to lookup single pathname component
2460 * @name: pathname component to lookup
2461 * @base: base directory to lookup from
2462 * @len: maximum length @len should be interpreted to
2463 *
2464 * Note that this routine is purely a helper for filesystem usage and should
2465 * not be called by generic code.
2466 *
2467 * The caller must hold base->i_mutex.
2468 */
2469 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2470 {
2471 struct qstr this;
2472 unsigned int c;
2473 int err;
2474
2475 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2476
2477 this.name = name;
2478 this.len = len;
2479 this.hash = full_name_hash(base, name, len);
2480 if (!len)
2481 return ERR_PTR(-EACCES);
2482
2483 if (unlikely(name[0] == '.')) {
2484 if (len < 2 || (len == 2 && name[1] == '.'))
2485 return ERR_PTR(-EACCES);
2486 }
2487
2488 while (len--) {
2489 c = *(const unsigned char *)name++;
2490 if (c == '/' || c == '\0')
2491 return ERR_PTR(-EACCES);
2492 }
2493 /*
2494 * See if the low-level filesystem might want
2495 * to use its own hash..
2496 */
2497 if (base->d_flags & DCACHE_OP_HASH) {
2498 int err = base->d_op->d_hash(base, &this);
2499 if (err < 0)
2500 return ERR_PTR(err);
2501 }
2502
2503 err = inode_permission(base->d_inode, MAY_EXEC);
2504 if (err)
2505 return ERR_PTR(err);
2506
2507 return __lookup_hash(&this, base, 0);
2508 }
2509 EXPORT_SYMBOL(lookup_one_len);
2510
2511 /**
2512 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2513 * @name: pathname component to lookup
2514 * @base: base directory to lookup from
2515 * @len: maximum length @len should be interpreted to
2516 *
2517 * Note that this routine is purely a helper for filesystem usage and should
2518 * not be called by generic code.
2519 *
2520 * Unlike lookup_one_len, it should be called without the parent
2521 * i_mutex held, and will take the i_mutex itself if necessary.
2522 */
2523 struct dentry *lookup_one_len_unlocked(const char *name,
2524 struct dentry *base, int len)
2525 {
2526 struct qstr this;
2527 unsigned int c;
2528 int err;
2529 struct dentry *ret;
2530
2531 this.name = name;
2532 this.len = len;
2533 this.hash = full_name_hash(base, name, len);
2534 if (!len)
2535 return ERR_PTR(-EACCES);
2536
2537 if (unlikely(name[0] == '.')) {
2538 if (len < 2 || (len == 2 && name[1] == '.'))
2539 return ERR_PTR(-EACCES);
2540 }
2541
2542 while (len--) {
2543 c = *(const unsigned char *)name++;
2544 if (c == '/' || c == '\0')
2545 return ERR_PTR(-EACCES);
2546 }
2547 /*
2548 * See if the low-level filesystem might want
2549 * to use its own hash..
2550 */
2551 if (base->d_flags & DCACHE_OP_HASH) {
2552 int err = base->d_op->d_hash(base, &this);
2553 if (err < 0)
2554 return ERR_PTR(err);
2555 }
2556
2557 err = inode_permission(base->d_inode, MAY_EXEC);
2558 if (err)
2559 return ERR_PTR(err);
2560
2561 ret = lookup_dcache(&this, base, 0);
2562 if (!ret)
2563 ret = lookup_slow(&this, base, 0);
2564 return ret;
2565 }
2566 EXPORT_SYMBOL(lookup_one_len_unlocked);
2567
2568 #ifdef CONFIG_UNIX98_PTYS
2569 int path_pts(struct path *path)
2570 {
2571 /* Find something mounted on "pts" in the same directory as
2572 * the input path.
2573 */
2574 struct dentry *child, *parent;
2575 struct qstr this;
2576 int ret;
2577
2578 ret = path_parent_directory(path);
2579 if (ret)
2580 return ret;
2581
2582 parent = path->dentry;
2583 this.name = "pts";
2584 this.len = 3;
2585 child = d_hash_and_lookup(parent, &this);
2586 if (!child)
2587 return -ENOENT;
2588
2589 path->dentry = child;
2590 dput(parent);
2591 follow_mount(path);
2592 return 0;
2593 }
2594 #endif
2595
2596 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2597 struct path *path, int *empty)
2598 {
2599 return filename_lookup(dfd, getname_flags(name, flags, empty),
2600 flags, path, NULL);
2601 }
2602 EXPORT_SYMBOL(user_path_at_empty);
2603
2604 /**
2605 * mountpoint_last - look up last component for umount
2606 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2607 *
2608 * This is a special lookup_last function just for umount. In this case, we
2609 * need to resolve the path without doing any revalidation.
2610 *
2611 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2612 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2613 * in almost all cases, this lookup will be served out of the dcache. The only
2614 * cases where it won't are if nd->last refers to a symlink or the path is
2615 * bogus and it doesn't exist.
2616 *
2617 * Returns:
2618 * -error: if there was an error during lookup. This includes -ENOENT if the
2619 * lookup found a negative dentry.
2620 *
2621 * 0: if we successfully resolved nd->last and found it to not to be a
2622 * symlink that needs to be followed.
2623 *
2624 * 1: if we successfully resolved nd->last and found it to be a symlink
2625 * that needs to be followed.
2626 */
2627 static int
2628 mountpoint_last(struct nameidata *nd)
2629 {
2630 int error = 0;
2631 struct dentry *dir = nd->path.dentry;
2632 struct path path;
2633
2634 /* If we're in rcuwalk, drop out of it to handle last component */
2635 if (nd->flags & LOOKUP_RCU) {
2636 if (unlazy_walk(nd))
2637 return -ECHILD;
2638 }
2639
2640 nd->flags &= ~LOOKUP_PARENT;
2641
2642 if (unlikely(nd->last_type != LAST_NORM)) {
2643 error = handle_dots(nd, nd->last_type);
2644 if (error)
2645 return error;
2646 path.dentry = dget(nd->path.dentry);
2647 } else {
2648 path.dentry = d_lookup(dir, &nd->last);
2649 if (!path.dentry) {
2650 /*
2651 * No cached dentry. Mounted dentries are pinned in the
2652 * cache, so that means that this dentry is probably
2653 * a symlink or the path doesn't actually point
2654 * to a mounted dentry.
2655 */
2656 path.dentry = lookup_slow(&nd->last, dir,
2657 nd->flags | LOOKUP_NO_REVAL);
2658 if (IS_ERR(path.dentry))
2659 return PTR_ERR(path.dentry);
2660 }
2661 }
2662 if (d_is_negative(path.dentry)) {
2663 dput(path.dentry);
2664 return -ENOENT;
2665 }
2666 path.mnt = nd->path.mnt;
2667 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2668 }
2669
2670 /**
2671 * path_mountpoint - look up a path to be umounted
2672 * @nd: lookup context
2673 * @flags: lookup flags
2674 * @path: pointer to container for result
2675 *
2676 * Look up the given name, but don't attempt to revalidate the last component.
2677 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2678 */
2679 static int
2680 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2681 {
2682 const char *s = path_init(nd, flags);
2683 int err;
2684 if (IS_ERR(s))
2685 return PTR_ERR(s);
2686 while (!(err = link_path_walk(s, nd)) &&
2687 (err = mountpoint_last(nd)) > 0) {
2688 s = trailing_symlink(nd);
2689 if (IS_ERR(s)) {
2690 err = PTR_ERR(s);
2691 break;
2692 }
2693 }
2694 if (!err) {
2695 *path = nd->path;
2696 nd->path.mnt = NULL;
2697 nd->path.dentry = NULL;
2698 follow_mount(path);
2699 }
2700 terminate_walk(nd);
2701 return err;
2702 }
2703
2704 static int
2705 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2706 unsigned int flags)
2707 {
2708 struct nameidata nd;
2709 int error;
2710 if (IS_ERR(name))
2711 return PTR_ERR(name);
2712 set_nameidata(&nd, dfd, name);
2713 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2714 if (unlikely(error == -ECHILD))
2715 error = path_mountpoint(&nd, flags, path);
2716 if (unlikely(error == -ESTALE))
2717 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2718 if (likely(!error))
2719 audit_inode(name, path->dentry, 0);
2720 restore_nameidata();
2721 putname(name);
2722 return error;
2723 }
2724
2725 /**
2726 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2727 * @dfd: directory file descriptor
2728 * @name: pathname from userland
2729 * @flags: lookup flags
2730 * @path: pointer to container to hold result
2731 *
2732 * A umount is a special case for path walking. We're not actually interested
2733 * in the inode in this situation, and ESTALE errors can be a problem. We
2734 * simply want track down the dentry and vfsmount attached at the mountpoint
2735 * and avoid revalidating the last component.
2736 *
2737 * Returns 0 and populates "path" on success.
2738 */
2739 int
2740 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2741 struct path *path)
2742 {
2743 return filename_mountpoint(dfd, getname(name), path, flags);
2744 }
2745
2746 int
2747 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2748 unsigned int flags)
2749 {
2750 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2751 }
2752 EXPORT_SYMBOL(kern_path_mountpoint);
2753
2754 int __check_sticky(struct inode *dir, struct inode *inode)
2755 {
2756 kuid_t fsuid = current_fsuid();
2757
2758 if (uid_eq(inode->i_uid, fsuid))
2759 return 0;
2760 if (uid_eq(dir->i_uid, fsuid))
2761 return 0;
2762 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2763 }
2764 EXPORT_SYMBOL(__check_sticky);
2765
2766 /*
2767 * Check whether we can remove a link victim from directory dir, check
2768 * whether the type of victim is right.
2769 * 1. We can't do it if dir is read-only (done in permission())
2770 * 2. We should have write and exec permissions on dir
2771 * 3. We can't remove anything from append-only dir
2772 * 4. We can't do anything with immutable dir (done in permission())
2773 * 5. If the sticky bit on dir is set we should either
2774 * a. be owner of dir, or
2775 * b. be owner of victim, or
2776 * c. have CAP_FOWNER capability
2777 * 6. If the victim is append-only or immutable we can't do antyhing with
2778 * links pointing to it.
2779 * 7. If the victim has an unknown uid or gid we can't change the inode.
2780 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2781 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2782 * 10. We can't remove a root or mountpoint.
2783 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2784 * nfs_async_unlink().
2785 */
2786 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2787 {
2788 struct inode *inode = d_backing_inode(victim);
2789 int error;
2790
2791 if (d_is_negative(victim))
2792 return -ENOENT;
2793 BUG_ON(!inode);
2794
2795 BUG_ON(victim->d_parent->d_inode != dir);
2796 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2797
2798 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2799 if (error)
2800 return error;
2801 if (IS_APPEND(dir))
2802 return -EPERM;
2803
2804 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2805 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2806 return -EPERM;
2807 if (isdir) {
2808 if (!d_is_dir(victim))
2809 return -ENOTDIR;
2810 if (IS_ROOT(victim))
2811 return -EBUSY;
2812 } else if (d_is_dir(victim))
2813 return -EISDIR;
2814 if (IS_DEADDIR(dir))
2815 return -ENOENT;
2816 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2817 return -EBUSY;
2818 return 0;
2819 }
2820
2821 /* Check whether we can create an object with dentry child in directory
2822 * dir.
2823 * 1. We can't do it if child already exists (open has special treatment for
2824 * this case, but since we are inlined it's OK)
2825 * 2. We can't do it if dir is read-only (done in permission())
2826 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2827 * 4. We should have write and exec permissions on dir
2828 * 5. We can't do it if dir is immutable (done in permission())
2829 */
2830 static inline int may_create(struct inode *dir, struct dentry *child)
2831 {
2832 struct user_namespace *s_user_ns;
2833 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2834 if (child->d_inode)
2835 return -EEXIST;
2836 if (IS_DEADDIR(dir))
2837 return -ENOENT;
2838 s_user_ns = dir->i_sb->s_user_ns;
2839 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2840 !kgid_has_mapping(s_user_ns, current_fsgid()))
2841 return -EOVERFLOW;
2842 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2843 }
2844
2845 /*
2846 * p1 and p2 should be directories on the same fs.
2847 */
2848 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2849 {
2850 struct dentry *p;
2851
2852 if (p1 == p2) {
2853 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2854 return NULL;
2855 }
2856
2857 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2858
2859 p = d_ancestor(p2, p1);
2860 if (p) {
2861 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2862 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2863 return p;
2864 }
2865
2866 p = d_ancestor(p1, p2);
2867 if (p) {
2868 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2869 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2870 return p;
2871 }
2872
2873 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2874 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2875 return NULL;
2876 }
2877 EXPORT_SYMBOL(lock_rename);
2878
2879 void unlock_rename(struct dentry *p1, struct dentry *p2)
2880 {
2881 inode_unlock(p1->d_inode);
2882 if (p1 != p2) {
2883 inode_unlock(p2->d_inode);
2884 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2885 }
2886 }
2887 EXPORT_SYMBOL(unlock_rename);
2888
2889 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2890 bool want_excl)
2891 {
2892 int error = may_create(dir, dentry);
2893 if (error)
2894 return error;
2895
2896 if (!dir->i_op->create)
2897 return -EACCES; /* shouldn't it be ENOSYS? */
2898 mode &= S_IALLUGO;
2899 mode |= S_IFREG;
2900 error = security_inode_create(dir, dentry, mode);
2901 if (error)
2902 return error;
2903 error = dir->i_op->create(dir, dentry, mode, want_excl);
2904 if (!error)
2905 fsnotify_create(dir, dentry);
2906 return error;
2907 }
2908 EXPORT_SYMBOL(vfs_create);
2909
2910 bool may_open_dev(const struct path *path)
2911 {
2912 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2913 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2914 }
2915
2916 static int may_open(const struct path *path, int acc_mode, int flag)
2917 {
2918 struct dentry *dentry = path->dentry;
2919 struct inode *inode = dentry->d_inode;
2920 int error;
2921
2922 if (!inode)
2923 return -ENOENT;
2924
2925 switch (inode->i_mode & S_IFMT) {
2926 case S_IFLNK:
2927 return -ELOOP;
2928 case S_IFDIR:
2929 if (acc_mode & MAY_WRITE)
2930 return -EISDIR;
2931 break;
2932 case S_IFBLK:
2933 case S_IFCHR:
2934 if (!may_open_dev(path))
2935 return -EACCES;
2936 /*FALLTHRU*/
2937 case S_IFIFO:
2938 case S_IFSOCK:
2939 flag &= ~O_TRUNC;
2940 break;
2941 }
2942
2943 error = inode_permission(inode, MAY_OPEN | acc_mode);
2944 if (error)
2945 return error;
2946
2947 /*
2948 * An append-only file must be opened in append mode for writing.
2949 */
2950 if (IS_APPEND(inode)) {
2951 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2952 return -EPERM;
2953 if (flag & O_TRUNC)
2954 return -EPERM;
2955 }
2956
2957 /* O_NOATIME can only be set by the owner or superuser */
2958 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2959 return -EPERM;
2960
2961 return 0;
2962 }
2963
2964 static int handle_truncate(struct file *filp)
2965 {
2966 const struct path *path = &filp->f_path;
2967 struct inode *inode = path->dentry->d_inode;
2968 int error = get_write_access(inode);
2969 if (error)
2970 return error;
2971 /*
2972 * Refuse to truncate files with mandatory locks held on them.
2973 */
2974 error = locks_verify_locked(filp);
2975 if (!error)
2976 error = security_path_truncate(path);
2977 if (!error) {
2978 error = do_truncate(path->dentry, 0,
2979 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2980 filp);
2981 }
2982 put_write_access(inode);
2983 return error;
2984 }
2985
2986 static inline int open_to_namei_flags(int flag)
2987 {
2988 if ((flag & O_ACCMODE) == 3)
2989 flag--;
2990 return flag;
2991 }
2992
2993 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2994 {
2995 struct user_namespace *s_user_ns;
2996 int error = security_path_mknod(dir, dentry, mode, 0);
2997 if (error)
2998 return error;
2999
3000 s_user_ns = dir->dentry->d_sb->s_user_ns;
3001 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3002 !kgid_has_mapping(s_user_ns, current_fsgid()))
3003 return -EOVERFLOW;
3004
3005 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3006 if (error)
3007 return error;
3008
3009 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3010 }
3011
3012 /*
3013 * Attempt to atomically look up, create and open a file from a negative
3014 * dentry.
3015 *
3016 * Returns 0 if successful. The file will have been created and attached to
3017 * @file by the filesystem calling finish_open().
3018 *
3019 * Returns 1 if the file was looked up only or didn't need creating. The
3020 * caller will need to perform the open themselves. @path will have been
3021 * updated to point to the new dentry. This may be negative.
3022 *
3023 * Returns an error code otherwise.
3024 */
3025 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3026 struct path *path, struct file *file,
3027 const struct open_flags *op,
3028 int open_flag, umode_t mode,
3029 int *opened)
3030 {
3031 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3032 struct inode *dir = nd->path.dentry->d_inode;
3033 int error;
3034
3035 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3036 open_flag &= ~O_TRUNC;
3037
3038 if (nd->flags & LOOKUP_DIRECTORY)
3039 open_flag |= O_DIRECTORY;
3040
3041 file->f_path.dentry = DENTRY_NOT_SET;
3042 file->f_path.mnt = nd->path.mnt;
3043 error = dir->i_op->atomic_open(dir, dentry, file,
3044 open_to_namei_flags(open_flag),
3045 mode, opened);
3046 d_lookup_done(dentry);
3047 if (!error) {
3048 /*
3049 * We didn't have the inode before the open, so check open
3050 * permission here.
3051 */
3052 int acc_mode = op->acc_mode;
3053 if (*opened & FILE_CREATED) {
3054 WARN_ON(!(open_flag & O_CREAT));
3055 fsnotify_create(dir, dentry);
3056 acc_mode = 0;
3057 }
3058 error = may_open(&file->f_path, acc_mode, open_flag);
3059 if (WARN_ON(error > 0))
3060 error = -EINVAL;
3061 } else if (error > 0) {
3062 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3063 error = -EIO;
3064 } else {
3065 if (file->f_path.dentry) {
3066 dput(dentry);
3067 dentry = file->f_path.dentry;
3068 }
3069 if (*opened & FILE_CREATED)
3070 fsnotify_create(dir, dentry);
3071 if (unlikely(d_is_negative(dentry))) {
3072 error = -ENOENT;
3073 } else {
3074 path->dentry = dentry;
3075 path->mnt = nd->path.mnt;
3076 return 1;
3077 }
3078 }
3079 }
3080 dput(dentry);
3081 return error;
3082 }
3083
3084 /*
3085 * Look up and maybe create and open the last component.
3086 *
3087 * Must be called with i_mutex held on parent.
3088 *
3089 * Returns 0 if the file was successfully atomically created (if necessary) and
3090 * opened. In this case the file will be returned attached to @file.
3091 *
3092 * Returns 1 if the file was not completely opened at this time, though lookups
3093 * and creations will have been performed and the dentry returned in @path will
3094 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3095 * specified then a negative dentry may be returned.
3096 *
3097 * An error code is returned otherwise.
3098 *
3099 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3100 * cleared otherwise prior to returning.
3101 */
3102 static int lookup_open(struct nameidata *nd, struct path *path,
3103 struct file *file,
3104 const struct open_flags *op,
3105 bool got_write, int *opened)
3106 {
3107 struct dentry *dir = nd->path.dentry;
3108 struct inode *dir_inode = dir->d_inode;
3109 int open_flag = op->open_flag;
3110 struct dentry *dentry;
3111 int error, create_error = 0;
3112 umode_t mode = op->mode;
3113 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3114
3115 if (unlikely(IS_DEADDIR(dir_inode)))
3116 return -ENOENT;
3117
3118 *opened &= ~FILE_CREATED;
3119 dentry = d_lookup(dir, &nd->last);
3120 for (;;) {
3121 if (!dentry) {
3122 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3123 if (IS_ERR(dentry))
3124 return PTR_ERR(dentry);
3125 }
3126 if (d_in_lookup(dentry))
3127 break;
3128
3129 error = d_revalidate(dentry, nd->flags);
3130 if (likely(error > 0))
3131 break;
3132 if (error)
3133 goto out_dput;
3134 d_invalidate(dentry);
3135 dput(dentry);
3136 dentry = NULL;
3137 }
3138 if (dentry->d_inode) {
3139 /* Cached positive dentry: will open in f_op->open */
3140 goto out_no_open;
3141 }
3142
3143 /*
3144 * Checking write permission is tricky, bacuse we don't know if we are
3145 * going to actually need it: O_CREAT opens should work as long as the
3146 * file exists. But checking existence breaks atomicity. The trick is
3147 * to check access and if not granted clear O_CREAT from the flags.
3148 *
3149 * Another problem is returing the "right" error value (e.g. for an
3150 * O_EXCL open we want to return EEXIST not EROFS).
3151 */
3152 if (open_flag & O_CREAT) {
3153 if (!IS_POSIXACL(dir->d_inode))
3154 mode &= ~current_umask();
3155 if (unlikely(!got_write)) {
3156 create_error = -EROFS;
3157 open_flag &= ~O_CREAT;
3158 if (open_flag & (O_EXCL | O_TRUNC))
3159 goto no_open;
3160 /* No side effects, safe to clear O_CREAT */
3161 } else {
3162 create_error = may_o_create(&nd->path, dentry, mode);
3163 if (create_error) {
3164 open_flag &= ~O_CREAT;
3165 if (open_flag & O_EXCL)
3166 goto no_open;
3167 }
3168 }
3169 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3170 unlikely(!got_write)) {
3171 /*
3172 * No O_CREATE -> atomicity not a requirement -> fall
3173 * back to lookup + open
3174 */
3175 goto no_open;
3176 }
3177
3178 if (dir_inode->i_op->atomic_open) {
3179 error = atomic_open(nd, dentry, path, file, op, open_flag,
3180 mode, opened);
3181 if (unlikely(error == -ENOENT) && create_error)
3182 error = create_error;
3183 return error;
3184 }
3185
3186 no_open:
3187 if (d_in_lookup(dentry)) {
3188 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3189 nd->flags);
3190 d_lookup_done(dentry);
3191 if (unlikely(res)) {
3192 if (IS_ERR(res)) {
3193 error = PTR_ERR(res);
3194 goto out_dput;
3195 }
3196 dput(dentry);
3197 dentry = res;
3198 }
3199 }
3200
3201 /* Negative dentry, just create the file */
3202 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3203 *opened |= FILE_CREATED;
3204 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3205 if (!dir_inode->i_op->create) {
3206 error = -EACCES;
3207 goto out_dput;
3208 }
3209 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3210 open_flag & O_EXCL);
3211 if (error)
3212 goto out_dput;
3213 fsnotify_create(dir_inode, dentry);
3214 }
3215 if (unlikely(create_error) && !dentry->d_inode) {
3216 error = create_error;
3217 goto out_dput;
3218 }
3219 out_no_open:
3220 path->dentry = dentry;
3221 path->mnt = nd->path.mnt;
3222 return 1;
3223
3224 out_dput:
3225 dput(dentry);
3226 return error;
3227 }
3228
3229 /*
3230 * Handle the last step of open()
3231 */
3232 static int do_last(struct nameidata *nd,
3233 struct file *file, const struct open_flags *op,
3234 int *opened)
3235 {
3236 struct dentry *dir = nd->path.dentry;
3237 int open_flag = op->open_flag;
3238 bool will_truncate = (open_flag & O_TRUNC) != 0;
3239 bool got_write = false;
3240 int acc_mode = op->acc_mode;
3241 unsigned seq;
3242 struct inode *inode;
3243 struct path path;
3244 int error;
3245
3246 nd->flags &= ~LOOKUP_PARENT;
3247 nd->flags |= op->intent;
3248
3249 if (nd->last_type != LAST_NORM) {
3250 error = handle_dots(nd, nd->last_type);
3251 if (unlikely(error))
3252 return error;
3253 goto finish_open;
3254 }
3255
3256 if (!(open_flag & O_CREAT)) {
3257 if (nd->last.name[nd->last.len])
3258 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3259 /* we _can_ be in RCU mode here */
3260 error = lookup_fast(nd, &path, &inode, &seq);
3261 if (likely(error > 0))
3262 goto finish_lookup;
3263
3264 if (error < 0)
3265 return error;
3266
3267 BUG_ON(nd->inode != dir->d_inode);
3268 BUG_ON(nd->flags & LOOKUP_RCU);
3269 } else {
3270 /* create side of things */
3271 /*
3272 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3273 * has been cleared when we got to the last component we are
3274 * about to look up
3275 */
3276 error = complete_walk(nd);
3277 if (error)
3278 return error;
3279
3280 audit_inode(nd->name, dir, LOOKUP_PARENT);
3281 /* trailing slashes? */
3282 if (unlikely(nd->last.name[nd->last.len]))
3283 return -EISDIR;
3284 }
3285
3286 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3287 error = mnt_want_write(nd->path.mnt);
3288 if (!error)
3289 got_write = true;
3290 /*
3291 * do _not_ fail yet - we might not need that or fail with
3292 * a different error; let lookup_open() decide; we'll be
3293 * dropping this one anyway.
3294 */
3295 }
3296 if (open_flag & O_CREAT)
3297 inode_lock(dir->d_inode);
3298 else
3299 inode_lock_shared(dir->d_inode);
3300 error = lookup_open(nd, &path, file, op, got_write, opened);
3301 if (open_flag & O_CREAT)
3302 inode_unlock(dir->d_inode);
3303 else
3304 inode_unlock_shared(dir->d_inode);
3305
3306 if (error <= 0) {
3307 if (error)
3308 goto out;
3309
3310 if ((*opened & FILE_CREATED) ||
3311 !S_ISREG(file_inode(file)->i_mode))
3312 will_truncate = false;
3313
3314 audit_inode(nd->name, file->f_path.dentry, 0);
3315 goto opened;
3316 }
3317
3318 if (*opened & FILE_CREATED) {
3319 /* Don't check for write permission, don't truncate */
3320 open_flag &= ~O_TRUNC;
3321 will_truncate = false;
3322 acc_mode = 0;
3323 path_to_nameidata(&path, nd);
3324 goto finish_open_created;
3325 }
3326
3327 /*
3328 * If atomic_open() acquired write access it is dropped now due to
3329 * possible mount and symlink following (this might be optimized away if
3330 * necessary...)
3331 */
3332 if (got_write) {
3333 mnt_drop_write(nd->path.mnt);
3334 got_write = false;
3335 }
3336
3337 error = follow_managed(&path, nd);
3338 if (unlikely(error < 0))
3339 return error;
3340
3341 if (unlikely(d_is_negative(path.dentry))) {
3342 path_to_nameidata(&path, nd);
3343 return -ENOENT;
3344 }
3345
3346 /*
3347 * create/update audit record if it already exists.
3348 */
3349 audit_inode(nd->name, path.dentry, 0);
3350
3351 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3352 path_to_nameidata(&path, nd);
3353 return -EEXIST;
3354 }
3355
3356 seq = 0; /* out of RCU mode, so the value doesn't matter */
3357 inode = d_backing_inode(path.dentry);
3358 finish_lookup:
3359 error = step_into(nd, &path, 0, inode, seq);
3360 if (unlikely(error))
3361 return error;
3362 finish_open:
3363 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3364 error = complete_walk(nd);
3365 if (error)
3366 return error;
3367 audit_inode(nd->name, nd->path.dentry, 0);
3368 error = -EISDIR;
3369 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3370 goto out;
3371 error = -ENOTDIR;
3372 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3373 goto out;
3374 if (!d_is_reg(nd->path.dentry))
3375 will_truncate = false;
3376
3377 if (will_truncate) {
3378 error = mnt_want_write(nd->path.mnt);
3379 if (error)
3380 goto out;
3381 got_write = true;
3382 }
3383 finish_open_created:
3384 error = may_open(&nd->path, acc_mode, open_flag);
3385 if (error)
3386 goto out;
3387 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3388 error = vfs_open(&nd->path, file, current_cred());
3389 if (error)
3390 goto out;
3391 *opened |= FILE_OPENED;
3392 opened:
3393 error = open_check_o_direct(file);
3394 if (!error)
3395 error = ima_file_check(file, op->acc_mode, *opened);
3396 if (!error && will_truncate)
3397 error = handle_truncate(file);
3398 out:
3399 if (unlikely(error) && (*opened & FILE_OPENED))
3400 fput(file);
3401 if (unlikely(error > 0)) {
3402 WARN_ON(1);
3403 error = -EINVAL;
3404 }
3405 if (got_write)
3406 mnt_drop_write(nd->path.mnt);
3407 return error;
3408 }
3409
3410 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3411 {
3412 struct dentry *child = NULL;
3413 struct inode *dir = dentry->d_inode;
3414 struct inode *inode;
3415 int error;
3416
3417 /* we want directory to be writable */
3418 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3419 if (error)
3420 goto out_err;
3421 error = -EOPNOTSUPP;
3422 if (!dir->i_op->tmpfile)
3423 goto out_err;
3424 error = -ENOMEM;
3425 child = d_alloc(dentry, &slash_name);
3426 if (unlikely(!child))
3427 goto out_err;
3428 error = dir->i_op->tmpfile(dir, child, mode);
3429 if (error)
3430 goto out_err;
3431 error = -ENOENT;
3432 inode = child->d_inode;
3433 if (unlikely(!inode))
3434 goto out_err;
3435 if (!(open_flag & O_EXCL)) {
3436 spin_lock(&inode->i_lock);
3437 inode->i_state |= I_LINKABLE;
3438 spin_unlock(&inode->i_lock);
3439 }
3440 return child;
3441
3442 out_err:
3443 dput(child);
3444 return ERR_PTR(error);
3445 }
3446 EXPORT_SYMBOL(vfs_tmpfile);
3447
3448 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3449 const struct open_flags *op,
3450 struct file *file, int *opened)
3451 {
3452 struct dentry *child;
3453 struct path path;
3454 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3455 if (unlikely(error))
3456 return error;
3457 error = mnt_want_write(path.mnt);
3458 if (unlikely(error))
3459 goto out;
3460 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3461 error = PTR_ERR(child);
3462 if (unlikely(IS_ERR(child)))
3463 goto out2;
3464 dput(path.dentry);
3465 path.dentry = child;
3466 audit_inode(nd->name, child, 0);
3467 /* Don't check for other permissions, the inode was just created */
3468 error = may_open(&path, 0, op->open_flag);
3469 if (error)
3470 goto out2;
3471 file->f_path.mnt = path.mnt;
3472 error = finish_open(file, child, NULL, opened);
3473 if (error)
3474 goto out2;
3475 error = open_check_o_direct(file);
3476 if (error)
3477 fput(file);
3478 out2:
3479 mnt_drop_write(path.mnt);
3480 out:
3481 path_put(&path);
3482 return error;
3483 }
3484
3485 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3486 {
3487 struct path path;
3488 int error = path_lookupat(nd, flags, &path);
3489 if (!error) {
3490 audit_inode(nd->name, path.dentry, 0);
3491 error = vfs_open(&path, file, current_cred());
3492 path_put(&path);
3493 }
3494 return error;
3495 }
3496
3497 static struct file *path_openat(struct nameidata *nd,
3498 const struct open_flags *op, unsigned flags)
3499 {
3500 const char *s;
3501 struct file *file;
3502 int opened = 0;
3503 int error;
3504
3505 file = get_empty_filp();
3506 if (IS_ERR(file))
3507 return file;
3508
3509 file->f_flags = op->open_flag;
3510
3511 if (unlikely(file->f_flags & __O_TMPFILE)) {
3512 error = do_tmpfile(nd, flags, op, file, &opened);
3513 goto out2;
3514 }
3515
3516 if (unlikely(file->f_flags & O_PATH)) {
3517 error = do_o_path(nd, flags, file);
3518 if (!error)
3519 opened |= FILE_OPENED;
3520 goto out2;
3521 }
3522
3523 s = path_init(nd, flags);
3524 if (IS_ERR(s)) {
3525 put_filp(file);
3526 return ERR_CAST(s);
3527 }
3528 while (!(error = link_path_walk(s, nd)) &&
3529 (error = do_last(nd, file, op, &opened)) > 0) {
3530 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3531 s = trailing_symlink(nd);
3532 if (IS_ERR(s)) {
3533 error = PTR_ERR(s);
3534 break;
3535 }
3536 }
3537 terminate_walk(nd);
3538 out2:
3539 if (!(opened & FILE_OPENED)) {
3540 BUG_ON(!error);
3541 put_filp(file);
3542 }
3543 if (unlikely(error)) {
3544 if (error == -EOPENSTALE) {
3545 if (flags & LOOKUP_RCU)
3546 error = -ECHILD;
3547 else
3548 error = -ESTALE;
3549 }
3550 file = ERR_PTR(error);
3551 }
3552 return file;
3553 }
3554
3555 struct file *do_filp_open(int dfd, struct filename *pathname,
3556 const struct open_flags *op)
3557 {
3558 struct nameidata nd;
3559 int flags = op->lookup_flags;
3560 struct file *filp;
3561
3562 set_nameidata(&nd, dfd, pathname);
3563 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3564 if (unlikely(filp == ERR_PTR(-ECHILD)))
3565 filp = path_openat(&nd, op, flags);
3566 if (unlikely(filp == ERR_PTR(-ESTALE)))
3567 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3568 restore_nameidata();
3569 return filp;
3570 }
3571
3572 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3573 const char *name, const struct open_flags *op)
3574 {
3575 struct nameidata nd;
3576 struct file *file;
3577 struct filename *filename;
3578 int flags = op->lookup_flags | LOOKUP_ROOT;
3579
3580 nd.root.mnt = mnt;
3581 nd.root.dentry = dentry;
3582
3583 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3584 return ERR_PTR(-ELOOP);
3585
3586 filename = getname_kernel(name);
3587 if (IS_ERR(filename))
3588 return ERR_CAST(filename);
3589
3590 set_nameidata(&nd, -1, filename);
3591 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3592 if (unlikely(file == ERR_PTR(-ECHILD)))
3593 file = path_openat(&nd, op, flags);
3594 if (unlikely(file == ERR_PTR(-ESTALE)))
3595 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3596 restore_nameidata();
3597 putname(filename);
3598 return file;
3599 }
3600
3601 static struct dentry *filename_create(int dfd, struct filename *name,
3602 struct path *path, unsigned int lookup_flags)
3603 {
3604 struct dentry *dentry = ERR_PTR(-EEXIST);
3605 struct qstr last;
3606 int type;
3607 int err2;
3608 int error;
3609 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3610
3611 /*
3612 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3613 * other flags passed in are ignored!
3614 */
3615 lookup_flags &= LOOKUP_REVAL;
3616
3617 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3618 if (IS_ERR(name))
3619 return ERR_CAST(name);
3620
3621 /*
3622 * Yucky last component or no last component at all?
3623 * (foo/., foo/.., /////)
3624 */
3625 if (unlikely(type != LAST_NORM))
3626 goto out;
3627
3628 /* don't fail immediately if it's r/o, at least try to report other errors */
3629 err2 = mnt_want_write(path->mnt);
3630 /*
3631 * Do the final lookup.
3632 */
3633 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3634 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3635 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3636 if (IS_ERR(dentry))
3637 goto unlock;
3638
3639 error = -EEXIST;
3640 if (d_is_positive(dentry))
3641 goto fail;
3642
3643 /*
3644 * Special case - lookup gave negative, but... we had foo/bar/
3645 * From the vfs_mknod() POV we just have a negative dentry -
3646 * all is fine. Let's be bastards - you had / on the end, you've
3647 * been asking for (non-existent) directory. -ENOENT for you.
3648 */
3649 if (unlikely(!is_dir && last.name[last.len])) {
3650 error = -ENOENT;
3651 goto fail;
3652 }
3653 if (unlikely(err2)) {
3654 error = err2;
3655 goto fail;
3656 }
3657 putname(name);
3658 return dentry;
3659 fail:
3660 dput(dentry);
3661 dentry = ERR_PTR(error);
3662 unlock:
3663 inode_unlock(path->dentry->d_inode);
3664 if (!err2)
3665 mnt_drop_write(path->mnt);
3666 out:
3667 path_put(path);
3668 putname(name);
3669 return dentry;
3670 }
3671
3672 struct dentry *kern_path_create(int dfd, const char *pathname,
3673 struct path *path, unsigned int lookup_flags)
3674 {
3675 return filename_create(dfd, getname_kernel(pathname),
3676 path, lookup_flags);
3677 }
3678 EXPORT_SYMBOL(kern_path_create);
3679
3680 void done_path_create(struct path *path, struct dentry *dentry)
3681 {
3682 dput(dentry);
3683 inode_unlock(path->dentry->d_inode);
3684 mnt_drop_write(path->mnt);
3685 path_put(path);
3686 }
3687 EXPORT_SYMBOL(done_path_create);
3688
3689 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3690 struct path *path, unsigned int lookup_flags)
3691 {
3692 return filename_create(dfd, getname(pathname), path, lookup_flags);
3693 }
3694 EXPORT_SYMBOL(user_path_create);
3695
3696 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3697 {
3698 int error = may_create(dir, dentry);
3699
3700 if (error)
3701 return error;
3702
3703 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3704 return -EPERM;
3705
3706 if (!dir->i_op->mknod)
3707 return -EPERM;
3708
3709 error = devcgroup_inode_mknod(mode, dev);
3710 if (error)
3711 return error;
3712
3713 error = security_inode_mknod(dir, dentry, mode, dev);
3714 if (error)
3715 return error;
3716
3717 error = dir->i_op->mknod(dir, dentry, mode, dev);
3718 if (!error)
3719 fsnotify_create(dir, dentry);
3720 return error;
3721 }
3722 EXPORT_SYMBOL(vfs_mknod);
3723
3724 static int may_mknod(umode_t mode)
3725 {
3726 switch (mode & S_IFMT) {
3727 case S_IFREG:
3728 case S_IFCHR:
3729 case S_IFBLK:
3730 case S_IFIFO:
3731 case S_IFSOCK:
3732 case 0: /* zero mode translates to S_IFREG */
3733 return 0;
3734 case S_IFDIR:
3735 return -EPERM;
3736 default:
3737 return -EINVAL;
3738 }
3739 }
3740
3741 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3742 unsigned, dev)
3743 {
3744 struct dentry *dentry;
3745 struct path path;
3746 int error;
3747 unsigned int lookup_flags = 0;
3748
3749 error = may_mknod(mode);
3750 if (error)
3751 return error;
3752 retry:
3753 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3754 if (IS_ERR(dentry))
3755 return PTR_ERR(dentry);
3756
3757 if (!IS_POSIXACL(path.dentry->d_inode))
3758 mode &= ~current_umask();
3759 error = security_path_mknod(&path, dentry, mode, dev);
3760 if (error)
3761 goto out;
3762 switch (mode & S_IFMT) {
3763 case 0: case S_IFREG:
3764 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3765 if (!error)
3766 ima_post_path_mknod(dentry);
3767 break;
3768 case S_IFCHR: case S_IFBLK:
3769 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3770 new_decode_dev(dev));
3771 break;
3772 case S_IFIFO: case S_IFSOCK:
3773 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3774 break;
3775 }
3776 out:
3777 done_path_create(&path, dentry);
3778 if (retry_estale(error, lookup_flags)) {
3779 lookup_flags |= LOOKUP_REVAL;
3780 goto retry;
3781 }
3782 return error;
3783 }
3784
3785 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3786 {
3787 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3788 }
3789
3790 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3791 {
3792 int error = may_create(dir, dentry);
3793 unsigned max_links = dir->i_sb->s_max_links;
3794
3795 if (error)
3796 return error;
3797
3798 if (!dir->i_op->mkdir)
3799 return -EPERM;
3800
3801 mode &= (S_IRWXUGO|S_ISVTX);
3802 error = security_inode_mkdir(dir, dentry, mode);
3803 if (error)
3804 return error;
3805
3806 if (max_links && dir->i_nlink >= max_links)
3807 return -EMLINK;
3808
3809 error = dir->i_op->mkdir(dir, dentry, mode);
3810 if (!error)
3811 fsnotify_mkdir(dir, dentry);
3812 return error;
3813 }
3814 EXPORT_SYMBOL(vfs_mkdir);
3815
3816 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3817 {
3818 struct dentry *dentry;
3819 struct path path;
3820 int error;
3821 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3822
3823 retry:
3824 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3825 if (IS_ERR(dentry))
3826 return PTR_ERR(dentry);
3827
3828 if (!IS_POSIXACL(path.dentry->d_inode))
3829 mode &= ~current_umask();
3830 error = security_path_mkdir(&path, dentry, mode);
3831 if (!error)
3832 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3833 done_path_create(&path, dentry);
3834 if (retry_estale(error, lookup_flags)) {
3835 lookup_flags |= LOOKUP_REVAL;
3836 goto retry;
3837 }
3838 return error;
3839 }
3840
3841 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3842 {
3843 return sys_mkdirat(AT_FDCWD, pathname, mode);
3844 }
3845
3846 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3847 {
3848 int error = may_delete(dir, dentry, 1);
3849
3850 if (error)
3851 return error;
3852
3853 if (!dir->i_op->rmdir)
3854 return -EPERM;
3855
3856 dget(dentry);
3857 inode_lock(dentry->d_inode);
3858
3859 error = -EBUSY;
3860 if (is_local_mountpoint(dentry))
3861 goto out;
3862
3863 error = security_inode_rmdir(dir, dentry);
3864 if (error)
3865 goto out;
3866
3867 shrink_dcache_parent(dentry);
3868 error = dir->i_op->rmdir(dir, dentry);
3869 if (error)
3870 goto out;
3871
3872 dentry->d_inode->i_flags |= S_DEAD;
3873 dont_mount(dentry);
3874 detach_mounts(dentry);
3875
3876 out:
3877 inode_unlock(dentry->d_inode);
3878 dput(dentry);
3879 if (!error)
3880 d_delete(dentry);
3881 return error;
3882 }
3883 EXPORT_SYMBOL(vfs_rmdir);
3884
3885 static long do_rmdir(int dfd, const char __user *pathname)
3886 {
3887 int error = 0;
3888 struct filename *name;
3889 struct dentry *dentry;
3890 struct path path;
3891 struct qstr last;
3892 int type;
3893 unsigned int lookup_flags = 0;
3894 retry:
3895 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3896 &path, &last, &type);
3897 if (IS_ERR(name))
3898 return PTR_ERR(name);
3899
3900 switch (type) {
3901 case LAST_DOTDOT:
3902 error = -ENOTEMPTY;
3903 goto exit1;
3904 case LAST_DOT:
3905 error = -EINVAL;
3906 goto exit1;
3907 case LAST_ROOT:
3908 error = -EBUSY;
3909 goto exit1;
3910 }
3911
3912 error = mnt_want_write(path.mnt);
3913 if (error)
3914 goto exit1;
3915
3916 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3917 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3918 error = PTR_ERR(dentry);
3919 if (IS_ERR(dentry))
3920 goto exit2;
3921 if (!dentry->d_inode) {
3922 error = -ENOENT;
3923 goto exit3;
3924 }
3925 error = security_path_rmdir(&path, dentry);
3926 if (error)
3927 goto exit3;
3928 error = vfs_rmdir(path.dentry->d_inode, dentry);
3929 exit3:
3930 dput(dentry);
3931 exit2:
3932 inode_unlock(path.dentry->d_inode);
3933 mnt_drop_write(path.mnt);
3934 exit1:
3935 path_put(&path);
3936 putname(name);
3937 if (retry_estale(error, lookup_flags)) {
3938 lookup_flags |= LOOKUP_REVAL;
3939 goto retry;
3940 }
3941 return error;
3942 }
3943
3944 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3945 {
3946 return do_rmdir(AT_FDCWD, pathname);
3947 }
3948
3949 /**
3950 * vfs_unlink - unlink a filesystem object
3951 * @dir: parent directory
3952 * @dentry: victim
3953 * @delegated_inode: returns victim inode, if the inode is delegated.
3954 *
3955 * The caller must hold dir->i_mutex.
3956 *
3957 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3958 * return a reference to the inode in delegated_inode. The caller
3959 * should then break the delegation on that inode and retry. Because
3960 * breaking a delegation may take a long time, the caller should drop
3961 * dir->i_mutex before doing so.
3962 *
3963 * Alternatively, a caller may pass NULL for delegated_inode. This may
3964 * be appropriate for callers that expect the underlying filesystem not
3965 * to be NFS exported.
3966 */
3967 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3968 {
3969 struct inode *target = dentry->d_inode;
3970 int error = may_delete(dir, dentry, 0);
3971
3972 if (error)
3973 return error;
3974
3975 if (!dir->i_op->unlink)
3976 return -EPERM;
3977
3978 inode_lock(target);
3979 if (is_local_mountpoint(dentry))
3980 error = -EBUSY;
3981 else {
3982 error = security_inode_unlink(dir, dentry);
3983 if (!error) {
3984 error = try_break_deleg(target, delegated_inode);
3985 if (error)
3986 goto out;
3987 error = dir->i_op->unlink(dir, dentry);
3988 if (!error) {
3989 dont_mount(dentry);
3990 detach_mounts(dentry);
3991 }
3992 }
3993 }
3994 out:
3995 inode_unlock(target);
3996
3997 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3998 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3999 fsnotify_link_count(target);
4000 d_delete(dentry);
4001 }
4002
4003 return error;
4004 }
4005 EXPORT_SYMBOL(vfs_unlink);
4006
4007 /*
4008 * Make sure that the actual truncation of the file will occur outside its
4009 * directory's i_mutex. Truncate can take a long time if there is a lot of
4010 * writeout happening, and we don't want to prevent access to the directory
4011 * while waiting on the I/O.
4012 */
4013 static long do_unlinkat(int dfd, const char __user *pathname)
4014 {
4015 int error;
4016 struct filename *name;
4017 struct dentry *dentry;
4018 struct path path;
4019 struct qstr last;
4020 int type;
4021 struct inode *inode = NULL;
4022 struct inode *delegated_inode = NULL;
4023 unsigned int lookup_flags = 0;
4024 retry:
4025 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4026 &path, &last, &type);
4027 if (IS_ERR(name))
4028 return PTR_ERR(name);
4029
4030 error = -EISDIR;
4031 if (type != LAST_NORM)
4032 goto exit1;
4033
4034 error = mnt_want_write(path.mnt);
4035 if (error)
4036 goto exit1;
4037 retry_deleg:
4038 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4039 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4040 error = PTR_ERR(dentry);
4041 if (!IS_ERR(dentry)) {
4042 /* Why not before? Because we want correct error value */
4043 if (last.name[last.len])
4044 goto slashes;
4045 inode = dentry->d_inode;
4046 if (d_is_negative(dentry))
4047 goto slashes;
4048 ihold(inode);
4049 error = security_path_unlink(&path, dentry);
4050 if (error)
4051 goto exit2;
4052 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4053 exit2:
4054 dput(dentry);
4055 }
4056 inode_unlock(path.dentry->d_inode);
4057 if (inode)
4058 iput(inode); /* truncate the inode here */
4059 inode = NULL;
4060 if (delegated_inode) {
4061 error = break_deleg_wait(&delegated_inode);
4062 if (!error)
4063 goto retry_deleg;
4064 }
4065 mnt_drop_write(path.mnt);
4066 exit1:
4067 path_put(&path);
4068 putname(name);
4069 if (retry_estale(error, lookup_flags)) {
4070 lookup_flags |= LOOKUP_REVAL;
4071 inode = NULL;
4072 goto retry;
4073 }
4074 return error;
4075
4076 slashes:
4077 if (d_is_negative(dentry))
4078 error = -ENOENT;
4079 else if (d_is_dir(dentry))
4080 error = -EISDIR;
4081 else
4082 error = -ENOTDIR;
4083 goto exit2;
4084 }
4085
4086 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4087 {
4088 if ((flag & ~AT_REMOVEDIR) != 0)
4089 return -EINVAL;
4090
4091 if (flag & AT_REMOVEDIR)
4092 return do_rmdir(dfd, pathname);
4093
4094 return do_unlinkat(dfd, pathname);
4095 }
4096
4097 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4098 {
4099 return do_unlinkat(AT_FDCWD, pathname);
4100 }
4101
4102 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4103 {
4104 int error = may_create(dir, dentry);
4105
4106 if (error)
4107 return error;
4108
4109 if (!dir->i_op->symlink)
4110 return -EPERM;
4111
4112 error = security_inode_symlink(dir, dentry, oldname);
4113 if (error)
4114 return error;
4115
4116 error = dir->i_op->symlink(dir, dentry, oldname);
4117 if (!error)
4118 fsnotify_create(dir, dentry);
4119 return error;
4120 }
4121 EXPORT_SYMBOL(vfs_symlink);
4122
4123 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4124 int, newdfd, const char __user *, newname)
4125 {
4126 int error;
4127 struct filename *from;
4128 struct dentry *dentry;
4129 struct path path;
4130 unsigned int lookup_flags = 0;
4131
4132 from = getname(oldname);
4133 if (IS_ERR(from))
4134 return PTR_ERR(from);
4135 retry:
4136 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4137 error = PTR_ERR(dentry);
4138 if (IS_ERR(dentry))
4139 goto out_putname;
4140
4141 error = security_path_symlink(&path, dentry, from->name);
4142 if (!error)
4143 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4144 done_path_create(&path, dentry);
4145 if (retry_estale(error, lookup_flags)) {
4146 lookup_flags |= LOOKUP_REVAL;
4147 goto retry;
4148 }
4149 out_putname:
4150 putname(from);
4151 return error;
4152 }
4153
4154 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4155 {
4156 return sys_symlinkat(oldname, AT_FDCWD, newname);
4157 }
4158
4159 /**
4160 * vfs_link - create a new link
4161 * @old_dentry: object to be linked
4162 * @dir: new parent
4163 * @new_dentry: where to create the new link
4164 * @delegated_inode: returns inode needing a delegation break
4165 *
4166 * The caller must hold dir->i_mutex
4167 *
4168 * If vfs_link discovers a delegation on the to-be-linked file in need
4169 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4170 * inode in delegated_inode. The caller should then break the delegation
4171 * and retry. Because breaking a delegation may take a long time, the
4172 * caller should drop the i_mutex before doing so.
4173 *
4174 * Alternatively, a caller may pass NULL for delegated_inode. This may
4175 * be appropriate for callers that expect the underlying filesystem not
4176 * to be NFS exported.
4177 */
4178 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4179 {
4180 struct inode *inode = old_dentry->d_inode;
4181 unsigned max_links = dir->i_sb->s_max_links;
4182 int error;
4183
4184 if (!inode)
4185 return -ENOENT;
4186
4187 error = may_create(dir, new_dentry);
4188 if (error)
4189 return error;
4190
4191 if (dir->i_sb != inode->i_sb)
4192 return -EXDEV;
4193
4194 /*
4195 * A link to an append-only or immutable file cannot be created.
4196 */
4197 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4198 return -EPERM;
4199 /*
4200 * Updating the link count will likely cause i_uid and i_gid to
4201 * be writen back improperly if their true value is unknown to
4202 * the vfs.
4203 */
4204 if (HAS_UNMAPPED_ID(inode))
4205 return -EPERM;
4206 if (!dir->i_op->link)
4207 return -EPERM;
4208 if (S_ISDIR(inode->i_mode))
4209 return -EPERM;
4210
4211 error = security_inode_link(old_dentry, dir, new_dentry);
4212 if (error)
4213 return error;
4214
4215 inode_lock(inode);
4216 /* Make sure we don't allow creating hardlink to an unlinked file */
4217 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4218 error = -ENOENT;
4219 else if (max_links && inode->i_nlink >= max_links)
4220 error = -EMLINK;
4221 else {
4222 error = try_break_deleg(inode, delegated_inode);
4223 if (!error)
4224 error = dir->i_op->link(old_dentry, dir, new_dentry);
4225 }
4226
4227 if (!error && (inode->i_state & I_LINKABLE)) {
4228 spin_lock(&inode->i_lock);
4229 inode->i_state &= ~I_LINKABLE;
4230 spin_unlock(&inode->i_lock);
4231 }
4232 inode_unlock(inode);
4233 if (!error)
4234 fsnotify_link(dir, inode, new_dentry);
4235 return error;
4236 }
4237 EXPORT_SYMBOL(vfs_link);
4238
4239 /*
4240 * Hardlinks are often used in delicate situations. We avoid
4241 * security-related surprises by not following symlinks on the
4242 * newname. --KAB
4243 *
4244 * We don't follow them on the oldname either to be compatible
4245 * with linux 2.0, and to avoid hard-linking to directories
4246 * and other special files. --ADM
4247 */
4248 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4249 int, newdfd, const char __user *, newname, int, flags)
4250 {
4251 struct dentry *new_dentry;
4252 struct path old_path, new_path;
4253 struct inode *delegated_inode = NULL;
4254 int how = 0;
4255 int error;
4256
4257 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4258 return -EINVAL;
4259 /*
4260 * To use null names we require CAP_DAC_READ_SEARCH
4261 * This ensures that not everyone will be able to create
4262 * handlink using the passed filedescriptor.
4263 */
4264 if (flags & AT_EMPTY_PATH) {
4265 if (!capable(CAP_DAC_READ_SEARCH))
4266 return -ENOENT;
4267 how = LOOKUP_EMPTY;
4268 }
4269
4270 if (flags & AT_SYMLINK_FOLLOW)
4271 how |= LOOKUP_FOLLOW;
4272 retry:
4273 error = user_path_at(olddfd, oldname, how, &old_path);
4274 if (error)
4275 return error;
4276
4277 new_dentry = user_path_create(newdfd, newname, &new_path,
4278 (how & LOOKUP_REVAL));
4279 error = PTR_ERR(new_dentry);
4280 if (IS_ERR(new_dentry))
4281 goto out;
4282
4283 error = -EXDEV;
4284 if (old_path.mnt != new_path.mnt)
4285 goto out_dput;
4286 error = may_linkat(&old_path);
4287 if (unlikely(error))
4288 goto out_dput;
4289 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4290 if (error)
4291 goto out_dput;
4292 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4293 out_dput:
4294 done_path_create(&new_path, new_dentry);
4295 if (delegated_inode) {
4296 error = break_deleg_wait(&delegated_inode);
4297 if (!error) {
4298 path_put(&old_path);
4299 goto retry;
4300 }
4301 }
4302 if (retry_estale(error, how)) {
4303 path_put(&old_path);
4304 how |= LOOKUP_REVAL;
4305 goto retry;
4306 }
4307 out:
4308 path_put(&old_path);
4309
4310 return error;
4311 }
4312
4313 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4314 {
4315 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4316 }
4317
4318 /**
4319 * vfs_rename - rename a filesystem object
4320 * @old_dir: parent of source
4321 * @old_dentry: source
4322 * @new_dir: parent of destination
4323 * @new_dentry: destination
4324 * @delegated_inode: returns an inode needing a delegation break
4325 * @flags: rename flags
4326 *
4327 * The caller must hold multiple mutexes--see lock_rename()).
4328 *
4329 * If vfs_rename discovers a delegation in need of breaking at either
4330 * the source or destination, it will return -EWOULDBLOCK and return a
4331 * reference to the inode in delegated_inode. The caller should then
4332 * break the delegation and retry. Because breaking a delegation may
4333 * take a long time, the caller should drop all locks before doing
4334 * so.
4335 *
4336 * Alternatively, a caller may pass NULL for delegated_inode. This may
4337 * be appropriate for callers that expect the underlying filesystem not
4338 * to be NFS exported.
4339 *
4340 * The worst of all namespace operations - renaming directory. "Perverted"
4341 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4342 * Problems:
4343 *
4344 * a) we can get into loop creation.
4345 * b) race potential - two innocent renames can create a loop together.
4346 * That's where 4.4 screws up. Current fix: serialization on
4347 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4348 * story.
4349 * c) we have to lock _four_ objects - parents and victim (if it exists),
4350 * and source (if it is not a directory).
4351 * And that - after we got ->i_mutex on parents (until then we don't know
4352 * whether the target exists). Solution: try to be smart with locking
4353 * order for inodes. We rely on the fact that tree topology may change
4354 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4355 * move will be locked. Thus we can rank directories by the tree
4356 * (ancestors first) and rank all non-directories after them.
4357 * That works since everybody except rename does "lock parent, lookup,
4358 * lock child" and rename is under ->s_vfs_rename_mutex.
4359 * HOWEVER, it relies on the assumption that any object with ->lookup()
4360 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4361 * we'd better make sure that there's no link(2) for them.
4362 * d) conversion from fhandle to dentry may come in the wrong moment - when
4363 * we are removing the target. Solution: we will have to grab ->i_mutex
4364 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4365 * ->i_mutex on parents, which works but leads to some truly excessive
4366 * locking].
4367 */
4368 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4369 struct inode *new_dir, struct dentry *new_dentry,
4370 struct inode **delegated_inode, unsigned int flags)
4371 {
4372 int error;
4373 bool is_dir = d_is_dir(old_dentry);
4374 struct inode *source = old_dentry->d_inode;
4375 struct inode *target = new_dentry->d_inode;
4376 bool new_is_dir = false;
4377 unsigned max_links = new_dir->i_sb->s_max_links;
4378 struct name_snapshot old_name;
4379
4380 if (source == target)
4381 return 0;
4382
4383 error = may_delete(old_dir, old_dentry, is_dir);
4384 if (error)
4385 return error;
4386
4387 if (!target) {
4388 error = may_create(new_dir, new_dentry);
4389 } else {
4390 new_is_dir = d_is_dir(new_dentry);
4391
4392 if (!(flags & RENAME_EXCHANGE))
4393 error = may_delete(new_dir, new_dentry, is_dir);
4394 else
4395 error = may_delete(new_dir, new_dentry, new_is_dir);
4396 }
4397 if (error)
4398 return error;
4399
4400 if (!old_dir->i_op->rename)
4401 return -EPERM;
4402
4403 /*
4404 * If we are going to change the parent - check write permissions,
4405 * we'll need to flip '..'.
4406 */
4407 if (new_dir != old_dir) {
4408 if (is_dir) {
4409 error = inode_permission(source, MAY_WRITE);
4410 if (error)
4411 return error;
4412 }
4413 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4414 error = inode_permission(target, MAY_WRITE);
4415 if (error)
4416 return error;
4417 }
4418 }
4419
4420 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4421 flags);
4422 if (error)
4423 return error;
4424
4425 take_dentry_name_snapshot(&old_name, old_dentry);
4426 dget(new_dentry);
4427 if (!is_dir || (flags & RENAME_EXCHANGE))
4428 lock_two_nondirectories(source, target);
4429 else if (target)
4430 inode_lock(target);
4431
4432 error = -EBUSY;
4433 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4434 goto out;
4435
4436 if (max_links && new_dir != old_dir) {
4437 error = -EMLINK;
4438 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4439 goto out;
4440 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4441 old_dir->i_nlink >= max_links)
4442 goto out;
4443 }
4444 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4445 shrink_dcache_parent(new_dentry);
4446 if (!is_dir) {
4447 error = try_break_deleg(source, delegated_inode);
4448 if (error)
4449 goto out;
4450 }
4451 if (target && !new_is_dir) {
4452 error = try_break_deleg(target, delegated_inode);
4453 if (error)
4454 goto out;
4455 }
4456 error = old_dir->i_op->rename(old_dir, old_dentry,
4457 new_dir, new_dentry, flags);
4458 if (error)
4459 goto out;
4460
4461 if (!(flags & RENAME_EXCHANGE) && target) {
4462 if (is_dir)
4463 target->i_flags |= S_DEAD;
4464 dont_mount(new_dentry);
4465 detach_mounts(new_dentry);
4466 }
4467 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4468 if (!(flags & RENAME_EXCHANGE))
4469 d_move(old_dentry, new_dentry);
4470 else
4471 d_exchange(old_dentry, new_dentry);
4472 }
4473 out:
4474 if (!is_dir || (flags & RENAME_EXCHANGE))
4475 unlock_two_nondirectories(source, target);
4476 else if (target)
4477 inode_unlock(target);
4478 dput(new_dentry);
4479 if (!error) {
4480 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4481 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4482 if (flags & RENAME_EXCHANGE) {
4483 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4484 new_is_dir, NULL, new_dentry);
4485 }
4486 }
4487 release_dentry_name_snapshot(&old_name);
4488
4489 return error;
4490 }
4491 EXPORT_SYMBOL(vfs_rename);
4492
4493 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4494 int, newdfd, const char __user *, newname, unsigned int, flags)
4495 {
4496 struct dentry *old_dentry, *new_dentry;
4497 struct dentry *trap;
4498 struct path old_path, new_path;
4499 struct qstr old_last, new_last;
4500 int old_type, new_type;
4501 struct inode *delegated_inode = NULL;
4502 struct filename *from;
4503 struct filename *to;
4504 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4505 bool should_retry = false;
4506 int error;
4507
4508 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4509 return -EINVAL;
4510
4511 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4512 (flags & RENAME_EXCHANGE))
4513 return -EINVAL;
4514
4515 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4516 return -EPERM;
4517
4518 if (flags & RENAME_EXCHANGE)
4519 target_flags = 0;
4520
4521 retry:
4522 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4523 &old_path, &old_last, &old_type);
4524 if (IS_ERR(from)) {
4525 error = PTR_ERR(from);
4526 goto exit;
4527 }
4528
4529 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4530 &new_path, &new_last, &new_type);
4531 if (IS_ERR(to)) {
4532 error = PTR_ERR(to);
4533 goto exit1;
4534 }
4535
4536 error = -EXDEV;
4537 if (old_path.mnt != new_path.mnt)
4538 goto exit2;
4539
4540 error = -EBUSY;
4541 if (old_type != LAST_NORM)
4542 goto exit2;
4543
4544 if (flags & RENAME_NOREPLACE)
4545 error = -EEXIST;
4546 if (new_type != LAST_NORM)
4547 goto exit2;
4548
4549 error = mnt_want_write(old_path.mnt);
4550 if (error)
4551 goto exit2;
4552
4553 retry_deleg:
4554 trap = lock_rename(new_path.dentry, old_path.dentry);
4555
4556 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4557 error = PTR_ERR(old_dentry);
4558 if (IS_ERR(old_dentry))
4559 goto exit3;
4560 /* source must exist */
4561 error = -ENOENT;
4562 if (d_is_negative(old_dentry))
4563 goto exit4;
4564 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4565 error = PTR_ERR(new_dentry);
4566 if (IS_ERR(new_dentry))
4567 goto exit4;
4568 error = -EEXIST;
4569 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4570 goto exit5;
4571 if (flags & RENAME_EXCHANGE) {
4572 error = -ENOENT;
4573 if (d_is_negative(new_dentry))
4574 goto exit5;
4575
4576 if (!d_is_dir(new_dentry)) {
4577 error = -ENOTDIR;
4578 if (new_last.name[new_last.len])
4579 goto exit5;
4580 }
4581 }
4582 /* unless the source is a directory trailing slashes give -ENOTDIR */
4583 if (!d_is_dir(old_dentry)) {
4584 error = -ENOTDIR;
4585 if (old_last.name[old_last.len])
4586 goto exit5;
4587 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4588 goto exit5;
4589 }
4590 /* source should not be ancestor of target */
4591 error = -EINVAL;
4592 if (old_dentry == trap)
4593 goto exit5;
4594 /* target should not be an ancestor of source */
4595 if (!(flags & RENAME_EXCHANGE))
4596 error = -ENOTEMPTY;
4597 if (new_dentry == trap)
4598 goto exit5;
4599
4600 error = security_path_rename(&old_path, old_dentry,
4601 &new_path, new_dentry, flags);
4602 if (error)
4603 goto exit5;
4604 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4605 new_path.dentry->d_inode, new_dentry,
4606 &delegated_inode, flags);
4607 exit5:
4608 dput(new_dentry);
4609 exit4:
4610 dput(old_dentry);
4611 exit3:
4612 unlock_rename(new_path.dentry, old_path.dentry);
4613 if (delegated_inode) {
4614 error = break_deleg_wait(&delegated_inode);
4615 if (!error)
4616 goto retry_deleg;
4617 }
4618 mnt_drop_write(old_path.mnt);
4619 exit2:
4620 if (retry_estale(error, lookup_flags))
4621 should_retry = true;
4622 path_put(&new_path);
4623 putname(to);
4624 exit1:
4625 path_put(&old_path);
4626 putname(from);
4627 if (should_retry) {
4628 should_retry = false;
4629 lookup_flags |= LOOKUP_REVAL;
4630 goto retry;
4631 }
4632 exit:
4633 return error;
4634 }
4635
4636 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4637 int, newdfd, const char __user *, newname)
4638 {
4639 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4640 }
4641
4642 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4643 {
4644 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4645 }
4646
4647 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4648 {
4649 int error = may_create(dir, dentry);
4650 if (error)
4651 return error;
4652
4653 if (!dir->i_op->mknod)
4654 return -EPERM;
4655
4656 return dir->i_op->mknod(dir, dentry,
4657 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4658 }
4659 EXPORT_SYMBOL(vfs_whiteout);
4660
4661 int readlink_copy(char __user *buffer, int buflen, const char *link)
4662 {
4663 int len = PTR_ERR(link);
4664 if (IS_ERR(link))
4665 goto out;
4666
4667 len = strlen(link);
4668 if (len > (unsigned) buflen)
4669 len = buflen;
4670 if (copy_to_user(buffer, link, len))
4671 len = -EFAULT;
4672 out:
4673 return len;
4674 }
4675
4676 /*
4677 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4678 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4679 * for any given inode is up to filesystem.
4680 */
4681 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4682 int buflen)
4683 {
4684 DEFINE_DELAYED_CALL(done);
4685 struct inode *inode = d_inode(dentry);
4686 const char *link = inode->i_link;
4687 int res;
4688
4689 if (!link) {
4690 link = inode->i_op->get_link(dentry, inode, &done);
4691 if (IS_ERR(link))
4692 return PTR_ERR(link);
4693 }
4694 res = readlink_copy(buffer, buflen, link);
4695 do_delayed_call(&done);
4696 return res;
4697 }
4698
4699 /**
4700 * vfs_readlink - copy symlink body into userspace buffer
4701 * @dentry: dentry on which to get symbolic link
4702 * @buffer: user memory pointer
4703 * @buflen: size of buffer
4704 *
4705 * Does not touch atime. That's up to the caller if necessary
4706 *
4707 * Does not call security hook.
4708 */
4709 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4710 {
4711 struct inode *inode = d_inode(dentry);
4712
4713 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4714 if (unlikely(inode->i_op->readlink))
4715 return inode->i_op->readlink(dentry, buffer, buflen);
4716
4717 if (!d_is_symlink(dentry))
4718 return -EINVAL;
4719
4720 spin_lock(&inode->i_lock);
4721 inode->i_opflags |= IOP_DEFAULT_READLINK;
4722 spin_unlock(&inode->i_lock);
4723 }
4724
4725 return generic_readlink(dentry, buffer, buflen);
4726 }
4727 EXPORT_SYMBOL(vfs_readlink);
4728
4729 /**
4730 * vfs_get_link - get symlink body
4731 * @dentry: dentry on which to get symbolic link
4732 * @done: caller needs to free returned data with this
4733 *
4734 * Calls security hook and i_op->get_link() on the supplied inode.
4735 *
4736 * It does not touch atime. That's up to the caller if necessary.
4737 *
4738 * Does not work on "special" symlinks like /proc/$$/fd/N
4739 */
4740 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4741 {
4742 const char *res = ERR_PTR(-EINVAL);
4743 struct inode *inode = d_inode(dentry);
4744
4745 if (d_is_symlink(dentry)) {
4746 res = ERR_PTR(security_inode_readlink(dentry));
4747 if (!res)
4748 res = inode->i_op->get_link(dentry, inode, done);
4749 }
4750 return res;
4751 }
4752 EXPORT_SYMBOL(vfs_get_link);
4753
4754 /* get the link contents into pagecache */
4755 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4756 struct delayed_call *callback)
4757 {
4758 char *kaddr;
4759 struct page *page;
4760 struct address_space *mapping = inode->i_mapping;
4761
4762 if (!dentry) {
4763 page = find_get_page(mapping, 0);
4764 if (!page)
4765 return ERR_PTR(-ECHILD);
4766 if (!PageUptodate(page)) {
4767 put_page(page);
4768 return ERR_PTR(-ECHILD);
4769 }
4770 } else {
4771 page = read_mapping_page(mapping, 0, NULL);
4772 if (IS_ERR(page))
4773 return (char*)page;
4774 }
4775 set_delayed_call(callback, page_put_link, page);
4776 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4777 kaddr = page_address(page);
4778 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4779 return kaddr;
4780 }
4781
4782 EXPORT_SYMBOL(page_get_link);
4783
4784 void page_put_link(void *arg)
4785 {
4786 put_page(arg);
4787 }
4788 EXPORT_SYMBOL(page_put_link);
4789
4790 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4791 {
4792 DEFINE_DELAYED_CALL(done);
4793 int res = readlink_copy(buffer, buflen,
4794 page_get_link(dentry, d_inode(dentry),
4795 &done));
4796 do_delayed_call(&done);
4797 return res;
4798 }
4799 EXPORT_SYMBOL(page_readlink);
4800
4801 /*
4802 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4803 */
4804 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4805 {
4806 struct address_space *mapping = inode->i_mapping;
4807 struct page *page;
4808 void *fsdata;
4809 int err;
4810 unsigned int flags = 0;
4811 if (nofs)
4812 flags |= AOP_FLAG_NOFS;
4813
4814 retry:
4815 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4816 flags, &page, &fsdata);
4817 if (err)
4818 goto fail;
4819
4820 memcpy(page_address(page), symname, len-1);
4821
4822 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4823 page, fsdata);
4824 if (err < 0)
4825 goto fail;
4826 if (err < len-1)
4827 goto retry;
4828
4829 mark_inode_dirty(inode);
4830 return 0;
4831 fail:
4832 return err;
4833 }
4834 EXPORT_SYMBOL(__page_symlink);
4835
4836 int page_symlink(struct inode *inode, const char *symname, int len)
4837 {
4838 return __page_symlink(inode, symname, len,
4839 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4840 }
4841 EXPORT_SYMBOL(page_symlink);
4842
4843 const struct inode_operations page_symlink_inode_operations = {
4844 .get_link = page_get_link,
4845 };
4846 EXPORT_SYMBOL(page_symlink_inode_operations);