Merge 4.4.108 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct vfsmount *mnt, struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(mnt && inode->i_op->permission2))
380 return inode->i_op->permission2(mnt, inode, mask);
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
383
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
388 }
389 return generic_permission(inode, mask);
390 }
391
392 /**
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396 *
397 * Check for read/write/execute permissions on an inode.
398 *
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400 *
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
403 */
404 int __inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
405 {
406 int retval;
407
408 if (unlikely(mask & MAY_WRITE)) {
409 /*
410 * Nobody gets write access to an immutable file.
411 */
412 if (IS_IMMUTABLE(inode))
413 return -EACCES;
414 }
415
416 retval = do_inode_permission(mnt, inode, mask);
417 if (retval)
418 return retval;
419
420 retval = devcgroup_inode_permission(inode, mask);
421 if (retval)
422 return retval;
423
424 retval = security_inode_permission(inode, mask);
425 return retval;
426 }
427 EXPORT_SYMBOL(__inode_permission2);
428
429 int __inode_permission(struct inode *inode, int mask)
430 {
431 return __inode_permission2(NULL, inode, mask);
432 }
433 EXPORT_SYMBOL(__inode_permission);
434
435 /**
436 * sb_permission - Check superblock-level permissions
437 * @sb: Superblock of inode to check permission on
438 * @inode: Inode to check permission on
439 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
440 *
441 * Separate out file-system wide checks from inode-specific permission checks.
442 */
443 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
444 {
445 if (unlikely(mask & MAY_WRITE)) {
446 umode_t mode = inode->i_mode;
447
448 /* Nobody gets write access to a read-only fs. */
449 if ((sb->s_flags & MS_RDONLY) &&
450 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
451 return -EROFS;
452 }
453 return 0;
454 }
455
456 /**
457 * inode_permission - Check for access rights to a given inode
458 * @inode: Inode to check permission on
459 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
460 *
461 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
462 * this, letting us set arbitrary permissions for filesystem access without
463 * changing the "normal" UIDs which are used for other things.
464 *
465 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
466 */
467 int inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
468 {
469 int retval;
470
471 retval = sb_permission(inode->i_sb, inode, mask);
472 if (retval)
473 return retval;
474 return __inode_permission2(mnt, inode, mask);
475 }
476 EXPORT_SYMBOL(inode_permission2);
477
478 int inode_permission(struct inode *inode, int mask)
479 {
480 return inode_permission2(NULL, inode, mask);
481 }
482 EXPORT_SYMBOL(inode_permission);
483
484 /**
485 * path_get - get a reference to a path
486 * @path: path to get the reference to
487 *
488 * Given a path increment the reference count to the dentry and the vfsmount.
489 */
490 void path_get(const struct path *path)
491 {
492 mntget(path->mnt);
493 dget(path->dentry);
494 }
495 EXPORT_SYMBOL(path_get);
496
497 /**
498 * path_put - put a reference to a path
499 * @path: path to put the reference to
500 *
501 * Given a path decrement the reference count to the dentry and the vfsmount.
502 */
503 void path_put(const struct path *path)
504 {
505 dput(path->dentry);
506 mntput(path->mnt);
507 }
508 EXPORT_SYMBOL(path_put);
509
510 #define EMBEDDED_LEVELS 2
511 struct nameidata {
512 struct path path;
513 struct qstr last;
514 struct path root;
515 struct inode *inode; /* path.dentry.d_inode */
516 unsigned int flags;
517 unsigned seq, m_seq;
518 int last_type;
519 unsigned depth;
520 int total_link_count;
521 struct saved {
522 struct path link;
523 void *cookie;
524 const char *name;
525 struct inode *inode;
526 unsigned seq;
527 } *stack, internal[EMBEDDED_LEVELS];
528 struct filename *name;
529 struct nameidata *saved;
530 unsigned root_seq;
531 int dfd;
532 };
533
534 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
535 {
536 struct nameidata *old = current->nameidata;
537 p->stack = p->internal;
538 p->dfd = dfd;
539 p->name = name;
540 p->total_link_count = old ? old->total_link_count : 0;
541 p->saved = old;
542 current->nameidata = p;
543 }
544
545 static void restore_nameidata(void)
546 {
547 struct nameidata *now = current->nameidata, *old = now->saved;
548
549 current->nameidata = old;
550 if (old)
551 old->total_link_count = now->total_link_count;
552 if (now->stack != now->internal) {
553 kfree(now->stack);
554 now->stack = now->internal;
555 }
556 }
557
558 static int __nd_alloc_stack(struct nameidata *nd)
559 {
560 struct saved *p;
561
562 if (nd->flags & LOOKUP_RCU) {
563 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
564 GFP_ATOMIC);
565 if (unlikely(!p))
566 return -ECHILD;
567 } else {
568 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
569 GFP_KERNEL);
570 if (unlikely(!p))
571 return -ENOMEM;
572 }
573 memcpy(p, nd->internal, sizeof(nd->internal));
574 nd->stack = p;
575 return 0;
576 }
577
578 /**
579 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
580 * @path: nameidate to verify
581 *
582 * Rename can sometimes move a file or directory outside of a bind
583 * mount, path_connected allows those cases to be detected.
584 */
585 static bool path_connected(const struct path *path)
586 {
587 struct vfsmount *mnt = path->mnt;
588
589 /* Only bind mounts can have disconnected paths */
590 if (mnt->mnt_root == mnt->mnt_sb->s_root)
591 return true;
592
593 return is_subdir(path->dentry, mnt->mnt_root);
594 }
595
596 static inline int nd_alloc_stack(struct nameidata *nd)
597 {
598 if (likely(nd->depth != EMBEDDED_LEVELS))
599 return 0;
600 if (likely(nd->stack != nd->internal))
601 return 0;
602 return __nd_alloc_stack(nd);
603 }
604
605 static void drop_links(struct nameidata *nd)
606 {
607 int i = nd->depth;
608 while (i--) {
609 struct saved *last = nd->stack + i;
610 struct inode *inode = last->inode;
611 if (last->cookie && inode->i_op->put_link) {
612 inode->i_op->put_link(inode, last->cookie);
613 last->cookie = NULL;
614 }
615 }
616 }
617
618 static void terminate_walk(struct nameidata *nd)
619 {
620 drop_links(nd);
621 if (!(nd->flags & LOOKUP_RCU)) {
622 int i;
623 path_put(&nd->path);
624 for (i = 0; i < nd->depth; i++)
625 path_put(&nd->stack[i].link);
626 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
627 path_put(&nd->root);
628 nd->root.mnt = NULL;
629 }
630 } else {
631 nd->flags &= ~LOOKUP_RCU;
632 if (!(nd->flags & LOOKUP_ROOT))
633 nd->root.mnt = NULL;
634 rcu_read_unlock();
635 }
636 nd->depth = 0;
637 }
638
639 /* path_put is needed afterwards regardless of success or failure */
640 static bool legitimize_path(struct nameidata *nd,
641 struct path *path, unsigned seq)
642 {
643 int res = __legitimize_mnt(path->mnt, nd->m_seq);
644 if (unlikely(res)) {
645 if (res > 0)
646 path->mnt = NULL;
647 path->dentry = NULL;
648 return false;
649 }
650 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
651 path->dentry = NULL;
652 return false;
653 }
654 return !read_seqcount_retry(&path->dentry->d_seq, seq);
655 }
656
657 static bool legitimize_links(struct nameidata *nd)
658 {
659 int i;
660 for (i = 0; i < nd->depth; i++) {
661 struct saved *last = nd->stack + i;
662 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
663 drop_links(nd);
664 nd->depth = i + 1;
665 return false;
666 }
667 }
668 return true;
669 }
670
671 /*
672 * Path walking has 2 modes, rcu-walk and ref-walk (see
673 * Documentation/filesystems/path-lookup.txt). In situations when we can't
674 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
675 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
676 * mode. Refcounts are grabbed at the last known good point before rcu-walk
677 * got stuck, so ref-walk may continue from there. If this is not successful
678 * (eg. a seqcount has changed), then failure is returned and it's up to caller
679 * to restart the path walk from the beginning in ref-walk mode.
680 */
681
682 /**
683 * unlazy_walk - try to switch to ref-walk mode.
684 * @nd: nameidata pathwalk data
685 * @dentry: child of nd->path.dentry or NULL
686 * @seq: seq number to check dentry against
687 * Returns: 0 on success, -ECHILD on failure
688 *
689 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
690 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
691 * @nd or NULL. Must be called from rcu-walk context.
692 * Nothing should touch nameidata between unlazy_walk() failure and
693 * terminate_walk().
694 */
695 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
696 {
697 struct dentry *parent = nd->path.dentry;
698
699 BUG_ON(!(nd->flags & LOOKUP_RCU));
700
701 nd->flags &= ~LOOKUP_RCU;
702 if (unlikely(!legitimize_links(nd)))
703 goto out2;
704 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
705 goto out2;
706 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
707 goto out1;
708
709 /*
710 * For a negative lookup, the lookup sequence point is the parents
711 * sequence point, and it only needs to revalidate the parent dentry.
712 *
713 * For a positive lookup, we need to move both the parent and the
714 * dentry from the RCU domain to be properly refcounted. And the
715 * sequence number in the dentry validates *both* dentry counters,
716 * since we checked the sequence number of the parent after we got
717 * the child sequence number. So we know the parent must still
718 * be valid if the child sequence number is still valid.
719 */
720 if (!dentry) {
721 if (read_seqcount_retry(&parent->d_seq, nd->seq))
722 goto out;
723 BUG_ON(nd->inode != parent->d_inode);
724 } else {
725 if (!lockref_get_not_dead(&dentry->d_lockref))
726 goto out;
727 if (read_seqcount_retry(&dentry->d_seq, seq))
728 goto drop_dentry;
729 }
730
731 /*
732 * Sequence counts matched. Now make sure that the root is
733 * still valid and get it if required.
734 */
735 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
736 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
737 rcu_read_unlock();
738 dput(dentry);
739 return -ECHILD;
740 }
741 }
742
743 rcu_read_unlock();
744 return 0;
745
746 drop_dentry:
747 rcu_read_unlock();
748 dput(dentry);
749 goto drop_root_mnt;
750 out2:
751 nd->path.mnt = NULL;
752 out1:
753 nd->path.dentry = NULL;
754 out:
755 rcu_read_unlock();
756 drop_root_mnt:
757 if (!(nd->flags & LOOKUP_ROOT))
758 nd->root.mnt = NULL;
759 return -ECHILD;
760 }
761
762 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
763 {
764 if (unlikely(!legitimize_path(nd, link, seq))) {
765 drop_links(nd);
766 nd->depth = 0;
767 nd->flags &= ~LOOKUP_RCU;
768 nd->path.mnt = NULL;
769 nd->path.dentry = NULL;
770 if (!(nd->flags & LOOKUP_ROOT))
771 nd->root.mnt = NULL;
772 rcu_read_unlock();
773 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
774 return 0;
775 }
776 path_put(link);
777 return -ECHILD;
778 }
779
780 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
781 {
782 return dentry->d_op->d_revalidate(dentry, flags);
783 }
784
785 /**
786 * complete_walk - successful completion of path walk
787 * @nd: pointer nameidata
788 *
789 * If we had been in RCU mode, drop out of it and legitimize nd->path.
790 * Revalidate the final result, unless we'd already done that during
791 * the path walk or the filesystem doesn't ask for it. Return 0 on
792 * success, -error on failure. In case of failure caller does not
793 * need to drop nd->path.
794 */
795 static int complete_walk(struct nameidata *nd)
796 {
797 struct dentry *dentry = nd->path.dentry;
798 int status;
799
800 if (nd->flags & LOOKUP_RCU) {
801 if (!(nd->flags & LOOKUP_ROOT))
802 nd->root.mnt = NULL;
803 if (unlikely(unlazy_walk(nd, NULL, 0)))
804 return -ECHILD;
805 }
806
807 if (likely(!(nd->flags & LOOKUP_JUMPED)))
808 return 0;
809
810 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
811 return 0;
812
813 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
814 if (status > 0)
815 return 0;
816
817 if (!status)
818 status = -ESTALE;
819
820 return status;
821 }
822
823 static void set_root(struct nameidata *nd)
824 {
825 get_fs_root(current->fs, &nd->root);
826 }
827
828 static void set_root_rcu(struct nameidata *nd)
829 {
830 struct fs_struct *fs = current->fs;
831 unsigned seq;
832
833 do {
834 seq = read_seqcount_begin(&fs->seq);
835 nd->root = fs->root;
836 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
837 } while (read_seqcount_retry(&fs->seq, seq));
838 }
839
840 static void path_put_conditional(struct path *path, struct nameidata *nd)
841 {
842 dput(path->dentry);
843 if (path->mnt != nd->path.mnt)
844 mntput(path->mnt);
845 }
846
847 static inline void path_to_nameidata(const struct path *path,
848 struct nameidata *nd)
849 {
850 if (!(nd->flags & LOOKUP_RCU)) {
851 dput(nd->path.dentry);
852 if (nd->path.mnt != path->mnt)
853 mntput(nd->path.mnt);
854 }
855 nd->path.mnt = path->mnt;
856 nd->path.dentry = path->dentry;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->follow_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 struct inode *inode = last->inode;
877 if (last->cookie && inode->i_op->put_link)
878 inode->i_op->put_link(inode, last->cookie);
879 if (!(nd->flags & LOOKUP_RCU))
880 path_put(&last->link);
881 }
882
883 int sysctl_protected_symlinks __read_mostly = 0;
884 int sysctl_protected_hardlinks __read_mostly = 0;
885
886 /**
887 * may_follow_link - Check symlink following for unsafe situations
888 * @nd: nameidata pathwalk data
889 *
890 * In the case of the sysctl_protected_symlinks sysctl being enabled,
891 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
892 * in a sticky world-writable directory. This is to protect privileged
893 * processes from failing races against path names that may change out
894 * from under them by way of other users creating malicious symlinks.
895 * It will permit symlinks to be followed only when outside a sticky
896 * world-writable directory, or when the uid of the symlink and follower
897 * match, or when the directory owner matches the symlink's owner.
898 *
899 * Returns 0 if following the symlink is allowed, -ve on error.
900 */
901 static inline int may_follow_link(struct nameidata *nd)
902 {
903 const struct inode *inode;
904 const struct inode *parent;
905 kuid_t puid;
906
907 if (!sysctl_protected_symlinks)
908 return 0;
909
910 /* Allowed if owner and follower match. */
911 inode = nd->stack[0].inode;
912 if (uid_eq(current_cred()->fsuid, inode->i_uid))
913 return 0;
914
915 /* Allowed if parent directory not sticky and world-writable. */
916 parent = nd->inode;
917 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
918 return 0;
919
920 /* Allowed if parent directory and link owner match. */
921 puid = parent->i_uid;
922 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
923 return 0;
924
925 if (nd->flags & LOOKUP_RCU)
926 return -ECHILD;
927
928 audit_log_link_denied("follow_link", &nd->stack[0].link);
929 return -EACCES;
930 }
931
932 /**
933 * safe_hardlink_source - Check for safe hardlink conditions
934 * @inode: the source inode to hardlink from
935 *
936 * Return false if at least one of the following conditions:
937 * - inode is not a regular file
938 * - inode is setuid
939 * - inode is setgid and group-exec
940 * - access failure for read and write
941 *
942 * Otherwise returns true.
943 */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 umode_t mode = inode->i_mode;
947
948 /* Special files should not get pinned to the filesystem. */
949 if (!S_ISREG(mode))
950 return false;
951
952 /* Setuid files should not get pinned to the filesystem. */
953 if (mode & S_ISUID)
954 return false;
955
956 /* Executable setgid files should not get pinned to the filesystem. */
957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 return false;
959
960 /* Hardlinking to unreadable or unwritable sources is dangerous. */
961 if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 return false;
963
964 return true;
965 }
966
967 /**
968 * may_linkat - Check permissions for creating a hardlink
969 * @link: the source to hardlink from
970 *
971 * Block hardlink when all of:
972 * - sysctl_protected_hardlinks enabled
973 * - fsuid does not match inode
974 * - hardlink source is unsafe (see safe_hardlink_source() above)
975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
976 *
977 * Returns 0 if successful, -ve on error.
978 */
979 static int may_linkat(struct path *link)
980 {
981 struct inode *inode;
982
983 if (!sysctl_protected_hardlinks)
984 return 0;
985
986 inode = link->dentry->d_inode;
987
988 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
989 * otherwise, it must be a safe source.
990 */
991 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
992 return 0;
993
994 audit_log_link_denied("linkat", link);
995 return -EPERM;
996 }
997
998 static __always_inline
999 const char *get_link(struct nameidata *nd)
1000 {
1001 struct saved *last = nd->stack + nd->depth - 1;
1002 struct dentry *dentry = last->link.dentry;
1003 struct inode *inode = last->inode;
1004 int error;
1005 const char *res;
1006
1007 if (!(nd->flags & LOOKUP_RCU)) {
1008 touch_atime(&last->link);
1009 cond_resched();
1010 } else if (atime_needs_update(&last->link, inode)) {
1011 if (unlikely(unlazy_walk(nd, NULL, 0)))
1012 return ERR_PTR(-ECHILD);
1013 touch_atime(&last->link);
1014 }
1015
1016 error = security_inode_follow_link(dentry, inode,
1017 nd->flags & LOOKUP_RCU);
1018 if (unlikely(error))
1019 return ERR_PTR(error);
1020
1021 nd->last_type = LAST_BIND;
1022 res = inode->i_link;
1023 if (!res) {
1024 if (nd->flags & LOOKUP_RCU) {
1025 if (unlikely(unlazy_walk(nd, NULL, 0)))
1026 return ERR_PTR(-ECHILD);
1027 }
1028 res = inode->i_op->follow_link(dentry, &last->cookie);
1029 if (IS_ERR_OR_NULL(res)) {
1030 last->cookie = NULL;
1031 return res;
1032 }
1033 }
1034 if (*res == '/') {
1035 if (nd->flags & LOOKUP_RCU) {
1036 struct dentry *d;
1037 if (!nd->root.mnt)
1038 set_root_rcu(nd);
1039 nd->path = nd->root;
1040 d = nd->path.dentry;
1041 nd->inode = d->d_inode;
1042 nd->seq = nd->root_seq;
1043 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1044 return ERR_PTR(-ECHILD);
1045 } else {
1046 if (!nd->root.mnt)
1047 set_root(nd);
1048 path_put(&nd->path);
1049 nd->path = nd->root;
1050 path_get(&nd->root);
1051 nd->inode = nd->path.dentry->d_inode;
1052 }
1053 nd->flags |= LOOKUP_JUMPED;
1054 while (unlikely(*++res == '/'))
1055 ;
1056 }
1057 if (!*res)
1058 res = NULL;
1059 return res;
1060 }
1061
1062 /*
1063 * follow_up - Find the mountpoint of path's vfsmount
1064 *
1065 * Given a path, find the mountpoint of its source file system.
1066 * Replace @path with the path of the mountpoint in the parent mount.
1067 * Up is towards /.
1068 *
1069 * Return 1 if we went up a level and 0 if we were already at the
1070 * root.
1071 */
1072 int follow_up(struct path *path)
1073 {
1074 struct mount *mnt = real_mount(path->mnt);
1075 struct mount *parent;
1076 struct dentry *mountpoint;
1077
1078 read_seqlock_excl(&mount_lock);
1079 parent = mnt->mnt_parent;
1080 if (parent == mnt) {
1081 read_sequnlock_excl(&mount_lock);
1082 return 0;
1083 }
1084 mntget(&parent->mnt);
1085 mountpoint = dget(mnt->mnt_mountpoint);
1086 read_sequnlock_excl(&mount_lock);
1087 dput(path->dentry);
1088 path->dentry = mountpoint;
1089 mntput(path->mnt);
1090 path->mnt = &parent->mnt;
1091 return 1;
1092 }
1093 EXPORT_SYMBOL(follow_up);
1094
1095 /*
1096 * Perform an automount
1097 * - return -EISDIR to tell follow_managed() to stop and return the path we
1098 * were called with.
1099 */
1100 static int follow_automount(struct path *path, struct nameidata *nd,
1101 bool *need_mntput)
1102 {
1103 struct vfsmount *mnt;
1104 int err;
1105
1106 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1107 return -EREMOTE;
1108
1109 /* We don't want to mount if someone's just doing a stat -
1110 * unless they're stat'ing a directory and appended a '/' to
1111 * the name.
1112 *
1113 * We do, however, want to mount if someone wants to open or
1114 * create a file of any type under the mountpoint, wants to
1115 * traverse through the mountpoint or wants to open the
1116 * mounted directory. Also, autofs may mark negative dentries
1117 * as being automount points. These will need the attentions
1118 * of the daemon to instantiate them before they can be used.
1119 */
1120 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1121 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1122 path->dentry->d_inode)
1123 return -EISDIR;
1124
1125 nd->total_link_count++;
1126 if (nd->total_link_count >= 40)
1127 return -ELOOP;
1128
1129 mnt = path->dentry->d_op->d_automount(path);
1130 if (IS_ERR(mnt)) {
1131 /*
1132 * The filesystem is allowed to return -EISDIR here to indicate
1133 * it doesn't want to automount. For instance, autofs would do
1134 * this so that its userspace daemon can mount on this dentry.
1135 *
1136 * However, we can only permit this if it's a terminal point in
1137 * the path being looked up; if it wasn't then the remainder of
1138 * the path is inaccessible and we should say so.
1139 */
1140 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1141 return -EREMOTE;
1142 return PTR_ERR(mnt);
1143 }
1144
1145 if (!mnt) /* mount collision */
1146 return 0;
1147
1148 if (!*need_mntput) {
1149 /* lock_mount() may release path->mnt on error */
1150 mntget(path->mnt);
1151 *need_mntput = true;
1152 }
1153 err = finish_automount(mnt, path);
1154
1155 switch (err) {
1156 case -EBUSY:
1157 /* Someone else made a mount here whilst we were busy */
1158 return 0;
1159 case 0:
1160 path_put(path);
1161 path->mnt = mnt;
1162 path->dentry = dget(mnt->mnt_root);
1163 return 0;
1164 default:
1165 return err;
1166 }
1167
1168 }
1169
1170 /*
1171 * Handle a dentry that is managed in some way.
1172 * - Flagged for transit management (autofs)
1173 * - Flagged as mountpoint
1174 * - Flagged as automount point
1175 *
1176 * This may only be called in refwalk mode.
1177 *
1178 * Serialization is taken care of in namespace.c
1179 */
1180 static int follow_managed(struct path *path, struct nameidata *nd)
1181 {
1182 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1183 unsigned managed;
1184 bool need_mntput = false;
1185 int ret = 0;
1186
1187 /* Given that we're not holding a lock here, we retain the value in a
1188 * local variable for each dentry as we look at it so that we don't see
1189 * the components of that value change under us */
1190 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1191 managed &= DCACHE_MANAGED_DENTRY,
1192 unlikely(managed != 0)) {
1193 /* Allow the filesystem to manage the transit without i_mutex
1194 * being held. */
1195 if (managed & DCACHE_MANAGE_TRANSIT) {
1196 BUG_ON(!path->dentry->d_op);
1197 BUG_ON(!path->dentry->d_op->d_manage);
1198 ret = path->dentry->d_op->d_manage(path->dentry, false);
1199 if (ret < 0)
1200 break;
1201 }
1202
1203 /* Transit to a mounted filesystem. */
1204 if (managed & DCACHE_MOUNTED) {
1205 struct vfsmount *mounted = lookup_mnt(path);
1206 if (mounted) {
1207 dput(path->dentry);
1208 if (need_mntput)
1209 mntput(path->mnt);
1210 path->mnt = mounted;
1211 path->dentry = dget(mounted->mnt_root);
1212 need_mntput = true;
1213 continue;
1214 }
1215
1216 /* Something is mounted on this dentry in another
1217 * namespace and/or whatever was mounted there in this
1218 * namespace got unmounted before lookup_mnt() could
1219 * get it */
1220 }
1221
1222 /* Handle an automount point */
1223 if (managed & DCACHE_NEED_AUTOMOUNT) {
1224 ret = follow_automount(path, nd, &need_mntput);
1225 if (ret < 0)
1226 break;
1227 continue;
1228 }
1229
1230 /* We didn't change the current path point */
1231 break;
1232 }
1233
1234 if (need_mntput && path->mnt == mnt)
1235 mntput(path->mnt);
1236 if (ret == -EISDIR)
1237 ret = 0;
1238 if (need_mntput)
1239 nd->flags |= LOOKUP_JUMPED;
1240 if (unlikely(ret < 0))
1241 path_put_conditional(path, nd);
1242 return ret;
1243 }
1244
1245 int follow_down_one(struct path *path)
1246 {
1247 struct vfsmount *mounted;
1248
1249 mounted = lookup_mnt(path);
1250 if (mounted) {
1251 dput(path->dentry);
1252 mntput(path->mnt);
1253 path->mnt = mounted;
1254 path->dentry = dget(mounted->mnt_root);
1255 return 1;
1256 }
1257 return 0;
1258 }
1259 EXPORT_SYMBOL(follow_down_one);
1260
1261 static inline int managed_dentry_rcu(struct dentry *dentry)
1262 {
1263 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1264 dentry->d_op->d_manage(dentry, true) : 0;
1265 }
1266
1267 /*
1268 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1269 * we meet a managed dentry that would need blocking.
1270 */
1271 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1272 struct inode **inode, unsigned *seqp)
1273 {
1274 for (;;) {
1275 struct mount *mounted;
1276 /*
1277 * Don't forget we might have a non-mountpoint managed dentry
1278 * that wants to block transit.
1279 */
1280 switch (managed_dentry_rcu(path->dentry)) {
1281 case -ECHILD:
1282 default:
1283 return false;
1284 case -EISDIR:
1285 return true;
1286 case 0:
1287 break;
1288 }
1289
1290 if (!d_mountpoint(path->dentry))
1291 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1292
1293 mounted = __lookup_mnt(path->mnt, path->dentry);
1294 if (!mounted)
1295 break;
1296 path->mnt = &mounted->mnt;
1297 path->dentry = mounted->mnt.mnt_root;
1298 nd->flags |= LOOKUP_JUMPED;
1299 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1300 /*
1301 * Update the inode too. We don't need to re-check the
1302 * dentry sequence number here after this d_inode read,
1303 * because a mount-point is always pinned.
1304 */
1305 *inode = path->dentry->d_inode;
1306 }
1307 return !read_seqretry(&mount_lock, nd->m_seq) &&
1308 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1309 }
1310
1311 static int follow_dotdot_rcu(struct nameidata *nd)
1312 {
1313 struct inode *inode = nd->inode;
1314 if (!nd->root.mnt)
1315 set_root_rcu(nd);
1316
1317 while (1) {
1318 if (path_equal(&nd->path, &nd->root))
1319 break;
1320 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1321 struct dentry *old = nd->path.dentry;
1322 struct dentry *parent = old->d_parent;
1323 unsigned seq;
1324
1325 inode = parent->d_inode;
1326 seq = read_seqcount_begin(&parent->d_seq);
1327 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1328 return -ECHILD;
1329 nd->path.dentry = parent;
1330 nd->seq = seq;
1331 if (unlikely(!path_connected(&nd->path)))
1332 return -ENOENT;
1333 break;
1334 } else {
1335 struct mount *mnt = real_mount(nd->path.mnt);
1336 struct mount *mparent = mnt->mnt_parent;
1337 struct dentry *mountpoint = mnt->mnt_mountpoint;
1338 struct inode *inode2 = mountpoint->d_inode;
1339 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 return -ECHILD;
1342 if (&mparent->mnt == nd->path.mnt)
1343 break;
1344 /* we know that mountpoint was pinned */
1345 nd->path.dentry = mountpoint;
1346 nd->path.mnt = &mparent->mnt;
1347 inode = inode2;
1348 nd->seq = seq;
1349 }
1350 }
1351 while (unlikely(d_mountpoint(nd->path.dentry))) {
1352 struct mount *mounted;
1353 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1354 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1355 return -ECHILD;
1356 if (!mounted)
1357 break;
1358 nd->path.mnt = &mounted->mnt;
1359 nd->path.dentry = mounted->mnt.mnt_root;
1360 inode = nd->path.dentry->d_inode;
1361 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1362 }
1363 nd->inode = inode;
1364 return 0;
1365 }
1366
1367 /*
1368 * Follow down to the covering mount currently visible to userspace. At each
1369 * point, the filesystem owning that dentry may be queried as to whether the
1370 * caller is permitted to proceed or not.
1371 */
1372 int follow_down(struct path *path)
1373 {
1374 unsigned managed;
1375 int ret;
1376
1377 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1378 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1379 /* Allow the filesystem to manage the transit without i_mutex
1380 * being held.
1381 *
1382 * We indicate to the filesystem if someone is trying to mount
1383 * something here. This gives autofs the chance to deny anyone
1384 * other than its daemon the right to mount on its
1385 * superstructure.
1386 *
1387 * The filesystem may sleep at this point.
1388 */
1389 if (managed & DCACHE_MANAGE_TRANSIT) {
1390 BUG_ON(!path->dentry->d_op);
1391 BUG_ON(!path->dentry->d_op->d_manage);
1392 ret = path->dentry->d_op->d_manage(
1393 path->dentry, false);
1394 if (ret < 0)
1395 return ret == -EISDIR ? 0 : ret;
1396 }
1397
1398 /* Transit to a mounted filesystem. */
1399 if (managed & DCACHE_MOUNTED) {
1400 struct vfsmount *mounted = lookup_mnt(path);
1401 if (!mounted)
1402 break;
1403 dput(path->dentry);
1404 mntput(path->mnt);
1405 path->mnt = mounted;
1406 path->dentry = dget(mounted->mnt_root);
1407 continue;
1408 }
1409
1410 /* Don't handle automount points here */
1411 break;
1412 }
1413 return 0;
1414 }
1415 EXPORT_SYMBOL(follow_down);
1416
1417 /*
1418 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1419 */
1420 static void follow_mount(struct path *path)
1421 {
1422 while (d_mountpoint(path->dentry)) {
1423 struct vfsmount *mounted = lookup_mnt(path);
1424 if (!mounted)
1425 break;
1426 dput(path->dentry);
1427 mntput(path->mnt);
1428 path->mnt = mounted;
1429 path->dentry = dget(mounted->mnt_root);
1430 }
1431 }
1432
1433 static int follow_dotdot(struct nameidata *nd)
1434 {
1435 if (!nd->root.mnt)
1436 set_root(nd);
1437
1438 while(1) {
1439 struct dentry *old = nd->path.dentry;
1440
1441 if (nd->path.dentry == nd->root.dentry &&
1442 nd->path.mnt == nd->root.mnt) {
1443 break;
1444 }
1445 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446 /* rare case of legitimate dget_parent()... */
1447 nd->path.dentry = dget_parent(nd->path.dentry);
1448 dput(old);
1449 if (unlikely(!path_connected(&nd->path)))
1450 return -ENOENT;
1451 break;
1452 }
1453 if (!follow_up(&nd->path))
1454 break;
1455 }
1456 follow_mount(&nd->path);
1457 nd->inode = nd->path.dentry->d_inode;
1458 return 0;
1459 }
1460
1461 /*
1462 * This looks up the name in dcache, possibly revalidates the old dentry and
1463 * allocates a new one if not found or not valid. In the need_lookup argument
1464 * returns whether i_op->lookup is necessary.
1465 *
1466 * dir->d_inode->i_mutex must be held
1467 */
1468 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1469 unsigned int flags, bool *need_lookup)
1470 {
1471 struct dentry *dentry;
1472 int error;
1473
1474 *need_lookup = false;
1475 dentry = d_lookup(dir, name);
1476 if (dentry) {
1477 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1478 error = d_revalidate(dentry, flags);
1479 if (unlikely(error <= 0)) {
1480 if (error < 0) {
1481 dput(dentry);
1482 return ERR_PTR(error);
1483 } else {
1484 d_invalidate(dentry);
1485 dput(dentry);
1486 dentry = NULL;
1487 }
1488 }
1489 }
1490 }
1491
1492 if (!dentry) {
1493 dentry = d_alloc(dir, name);
1494 if (unlikely(!dentry))
1495 return ERR_PTR(-ENOMEM);
1496
1497 *need_lookup = true;
1498 }
1499 return dentry;
1500 }
1501
1502 /*
1503 * Call i_op->lookup on the dentry. The dentry must be negative and
1504 * unhashed.
1505 *
1506 * dir->d_inode->i_mutex must be held
1507 */
1508 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1509 unsigned int flags)
1510 {
1511 struct dentry *old;
1512
1513 /* Don't create child dentry for a dead directory. */
1514 if (unlikely(IS_DEADDIR(dir))) {
1515 dput(dentry);
1516 return ERR_PTR(-ENOENT);
1517 }
1518
1519 old = dir->i_op->lookup(dir, dentry, flags);
1520 if (unlikely(old)) {
1521 dput(dentry);
1522 dentry = old;
1523 }
1524 return dentry;
1525 }
1526
1527 static struct dentry *__lookup_hash(struct qstr *name,
1528 struct dentry *base, unsigned int flags)
1529 {
1530 bool need_lookup;
1531 struct dentry *dentry;
1532
1533 dentry = lookup_dcache(name, base, flags, &need_lookup);
1534 if (!need_lookup)
1535 return dentry;
1536
1537 return lookup_real(base->d_inode, dentry, flags);
1538 }
1539
1540 /*
1541 * It's more convoluted than I'd like it to be, but... it's still fairly
1542 * small and for now I'd prefer to have fast path as straight as possible.
1543 * It _is_ time-critical.
1544 */
1545 static int lookup_fast(struct nameidata *nd,
1546 struct path *path, struct inode **inode,
1547 unsigned *seqp)
1548 {
1549 struct vfsmount *mnt = nd->path.mnt;
1550 struct dentry *dentry, *parent = nd->path.dentry;
1551 int need_reval = 1;
1552 int status = 1;
1553 int err;
1554
1555 /*
1556 * Rename seqlock is not required here because in the off chance
1557 * of a false negative due to a concurrent rename, we're going to
1558 * do the non-racy lookup, below.
1559 */
1560 if (nd->flags & LOOKUP_RCU) {
1561 unsigned seq;
1562 bool negative;
1563 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564 if (!dentry)
1565 goto unlazy;
1566
1567 /*
1568 * This sequence count validates that the inode matches
1569 * the dentry name information from lookup.
1570 */
1571 *inode = d_backing_inode(dentry);
1572 negative = d_is_negative(dentry);
1573 if (read_seqcount_retry(&dentry->d_seq, seq))
1574 return -ECHILD;
1575
1576 /*
1577 * This sequence count validates that the parent had no
1578 * changes while we did the lookup of the dentry above.
1579 *
1580 * The memory barrier in read_seqcount_begin of child is
1581 * enough, we can use __read_seqcount_retry here.
1582 */
1583 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1584 return -ECHILD;
1585
1586 *seqp = seq;
1587 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1588 status = d_revalidate(dentry, nd->flags);
1589 if (unlikely(status <= 0)) {
1590 if (status != -ECHILD)
1591 need_reval = 0;
1592 goto unlazy;
1593 }
1594 }
1595 /*
1596 * Note: do negative dentry check after revalidation in
1597 * case that drops it.
1598 */
1599 if (negative)
1600 return -ENOENT;
1601 path->mnt = mnt;
1602 path->dentry = dentry;
1603 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1604 return 0;
1605 unlazy:
1606 if (unlazy_walk(nd, dentry, seq))
1607 return -ECHILD;
1608 } else {
1609 dentry = __d_lookup(parent, &nd->last);
1610 }
1611
1612 if (unlikely(!dentry))
1613 goto need_lookup;
1614
1615 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1616 status = d_revalidate(dentry, nd->flags);
1617 if (unlikely(status <= 0)) {
1618 if (status < 0) {
1619 dput(dentry);
1620 return status;
1621 }
1622 d_invalidate(dentry);
1623 dput(dentry);
1624 goto need_lookup;
1625 }
1626
1627 if (unlikely(d_is_negative(dentry))) {
1628 dput(dentry);
1629 return -ENOENT;
1630 }
1631 path->mnt = mnt;
1632 path->dentry = dentry;
1633 err = follow_managed(path, nd);
1634 if (likely(!err))
1635 *inode = d_backing_inode(path->dentry);
1636 return err;
1637
1638 need_lookup:
1639 return 1;
1640 }
1641
1642 /* Fast lookup failed, do it the slow way */
1643 static int lookup_slow(struct nameidata *nd, struct path *path)
1644 {
1645 struct dentry *dentry, *parent;
1646
1647 parent = nd->path.dentry;
1648 BUG_ON(nd->inode != parent->d_inode);
1649
1650 mutex_lock(&parent->d_inode->i_mutex);
1651 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1652 mutex_unlock(&parent->d_inode->i_mutex);
1653 if (IS_ERR(dentry))
1654 return PTR_ERR(dentry);
1655 path->mnt = nd->path.mnt;
1656 path->dentry = dentry;
1657 return follow_managed(path, nd);
1658 }
1659
1660 static inline int may_lookup(struct nameidata *nd)
1661 {
1662 if (nd->flags & LOOKUP_RCU) {
1663 int err = inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1664 if (err != -ECHILD)
1665 return err;
1666 if (unlazy_walk(nd, NULL, 0))
1667 return -ECHILD;
1668 }
1669 return inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC);
1670 }
1671
1672 static inline int handle_dots(struct nameidata *nd, int type)
1673 {
1674 if (type == LAST_DOTDOT) {
1675 if (nd->flags & LOOKUP_RCU) {
1676 return follow_dotdot_rcu(nd);
1677 } else
1678 return follow_dotdot(nd);
1679 }
1680 return 0;
1681 }
1682
1683 static int pick_link(struct nameidata *nd, struct path *link,
1684 struct inode *inode, unsigned seq)
1685 {
1686 int error;
1687 struct saved *last;
1688 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1689 path_to_nameidata(link, nd);
1690 return -ELOOP;
1691 }
1692 if (!(nd->flags & LOOKUP_RCU)) {
1693 if (link->mnt == nd->path.mnt)
1694 mntget(link->mnt);
1695 }
1696 error = nd_alloc_stack(nd);
1697 if (unlikely(error)) {
1698 if (error == -ECHILD) {
1699 if (unlikely(unlazy_link(nd, link, seq)))
1700 return -ECHILD;
1701 error = nd_alloc_stack(nd);
1702 }
1703 if (error) {
1704 path_put(link);
1705 return error;
1706 }
1707 }
1708
1709 last = nd->stack + nd->depth++;
1710 last->link = *link;
1711 last->cookie = NULL;
1712 last->inode = inode;
1713 last->seq = seq;
1714 return 1;
1715 }
1716
1717 /*
1718 * Do we need to follow links? We _really_ want to be able
1719 * to do this check without having to look at inode->i_op,
1720 * so we keep a cache of "no, this doesn't need follow_link"
1721 * for the common case.
1722 */
1723 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1724 int follow,
1725 struct inode *inode, unsigned seq)
1726 {
1727 if (likely(!d_is_symlink(link->dentry)))
1728 return 0;
1729 if (!follow)
1730 return 0;
1731 /* make sure that d_is_symlink above matches inode */
1732 if (nd->flags & LOOKUP_RCU) {
1733 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1734 return -ECHILD;
1735 }
1736 return pick_link(nd, link, inode, seq);
1737 }
1738
1739 enum {WALK_GET = 1, WALK_PUT = 2};
1740
1741 static int walk_component(struct nameidata *nd, int flags)
1742 {
1743 struct path path;
1744 struct inode *inode;
1745 unsigned seq;
1746 int err;
1747 /*
1748 * "." and ".." are special - ".." especially so because it has
1749 * to be able to know about the current root directory and
1750 * parent relationships.
1751 */
1752 if (unlikely(nd->last_type != LAST_NORM)) {
1753 err = handle_dots(nd, nd->last_type);
1754 if (flags & WALK_PUT)
1755 put_link(nd);
1756 return err;
1757 }
1758 err = lookup_fast(nd, &path, &inode, &seq);
1759 if (unlikely(err)) {
1760 if (err < 0)
1761 return err;
1762
1763 err = lookup_slow(nd, &path);
1764 if (err < 0)
1765 return err;
1766
1767 seq = 0; /* we are already out of RCU mode */
1768 err = -ENOENT;
1769 if (d_is_negative(path.dentry))
1770 goto out_path_put;
1771 inode = d_backing_inode(path.dentry);
1772 }
1773
1774 if (flags & WALK_PUT)
1775 put_link(nd);
1776 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1777 if (unlikely(err))
1778 return err;
1779 path_to_nameidata(&path, nd);
1780 nd->inode = inode;
1781 nd->seq = seq;
1782 return 0;
1783
1784 out_path_put:
1785 path_to_nameidata(&path, nd);
1786 return err;
1787 }
1788
1789 /*
1790 * We can do the critical dentry name comparison and hashing
1791 * operations one word at a time, but we are limited to:
1792 *
1793 * - Architectures with fast unaligned word accesses. We could
1794 * do a "get_unaligned()" if this helps and is sufficiently
1795 * fast.
1796 *
1797 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1798 * do not trap on the (extremely unlikely) case of a page
1799 * crossing operation.
1800 *
1801 * - Furthermore, we need an efficient 64-bit compile for the
1802 * 64-bit case in order to generate the "number of bytes in
1803 * the final mask". Again, that could be replaced with a
1804 * efficient population count instruction or similar.
1805 */
1806 #ifdef CONFIG_DCACHE_WORD_ACCESS
1807
1808 #include <asm/word-at-a-time.h>
1809
1810 #ifdef CONFIG_64BIT
1811
1812 static inline unsigned int fold_hash(unsigned long hash)
1813 {
1814 return hash_64(hash, 32);
1815 }
1816
1817 #else /* 32-bit case */
1818
1819 #define fold_hash(x) (x)
1820
1821 #endif
1822
1823 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1824 {
1825 unsigned long a, mask;
1826 unsigned long hash = 0;
1827
1828 for (;;) {
1829 a = load_unaligned_zeropad(name);
1830 if (len < sizeof(unsigned long))
1831 break;
1832 hash += a;
1833 hash *= 9;
1834 name += sizeof(unsigned long);
1835 len -= sizeof(unsigned long);
1836 if (!len)
1837 goto done;
1838 }
1839 mask = bytemask_from_count(len);
1840 hash += mask & a;
1841 done:
1842 return fold_hash(hash);
1843 }
1844 EXPORT_SYMBOL(full_name_hash);
1845
1846 /*
1847 * Calculate the length and hash of the path component, and
1848 * return the "hash_len" as the result.
1849 */
1850 static inline u64 hash_name(const char *name)
1851 {
1852 unsigned long a, b, adata, bdata, mask, hash, len;
1853 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1854
1855 hash = a = 0;
1856 len = -sizeof(unsigned long);
1857 do {
1858 hash = (hash + a) * 9;
1859 len += sizeof(unsigned long);
1860 a = load_unaligned_zeropad(name+len);
1861 b = a ^ REPEAT_BYTE('/');
1862 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1863
1864 adata = prep_zero_mask(a, adata, &constants);
1865 bdata = prep_zero_mask(b, bdata, &constants);
1866
1867 mask = create_zero_mask(adata | bdata);
1868
1869 hash += a & zero_bytemask(mask);
1870 len += find_zero(mask);
1871 return hashlen_create(fold_hash(hash), len);
1872 }
1873
1874 #else
1875
1876 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1877 {
1878 unsigned long hash = init_name_hash();
1879 while (len--)
1880 hash = partial_name_hash(*name++, hash);
1881 return end_name_hash(hash);
1882 }
1883 EXPORT_SYMBOL(full_name_hash);
1884
1885 /*
1886 * We know there's a real path component here of at least
1887 * one character.
1888 */
1889 static inline u64 hash_name(const char *name)
1890 {
1891 unsigned long hash = init_name_hash();
1892 unsigned long len = 0, c;
1893
1894 c = (unsigned char)*name;
1895 do {
1896 len++;
1897 hash = partial_name_hash(c, hash);
1898 c = (unsigned char)name[len];
1899 } while (c && c != '/');
1900 return hashlen_create(end_name_hash(hash), len);
1901 }
1902
1903 #endif
1904
1905 /*
1906 * Name resolution.
1907 * This is the basic name resolution function, turning a pathname into
1908 * the final dentry. We expect 'base' to be positive and a directory.
1909 *
1910 * Returns 0 and nd will have valid dentry and mnt on success.
1911 * Returns error and drops reference to input namei data on failure.
1912 */
1913 static int link_path_walk(const char *name, struct nameidata *nd)
1914 {
1915 int err;
1916
1917 while (*name=='/')
1918 name++;
1919 if (!*name)
1920 return 0;
1921
1922 /* At this point we know we have a real path component. */
1923 for(;;) {
1924 u64 hash_len;
1925 int type;
1926
1927 err = may_lookup(nd);
1928 if (err)
1929 return err;
1930
1931 hash_len = hash_name(name);
1932
1933 type = LAST_NORM;
1934 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1935 case 2:
1936 if (name[1] == '.') {
1937 type = LAST_DOTDOT;
1938 nd->flags |= LOOKUP_JUMPED;
1939 }
1940 break;
1941 case 1:
1942 type = LAST_DOT;
1943 }
1944 if (likely(type == LAST_NORM)) {
1945 struct dentry *parent = nd->path.dentry;
1946 nd->flags &= ~LOOKUP_JUMPED;
1947 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1948 struct qstr this = { { .hash_len = hash_len }, .name = name };
1949 err = parent->d_op->d_hash(parent, &this);
1950 if (err < 0)
1951 return err;
1952 hash_len = this.hash_len;
1953 name = this.name;
1954 }
1955 }
1956
1957 nd->last.hash_len = hash_len;
1958 nd->last.name = name;
1959 nd->last_type = type;
1960
1961 name += hashlen_len(hash_len);
1962 if (!*name)
1963 goto OK;
1964 /*
1965 * If it wasn't NUL, we know it was '/'. Skip that
1966 * slash, and continue until no more slashes.
1967 */
1968 do {
1969 name++;
1970 } while (unlikely(*name == '/'));
1971 if (unlikely(!*name)) {
1972 OK:
1973 /* pathname body, done */
1974 if (!nd->depth)
1975 return 0;
1976 name = nd->stack[nd->depth - 1].name;
1977 /* trailing symlink, done */
1978 if (!name)
1979 return 0;
1980 /* last component of nested symlink */
1981 err = walk_component(nd, WALK_GET | WALK_PUT);
1982 } else {
1983 err = walk_component(nd, WALK_GET);
1984 }
1985 if (err < 0)
1986 return err;
1987
1988 if (err) {
1989 const char *s = get_link(nd);
1990
1991 if (IS_ERR(s))
1992 return PTR_ERR(s);
1993 err = 0;
1994 if (unlikely(!s)) {
1995 /* jumped */
1996 put_link(nd);
1997 } else {
1998 nd->stack[nd->depth - 1].name = name;
1999 name = s;
2000 continue;
2001 }
2002 }
2003 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2004 if (nd->flags & LOOKUP_RCU) {
2005 if (unlazy_walk(nd, NULL, 0))
2006 return -ECHILD;
2007 }
2008 return -ENOTDIR;
2009 }
2010 }
2011 }
2012
2013 static const char *path_init(struct nameidata *nd, unsigned flags)
2014 {
2015 int retval = 0;
2016 const char *s = nd->name->name;
2017
2018 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2019 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2020 nd->depth = 0;
2021 if (flags & LOOKUP_ROOT) {
2022 struct dentry *root = nd->root.dentry;
2023 struct vfsmount *mnt = nd->root.mnt;
2024 struct inode *inode = root->d_inode;
2025 if (*s) {
2026 if (!d_can_lookup(root))
2027 return ERR_PTR(-ENOTDIR);
2028 retval = inode_permission2(mnt, inode, MAY_EXEC);
2029 if (retval)
2030 return ERR_PTR(retval);
2031 }
2032 nd->path = nd->root;
2033 nd->inode = inode;
2034 if (flags & LOOKUP_RCU) {
2035 rcu_read_lock();
2036 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2037 nd->root_seq = nd->seq;
2038 nd->m_seq = read_seqbegin(&mount_lock);
2039 } else {
2040 path_get(&nd->path);
2041 }
2042 return s;
2043 }
2044
2045 nd->root.mnt = NULL;
2046
2047 nd->m_seq = read_seqbegin(&mount_lock);
2048 if (*s == '/') {
2049 if (flags & LOOKUP_RCU) {
2050 rcu_read_lock();
2051 set_root_rcu(nd);
2052 nd->seq = nd->root_seq;
2053 } else {
2054 set_root(nd);
2055 path_get(&nd->root);
2056 }
2057 nd->path = nd->root;
2058 } else if (nd->dfd == AT_FDCWD) {
2059 if (flags & LOOKUP_RCU) {
2060 struct fs_struct *fs = current->fs;
2061 unsigned seq;
2062
2063 rcu_read_lock();
2064
2065 do {
2066 seq = read_seqcount_begin(&fs->seq);
2067 nd->path = fs->pwd;
2068 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2069 } while (read_seqcount_retry(&fs->seq, seq));
2070 } else {
2071 get_fs_pwd(current->fs, &nd->path);
2072 }
2073 } else {
2074 /* Caller must check execute permissions on the starting path component */
2075 struct fd f = fdget_raw(nd->dfd);
2076 struct dentry *dentry;
2077
2078 if (!f.file)
2079 return ERR_PTR(-EBADF);
2080
2081 dentry = f.file->f_path.dentry;
2082
2083 if (*s) {
2084 if (!d_can_lookup(dentry)) {
2085 fdput(f);
2086 return ERR_PTR(-ENOTDIR);
2087 }
2088 }
2089
2090 nd->path = f.file->f_path;
2091 if (flags & LOOKUP_RCU) {
2092 rcu_read_lock();
2093 nd->inode = nd->path.dentry->d_inode;
2094 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2095 } else {
2096 path_get(&nd->path);
2097 nd->inode = nd->path.dentry->d_inode;
2098 }
2099 fdput(f);
2100 return s;
2101 }
2102
2103 nd->inode = nd->path.dentry->d_inode;
2104 if (!(flags & LOOKUP_RCU))
2105 return s;
2106 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2107 return s;
2108 if (!(nd->flags & LOOKUP_ROOT))
2109 nd->root.mnt = NULL;
2110 rcu_read_unlock();
2111 return ERR_PTR(-ECHILD);
2112 }
2113
2114 static const char *trailing_symlink(struct nameidata *nd)
2115 {
2116 const char *s;
2117 int error = may_follow_link(nd);
2118 if (unlikely(error))
2119 return ERR_PTR(error);
2120 nd->flags |= LOOKUP_PARENT;
2121 nd->stack[0].name = NULL;
2122 s = get_link(nd);
2123 return s ? s : "";
2124 }
2125
2126 static inline int lookup_last(struct nameidata *nd)
2127 {
2128 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2129 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2130
2131 nd->flags &= ~LOOKUP_PARENT;
2132 return walk_component(nd,
2133 nd->flags & LOOKUP_FOLLOW
2134 ? nd->depth
2135 ? WALK_PUT | WALK_GET
2136 : WALK_GET
2137 : 0);
2138 }
2139
2140 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2141 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2142 {
2143 const char *s = path_init(nd, flags);
2144 int err;
2145
2146 if (IS_ERR(s))
2147 return PTR_ERR(s);
2148 while (!(err = link_path_walk(s, nd))
2149 && ((err = lookup_last(nd)) > 0)) {
2150 s = trailing_symlink(nd);
2151 if (IS_ERR(s)) {
2152 err = PTR_ERR(s);
2153 break;
2154 }
2155 }
2156 if (!err)
2157 err = complete_walk(nd);
2158
2159 if (!err && nd->flags & LOOKUP_DIRECTORY)
2160 if (!d_can_lookup(nd->path.dentry))
2161 err = -ENOTDIR;
2162 if (!err) {
2163 *path = nd->path;
2164 nd->path.mnt = NULL;
2165 nd->path.dentry = NULL;
2166 }
2167 terminate_walk(nd);
2168 return err;
2169 }
2170
2171 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2172 struct path *path, struct path *root)
2173 {
2174 int retval;
2175 struct nameidata nd;
2176 if (IS_ERR(name))
2177 return PTR_ERR(name);
2178 if (unlikely(root)) {
2179 nd.root = *root;
2180 flags |= LOOKUP_ROOT;
2181 }
2182 set_nameidata(&nd, dfd, name);
2183 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2184 if (unlikely(retval == -ECHILD))
2185 retval = path_lookupat(&nd, flags, path);
2186 if (unlikely(retval == -ESTALE))
2187 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2188
2189 if (likely(!retval))
2190 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2191 restore_nameidata();
2192 putname(name);
2193 return retval;
2194 }
2195
2196 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2197 static int path_parentat(struct nameidata *nd, unsigned flags,
2198 struct path *parent)
2199 {
2200 const char *s = path_init(nd, flags);
2201 int err;
2202 if (IS_ERR(s))
2203 return PTR_ERR(s);
2204 err = link_path_walk(s, nd);
2205 if (!err)
2206 err = complete_walk(nd);
2207 if (!err) {
2208 *parent = nd->path;
2209 nd->path.mnt = NULL;
2210 nd->path.dentry = NULL;
2211 }
2212 terminate_walk(nd);
2213 return err;
2214 }
2215
2216 static struct filename *filename_parentat(int dfd, struct filename *name,
2217 unsigned int flags, struct path *parent,
2218 struct qstr *last, int *type)
2219 {
2220 int retval;
2221 struct nameidata nd;
2222
2223 if (IS_ERR(name))
2224 return name;
2225 set_nameidata(&nd, dfd, name);
2226 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2227 if (unlikely(retval == -ECHILD))
2228 retval = path_parentat(&nd, flags, parent);
2229 if (unlikely(retval == -ESTALE))
2230 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2231 if (likely(!retval)) {
2232 *last = nd.last;
2233 *type = nd.last_type;
2234 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2235 } else {
2236 putname(name);
2237 name = ERR_PTR(retval);
2238 }
2239 restore_nameidata();
2240 return name;
2241 }
2242
2243 /* does lookup, returns the object with parent locked */
2244 struct dentry *kern_path_locked(const char *name, struct path *path)
2245 {
2246 struct filename *filename;
2247 struct dentry *d;
2248 struct qstr last;
2249 int type;
2250
2251 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2252 &last, &type);
2253 if (IS_ERR(filename))
2254 return ERR_CAST(filename);
2255 if (unlikely(type != LAST_NORM)) {
2256 path_put(path);
2257 putname(filename);
2258 return ERR_PTR(-EINVAL);
2259 }
2260 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2261 d = __lookup_hash(&last, path->dentry, 0);
2262 if (IS_ERR(d)) {
2263 mutex_unlock(&path->dentry->d_inode->i_mutex);
2264 path_put(path);
2265 }
2266 putname(filename);
2267 return d;
2268 }
2269
2270 int kern_path(const char *name, unsigned int flags, struct path *path)
2271 {
2272 return filename_lookup(AT_FDCWD, getname_kernel(name),
2273 flags, path, NULL);
2274 }
2275 EXPORT_SYMBOL(kern_path);
2276
2277 /**
2278 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2279 * @dentry: pointer to dentry of the base directory
2280 * @mnt: pointer to vfs mount of the base directory
2281 * @name: pointer to file name
2282 * @flags: lookup flags
2283 * @path: pointer to struct path to fill
2284 */
2285 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2286 const char *name, unsigned int flags,
2287 struct path *path)
2288 {
2289 struct path root = {.mnt = mnt, .dentry = dentry};
2290 /* the first argument of filename_lookup() is ignored with root */
2291 return filename_lookup(AT_FDCWD, getname_kernel(name),
2292 flags , path, &root);
2293 }
2294 EXPORT_SYMBOL(vfs_path_lookup);
2295
2296 /**
2297 * lookup_one_len - filesystem helper to lookup single pathname component
2298 * @name: pathname component to lookup
2299 * @mnt: mount we are looking up on
2300 * @base: base directory to lookup from
2301 * @len: maximum length @len should be interpreted to
2302 *
2303 * Note that this routine is purely a helper for filesystem usage and should
2304 * not be called by generic code.
2305 */
2306 struct dentry *lookup_one_len2(const char *name, struct vfsmount *mnt, struct dentry *base, int len)
2307 {
2308 struct qstr this;
2309 unsigned int c;
2310 int err;
2311
2312 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2313
2314 this.name = name;
2315 this.len = len;
2316 this.hash = full_name_hash(name, len);
2317 if (!len)
2318 return ERR_PTR(-EACCES);
2319
2320 if (unlikely(name[0] == '.')) {
2321 if (len < 2 || (len == 2 && name[1] == '.'))
2322 return ERR_PTR(-EACCES);
2323 }
2324
2325 while (len--) {
2326 c = *(const unsigned char *)name++;
2327 if (c == '/' || c == '\0')
2328 return ERR_PTR(-EACCES);
2329 }
2330 /*
2331 * See if the low-level filesystem might want
2332 * to use its own hash..
2333 */
2334 if (base->d_flags & DCACHE_OP_HASH) {
2335 int err = base->d_op->d_hash(base, &this);
2336 if (err < 0)
2337 return ERR_PTR(err);
2338 }
2339
2340 err = inode_permission2(mnt, base->d_inode, MAY_EXEC);
2341 if (err)
2342 return ERR_PTR(err);
2343
2344 return __lookup_hash(&this, base, 0);
2345 }
2346 EXPORT_SYMBOL(lookup_one_len2);
2347
2348 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2349 {
2350 return lookup_one_len2(name, NULL, base, len);
2351 }
2352 EXPORT_SYMBOL(lookup_one_len);
2353
2354 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2355 struct path *path, int *empty)
2356 {
2357 return filename_lookup(dfd, getname_flags(name, flags, empty),
2358 flags, path, NULL);
2359 }
2360 EXPORT_SYMBOL(user_path_at_empty);
2361
2362 /*
2363 * NB: most callers don't do anything directly with the reference to the
2364 * to struct filename, but the nd->last pointer points into the name string
2365 * allocated by getname. So we must hold the reference to it until all
2366 * path-walking is complete.
2367 */
2368 static inline struct filename *
2369 user_path_parent(int dfd, const char __user *path,
2370 struct path *parent,
2371 struct qstr *last,
2372 int *type,
2373 unsigned int flags)
2374 {
2375 /* only LOOKUP_REVAL is allowed in extra flags */
2376 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2377 parent, last, type);
2378 }
2379
2380 /**
2381 * mountpoint_last - look up last component for umount
2382 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2383 * @path: pointer to container for result
2384 *
2385 * This is a special lookup_last function just for umount. In this case, we
2386 * need to resolve the path without doing any revalidation.
2387 *
2388 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2389 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2390 * in almost all cases, this lookup will be served out of the dcache. The only
2391 * cases where it won't are if nd->last refers to a symlink or the path is
2392 * bogus and it doesn't exist.
2393 *
2394 * Returns:
2395 * -error: if there was an error during lookup. This includes -ENOENT if the
2396 * lookup found a negative dentry. The nd->path reference will also be
2397 * put in this case.
2398 *
2399 * 0: if we successfully resolved nd->path and found it to not to be a
2400 * symlink that needs to be followed. "path" will also be populated.
2401 * The nd->path reference will also be put.
2402 *
2403 * 1: if we successfully resolved nd->last and found it to be a symlink
2404 * that needs to be followed. "path" will be populated with the path
2405 * to the link, and nd->path will *not* be put.
2406 */
2407 static int
2408 mountpoint_last(struct nameidata *nd, struct path *path)
2409 {
2410 int error = 0;
2411 struct dentry *dentry;
2412 struct dentry *dir = nd->path.dentry;
2413
2414 /* If we're in rcuwalk, drop out of it to handle last component */
2415 if (nd->flags & LOOKUP_RCU) {
2416 if (unlazy_walk(nd, NULL, 0))
2417 return -ECHILD;
2418 }
2419
2420 nd->flags &= ~LOOKUP_PARENT;
2421
2422 if (unlikely(nd->last_type != LAST_NORM)) {
2423 error = handle_dots(nd, nd->last_type);
2424 if (error)
2425 return error;
2426 dentry = dget(nd->path.dentry);
2427 goto done;
2428 }
2429
2430 mutex_lock(&dir->d_inode->i_mutex);
2431 dentry = d_lookup(dir, &nd->last);
2432 if (!dentry) {
2433 /*
2434 * No cached dentry. Mounted dentries are pinned in the cache,
2435 * so that means that this dentry is probably a symlink or the
2436 * path doesn't actually point to a mounted dentry.
2437 */
2438 dentry = d_alloc(dir, &nd->last);
2439 if (!dentry) {
2440 mutex_unlock(&dir->d_inode->i_mutex);
2441 return -ENOMEM;
2442 }
2443 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2444 if (IS_ERR(dentry)) {
2445 mutex_unlock(&dir->d_inode->i_mutex);
2446 return PTR_ERR(dentry);
2447 }
2448 }
2449 mutex_unlock(&dir->d_inode->i_mutex);
2450
2451 done:
2452 if (d_is_negative(dentry)) {
2453 dput(dentry);
2454 return -ENOENT;
2455 }
2456 if (nd->depth)
2457 put_link(nd);
2458 path->dentry = dentry;
2459 path->mnt = nd->path.mnt;
2460 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2461 d_backing_inode(dentry), 0);
2462 if (unlikely(error))
2463 return error;
2464 mntget(path->mnt);
2465 follow_mount(path);
2466 return 0;
2467 }
2468
2469 /**
2470 * path_mountpoint - look up a path to be umounted
2471 * @nd: lookup context
2472 * @flags: lookup flags
2473 * @path: pointer to container for result
2474 *
2475 * Look up the given name, but don't attempt to revalidate the last component.
2476 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2477 */
2478 static int
2479 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2480 {
2481 const char *s = path_init(nd, flags);
2482 int err;
2483 if (IS_ERR(s))
2484 return PTR_ERR(s);
2485 while (!(err = link_path_walk(s, nd)) &&
2486 (err = mountpoint_last(nd, path)) > 0) {
2487 s = trailing_symlink(nd);
2488 if (IS_ERR(s)) {
2489 err = PTR_ERR(s);
2490 break;
2491 }
2492 }
2493 terminate_walk(nd);
2494 return err;
2495 }
2496
2497 static int
2498 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2499 unsigned int flags)
2500 {
2501 struct nameidata nd;
2502 int error;
2503 if (IS_ERR(name))
2504 return PTR_ERR(name);
2505 set_nameidata(&nd, dfd, name);
2506 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2507 if (unlikely(error == -ECHILD))
2508 error = path_mountpoint(&nd, flags, path);
2509 if (unlikely(error == -ESTALE))
2510 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2511 if (likely(!error))
2512 audit_inode(name, path->dentry, 0);
2513 restore_nameidata();
2514 putname(name);
2515 return error;
2516 }
2517
2518 /**
2519 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2520 * @dfd: directory file descriptor
2521 * @name: pathname from userland
2522 * @flags: lookup flags
2523 * @path: pointer to container to hold result
2524 *
2525 * A umount is a special case for path walking. We're not actually interested
2526 * in the inode in this situation, and ESTALE errors can be a problem. We
2527 * simply want track down the dentry and vfsmount attached at the mountpoint
2528 * and avoid revalidating the last component.
2529 *
2530 * Returns 0 and populates "path" on success.
2531 */
2532 int
2533 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2534 struct path *path)
2535 {
2536 return filename_mountpoint(dfd, getname(name), path, flags);
2537 }
2538
2539 int
2540 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2541 unsigned int flags)
2542 {
2543 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2544 }
2545 EXPORT_SYMBOL(kern_path_mountpoint);
2546
2547 int __check_sticky(struct inode *dir, struct inode *inode)
2548 {
2549 kuid_t fsuid = current_fsuid();
2550
2551 if (uid_eq(inode->i_uid, fsuid))
2552 return 0;
2553 if (uid_eq(dir->i_uid, fsuid))
2554 return 0;
2555 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2556 }
2557 EXPORT_SYMBOL(__check_sticky);
2558
2559 /*
2560 * Check whether we can remove a link victim from directory dir, check
2561 * whether the type of victim is right.
2562 * 1. We can't do it if dir is read-only (done in permission())
2563 * 2. We should have write and exec permissions on dir
2564 * 3. We can't remove anything from append-only dir
2565 * 4. We can't do anything with immutable dir (done in permission())
2566 * 5. If the sticky bit on dir is set we should either
2567 * a. be owner of dir, or
2568 * b. be owner of victim, or
2569 * c. have CAP_FOWNER capability
2570 * 6. If the victim is append-only or immutable we can't do antyhing with
2571 * links pointing to it.
2572 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2573 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2574 * 9. We can't remove a root or mountpoint.
2575 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2576 * nfs_async_unlink().
2577 */
2578 static int may_delete(struct vfsmount *mnt, struct inode *dir, struct dentry *victim, bool isdir)
2579 {
2580 struct inode *inode = d_backing_inode(victim);
2581 int error;
2582
2583 if (d_is_negative(victim))
2584 return -ENOENT;
2585 BUG_ON(!inode);
2586
2587 BUG_ON(victim->d_parent->d_inode != dir);
2588 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2589
2590 error = inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2591 if (error)
2592 return error;
2593 if (IS_APPEND(dir))
2594 return -EPERM;
2595
2596 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2597 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2598 return -EPERM;
2599 if (isdir) {
2600 if (!d_is_dir(victim))
2601 return -ENOTDIR;
2602 if (IS_ROOT(victim))
2603 return -EBUSY;
2604 } else if (d_is_dir(victim))
2605 return -EISDIR;
2606 if (IS_DEADDIR(dir))
2607 return -ENOENT;
2608 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2609 return -EBUSY;
2610 return 0;
2611 }
2612
2613 /* Check whether we can create an object with dentry child in directory
2614 * dir.
2615 * 1. We can't do it if child already exists (open has special treatment for
2616 * this case, but since we are inlined it's OK)
2617 * 2. We can't do it if dir is read-only (done in permission())
2618 * 3. We should have write and exec permissions on dir
2619 * 4. We can't do it if dir is immutable (done in permission())
2620 */
2621 static inline int may_create(struct vfsmount *mnt, struct inode *dir, struct dentry *child)
2622 {
2623 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2624 if (child->d_inode)
2625 return -EEXIST;
2626 if (IS_DEADDIR(dir))
2627 return -ENOENT;
2628 return inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2629 }
2630
2631 /*
2632 * p1 and p2 should be directories on the same fs.
2633 */
2634 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2635 {
2636 struct dentry *p;
2637
2638 if (p1 == p2) {
2639 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2640 return NULL;
2641 }
2642
2643 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2644
2645 p = d_ancestor(p2, p1);
2646 if (p) {
2647 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2648 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2649 return p;
2650 }
2651
2652 p = d_ancestor(p1, p2);
2653 if (p) {
2654 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2655 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2656 return p;
2657 }
2658
2659 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2660 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2661 return NULL;
2662 }
2663 EXPORT_SYMBOL(lock_rename);
2664
2665 void unlock_rename(struct dentry *p1, struct dentry *p2)
2666 {
2667 mutex_unlock(&p1->d_inode->i_mutex);
2668 if (p1 != p2) {
2669 mutex_unlock(&p2->d_inode->i_mutex);
2670 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2671 }
2672 }
2673 EXPORT_SYMBOL(unlock_rename);
2674
2675 int vfs_create2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry,
2676 umode_t mode, bool want_excl)
2677 {
2678 int error = may_create(mnt, dir, dentry);
2679 if (error)
2680 return error;
2681
2682 if (!dir->i_op->create)
2683 return -EACCES; /* shouldn't it be ENOSYS? */
2684 mode &= S_IALLUGO;
2685 mode |= S_IFREG;
2686 error = security_inode_create(dir, dentry, mode);
2687 if (error)
2688 return error;
2689 error = dir->i_op->create(dir, dentry, mode, want_excl);
2690 if (!error)
2691 fsnotify_create(dir, dentry);
2692 return error;
2693 }
2694 EXPORT_SYMBOL(vfs_create2);
2695
2696 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2697 bool want_excl)
2698 {
2699 return vfs_create2(NULL, dir, dentry, mode, want_excl);
2700 }
2701 EXPORT_SYMBOL(vfs_create);
2702
2703 static int may_open(struct path *path, int acc_mode, int flag)
2704 {
2705 struct dentry *dentry = path->dentry;
2706 struct vfsmount *mnt = path->mnt;
2707 struct inode *inode = dentry->d_inode;
2708 int error;
2709
2710 /* O_PATH? */
2711 if (!acc_mode)
2712 return 0;
2713
2714 if (!inode)
2715 return -ENOENT;
2716
2717 switch (inode->i_mode & S_IFMT) {
2718 case S_IFLNK:
2719 return -ELOOP;
2720 case S_IFDIR:
2721 if (acc_mode & MAY_WRITE)
2722 return -EISDIR;
2723 break;
2724 case S_IFBLK:
2725 case S_IFCHR:
2726 if (path->mnt->mnt_flags & MNT_NODEV)
2727 return -EACCES;
2728 /*FALLTHRU*/
2729 case S_IFIFO:
2730 case S_IFSOCK:
2731 flag &= ~O_TRUNC;
2732 break;
2733 }
2734
2735 error = inode_permission2(mnt, inode, acc_mode);
2736 if (error)
2737 return error;
2738
2739 /*
2740 * An append-only file must be opened in append mode for writing.
2741 */
2742 if (IS_APPEND(inode)) {
2743 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2744 return -EPERM;
2745 if (flag & O_TRUNC)
2746 return -EPERM;
2747 }
2748
2749 /* O_NOATIME can only be set by the owner or superuser */
2750 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2751 return -EPERM;
2752
2753 return 0;
2754 }
2755
2756 static int handle_truncate(struct file *filp)
2757 {
2758 struct path *path = &filp->f_path;
2759 struct inode *inode = path->dentry->d_inode;
2760 int error = get_write_access(inode);
2761 if (error)
2762 return error;
2763 /*
2764 * Refuse to truncate files with mandatory locks held on them.
2765 */
2766 error = locks_verify_locked(filp);
2767 if (!error)
2768 error = security_path_truncate(path);
2769 if (!error) {
2770 error = do_truncate2(path->mnt, path->dentry, 0,
2771 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2772 filp);
2773 }
2774 put_write_access(inode);
2775 return error;
2776 }
2777
2778 static inline int open_to_namei_flags(int flag)
2779 {
2780 if ((flag & O_ACCMODE) == 3)
2781 flag--;
2782 return flag;
2783 }
2784
2785 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2786 {
2787 int error = security_path_mknod(dir, dentry, mode, 0);
2788 if (error)
2789 return error;
2790
2791 error = inode_permission2(dir->mnt, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2792 if (error)
2793 return error;
2794
2795 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2796 }
2797
2798 /*
2799 * Attempt to atomically look up, create and open a file from a negative
2800 * dentry.
2801 *
2802 * Returns 0 if successful. The file will have been created and attached to
2803 * @file by the filesystem calling finish_open().
2804 *
2805 * Returns 1 if the file was looked up only or didn't need creating. The
2806 * caller will need to perform the open themselves. @path will have been
2807 * updated to point to the new dentry. This may be negative.
2808 *
2809 * Returns an error code otherwise.
2810 */
2811 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2812 struct path *path, struct file *file,
2813 const struct open_flags *op,
2814 bool got_write, bool need_lookup,
2815 int *opened)
2816 {
2817 struct inode *dir = nd->path.dentry->d_inode;
2818 unsigned open_flag = open_to_namei_flags(op->open_flag);
2819 umode_t mode;
2820 int error;
2821 int acc_mode;
2822 int create_error = 0;
2823 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2824 bool excl;
2825
2826 BUG_ON(dentry->d_inode);
2827
2828 /* Don't create child dentry for a dead directory. */
2829 if (unlikely(IS_DEADDIR(dir))) {
2830 error = -ENOENT;
2831 goto out;
2832 }
2833
2834 mode = op->mode;
2835 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2836 mode &= ~current_umask();
2837
2838 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2839 if (excl)
2840 open_flag &= ~O_TRUNC;
2841
2842 /*
2843 * Checking write permission is tricky, bacuse we don't know if we are
2844 * going to actually need it: O_CREAT opens should work as long as the
2845 * file exists. But checking existence breaks atomicity. The trick is
2846 * to check access and if not granted clear O_CREAT from the flags.
2847 *
2848 * Another problem is returing the "right" error value (e.g. for an
2849 * O_EXCL open we want to return EEXIST not EROFS).
2850 */
2851 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2852 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2853 if (!(open_flag & O_CREAT)) {
2854 /*
2855 * No O_CREATE -> atomicity not a requirement -> fall
2856 * back to lookup + open
2857 */
2858 goto no_open;
2859 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2860 /* Fall back and fail with the right error */
2861 create_error = -EROFS;
2862 goto no_open;
2863 } else {
2864 /* No side effects, safe to clear O_CREAT */
2865 create_error = -EROFS;
2866 open_flag &= ~O_CREAT;
2867 }
2868 }
2869
2870 if (open_flag & O_CREAT) {
2871 error = may_o_create(&nd->path, dentry, mode);
2872 if (error) {
2873 create_error = error;
2874 if (open_flag & O_EXCL)
2875 goto no_open;
2876 open_flag &= ~O_CREAT;
2877 }
2878 }
2879
2880 if (nd->flags & LOOKUP_DIRECTORY)
2881 open_flag |= O_DIRECTORY;
2882
2883 file->f_path.dentry = DENTRY_NOT_SET;
2884 file->f_path.mnt = nd->path.mnt;
2885 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2886 opened);
2887 if (error < 0) {
2888 if (create_error && error == -ENOENT)
2889 error = create_error;
2890 goto out;
2891 }
2892
2893 if (error) { /* returned 1, that is */
2894 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2895 error = -EIO;
2896 goto out;
2897 }
2898 if (file->f_path.dentry) {
2899 dput(dentry);
2900 dentry = file->f_path.dentry;
2901 }
2902 if (*opened & FILE_CREATED)
2903 fsnotify_create(dir, dentry);
2904 if (!dentry->d_inode) {
2905 WARN_ON(*opened & FILE_CREATED);
2906 if (create_error) {
2907 error = create_error;
2908 goto out;
2909 }
2910 } else {
2911 if (excl && !(*opened & FILE_CREATED)) {
2912 error = -EEXIST;
2913 goto out;
2914 }
2915 }
2916 goto looked_up;
2917 }
2918
2919 /*
2920 * We didn't have the inode before the open, so check open permission
2921 * here.
2922 */
2923 acc_mode = op->acc_mode;
2924 if (*opened & FILE_CREATED) {
2925 WARN_ON(!(open_flag & O_CREAT));
2926 fsnotify_create(dir, dentry);
2927 acc_mode = MAY_OPEN;
2928 }
2929 error = may_open(&file->f_path, acc_mode, open_flag);
2930 if (error)
2931 fput(file);
2932
2933 out:
2934 dput(dentry);
2935 return error;
2936
2937 no_open:
2938 if (need_lookup) {
2939 dentry = lookup_real(dir, dentry, nd->flags);
2940 if (IS_ERR(dentry))
2941 return PTR_ERR(dentry);
2942 }
2943 if (create_error && !dentry->d_inode) {
2944 error = create_error;
2945 goto out;
2946 }
2947 looked_up:
2948 path->dentry = dentry;
2949 path->mnt = nd->path.mnt;
2950 return 1;
2951 }
2952
2953 /*
2954 * Look up and maybe create and open the last component.
2955 *
2956 * Must be called with i_mutex held on parent.
2957 *
2958 * Returns 0 if the file was successfully atomically created (if necessary) and
2959 * opened. In this case the file will be returned attached to @file.
2960 *
2961 * Returns 1 if the file was not completely opened at this time, though lookups
2962 * and creations will have been performed and the dentry returned in @path will
2963 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2964 * specified then a negative dentry may be returned.
2965 *
2966 * An error code is returned otherwise.
2967 *
2968 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2969 * cleared otherwise prior to returning.
2970 */
2971 static int lookup_open(struct nameidata *nd, struct path *path,
2972 struct file *file,
2973 const struct open_flags *op,
2974 bool got_write, int *opened)
2975 {
2976 struct dentry *dir = nd->path.dentry;
2977 struct vfsmount *mnt = nd->path.mnt;
2978 struct inode *dir_inode = dir->d_inode;
2979 struct dentry *dentry;
2980 int error;
2981 bool need_lookup;
2982
2983 *opened &= ~FILE_CREATED;
2984 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2985 if (IS_ERR(dentry))
2986 return PTR_ERR(dentry);
2987
2988 /* Cached positive dentry: will open in f_op->open */
2989 if (!need_lookup && dentry->d_inode)
2990 goto out_no_open;
2991
2992 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2993 return atomic_open(nd, dentry, path, file, op, got_write,
2994 need_lookup, opened);
2995 }
2996
2997 if (need_lookup) {
2998 BUG_ON(dentry->d_inode);
2999
3000 dentry = lookup_real(dir_inode, dentry, nd->flags);
3001 if (IS_ERR(dentry))
3002 return PTR_ERR(dentry);
3003 }
3004
3005 /* Negative dentry, just create the file */
3006 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3007 umode_t mode = op->mode;
3008 if (!IS_POSIXACL(dir->d_inode))
3009 mode &= ~current_umask();
3010 /*
3011 * This write is needed to ensure that a
3012 * rw->ro transition does not occur between
3013 * the time when the file is created and when
3014 * a permanent write count is taken through
3015 * the 'struct file' in finish_open().
3016 */
3017 if (!got_write) {
3018 error = -EROFS;
3019 goto out_dput;
3020 }
3021 *opened |= FILE_CREATED;
3022 error = security_path_mknod(&nd->path, dentry, mode, 0);
3023 if (error)
3024 goto out_dput;
3025 error = vfs_create2(mnt, dir->d_inode, dentry, mode,
3026 nd->flags & LOOKUP_EXCL);
3027 if (error)
3028 goto out_dput;
3029 }
3030 out_no_open:
3031 path->dentry = dentry;
3032 path->mnt = nd->path.mnt;
3033 return 1;
3034
3035 out_dput:
3036 dput(dentry);
3037 return error;
3038 }
3039
3040 /*
3041 * Handle the last step of open()
3042 */
3043 static int do_last(struct nameidata *nd,
3044 struct file *file, const struct open_flags *op,
3045 int *opened)
3046 {
3047 struct dentry *dir = nd->path.dentry;
3048 int open_flag = op->open_flag;
3049 bool will_truncate = (open_flag & O_TRUNC) != 0;
3050 bool got_write = false;
3051 int acc_mode = op->acc_mode;
3052 unsigned seq;
3053 struct inode *inode;
3054 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3055 struct path path;
3056 bool retried = false;
3057 int error;
3058
3059 nd->flags &= ~LOOKUP_PARENT;
3060 nd->flags |= op->intent;
3061
3062 if (nd->last_type != LAST_NORM) {
3063 error = handle_dots(nd, nd->last_type);
3064 if (unlikely(error))
3065 return error;
3066 goto finish_open;
3067 }
3068
3069 if (!(open_flag & O_CREAT)) {
3070 if (nd->last.name[nd->last.len])
3071 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3072 /* we _can_ be in RCU mode here */
3073 error = lookup_fast(nd, &path, &inode, &seq);
3074 if (likely(!error))
3075 goto finish_lookup;
3076
3077 if (error < 0)
3078 return error;
3079
3080 BUG_ON(nd->inode != dir->d_inode);
3081 } else {
3082 /* create side of things */
3083 /*
3084 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3085 * has been cleared when we got to the last component we are
3086 * about to look up
3087 */
3088 error = complete_walk(nd);
3089 if (error)
3090 return error;
3091
3092 audit_inode(nd->name, dir, LOOKUP_PARENT);
3093 /* trailing slashes? */
3094 if (unlikely(nd->last.name[nd->last.len]))
3095 return -EISDIR;
3096 }
3097
3098 retry_lookup:
3099 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3100 error = mnt_want_write(nd->path.mnt);
3101 if (!error)
3102 got_write = true;
3103 /*
3104 * do _not_ fail yet - we might not need that or fail with
3105 * a different error; let lookup_open() decide; we'll be
3106 * dropping this one anyway.
3107 */
3108 }
3109 mutex_lock(&dir->d_inode->i_mutex);
3110 error = lookup_open(nd, &path, file, op, got_write, opened);
3111 mutex_unlock(&dir->d_inode->i_mutex);
3112
3113 if (error <= 0) {
3114 if (error)
3115 goto out;
3116
3117 if ((*opened & FILE_CREATED) ||
3118 !S_ISREG(file_inode(file)->i_mode))
3119 will_truncate = false;
3120
3121 audit_inode(nd->name, file->f_path.dentry, 0);
3122 goto opened;
3123 }
3124
3125 if (*opened & FILE_CREATED) {
3126 /* Don't check for write permission, don't truncate */
3127 open_flag &= ~O_TRUNC;
3128 will_truncate = false;
3129 acc_mode = MAY_OPEN;
3130 path_to_nameidata(&path, nd);
3131 goto finish_open_created;
3132 }
3133
3134 /*
3135 * create/update audit record if it already exists.
3136 */
3137 if (d_is_positive(path.dentry))
3138 audit_inode(nd->name, path.dentry, 0);
3139
3140 /*
3141 * If atomic_open() acquired write access it is dropped now due to
3142 * possible mount and symlink following (this might be optimized away if
3143 * necessary...)
3144 */
3145 if (got_write) {
3146 mnt_drop_write(nd->path.mnt);
3147 got_write = false;
3148 }
3149
3150 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3151 path_to_nameidata(&path, nd);
3152 return -EEXIST;
3153 }
3154
3155 error = follow_managed(&path, nd);
3156 if (unlikely(error < 0))
3157 return error;
3158
3159 BUG_ON(nd->flags & LOOKUP_RCU);
3160 seq = 0; /* out of RCU mode, so the value doesn't matter */
3161 if (unlikely(d_is_negative(path.dentry))) {
3162 path_to_nameidata(&path, nd);
3163 return -ENOENT;
3164 }
3165 inode = d_backing_inode(path.dentry);
3166 finish_lookup:
3167 if (nd->depth)
3168 put_link(nd);
3169 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3170 inode, seq);
3171 if (unlikely(error))
3172 return error;
3173
3174 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3175 path_to_nameidata(&path, nd);
3176 } else {
3177 save_parent.dentry = nd->path.dentry;
3178 save_parent.mnt = mntget(path.mnt);
3179 nd->path.dentry = path.dentry;
3180
3181 }
3182 nd->inode = inode;
3183 nd->seq = seq;
3184 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3185 finish_open:
3186 error = complete_walk(nd);
3187 if (error) {
3188 path_put(&save_parent);
3189 return error;
3190 }
3191 audit_inode(nd->name, nd->path.dentry, 0);
3192 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3193 error = -ELOOP;
3194 goto out;
3195 }
3196 error = -EISDIR;
3197 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3198 goto out;
3199 error = -ENOTDIR;
3200 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3201 goto out;
3202 if (!d_is_reg(nd->path.dentry))
3203 will_truncate = false;
3204
3205 if (will_truncate) {
3206 error = mnt_want_write(nd->path.mnt);
3207 if (error)
3208 goto out;
3209 got_write = true;
3210 }
3211 finish_open_created:
3212 error = may_open(&nd->path, acc_mode, open_flag);
3213 if (error)
3214 goto out;
3215
3216 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3217 error = vfs_open(&nd->path, file, current_cred());
3218 if (!error) {
3219 *opened |= FILE_OPENED;
3220 } else {
3221 if (error == -EOPENSTALE)
3222 goto stale_open;
3223 goto out;
3224 }
3225 opened:
3226 error = open_check_o_direct(file);
3227 if (error)
3228 goto exit_fput;
3229 error = ima_file_check(file, op->acc_mode, *opened);
3230 if (error)
3231 goto exit_fput;
3232
3233 if (will_truncate) {
3234 error = handle_truncate(file);
3235 if (error)
3236 goto exit_fput;
3237 }
3238 out:
3239 if (unlikely(error > 0)) {
3240 WARN_ON(1);
3241 error = -EINVAL;
3242 }
3243 if (got_write)
3244 mnt_drop_write(nd->path.mnt);
3245 path_put(&save_parent);
3246 return error;
3247
3248 exit_fput:
3249 fput(file);
3250 goto out;
3251
3252 stale_open:
3253 /* If no saved parent or already retried then can't retry */
3254 if (!save_parent.dentry || retried)
3255 goto out;
3256
3257 BUG_ON(save_parent.dentry != dir);
3258 path_put(&nd->path);
3259 nd->path = save_parent;
3260 nd->inode = dir->d_inode;
3261 save_parent.mnt = NULL;
3262 save_parent.dentry = NULL;
3263 if (got_write) {
3264 mnt_drop_write(nd->path.mnt);
3265 got_write = false;
3266 }
3267 retried = true;
3268 goto retry_lookup;
3269 }
3270
3271 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3272 const struct open_flags *op,
3273 struct file *file, int *opened)
3274 {
3275 static const struct qstr name = QSTR_INIT("/", 1);
3276 struct dentry *child;
3277 struct inode *dir;
3278 struct path path;
3279 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3280 if (unlikely(error))
3281 return error;
3282 error = mnt_want_write(path.mnt);
3283 if (unlikely(error))
3284 goto out;
3285 dir = path.dentry->d_inode;
3286 /* we want directory to be writable */
3287 error = inode_permission2(path.mnt, dir, MAY_WRITE | MAY_EXEC);
3288 if (error)
3289 goto out2;
3290 if (!dir->i_op->tmpfile) {
3291 error = -EOPNOTSUPP;
3292 goto out2;
3293 }
3294 child = d_alloc(path.dentry, &name);
3295 if (unlikely(!child)) {
3296 error = -ENOMEM;
3297 goto out2;
3298 }
3299 dput(path.dentry);
3300 path.dentry = child;
3301 error = dir->i_op->tmpfile(dir, child, op->mode);
3302 if (error)
3303 goto out2;
3304 audit_inode(nd->name, child, 0);
3305 /* Don't check for other permissions, the inode was just created */
3306 error = may_open(&path, MAY_OPEN, op->open_flag);
3307 if (error)
3308 goto out2;
3309 file->f_path.mnt = path.mnt;
3310 error = finish_open(file, child, NULL, opened);
3311 if (error)
3312 goto out2;
3313 error = open_check_o_direct(file);
3314 if (error) {
3315 fput(file);
3316 } else if (!(op->open_flag & O_EXCL)) {
3317 struct inode *inode = file_inode(file);
3318 spin_lock(&inode->i_lock);
3319 inode->i_state |= I_LINKABLE;
3320 spin_unlock(&inode->i_lock);
3321 }
3322 out2:
3323 mnt_drop_write(path.mnt);
3324 out:
3325 path_put(&path);
3326 return error;
3327 }
3328
3329 static struct file *path_openat(struct nameidata *nd,
3330 const struct open_flags *op, unsigned flags)
3331 {
3332 const char *s;
3333 struct file *file;
3334 int opened = 0;
3335 int error;
3336
3337 file = get_empty_filp();
3338 if (IS_ERR(file))
3339 return file;
3340
3341 file->f_flags = op->open_flag;
3342
3343 if (unlikely(file->f_flags & __O_TMPFILE)) {
3344 error = do_tmpfile(nd, flags, op, file, &opened);
3345 goto out2;
3346 }
3347
3348 s = path_init(nd, flags);
3349 if (IS_ERR(s)) {
3350 put_filp(file);
3351 return ERR_CAST(s);
3352 }
3353 while (!(error = link_path_walk(s, nd)) &&
3354 (error = do_last(nd, file, op, &opened)) > 0) {
3355 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3356 s = trailing_symlink(nd);
3357 if (IS_ERR(s)) {
3358 error = PTR_ERR(s);
3359 break;
3360 }
3361 }
3362 terminate_walk(nd);
3363 out2:
3364 if (!(opened & FILE_OPENED)) {
3365 BUG_ON(!error);
3366 put_filp(file);
3367 }
3368 if (unlikely(error)) {
3369 if (error == -EOPENSTALE) {
3370 if (flags & LOOKUP_RCU)
3371 error = -ECHILD;
3372 else
3373 error = -ESTALE;
3374 }
3375 file = ERR_PTR(error);
3376 }
3377 return file;
3378 }
3379
3380 struct file *do_filp_open(int dfd, struct filename *pathname,
3381 const struct open_flags *op)
3382 {
3383 struct nameidata nd;
3384 int flags = op->lookup_flags;
3385 struct file *filp;
3386
3387 set_nameidata(&nd, dfd, pathname);
3388 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3389 if (unlikely(filp == ERR_PTR(-ECHILD)))
3390 filp = path_openat(&nd, op, flags);
3391 if (unlikely(filp == ERR_PTR(-ESTALE)))
3392 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3393 restore_nameidata();
3394 return filp;
3395 }
3396
3397 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3398 const char *name, const struct open_flags *op)
3399 {
3400 struct nameidata nd;
3401 struct file *file;
3402 struct filename *filename;
3403 int flags = op->lookup_flags | LOOKUP_ROOT;
3404
3405 nd.root.mnt = mnt;
3406 nd.root.dentry = dentry;
3407
3408 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3409 return ERR_PTR(-ELOOP);
3410
3411 filename = getname_kernel(name);
3412 if (IS_ERR(filename))
3413 return ERR_CAST(filename);
3414
3415 set_nameidata(&nd, -1, filename);
3416 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3417 if (unlikely(file == ERR_PTR(-ECHILD)))
3418 file = path_openat(&nd, op, flags);
3419 if (unlikely(file == ERR_PTR(-ESTALE)))
3420 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3421 restore_nameidata();
3422 putname(filename);
3423 return file;
3424 }
3425
3426 static struct dentry *filename_create(int dfd, struct filename *name,
3427 struct path *path, unsigned int lookup_flags)
3428 {
3429 struct dentry *dentry = ERR_PTR(-EEXIST);
3430 struct qstr last;
3431 int type;
3432 int err2;
3433 int error;
3434 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3435
3436 /*
3437 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3438 * other flags passed in are ignored!
3439 */
3440 lookup_flags &= LOOKUP_REVAL;
3441
3442 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3443 if (IS_ERR(name))
3444 return ERR_CAST(name);
3445
3446 /*
3447 * Yucky last component or no last component at all?
3448 * (foo/., foo/.., /////)
3449 */
3450 if (unlikely(type != LAST_NORM))
3451 goto out;
3452
3453 /* don't fail immediately if it's r/o, at least try to report other errors */
3454 err2 = mnt_want_write(path->mnt);
3455 /*
3456 * Do the final lookup.
3457 */
3458 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3459 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3460 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3461 if (IS_ERR(dentry))
3462 goto unlock;
3463
3464 error = -EEXIST;
3465 if (d_is_positive(dentry))
3466 goto fail;
3467
3468 /*
3469 * Special case - lookup gave negative, but... we had foo/bar/
3470 * From the vfs_mknod() POV we just have a negative dentry -
3471 * all is fine. Let's be bastards - you had / on the end, you've
3472 * been asking for (non-existent) directory. -ENOENT for you.
3473 */
3474 if (unlikely(!is_dir && last.name[last.len])) {
3475 error = -ENOENT;
3476 goto fail;
3477 }
3478 if (unlikely(err2)) {
3479 error = err2;
3480 goto fail;
3481 }
3482 putname(name);
3483 return dentry;
3484 fail:
3485 dput(dentry);
3486 dentry = ERR_PTR(error);
3487 unlock:
3488 mutex_unlock(&path->dentry->d_inode->i_mutex);
3489 if (!err2)
3490 mnt_drop_write(path->mnt);
3491 out:
3492 path_put(path);
3493 putname(name);
3494 return dentry;
3495 }
3496
3497 struct dentry *kern_path_create(int dfd, const char *pathname,
3498 struct path *path, unsigned int lookup_flags)
3499 {
3500 return filename_create(dfd, getname_kernel(pathname),
3501 path, lookup_flags);
3502 }
3503 EXPORT_SYMBOL(kern_path_create);
3504
3505 void done_path_create(struct path *path, struct dentry *dentry)
3506 {
3507 dput(dentry);
3508 mutex_unlock(&path->dentry->d_inode->i_mutex);
3509 mnt_drop_write(path->mnt);
3510 path_put(path);
3511 }
3512 EXPORT_SYMBOL(done_path_create);
3513
3514 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3515 struct path *path, unsigned int lookup_flags)
3516 {
3517 return filename_create(dfd, getname(pathname), path, lookup_flags);
3518 }
3519 EXPORT_SYMBOL(user_path_create);
3520
3521 int vfs_mknod2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3522 {
3523 int error = may_create(mnt, dir, dentry);
3524
3525 if (error)
3526 return error;
3527
3528 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3529 return -EPERM;
3530
3531 if (!dir->i_op->mknod)
3532 return -EPERM;
3533
3534 error = devcgroup_inode_mknod(mode, dev);
3535 if (error)
3536 return error;
3537
3538 error = security_inode_mknod(dir, dentry, mode, dev);
3539 if (error)
3540 return error;
3541
3542 error = dir->i_op->mknod(dir, dentry, mode, dev);
3543 if (!error)
3544 fsnotify_create(dir, dentry);
3545 return error;
3546 }
3547 EXPORT_SYMBOL(vfs_mknod2);
3548
3549 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3550 {
3551 return vfs_mknod2(NULL, dir, dentry, mode, dev);
3552 }
3553 EXPORT_SYMBOL(vfs_mknod);
3554
3555 static int may_mknod(umode_t mode)
3556 {
3557 switch (mode & S_IFMT) {
3558 case S_IFREG:
3559 case S_IFCHR:
3560 case S_IFBLK:
3561 case S_IFIFO:
3562 case S_IFSOCK:
3563 case 0: /* zero mode translates to S_IFREG */
3564 return 0;
3565 case S_IFDIR:
3566 return -EPERM;
3567 default:
3568 return -EINVAL;
3569 }
3570 }
3571
3572 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3573 unsigned, dev)
3574 {
3575 struct dentry *dentry;
3576 struct path path;
3577 int error;
3578 unsigned int lookup_flags = 0;
3579
3580 error = may_mknod(mode);
3581 if (error)
3582 return error;
3583 retry:
3584 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3585 if (IS_ERR(dentry))
3586 return PTR_ERR(dentry);
3587
3588 if (!IS_POSIXACL(path.dentry->d_inode))
3589 mode &= ~current_umask();
3590 error = security_path_mknod(&path, dentry, mode, dev);
3591 if (error)
3592 goto out;
3593 switch (mode & S_IFMT) {
3594 case 0: case S_IFREG:
3595 error = vfs_create2(path.mnt, path.dentry->d_inode,dentry,mode,true);
3596 break;
3597 case S_IFCHR: case S_IFBLK:
3598 error = vfs_mknod2(path.mnt, path.dentry->d_inode,dentry,mode,
3599 new_decode_dev(dev));
3600 break;
3601 case S_IFIFO: case S_IFSOCK:
3602 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3603 break;
3604 }
3605 out:
3606 done_path_create(&path, dentry);
3607 if (retry_estale(error, lookup_flags)) {
3608 lookup_flags |= LOOKUP_REVAL;
3609 goto retry;
3610 }
3611 return error;
3612 }
3613
3614 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3615 {
3616 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3617 }
3618
3619 int vfs_mkdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode)
3620 {
3621 int error = may_create(mnt, dir, dentry);
3622 unsigned max_links = dir->i_sb->s_max_links;
3623
3624 if (error)
3625 return error;
3626
3627 if (!dir->i_op->mkdir)
3628 return -EPERM;
3629
3630 mode &= (S_IRWXUGO|S_ISVTX);
3631 error = security_inode_mkdir(dir, dentry, mode);
3632 if (error)
3633 return error;
3634
3635 if (max_links && dir->i_nlink >= max_links)
3636 return -EMLINK;
3637
3638 error = dir->i_op->mkdir(dir, dentry, mode);
3639 if (!error)
3640 fsnotify_mkdir(dir, dentry);
3641 return error;
3642 }
3643 EXPORT_SYMBOL(vfs_mkdir2);
3644
3645 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3646 {
3647 return vfs_mkdir2(NULL, dir, dentry, mode);
3648 }
3649 EXPORT_SYMBOL(vfs_mkdir);
3650
3651 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3652 {
3653 struct dentry *dentry;
3654 struct path path;
3655 int error;
3656 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3657
3658 retry:
3659 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3660 if (IS_ERR(dentry))
3661 return PTR_ERR(dentry);
3662
3663 if (!IS_POSIXACL(path.dentry->d_inode))
3664 mode &= ~current_umask();
3665 error = security_path_mkdir(&path, dentry, mode);
3666 if (!error)
3667 error = vfs_mkdir2(path.mnt, path.dentry->d_inode, dentry, mode);
3668 done_path_create(&path, dentry);
3669 if (retry_estale(error, lookup_flags)) {
3670 lookup_flags |= LOOKUP_REVAL;
3671 goto retry;
3672 }
3673 return error;
3674 }
3675
3676 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3677 {
3678 return sys_mkdirat(AT_FDCWD, pathname, mode);
3679 }
3680
3681 /*
3682 * The dentry_unhash() helper will try to drop the dentry early: we
3683 * should have a usage count of 1 if we're the only user of this
3684 * dentry, and if that is true (possibly after pruning the dcache),
3685 * then we drop the dentry now.
3686 *
3687 * A low-level filesystem can, if it choses, legally
3688 * do a
3689 *
3690 * if (!d_unhashed(dentry))
3691 * return -EBUSY;
3692 *
3693 * if it cannot handle the case of removing a directory
3694 * that is still in use by something else..
3695 */
3696 void dentry_unhash(struct dentry *dentry)
3697 {
3698 shrink_dcache_parent(dentry);
3699 spin_lock(&dentry->d_lock);
3700 if (dentry->d_lockref.count == 1)
3701 __d_drop(dentry);
3702 spin_unlock(&dentry->d_lock);
3703 }
3704 EXPORT_SYMBOL(dentry_unhash);
3705
3706 int vfs_rmdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3707 {
3708 int error = may_delete(mnt, dir, dentry, 1);
3709
3710 if (error)
3711 return error;
3712
3713 if (!dir->i_op->rmdir)
3714 return -EPERM;
3715
3716 dget(dentry);
3717 mutex_lock(&dentry->d_inode->i_mutex);
3718
3719 error = -EBUSY;
3720 if (is_local_mountpoint(dentry))
3721 goto out;
3722
3723 error = security_inode_rmdir(dir, dentry);
3724 if (error)
3725 goto out;
3726
3727 shrink_dcache_parent(dentry);
3728 error = dir->i_op->rmdir(dir, dentry);
3729 if (error)
3730 goto out;
3731
3732 dentry->d_inode->i_flags |= S_DEAD;
3733 dont_mount(dentry);
3734 detach_mounts(dentry);
3735
3736 out:
3737 mutex_unlock(&dentry->d_inode->i_mutex);
3738 dput(dentry);
3739 if (!error)
3740 d_delete(dentry);
3741 return error;
3742 }
3743 EXPORT_SYMBOL(vfs_rmdir2);
3744
3745 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3746 {
3747 return vfs_rmdir2(NULL, dir, dentry);
3748 }
3749 EXPORT_SYMBOL(vfs_rmdir);
3750
3751 static long do_rmdir(int dfd, const char __user *pathname)
3752 {
3753 int error = 0;
3754 struct filename *name;
3755 struct dentry *dentry;
3756 struct path path;
3757 struct qstr last;
3758 int type;
3759 unsigned int lookup_flags = 0;
3760 retry:
3761 name = user_path_parent(dfd, pathname,
3762 &path, &last, &type, lookup_flags);
3763 if (IS_ERR(name))
3764 return PTR_ERR(name);
3765
3766 switch (type) {
3767 case LAST_DOTDOT:
3768 error = -ENOTEMPTY;
3769 goto exit1;
3770 case LAST_DOT:
3771 error = -EINVAL;
3772 goto exit1;
3773 case LAST_ROOT:
3774 error = -EBUSY;
3775 goto exit1;
3776 }
3777
3778 error = mnt_want_write(path.mnt);
3779 if (error)
3780 goto exit1;
3781
3782 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3783 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3784 error = PTR_ERR(dentry);
3785 if (IS_ERR(dentry))
3786 goto exit2;
3787 if (!dentry->d_inode) {
3788 error = -ENOENT;
3789 goto exit3;
3790 }
3791 error = security_path_rmdir(&path, dentry);
3792 if (error)
3793 goto exit3;
3794 error = vfs_rmdir2(path.mnt, path.dentry->d_inode, dentry);
3795 exit3:
3796 dput(dentry);
3797 exit2:
3798 mutex_unlock(&path.dentry->d_inode->i_mutex);
3799 mnt_drop_write(path.mnt);
3800 exit1:
3801 path_put(&path);
3802 putname(name);
3803 if (retry_estale(error, lookup_flags)) {
3804 lookup_flags |= LOOKUP_REVAL;
3805 goto retry;
3806 }
3807 return error;
3808 }
3809
3810 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3811 {
3812 return do_rmdir(AT_FDCWD, pathname);
3813 }
3814
3815 /**
3816 * vfs_unlink - unlink a filesystem object
3817 * @dir: parent directory
3818 * @dentry: victim
3819 * @delegated_inode: returns victim inode, if the inode is delegated.
3820 *
3821 * The caller must hold dir->i_mutex.
3822 *
3823 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3824 * return a reference to the inode in delegated_inode. The caller
3825 * should then break the delegation on that inode and retry. Because
3826 * breaking a delegation may take a long time, the caller should drop
3827 * dir->i_mutex before doing so.
3828 *
3829 * Alternatively, a caller may pass NULL for delegated_inode. This may
3830 * be appropriate for callers that expect the underlying filesystem not
3831 * to be NFS exported.
3832 */
3833 int vfs_unlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3834 {
3835 struct inode *target = dentry->d_inode;
3836 int error = may_delete(mnt, dir, dentry, 0);
3837
3838 if (error)
3839 return error;
3840
3841 if (!dir->i_op->unlink)
3842 return -EPERM;
3843
3844 mutex_lock(&target->i_mutex);
3845 if (is_local_mountpoint(dentry))
3846 error = -EBUSY;
3847 else {
3848 error = security_inode_unlink(dir, dentry);
3849 if (!error) {
3850 error = try_break_deleg(target, delegated_inode);
3851 if (error)
3852 goto out;
3853 error = dir->i_op->unlink(dir, dentry);
3854 if (!error) {
3855 dont_mount(dentry);
3856 detach_mounts(dentry);
3857 }
3858 }
3859 }
3860 out:
3861 mutex_unlock(&target->i_mutex);
3862
3863 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3864 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3865 fsnotify_link_count(target);
3866 d_delete(dentry);
3867 }
3868
3869 return error;
3870 }
3871 EXPORT_SYMBOL(vfs_unlink2);
3872
3873 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3874 {
3875 return vfs_unlink2(NULL, dir, dentry, delegated_inode);
3876 }
3877 EXPORT_SYMBOL(vfs_unlink);
3878
3879 /*
3880 * Make sure that the actual truncation of the file will occur outside its
3881 * directory's i_mutex. Truncate can take a long time if there is a lot of
3882 * writeout happening, and we don't want to prevent access to the directory
3883 * while waiting on the I/O.
3884 */
3885 static long do_unlinkat(int dfd, const char __user *pathname)
3886 {
3887 int error;
3888 struct filename *name;
3889 struct dentry *dentry;
3890 struct path path;
3891 struct qstr last;
3892 int type;
3893 struct inode *inode = NULL;
3894 struct inode *delegated_inode = NULL;
3895 unsigned int lookup_flags = 0;
3896 retry:
3897 name = user_path_parent(dfd, pathname,
3898 &path, &last, &type, lookup_flags);
3899 if (IS_ERR(name))
3900 return PTR_ERR(name);
3901
3902 error = -EISDIR;
3903 if (type != LAST_NORM)
3904 goto exit1;
3905
3906 error = mnt_want_write(path.mnt);
3907 if (error)
3908 goto exit1;
3909 retry_deleg:
3910 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3911 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3912 error = PTR_ERR(dentry);
3913 if (!IS_ERR(dentry)) {
3914 /* Why not before? Because we want correct error value */
3915 if (last.name[last.len])
3916 goto slashes;
3917 inode = dentry->d_inode;
3918 if (d_is_negative(dentry))
3919 goto slashes;
3920 ihold(inode);
3921 error = security_path_unlink(&path, dentry);
3922 if (error)
3923 goto exit2;
3924 error = vfs_unlink2(path.mnt, path.dentry->d_inode, dentry, &delegated_inode);
3925 exit2:
3926 dput(dentry);
3927 }
3928 mutex_unlock(&path.dentry->d_inode->i_mutex);
3929 if (inode)
3930 iput(inode); /* truncate the inode here */
3931 inode = NULL;
3932 if (delegated_inode) {
3933 error = break_deleg_wait(&delegated_inode);
3934 if (!error)
3935 goto retry_deleg;
3936 }
3937 mnt_drop_write(path.mnt);
3938 exit1:
3939 path_put(&path);
3940 putname(name);
3941 if (retry_estale(error, lookup_flags)) {
3942 lookup_flags |= LOOKUP_REVAL;
3943 inode = NULL;
3944 goto retry;
3945 }
3946 return error;
3947
3948 slashes:
3949 if (d_is_negative(dentry))
3950 error = -ENOENT;
3951 else if (d_is_dir(dentry))
3952 error = -EISDIR;
3953 else
3954 error = -ENOTDIR;
3955 goto exit2;
3956 }
3957
3958 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3959 {
3960 if ((flag & ~AT_REMOVEDIR) != 0)
3961 return -EINVAL;
3962
3963 if (flag & AT_REMOVEDIR)
3964 return do_rmdir(dfd, pathname);
3965
3966 return do_unlinkat(dfd, pathname);
3967 }
3968
3969 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3970 {
3971 return do_unlinkat(AT_FDCWD, pathname);
3972 }
3973
3974 int vfs_symlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, const char *oldname)
3975 {
3976 int error = may_create(mnt, dir, dentry);
3977
3978 if (error)
3979 return error;
3980
3981 if (!dir->i_op->symlink)
3982 return -EPERM;
3983
3984 error = security_inode_symlink(dir, dentry, oldname);
3985 if (error)
3986 return error;
3987
3988 error = dir->i_op->symlink(dir, dentry, oldname);
3989 if (!error)
3990 fsnotify_create(dir, dentry);
3991 return error;
3992 }
3993 EXPORT_SYMBOL(vfs_symlink2);
3994
3995 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3996 {
3997 return vfs_symlink2(NULL, dir, dentry, oldname);
3998 }
3999 EXPORT_SYMBOL(vfs_symlink);
4000
4001 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4002 int, newdfd, const char __user *, newname)
4003 {
4004 int error;
4005 struct filename *from;
4006 struct dentry *dentry;
4007 struct path path;
4008 unsigned int lookup_flags = 0;
4009
4010 from = getname(oldname);
4011 if (IS_ERR(from))
4012 return PTR_ERR(from);
4013 retry:
4014 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4015 error = PTR_ERR(dentry);
4016 if (IS_ERR(dentry))
4017 goto out_putname;
4018
4019 error = security_path_symlink(&path, dentry, from->name);
4020 if (!error)
4021 error = vfs_symlink2(path.mnt, path.dentry->d_inode, dentry, from->name);
4022 done_path_create(&path, dentry);
4023 if (retry_estale(error, lookup_flags)) {
4024 lookup_flags |= LOOKUP_REVAL;
4025 goto retry;
4026 }
4027 out_putname:
4028 putname(from);
4029 return error;
4030 }
4031
4032 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4033 {
4034 return sys_symlinkat(oldname, AT_FDCWD, newname);
4035 }
4036
4037 /**
4038 * vfs_link - create a new link
4039 * @old_dentry: object to be linked
4040 * @dir: new parent
4041 * @new_dentry: where to create the new link
4042 * @delegated_inode: returns inode needing a delegation break
4043 *
4044 * The caller must hold dir->i_mutex
4045 *
4046 * If vfs_link discovers a delegation on the to-be-linked file in need
4047 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4048 * inode in delegated_inode. The caller should then break the delegation
4049 * and retry. Because breaking a delegation may take a long time, the
4050 * caller should drop the i_mutex before doing so.
4051 *
4052 * Alternatively, a caller may pass NULL for delegated_inode. This may
4053 * be appropriate for callers that expect the underlying filesystem not
4054 * to be NFS exported.
4055 */
4056 int vfs_link2(struct vfsmount *mnt, struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4057 {
4058 struct inode *inode = old_dentry->d_inode;
4059 unsigned max_links = dir->i_sb->s_max_links;
4060 int error;
4061
4062 if (!inode)
4063 return -ENOENT;
4064
4065 error = may_create(mnt, dir, new_dentry);
4066 if (error)
4067 return error;
4068
4069 if (dir->i_sb != inode->i_sb)
4070 return -EXDEV;
4071
4072 /*
4073 * A link to an append-only or immutable file cannot be created.
4074 */
4075 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4076 return -EPERM;
4077 if (!dir->i_op->link)
4078 return -EPERM;
4079 if (S_ISDIR(inode->i_mode))
4080 return -EPERM;
4081
4082 error = security_inode_link(old_dentry, dir, new_dentry);
4083 if (error)
4084 return error;
4085
4086 mutex_lock(&inode->i_mutex);
4087 /* Make sure we don't allow creating hardlink to an unlinked file */
4088 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4089 error = -ENOENT;
4090 else if (max_links && inode->i_nlink >= max_links)
4091 error = -EMLINK;
4092 else {
4093 error = try_break_deleg(inode, delegated_inode);
4094 if (!error)
4095 error = dir->i_op->link(old_dentry, dir, new_dentry);
4096 }
4097
4098 if (!error && (inode->i_state & I_LINKABLE)) {
4099 spin_lock(&inode->i_lock);
4100 inode->i_state &= ~I_LINKABLE;
4101 spin_unlock(&inode->i_lock);
4102 }
4103 mutex_unlock(&inode->i_mutex);
4104 if (!error)
4105 fsnotify_link(dir, inode, new_dentry);
4106 return error;
4107 }
4108 EXPORT_SYMBOL(vfs_link2);
4109
4110 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4111 {
4112 return vfs_link2(NULL, old_dentry, dir, new_dentry, delegated_inode);
4113 }
4114 EXPORT_SYMBOL(vfs_link);
4115
4116 /*
4117 * Hardlinks are often used in delicate situations. We avoid
4118 * security-related surprises by not following symlinks on the
4119 * newname. --KAB
4120 *
4121 * We don't follow them on the oldname either to be compatible
4122 * with linux 2.0, and to avoid hard-linking to directories
4123 * and other special files. --ADM
4124 */
4125 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4126 int, newdfd, const char __user *, newname, int, flags)
4127 {
4128 struct dentry *new_dentry;
4129 struct path old_path, new_path;
4130 struct inode *delegated_inode = NULL;
4131 int how = 0;
4132 int error;
4133
4134 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4135 return -EINVAL;
4136 /*
4137 * To use null names we require CAP_DAC_READ_SEARCH
4138 * This ensures that not everyone will be able to create
4139 * handlink using the passed filedescriptor.
4140 */
4141 if (flags & AT_EMPTY_PATH) {
4142 if (!capable(CAP_DAC_READ_SEARCH))
4143 return -ENOENT;
4144 how = LOOKUP_EMPTY;
4145 }
4146
4147 if (flags & AT_SYMLINK_FOLLOW)
4148 how |= LOOKUP_FOLLOW;
4149 retry:
4150 error = user_path_at(olddfd, oldname, how, &old_path);
4151 if (error)
4152 return error;
4153
4154 new_dentry = user_path_create(newdfd, newname, &new_path,
4155 (how & LOOKUP_REVAL));
4156 error = PTR_ERR(new_dentry);
4157 if (IS_ERR(new_dentry))
4158 goto out;
4159
4160 error = -EXDEV;
4161 if (old_path.mnt != new_path.mnt)
4162 goto out_dput;
4163 error = may_linkat(&old_path);
4164 if (unlikely(error))
4165 goto out_dput;
4166 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4167 if (error)
4168 goto out_dput;
4169 error = vfs_link2(old_path.mnt, old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4170 out_dput:
4171 done_path_create(&new_path, new_dentry);
4172 if (delegated_inode) {
4173 error = break_deleg_wait(&delegated_inode);
4174 if (!error) {
4175 path_put(&old_path);
4176 goto retry;
4177 }
4178 }
4179 if (retry_estale(error, how)) {
4180 path_put(&old_path);
4181 how |= LOOKUP_REVAL;
4182 goto retry;
4183 }
4184 out:
4185 path_put(&old_path);
4186
4187 return error;
4188 }
4189
4190 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4191 {
4192 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4193 }
4194
4195 /**
4196 * vfs_rename - rename a filesystem object
4197 * @old_dir: parent of source
4198 * @old_dentry: source
4199 * @new_dir: parent of destination
4200 * @new_dentry: destination
4201 * @delegated_inode: returns an inode needing a delegation break
4202 * @flags: rename flags
4203 *
4204 * The caller must hold multiple mutexes--see lock_rename()).
4205 *
4206 * If vfs_rename discovers a delegation in need of breaking at either
4207 * the source or destination, it will return -EWOULDBLOCK and return a
4208 * reference to the inode in delegated_inode. The caller should then
4209 * break the delegation and retry. Because breaking a delegation may
4210 * take a long time, the caller should drop all locks before doing
4211 * so.
4212 *
4213 * Alternatively, a caller may pass NULL for delegated_inode. This may
4214 * be appropriate for callers that expect the underlying filesystem not
4215 * to be NFS exported.
4216 *
4217 * The worst of all namespace operations - renaming directory. "Perverted"
4218 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4219 * Problems:
4220 * a) we can get into loop creation.
4221 * b) race potential - two innocent renames can create a loop together.
4222 * That's where 4.4 screws up. Current fix: serialization on
4223 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4224 * story.
4225 * c) we have to lock _four_ objects - parents and victim (if it exists),
4226 * and source (if it is not a directory).
4227 * And that - after we got ->i_mutex on parents (until then we don't know
4228 * whether the target exists). Solution: try to be smart with locking
4229 * order for inodes. We rely on the fact that tree topology may change
4230 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4231 * move will be locked. Thus we can rank directories by the tree
4232 * (ancestors first) and rank all non-directories after them.
4233 * That works since everybody except rename does "lock parent, lookup,
4234 * lock child" and rename is under ->s_vfs_rename_mutex.
4235 * HOWEVER, it relies on the assumption that any object with ->lookup()
4236 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4237 * we'd better make sure that there's no link(2) for them.
4238 * d) conversion from fhandle to dentry may come in the wrong moment - when
4239 * we are removing the target. Solution: we will have to grab ->i_mutex
4240 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4241 * ->i_mutex on parents, which works but leads to some truly excessive
4242 * locking].
4243 */
4244 int vfs_rename2(struct vfsmount *mnt,
4245 struct inode *old_dir, struct dentry *old_dentry,
4246 struct inode *new_dir, struct dentry *new_dentry,
4247 struct inode **delegated_inode, unsigned int flags)
4248 {
4249 int error;
4250 bool is_dir = d_is_dir(old_dentry);
4251 struct inode *source = old_dentry->d_inode;
4252 struct inode *target = new_dentry->d_inode;
4253 bool new_is_dir = false;
4254 unsigned max_links = new_dir->i_sb->s_max_links;
4255 struct name_snapshot old_name;
4256
4257 /*
4258 * Check source == target.
4259 * On overlayfs need to look at underlying inodes.
4260 */
4261 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4262 return 0;
4263
4264 error = may_delete(mnt, old_dir, old_dentry, is_dir);
4265 if (error)
4266 return error;
4267
4268 if (!target) {
4269 error = may_create(mnt, new_dir, new_dentry);
4270 } else {
4271 new_is_dir = d_is_dir(new_dentry);
4272
4273 if (!(flags & RENAME_EXCHANGE))
4274 error = may_delete(mnt, new_dir, new_dentry, is_dir);
4275 else
4276 error = may_delete(mnt, new_dir, new_dentry, new_is_dir);
4277 }
4278 if (error)
4279 return error;
4280
4281 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4282 return -EPERM;
4283
4284 if (flags && !old_dir->i_op->rename2)
4285 return -EINVAL;
4286
4287 /*
4288 * If we are going to change the parent - check write permissions,
4289 * we'll need to flip '..'.
4290 */
4291 if (new_dir != old_dir) {
4292 if (is_dir) {
4293 error = inode_permission2(mnt, source, MAY_WRITE);
4294 if (error)
4295 return error;
4296 }
4297 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4298 error = inode_permission2(mnt, target, MAY_WRITE);
4299 if (error)
4300 return error;
4301 }
4302 }
4303
4304 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4305 flags);
4306 if (error)
4307 return error;
4308
4309 take_dentry_name_snapshot(&old_name, old_dentry);
4310 dget(new_dentry);
4311 if (!is_dir || (flags & RENAME_EXCHANGE))
4312 lock_two_nondirectories(source, target);
4313 else if (target)
4314 mutex_lock(&target->i_mutex);
4315
4316 error = -EBUSY;
4317 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4318 goto out;
4319
4320 if (max_links && new_dir != old_dir) {
4321 error = -EMLINK;
4322 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4323 goto out;
4324 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4325 old_dir->i_nlink >= max_links)
4326 goto out;
4327 }
4328 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4329 shrink_dcache_parent(new_dentry);
4330 if (!is_dir) {
4331 error = try_break_deleg(source, delegated_inode);
4332 if (error)
4333 goto out;
4334 }
4335 if (target && !new_is_dir) {
4336 error = try_break_deleg(target, delegated_inode);
4337 if (error)
4338 goto out;
4339 }
4340 if (!old_dir->i_op->rename2) {
4341 error = old_dir->i_op->rename(old_dir, old_dentry,
4342 new_dir, new_dentry);
4343 } else {
4344 WARN_ON(old_dir->i_op->rename != NULL);
4345 error = old_dir->i_op->rename2(old_dir, old_dentry,
4346 new_dir, new_dentry, flags);
4347 }
4348 if (error)
4349 goto out;
4350
4351 if (!(flags & RENAME_EXCHANGE) && target) {
4352 if (is_dir)
4353 target->i_flags |= S_DEAD;
4354 dont_mount(new_dentry);
4355 detach_mounts(new_dentry);
4356 }
4357 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4358 if (!(flags & RENAME_EXCHANGE))
4359 d_move(old_dentry, new_dentry);
4360 else
4361 d_exchange(old_dentry, new_dentry);
4362 }
4363 out:
4364 if (!is_dir || (flags & RENAME_EXCHANGE))
4365 unlock_two_nondirectories(source, target);
4366 else if (target)
4367 mutex_unlock(&target->i_mutex);
4368 dput(new_dentry);
4369 if (!error) {
4370 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4371 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4372 if (flags & RENAME_EXCHANGE) {
4373 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4374 new_is_dir, NULL, new_dentry);
4375 }
4376 }
4377 release_dentry_name_snapshot(&old_name);
4378
4379 return error;
4380 }
4381 EXPORT_SYMBOL(vfs_rename2);
4382
4383 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4384 struct inode *new_dir, struct dentry *new_dentry,
4385 struct inode **delegated_inode, unsigned int flags)
4386 {
4387 return vfs_rename2(NULL, old_dir, old_dentry, new_dir, new_dentry, delegated_inode, flags);
4388 }
4389 EXPORT_SYMBOL(vfs_rename);
4390
4391 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4392 int, newdfd, const char __user *, newname, unsigned int, flags)
4393 {
4394 struct dentry *old_dentry, *new_dentry;
4395 struct dentry *trap;
4396 struct path old_path, new_path;
4397 struct qstr old_last, new_last;
4398 int old_type, new_type;
4399 struct inode *delegated_inode = NULL;
4400 struct filename *from;
4401 struct filename *to;
4402 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4403 bool should_retry = false;
4404 int error;
4405
4406 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4407 return -EINVAL;
4408
4409 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4410 (flags & RENAME_EXCHANGE))
4411 return -EINVAL;
4412
4413 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4414 return -EPERM;
4415
4416 if (flags & RENAME_EXCHANGE)
4417 target_flags = 0;
4418
4419 retry:
4420 from = user_path_parent(olddfd, oldname,
4421 &old_path, &old_last, &old_type, lookup_flags);
4422 if (IS_ERR(from)) {
4423 error = PTR_ERR(from);
4424 goto exit;
4425 }
4426
4427 to = user_path_parent(newdfd, newname,
4428 &new_path, &new_last, &new_type, lookup_flags);
4429 if (IS_ERR(to)) {
4430 error = PTR_ERR(to);
4431 goto exit1;
4432 }
4433
4434 error = -EXDEV;
4435 if (old_path.mnt != new_path.mnt)
4436 goto exit2;
4437
4438 error = -EBUSY;
4439 if (old_type != LAST_NORM)
4440 goto exit2;
4441
4442 if (flags & RENAME_NOREPLACE)
4443 error = -EEXIST;
4444 if (new_type != LAST_NORM)
4445 goto exit2;
4446
4447 error = mnt_want_write(old_path.mnt);
4448 if (error)
4449 goto exit2;
4450
4451 retry_deleg:
4452 trap = lock_rename(new_path.dentry, old_path.dentry);
4453
4454 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4455 error = PTR_ERR(old_dentry);
4456 if (IS_ERR(old_dentry))
4457 goto exit3;
4458 /* source must exist */
4459 error = -ENOENT;
4460 if (d_is_negative(old_dentry))
4461 goto exit4;
4462 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4463 error = PTR_ERR(new_dentry);
4464 if (IS_ERR(new_dentry))
4465 goto exit4;
4466 error = -EEXIST;
4467 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4468 goto exit5;
4469 if (flags & RENAME_EXCHANGE) {
4470 error = -ENOENT;
4471 if (d_is_negative(new_dentry))
4472 goto exit5;
4473
4474 if (!d_is_dir(new_dentry)) {
4475 error = -ENOTDIR;
4476 if (new_last.name[new_last.len])
4477 goto exit5;
4478 }
4479 }
4480 /* unless the source is a directory trailing slashes give -ENOTDIR */
4481 if (!d_is_dir(old_dentry)) {
4482 error = -ENOTDIR;
4483 if (old_last.name[old_last.len])
4484 goto exit5;
4485 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4486 goto exit5;
4487 }
4488 /* source should not be ancestor of target */
4489 error = -EINVAL;
4490 if (old_dentry == trap)
4491 goto exit5;
4492 /* target should not be an ancestor of source */
4493 if (!(flags & RENAME_EXCHANGE))
4494 error = -ENOTEMPTY;
4495 if (new_dentry == trap)
4496 goto exit5;
4497
4498 error = security_path_rename(&old_path, old_dentry,
4499 &new_path, new_dentry, flags);
4500 if (error)
4501 goto exit5;
4502 error = vfs_rename2(old_path.mnt, old_path.dentry->d_inode, old_dentry,
4503 new_path.dentry->d_inode, new_dentry,
4504 &delegated_inode, flags);
4505 exit5:
4506 dput(new_dentry);
4507 exit4:
4508 dput(old_dentry);
4509 exit3:
4510 unlock_rename(new_path.dentry, old_path.dentry);
4511 if (delegated_inode) {
4512 error = break_deleg_wait(&delegated_inode);
4513 if (!error)
4514 goto retry_deleg;
4515 }
4516 mnt_drop_write(old_path.mnt);
4517 exit2:
4518 if (retry_estale(error, lookup_flags))
4519 should_retry = true;
4520 path_put(&new_path);
4521 putname(to);
4522 exit1:
4523 path_put(&old_path);
4524 putname(from);
4525 if (should_retry) {
4526 should_retry = false;
4527 lookup_flags |= LOOKUP_REVAL;
4528 goto retry;
4529 }
4530 exit:
4531 return error;
4532 }
4533
4534 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4535 int, newdfd, const char __user *, newname)
4536 {
4537 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4538 }
4539
4540 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4541 {
4542 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4543 }
4544
4545 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4546 {
4547 int error = may_create(NULL, dir, dentry);
4548 if (error)
4549 return error;
4550
4551 if (!dir->i_op->mknod)
4552 return -EPERM;
4553
4554 return dir->i_op->mknod(dir, dentry,
4555 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4556 }
4557 EXPORT_SYMBOL(vfs_whiteout);
4558
4559 int readlink_copy(char __user *buffer, int buflen, const char *link)
4560 {
4561 int len = PTR_ERR(link);
4562 if (IS_ERR(link))
4563 goto out;
4564
4565 len = strlen(link);
4566 if (len > (unsigned) buflen)
4567 len = buflen;
4568 if (copy_to_user(buffer, link, len))
4569 len = -EFAULT;
4570 out:
4571 return len;
4572 }
4573 EXPORT_SYMBOL(readlink_copy);
4574
4575 /*
4576 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4577 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4578 * using) it for any given inode is up to filesystem.
4579 */
4580 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4581 {
4582 void *cookie;
4583 struct inode *inode = d_inode(dentry);
4584 const char *link = inode->i_link;
4585 int res;
4586
4587 if (!link) {
4588 link = inode->i_op->follow_link(dentry, &cookie);
4589 if (IS_ERR(link))
4590 return PTR_ERR(link);
4591 }
4592 res = readlink_copy(buffer, buflen, link);
4593 if (inode->i_op->put_link)
4594 inode->i_op->put_link(inode, cookie);
4595 return res;
4596 }
4597 EXPORT_SYMBOL(generic_readlink);
4598
4599 /* get the link contents into pagecache */
4600 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4601 {
4602 char *kaddr;
4603 struct page *page;
4604 struct address_space *mapping = dentry->d_inode->i_mapping;
4605 page = read_mapping_page(mapping, 0, NULL);
4606 if (IS_ERR(page))
4607 return (char*)page;
4608 *ppage = page;
4609 kaddr = kmap(page);
4610 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4611 return kaddr;
4612 }
4613
4614 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4615 {
4616 struct page *page = NULL;
4617 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4618 if (page) {
4619 kunmap(page);
4620 page_cache_release(page);
4621 }
4622 return res;
4623 }
4624 EXPORT_SYMBOL(page_readlink);
4625
4626 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4627 {
4628 struct page *page = NULL;
4629 char *res = page_getlink(dentry, &page);
4630 if (!IS_ERR(res))
4631 *cookie = page;
4632 return res;
4633 }
4634 EXPORT_SYMBOL(page_follow_link_light);
4635
4636 void page_put_link(struct inode *unused, void *cookie)
4637 {
4638 struct page *page = cookie;
4639 kunmap(page);
4640 page_cache_release(page);
4641 }
4642 EXPORT_SYMBOL(page_put_link);
4643
4644 /*
4645 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4646 */
4647 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4648 {
4649 struct address_space *mapping = inode->i_mapping;
4650 struct page *page;
4651 void *fsdata;
4652 int err;
4653 char *kaddr;
4654 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4655 if (nofs)
4656 flags |= AOP_FLAG_NOFS;
4657
4658 retry:
4659 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4660 flags, &page, &fsdata);
4661 if (err)
4662 goto fail;
4663
4664 kaddr = kmap_atomic(page);
4665 memcpy(kaddr, symname, len-1);
4666 kunmap_atomic(kaddr);
4667
4668 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4669 page, fsdata);
4670 if (err < 0)
4671 goto fail;
4672 if (err < len-1)
4673 goto retry;
4674
4675 mark_inode_dirty(inode);
4676 return 0;
4677 fail:
4678 return err;
4679 }
4680 EXPORT_SYMBOL(__page_symlink);
4681
4682 int page_symlink(struct inode *inode, const char *symname, int len)
4683 {
4684 return __page_symlink(inode, symname, len,
4685 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4686 }
4687 EXPORT_SYMBOL(page_symlink);
4688
4689 const struct inode_operations page_symlink_inode_operations = {
4690 .readlink = generic_readlink,
4691 .follow_link = page_follow_link_light,
4692 .put_link = page_put_link,
4693 };
4694 EXPORT_SYMBOL(page_symlink_inode_operations);