Merge tag 'powerpc-4.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41
42 #include "internal.h"
43 #include "mount.h"
44
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
50 *
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
57 *
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
61 *
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
64 *
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
71 */
72
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
80 *
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
88 */
89
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
92 *
93 * [10-Sep-98 Alan Modra] Another symlink change.
94 */
95
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
103 *
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
109 */
110 /*
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
114 */
115
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
119 *
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
122 */
123
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
125
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 struct filename *result;
130 char *kname;
131 int len;
132
133 result = audit_reusename(filename);
134 if (result)
135 return result;
136
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
140
141 /*
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
144 */
145 kname = (char *)result->iname;
146 result->name = kname;
147
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
152 }
153
154 /*
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
159 */
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
163
164 /*
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
168 */
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
173 }
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
180 }
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
185 }
186 }
187
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
196 }
197 }
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203 }
204
205 struct filename *
206 getname(const char __user * filename)
207 {
208 return getname_flags(filename, 0, NULL);
209 }
210
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 struct filename *result;
215 int len = strlen(filename) + 1;
216
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
220
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
225
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
228 __putname(result);
229 return ERR_PTR(-ENOMEM);
230 }
231 tmp->name = (char *)result;
232 result = tmp;
233 } else {
234 __putname(result);
235 return ERR_PTR(-ENAMETOOLONG);
236 }
237 memcpy((char *)result->name, filename, len);
238 result->uptr = NULL;
239 result->aname = NULL;
240 result->refcnt = 1;
241 audit_getname(result);
242
243 return result;
244 }
245
246 void putname(struct filename *name)
247 {
248 BUG_ON(name->refcnt <= 0);
249
250 if (--name->refcnt > 0)
251 return;
252
253 if (name->name != name->iname) {
254 __putname(name->name);
255 kfree(name);
256 } else
257 __putname(name);
258 }
259
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
264
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 if (!acl)
268 return -EAGAIN;
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
271 return -ECHILD;
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 }
274
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
276 if (IS_ERR(acl))
277 return PTR_ERR(acl);
278 if (acl) {
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
281 return error;
282 }
283 #endif
284
285 return -EAGAIN;
286 }
287
288 /*
289 * This does the basic permission checking
290 */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 unsigned int mode = inode->i_mode;
294
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 mode >>= 6;
297 else {
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
301 return error;
302 }
303
304 if (in_group_p(inode->i_gid))
305 mode >>= 3;
306 }
307
308 /*
309 * If the DACs are ok we don't need any capability check.
310 */
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 return 0;
313 return -EACCES;
314 }
315
316 /**
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320 *
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
325 *
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
329 */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 int ret;
333
334 /*
335 * Do the basic permission checks.
336 */
337 ret = acl_permission_check(inode, mask);
338 if (ret != -EACCES)
339 return ret;
340
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
348 return 0;
349 return -EACCES;
350 }
351
352 /*
353 * Searching includes executable on directories, else just read.
354 */
355 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 if (mask == MAY_READ)
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
358 return 0;
359 /*
360 * Read/write DACs are always overridable.
361 * Executable DACs are overridable when there is
362 * at least one exec bit set.
363 */
364 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
366 return 0;
367
368 return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371
372 /*
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
377 */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
383
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
388 }
389 return generic_permission(inode, mask);
390 }
391
392 /**
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396 *
397 * Check for read/write/execute permissions on an inode.
398 *
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400 *
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
403 */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 int retval;
407
408 if (unlikely(mask & MAY_WRITE)) {
409 /*
410 * Nobody gets write access to an immutable file.
411 */
412 if (IS_IMMUTABLE(inode))
413 return -EPERM;
414
415 /*
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
418 * to the vfs.
419 */
420 if (HAS_UNMAPPED_ID(inode))
421 return -EACCES;
422 }
423
424 retval = do_inode_permission(inode, mask);
425 if (retval)
426 return retval;
427
428 retval = devcgroup_inode_permission(inode, mask);
429 if (retval)
430 return retval;
431
432 return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435
436 /**
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441 *
442 * Separate out file-system wide checks from inode-specific permission checks.
443 */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
448
449 /* Nobody gets write access to a read-only fs. */
450 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
451 return -EROFS;
452 }
453 return 0;
454 }
455
456 /**
457 * inode_permission - Check for access rights to a given inode
458 * @inode: Inode to check permission on
459 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
460 *
461 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
462 * this, letting us set arbitrary permissions for filesystem access without
463 * changing the "normal" UIDs which are used for other things.
464 *
465 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
466 */
467 int inode_permission(struct inode *inode, int mask)
468 {
469 int retval;
470
471 retval = sb_permission(inode->i_sb, inode, mask);
472 if (retval)
473 return retval;
474 return __inode_permission(inode, mask);
475 }
476 EXPORT_SYMBOL(inode_permission);
477
478 /**
479 * path_get - get a reference to a path
480 * @path: path to get the reference to
481 *
482 * Given a path increment the reference count to the dentry and the vfsmount.
483 */
484 void path_get(const struct path *path)
485 {
486 mntget(path->mnt);
487 dget(path->dentry);
488 }
489 EXPORT_SYMBOL(path_get);
490
491 /**
492 * path_put - put a reference to a path
493 * @path: path to put the reference to
494 *
495 * Given a path decrement the reference count to the dentry and the vfsmount.
496 */
497 void path_put(const struct path *path)
498 {
499 dput(path->dentry);
500 mntput(path->mnt);
501 }
502 EXPORT_SYMBOL(path_put);
503
504 #define EMBEDDED_LEVELS 2
505 struct nameidata {
506 struct path path;
507 struct qstr last;
508 struct path root;
509 struct inode *inode; /* path.dentry.d_inode */
510 unsigned int flags;
511 unsigned seq, m_seq;
512 int last_type;
513 unsigned depth;
514 int total_link_count;
515 struct saved {
516 struct path link;
517 struct delayed_call done;
518 const char *name;
519 unsigned seq;
520 } *stack, internal[EMBEDDED_LEVELS];
521 struct filename *name;
522 struct nameidata *saved;
523 struct inode *link_inode;
524 unsigned root_seq;
525 int dfd;
526 } __randomize_layout;
527
528 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
529 {
530 struct nameidata *old = current->nameidata;
531 p->stack = p->internal;
532 p->dfd = dfd;
533 p->name = name;
534 p->total_link_count = old ? old->total_link_count : 0;
535 p->saved = old;
536 current->nameidata = p;
537 }
538
539 static void restore_nameidata(void)
540 {
541 struct nameidata *now = current->nameidata, *old = now->saved;
542
543 current->nameidata = old;
544 if (old)
545 old->total_link_count = now->total_link_count;
546 if (now->stack != now->internal)
547 kfree(now->stack);
548 }
549
550 static int __nd_alloc_stack(struct nameidata *nd)
551 {
552 struct saved *p;
553
554 if (nd->flags & LOOKUP_RCU) {
555 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
556 GFP_ATOMIC);
557 if (unlikely(!p))
558 return -ECHILD;
559 } else {
560 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
561 GFP_KERNEL);
562 if (unlikely(!p))
563 return -ENOMEM;
564 }
565 memcpy(p, nd->internal, sizeof(nd->internal));
566 nd->stack = p;
567 return 0;
568 }
569
570 /**
571 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
572 * @path: nameidate to verify
573 *
574 * Rename can sometimes move a file or directory outside of a bind
575 * mount, path_connected allows those cases to be detected.
576 */
577 static bool path_connected(const struct path *path)
578 {
579 struct vfsmount *mnt = path->mnt;
580
581 /* Only bind mounts can have disconnected paths */
582 if (mnt->mnt_root == mnt->mnt_sb->s_root)
583 return true;
584
585 return is_subdir(path->dentry, mnt->mnt_root);
586 }
587
588 static inline int nd_alloc_stack(struct nameidata *nd)
589 {
590 if (likely(nd->depth != EMBEDDED_LEVELS))
591 return 0;
592 if (likely(nd->stack != nd->internal))
593 return 0;
594 return __nd_alloc_stack(nd);
595 }
596
597 static void drop_links(struct nameidata *nd)
598 {
599 int i = nd->depth;
600 while (i--) {
601 struct saved *last = nd->stack + i;
602 do_delayed_call(&last->done);
603 clear_delayed_call(&last->done);
604 }
605 }
606
607 static void terminate_walk(struct nameidata *nd)
608 {
609 drop_links(nd);
610 if (!(nd->flags & LOOKUP_RCU)) {
611 int i;
612 path_put(&nd->path);
613 for (i = 0; i < nd->depth; i++)
614 path_put(&nd->stack[i].link);
615 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
616 path_put(&nd->root);
617 nd->root.mnt = NULL;
618 }
619 } else {
620 nd->flags &= ~LOOKUP_RCU;
621 if (!(nd->flags & LOOKUP_ROOT))
622 nd->root.mnt = NULL;
623 rcu_read_unlock();
624 }
625 nd->depth = 0;
626 }
627
628 /* path_put is needed afterwards regardless of success or failure */
629 static bool legitimize_path(struct nameidata *nd,
630 struct path *path, unsigned seq)
631 {
632 int res = __legitimize_mnt(path->mnt, nd->m_seq);
633 if (unlikely(res)) {
634 if (res > 0)
635 path->mnt = NULL;
636 path->dentry = NULL;
637 return false;
638 }
639 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
640 path->dentry = NULL;
641 return false;
642 }
643 return !read_seqcount_retry(&path->dentry->d_seq, seq);
644 }
645
646 static bool legitimize_links(struct nameidata *nd)
647 {
648 int i;
649 for (i = 0; i < nd->depth; i++) {
650 struct saved *last = nd->stack + i;
651 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
652 drop_links(nd);
653 nd->depth = i + 1;
654 return false;
655 }
656 }
657 return true;
658 }
659
660 /*
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
669 */
670
671 /**
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * Returns: 0 on success, -ECHILD on failure
675 *
676 * unlazy_walk attempts to legitimize the current nd->path and nd->root
677 * for ref-walk mode.
678 * Must be called from rcu-walk context.
679 * Nothing should touch nameidata between unlazy_walk() failure and
680 * terminate_walk().
681 */
682 static int unlazy_walk(struct nameidata *nd)
683 {
684 struct dentry *parent = nd->path.dentry;
685
686 BUG_ON(!(nd->flags & LOOKUP_RCU));
687
688 nd->flags &= ~LOOKUP_RCU;
689 if (unlikely(!legitimize_links(nd)))
690 goto out2;
691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 goto out1;
693 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
694 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
695 goto out;
696 }
697 rcu_read_unlock();
698 BUG_ON(nd->inode != parent->d_inode);
699 return 0;
700
701 out2:
702 nd->path.mnt = NULL;
703 nd->path.dentry = NULL;
704 out1:
705 if (!(nd->flags & LOOKUP_ROOT))
706 nd->root.mnt = NULL;
707 out:
708 rcu_read_unlock();
709 return -ECHILD;
710 }
711
712 /**
713 * unlazy_child - try to switch to ref-walk mode.
714 * @nd: nameidata pathwalk data
715 * @dentry: child of nd->path.dentry
716 * @seq: seq number to check dentry against
717 * Returns: 0 on success, -ECHILD on failure
718 *
719 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
720 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
721 * @nd. Must be called from rcu-walk context.
722 * Nothing should touch nameidata between unlazy_child() failure and
723 * terminate_walk().
724 */
725 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
726 {
727 BUG_ON(!(nd->flags & LOOKUP_RCU));
728
729 nd->flags &= ~LOOKUP_RCU;
730 if (unlikely(!legitimize_links(nd)))
731 goto out2;
732 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
733 goto out2;
734 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
735 goto out1;
736
737 /*
738 * We need to move both the parent and the dentry from the RCU domain
739 * to be properly refcounted. And the sequence number in the dentry
740 * validates *both* dentry counters, since we checked the sequence
741 * number of the parent after we got the child sequence number. So we
742 * know the parent must still be valid if the child sequence number is
743 */
744 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
745 goto out;
746 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
747 rcu_read_unlock();
748 dput(dentry);
749 goto drop_root_mnt;
750 }
751 /*
752 * Sequence counts matched. Now make sure that the root is
753 * still valid and get it if required.
754 */
755 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
756 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
757 rcu_read_unlock();
758 dput(dentry);
759 return -ECHILD;
760 }
761 }
762
763 rcu_read_unlock();
764 return 0;
765
766 out2:
767 nd->path.mnt = NULL;
768 out1:
769 nd->path.dentry = NULL;
770 out:
771 rcu_read_unlock();
772 drop_root_mnt:
773 if (!(nd->flags & LOOKUP_ROOT))
774 nd->root.mnt = NULL;
775 return -ECHILD;
776 }
777
778 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
779 {
780 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
781 return dentry->d_op->d_revalidate(dentry, flags);
782 else
783 return 1;
784 }
785
786 /**
787 * complete_walk - successful completion of path walk
788 * @nd: pointer nameidata
789 *
790 * If we had been in RCU mode, drop out of it and legitimize nd->path.
791 * Revalidate the final result, unless we'd already done that during
792 * the path walk or the filesystem doesn't ask for it. Return 0 on
793 * success, -error on failure. In case of failure caller does not
794 * need to drop nd->path.
795 */
796 static int complete_walk(struct nameidata *nd)
797 {
798 struct dentry *dentry = nd->path.dentry;
799 int status;
800
801 if (nd->flags & LOOKUP_RCU) {
802 if (!(nd->flags & LOOKUP_ROOT))
803 nd->root.mnt = NULL;
804 if (unlikely(unlazy_walk(nd)))
805 return -ECHILD;
806 }
807
808 if (likely(!(nd->flags & LOOKUP_JUMPED)))
809 return 0;
810
811 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
812 return 0;
813
814 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
815 if (status > 0)
816 return 0;
817
818 if (!status)
819 status = -ESTALE;
820
821 return status;
822 }
823
824 static void set_root(struct nameidata *nd)
825 {
826 struct fs_struct *fs = current->fs;
827
828 if (nd->flags & LOOKUP_RCU) {
829 unsigned seq;
830
831 do {
832 seq = read_seqcount_begin(&fs->seq);
833 nd->root = fs->root;
834 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
835 } while (read_seqcount_retry(&fs->seq, seq));
836 } else {
837 get_fs_root(fs, &nd->root);
838 }
839 }
840
841 static void path_put_conditional(struct path *path, struct nameidata *nd)
842 {
843 dput(path->dentry);
844 if (path->mnt != nd->path.mnt)
845 mntput(path->mnt);
846 }
847
848 static inline void path_to_nameidata(const struct path *path,
849 struct nameidata *nd)
850 {
851 if (!(nd->flags & LOOKUP_RCU)) {
852 dput(nd->path.dentry);
853 if (nd->path.mnt != path->mnt)
854 mntput(nd->path.mnt);
855 }
856 nd->path.mnt = path->mnt;
857 nd->path.dentry = path->dentry;
858 }
859
860 static int nd_jump_root(struct nameidata *nd)
861 {
862 if (nd->flags & LOOKUP_RCU) {
863 struct dentry *d;
864 nd->path = nd->root;
865 d = nd->path.dentry;
866 nd->inode = d->d_inode;
867 nd->seq = nd->root_seq;
868 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
869 return -ECHILD;
870 } else {
871 path_put(&nd->path);
872 nd->path = nd->root;
873 path_get(&nd->path);
874 nd->inode = nd->path.dentry->d_inode;
875 }
876 nd->flags |= LOOKUP_JUMPED;
877 return 0;
878 }
879
880 /*
881 * Helper to directly jump to a known parsed path from ->get_link,
882 * caller must have taken a reference to path beforehand.
883 */
884 void nd_jump_link(struct path *path)
885 {
886 struct nameidata *nd = current->nameidata;
887 path_put(&nd->path);
888
889 nd->path = *path;
890 nd->inode = nd->path.dentry->d_inode;
891 nd->flags |= LOOKUP_JUMPED;
892 }
893
894 static inline void put_link(struct nameidata *nd)
895 {
896 struct saved *last = nd->stack + --nd->depth;
897 do_delayed_call(&last->done);
898 if (!(nd->flags & LOOKUP_RCU))
899 path_put(&last->link);
900 }
901
902 int sysctl_protected_symlinks __read_mostly = 0;
903 int sysctl_protected_hardlinks __read_mostly = 0;
904
905 /**
906 * may_follow_link - Check symlink following for unsafe situations
907 * @nd: nameidata pathwalk data
908 *
909 * In the case of the sysctl_protected_symlinks sysctl being enabled,
910 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
911 * in a sticky world-writable directory. This is to protect privileged
912 * processes from failing races against path names that may change out
913 * from under them by way of other users creating malicious symlinks.
914 * It will permit symlinks to be followed only when outside a sticky
915 * world-writable directory, or when the uid of the symlink and follower
916 * match, or when the directory owner matches the symlink's owner.
917 *
918 * Returns 0 if following the symlink is allowed, -ve on error.
919 */
920 static inline int may_follow_link(struct nameidata *nd)
921 {
922 const struct inode *inode;
923 const struct inode *parent;
924 kuid_t puid;
925
926 if (!sysctl_protected_symlinks)
927 return 0;
928
929 /* Allowed if owner and follower match. */
930 inode = nd->link_inode;
931 if (uid_eq(current_cred()->fsuid, inode->i_uid))
932 return 0;
933
934 /* Allowed if parent directory not sticky and world-writable. */
935 parent = nd->inode;
936 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
937 return 0;
938
939 /* Allowed if parent directory and link owner match. */
940 puid = parent->i_uid;
941 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
942 return 0;
943
944 if (nd->flags & LOOKUP_RCU)
945 return -ECHILD;
946
947 audit_log_link_denied("follow_link", &nd->stack[0].link);
948 return -EACCES;
949 }
950
951 /**
952 * safe_hardlink_source - Check for safe hardlink conditions
953 * @inode: the source inode to hardlink from
954 *
955 * Return false if at least one of the following conditions:
956 * - inode is not a regular file
957 * - inode is setuid
958 * - inode is setgid and group-exec
959 * - access failure for read and write
960 *
961 * Otherwise returns true.
962 */
963 static bool safe_hardlink_source(struct inode *inode)
964 {
965 umode_t mode = inode->i_mode;
966
967 /* Special files should not get pinned to the filesystem. */
968 if (!S_ISREG(mode))
969 return false;
970
971 /* Setuid files should not get pinned to the filesystem. */
972 if (mode & S_ISUID)
973 return false;
974
975 /* Executable setgid files should not get pinned to the filesystem. */
976 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
977 return false;
978
979 /* Hardlinking to unreadable or unwritable sources is dangerous. */
980 if (inode_permission(inode, MAY_READ | MAY_WRITE))
981 return false;
982
983 return true;
984 }
985
986 /**
987 * may_linkat - Check permissions for creating a hardlink
988 * @link: the source to hardlink from
989 *
990 * Block hardlink when all of:
991 * - sysctl_protected_hardlinks enabled
992 * - fsuid does not match inode
993 * - hardlink source is unsafe (see safe_hardlink_source() above)
994 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
995 *
996 * Returns 0 if successful, -ve on error.
997 */
998 static int may_linkat(struct path *link)
999 {
1000 struct inode *inode;
1001
1002 if (!sysctl_protected_hardlinks)
1003 return 0;
1004
1005 inode = link->dentry->d_inode;
1006
1007 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1008 * otherwise, it must be a safe source.
1009 */
1010 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1011 return 0;
1012
1013 audit_log_link_denied("linkat", link);
1014 return -EPERM;
1015 }
1016
1017 static __always_inline
1018 const char *get_link(struct nameidata *nd)
1019 {
1020 struct saved *last = nd->stack + nd->depth - 1;
1021 struct dentry *dentry = last->link.dentry;
1022 struct inode *inode = nd->link_inode;
1023 int error;
1024 const char *res;
1025
1026 if (!(nd->flags & LOOKUP_RCU)) {
1027 touch_atime(&last->link);
1028 cond_resched();
1029 } else if (atime_needs_update_rcu(&last->link, inode)) {
1030 if (unlikely(unlazy_walk(nd)))
1031 return ERR_PTR(-ECHILD);
1032 touch_atime(&last->link);
1033 }
1034
1035 error = security_inode_follow_link(dentry, inode,
1036 nd->flags & LOOKUP_RCU);
1037 if (unlikely(error))
1038 return ERR_PTR(error);
1039
1040 nd->last_type = LAST_BIND;
1041 res = inode->i_link;
1042 if (!res) {
1043 const char * (*get)(struct dentry *, struct inode *,
1044 struct delayed_call *);
1045 get = inode->i_op->get_link;
1046 if (nd->flags & LOOKUP_RCU) {
1047 res = get(NULL, inode, &last->done);
1048 if (res == ERR_PTR(-ECHILD)) {
1049 if (unlikely(unlazy_walk(nd)))
1050 return ERR_PTR(-ECHILD);
1051 res = get(dentry, inode, &last->done);
1052 }
1053 } else {
1054 res = get(dentry, inode, &last->done);
1055 }
1056 if (IS_ERR_OR_NULL(res))
1057 return res;
1058 }
1059 if (*res == '/') {
1060 if (!nd->root.mnt)
1061 set_root(nd);
1062 if (unlikely(nd_jump_root(nd)))
1063 return ERR_PTR(-ECHILD);
1064 while (unlikely(*++res == '/'))
1065 ;
1066 }
1067 if (!*res)
1068 res = NULL;
1069 return res;
1070 }
1071
1072 /*
1073 * follow_up - Find the mountpoint of path's vfsmount
1074 *
1075 * Given a path, find the mountpoint of its source file system.
1076 * Replace @path with the path of the mountpoint in the parent mount.
1077 * Up is towards /.
1078 *
1079 * Return 1 if we went up a level and 0 if we were already at the
1080 * root.
1081 */
1082 int follow_up(struct path *path)
1083 {
1084 struct mount *mnt = real_mount(path->mnt);
1085 struct mount *parent;
1086 struct dentry *mountpoint;
1087
1088 read_seqlock_excl(&mount_lock);
1089 parent = mnt->mnt_parent;
1090 if (parent == mnt) {
1091 read_sequnlock_excl(&mount_lock);
1092 return 0;
1093 }
1094 mntget(&parent->mnt);
1095 mountpoint = dget(mnt->mnt_mountpoint);
1096 read_sequnlock_excl(&mount_lock);
1097 dput(path->dentry);
1098 path->dentry = mountpoint;
1099 mntput(path->mnt);
1100 path->mnt = &parent->mnt;
1101 return 1;
1102 }
1103 EXPORT_SYMBOL(follow_up);
1104
1105 /*
1106 * Perform an automount
1107 * - return -EISDIR to tell follow_managed() to stop and return the path we
1108 * were called with.
1109 */
1110 static int follow_automount(struct path *path, struct nameidata *nd,
1111 bool *need_mntput)
1112 {
1113 struct vfsmount *mnt;
1114 int err;
1115
1116 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1117 return -EREMOTE;
1118
1119 /* We don't want to mount if someone's just doing a stat -
1120 * unless they're stat'ing a directory and appended a '/' to
1121 * the name.
1122 *
1123 * We do, however, want to mount if someone wants to open or
1124 * create a file of any type under the mountpoint, wants to
1125 * traverse through the mountpoint or wants to open the
1126 * mounted directory. Also, autofs may mark negative dentries
1127 * as being automount points. These will need the attentions
1128 * of the daemon to instantiate them before they can be used.
1129 */
1130 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1131 LOOKUP_OPEN | LOOKUP_CREATE |
1132 LOOKUP_AUTOMOUNT))) {
1133 /* Positive dentry that isn't meant to trigger an
1134 * automount, EISDIR will allow it to be used,
1135 * otherwise there's no mount here "now" so return
1136 * ENOENT.
1137 */
1138 if (path->dentry->d_inode)
1139 return -EISDIR;
1140 else
1141 return -ENOENT;
1142 }
1143
1144 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1145 return -EACCES;
1146
1147 nd->total_link_count++;
1148 if (nd->total_link_count >= 40)
1149 return -ELOOP;
1150
1151 mnt = path->dentry->d_op->d_automount(path);
1152 if (IS_ERR(mnt)) {
1153 /*
1154 * The filesystem is allowed to return -EISDIR here to indicate
1155 * it doesn't want to automount. For instance, autofs would do
1156 * this so that its userspace daemon can mount on this dentry.
1157 *
1158 * However, we can only permit this if it's a terminal point in
1159 * the path being looked up; if it wasn't then the remainder of
1160 * the path is inaccessible and we should say so.
1161 */
1162 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1163 return -EREMOTE;
1164 return PTR_ERR(mnt);
1165 }
1166
1167 if (!mnt) /* mount collision */
1168 return 0;
1169
1170 if (!*need_mntput) {
1171 /* lock_mount() may release path->mnt on error */
1172 mntget(path->mnt);
1173 *need_mntput = true;
1174 }
1175 err = finish_automount(mnt, path);
1176
1177 switch (err) {
1178 case -EBUSY:
1179 /* Someone else made a mount here whilst we were busy */
1180 return 0;
1181 case 0:
1182 path_put(path);
1183 path->mnt = mnt;
1184 path->dentry = dget(mnt->mnt_root);
1185 return 0;
1186 default:
1187 return err;
1188 }
1189
1190 }
1191
1192 /*
1193 * Handle a dentry that is managed in some way.
1194 * - Flagged for transit management (autofs)
1195 * - Flagged as mountpoint
1196 * - Flagged as automount point
1197 *
1198 * This may only be called in refwalk mode.
1199 *
1200 * Serialization is taken care of in namespace.c
1201 */
1202 static int follow_managed(struct path *path, struct nameidata *nd)
1203 {
1204 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1205 unsigned managed;
1206 bool need_mntput = false;
1207 int ret = 0;
1208
1209 /* Given that we're not holding a lock here, we retain the value in a
1210 * local variable for each dentry as we look at it so that we don't see
1211 * the components of that value change under us */
1212 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1213 managed &= DCACHE_MANAGED_DENTRY,
1214 unlikely(managed != 0)) {
1215 /* Allow the filesystem to manage the transit without i_mutex
1216 * being held. */
1217 if (managed & DCACHE_MANAGE_TRANSIT) {
1218 BUG_ON(!path->dentry->d_op);
1219 BUG_ON(!path->dentry->d_op->d_manage);
1220 ret = path->dentry->d_op->d_manage(path, false);
1221 if (ret < 0)
1222 break;
1223 }
1224
1225 /* Transit to a mounted filesystem. */
1226 if (managed & DCACHE_MOUNTED) {
1227 struct vfsmount *mounted = lookup_mnt(path);
1228 if (mounted) {
1229 dput(path->dentry);
1230 if (need_mntput)
1231 mntput(path->mnt);
1232 path->mnt = mounted;
1233 path->dentry = dget(mounted->mnt_root);
1234 need_mntput = true;
1235 continue;
1236 }
1237
1238 /* Something is mounted on this dentry in another
1239 * namespace and/or whatever was mounted there in this
1240 * namespace got unmounted before lookup_mnt() could
1241 * get it */
1242 }
1243
1244 /* Handle an automount point */
1245 if (managed & DCACHE_NEED_AUTOMOUNT) {
1246 ret = follow_automount(path, nd, &need_mntput);
1247 if (ret < 0)
1248 break;
1249 continue;
1250 }
1251
1252 /* We didn't change the current path point */
1253 break;
1254 }
1255
1256 if (need_mntput && path->mnt == mnt)
1257 mntput(path->mnt);
1258 if (ret == -EISDIR || !ret)
1259 ret = 1;
1260 if (need_mntput)
1261 nd->flags |= LOOKUP_JUMPED;
1262 if (unlikely(ret < 0))
1263 path_put_conditional(path, nd);
1264 return ret;
1265 }
1266
1267 int follow_down_one(struct path *path)
1268 {
1269 struct vfsmount *mounted;
1270
1271 mounted = lookup_mnt(path);
1272 if (mounted) {
1273 dput(path->dentry);
1274 mntput(path->mnt);
1275 path->mnt = mounted;
1276 path->dentry = dget(mounted->mnt_root);
1277 return 1;
1278 }
1279 return 0;
1280 }
1281 EXPORT_SYMBOL(follow_down_one);
1282
1283 static inline int managed_dentry_rcu(const struct path *path)
1284 {
1285 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1286 path->dentry->d_op->d_manage(path, true) : 0;
1287 }
1288
1289 /*
1290 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1291 * we meet a managed dentry that would need blocking.
1292 */
1293 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1294 struct inode **inode, unsigned *seqp)
1295 {
1296 for (;;) {
1297 struct mount *mounted;
1298 /*
1299 * Don't forget we might have a non-mountpoint managed dentry
1300 * that wants to block transit.
1301 */
1302 switch (managed_dentry_rcu(path)) {
1303 case -ECHILD:
1304 default:
1305 return false;
1306 case -EISDIR:
1307 return true;
1308 case 0:
1309 break;
1310 }
1311
1312 if (!d_mountpoint(path->dentry))
1313 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1314
1315 mounted = __lookup_mnt(path->mnt, path->dentry);
1316 if (!mounted)
1317 break;
1318 path->mnt = &mounted->mnt;
1319 path->dentry = mounted->mnt.mnt_root;
1320 nd->flags |= LOOKUP_JUMPED;
1321 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1322 /*
1323 * Update the inode too. We don't need to re-check the
1324 * dentry sequence number here after this d_inode read,
1325 * because a mount-point is always pinned.
1326 */
1327 *inode = path->dentry->d_inode;
1328 }
1329 return !read_seqretry(&mount_lock, nd->m_seq) &&
1330 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1331 }
1332
1333 static int follow_dotdot_rcu(struct nameidata *nd)
1334 {
1335 struct inode *inode = nd->inode;
1336
1337 while (1) {
1338 if (path_equal(&nd->path, &nd->root))
1339 break;
1340 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1341 struct dentry *old = nd->path.dentry;
1342 struct dentry *parent = old->d_parent;
1343 unsigned seq;
1344
1345 inode = parent->d_inode;
1346 seq = read_seqcount_begin(&parent->d_seq);
1347 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1348 return -ECHILD;
1349 nd->path.dentry = parent;
1350 nd->seq = seq;
1351 if (unlikely(!path_connected(&nd->path)))
1352 return -ENOENT;
1353 break;
1354 } else {
1355 struct mount *mnt = real_mount(nd->path.mnt);
1356 struct mount *mparent = mnt->mnt_parent;
1357 struct dentry *mountpoint = mnt->mnt_mountpoint;
1358 struct inode *inode2 = mountpoint->d_inode;
1359 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1360 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1361 return -ECHILD;
1362 if (&mparent->mnt == nd->path.mnt)
1363 break;
1364 /* we know that mountpoint was pinned */
1365 nd->path.dentry = mountpoint;
1366 nd->path.mnt = &mparent->mnt;
1367 inode = inode2;
1368 nd->seq = seq;
1369 }
1370 }
1371 while (unlikely(d_mountpoint(nd->path.dentry))) {
1372 struct mount *mounted;
1373 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1374 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1375 return -ECHILD;
1376 if (!mounted)
1377 break;
1378 nd->path.mnt = &mounted->mnt;
1379 nd->path.dentry = mounted->mnt.mnt_root;
1380 inode = nd->path.dentry->d_inode;
1381 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1382 }
1383 nd->inode = inode;
1384 return 0;
1385 }
1386
1387 /*
1388 * Follow down to the covering mount currently visible to userspace. At each
1389 * point, the filesystem owning that dentry may be queried as to whether the
1390 * caller is permitted to proceed or not.
1391 */
1392 int follow_down(struct path *path)
1393 {
1394 unsigned managed;
1395 int ret;
1396
1397 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1398 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1399 /* Allow the filesystem to manage the transit without i_mutex
1400 * being held.
1401 *
1402 * We indicate to the filesystem if someone is trying to mount
1403 * something here. This gives autofs the chance to deny anyone
1404 * other than its daemon the right to mount on its
1405 * superstructure.
1406 *
1407 * The filesystem may sleep at this point.
1408 */
1409 if (managed & DCACHE_MANAGE_TRANSIT) {
1410 BUG_ON(!path->dentry->d_op);
1411 BUG_ON(!path->dentry->d_op->d_manage);
1412 ret = path->dentry->d_op->d_manage(path, false);
1413 if (ret < 0)
1414 return ret == -EISDIR ? 0 : ret;
1415 }
1416
1417 /* Transit to a mounted filesystem. */
1418 if (managed & DCACHE_MOUNTED) {
1419 struct vfsmount *mounted = lookup_mnt(path);
1420 if (!mounted)
1421 break;
1422 dput(path->dentry);
1423 mntput(path->mnt);
1424 path->mnt = mounted;
1425 path->dentry = dget(mounted->mnt_root);
1426 continue;
1427 }
1428
1429 /* Don't handle automount points here */
1430 break;
1431 }
1432 return 0;
1433 }
1434 EXPORT_SYMBOL(follow_down);
1435
1436 /*
1437 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1438 */
1439 static void follow_mount(struct path *path)
1440 {
1441 while (d_mountpoint(path->dentry)) {
1442 struct vfsmount *mounted = lookup_mnt(path);
1443 if (!mounted)
1444 break;
1445 dput(path->dentry);
1446 mntput(path->mnt);
1447 path->mnt = mounted;
1448 path->dentry = dget(mounted->mnt_root);
1449 }
1450 }
1451
1452 static int path_parent_directory(struct path *path)
1453 {
1454 struct dentry *old = path->dentry;
1455 /* rare case of legitimate dget_parent()... */
1456 path->dentry = dget_parent(path->dentry);
1457 dput(old);
1458 if (unlikely(!path_connected(path)))
1459 return -ENOENT;
1460 return 0;
1461 }
1462
1463 static int follow_dotdot(struct nameidata *nd)
1464 {
1465 while(1) {
1466 if (nd->path.dentry == nd->root.dentry &&
1467 nd->path.mnt == nd->root.mnt) {
1468 break;
1469 }
1470 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1471 int ret = path_parent_directory(&nd->path);
1472 if (ret)
1473 return ret;
1474 break;
1475 }
1476 if (!follow_up(&nd->path))
1477 break;
1478 }
1479 follow_mount(&nd->path);
1480 nd->inode = nd->path.dentry->d_inode;
1481 return 0;
1482 }
1483
1484 /*
1485 * This looks up the name in dcache and possibly revalidates the found dentry.
1486 * NULL is returned if the dentry does not exist in the cache.
1487 */
1488 static struct dentry *lookup_dcache(const struct qstr *name,
1489 struct dentry *dir,
1490 unsigned int flags)
1491 {
1492 struct dentry *dentry = d_lookup(dir, name);
1493 if (dentry) {
1494 int error = d_revalidate(dentry, flags);
1495 if (unlikely(error <= 0)) {
1496 if (!error)
1497 d_invalidate(dentry);
1498 dput(dentry);
1499 return ERR_PTR(error);
1500 }
1501 }
1502 return dentry;
1503 }
1504
1505 /*
1506 * Call i_op->lookup on the dentry. The dentry must be negative and
1507 * unhashed.
1508 *
1509 * dir->d_inode->i_mutex must be held
1510 */
1511 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1512 unsigned int flags)
1513 {
1514 struct dentry *old;
1515
1516 /* Don't create child dentry for a dead directory. */
1517 if (unlikely(IS_DEADDIR(dir))) {
1518 dput(dentry);
1519 return ERR_PTR(-ENOENT);
1520 }
1521
1522 old = dir->i_op->lookup(dir, dentry, flags);
1523 if (unlikely(old)) {
1524 dput(dentry);
1525 dentry = old;
1526 }
1527 return dentry;
1528 }
1529
1530 static struct dentry *__lookup_hash(const struct qstr *name,
1531 struct dentry *base, unsigned int flags)
1532 {
1533 struct dentry *dentry = lookup_dcache(name, base, flags);
1534
1535 if (dentry)
1536 return dentry;
1537
1538 dentry = d_alloc(base, name);
1539 if (unlikely(!dentry))
1540 return ERR_PTR(-ENOMEM);
1541
1542 return lookup_real(base->d_inode, dentry, flags);
1543 }
1544
1545 static int lookup_fast(struct nameidata *nd,
1546 struct path *path, struct inode **inode,
1547 unsigned *seqp)
1548 {
1549 struct vfsmount *mnt = nd->path.mnt;
1550 struct dentry *dentry, *parent = nd->path.dentry;
1551 int status = 1;
1552 int err;
1553
1554 /*
1555 * Rename seqlock is not required here because in the off chance
1556 * of a false negative due to a concurrent rename, the caller is
1557 * going to fall back to non-racy lookup.
1558 */
1559 if (nd->flags & LOOKUP_RCU) {
1560 unsigned seq;
1561 bool negative;
1562 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1563 if (unlikely(!dentry)) {
1564 if (unlazy_walk(nd))
1565 return -ECHILD;
1566 return 0;
1567 }
1568
1569 /*
1570 * This sequence count validates that the inode matches
1571 * the dentry name information from lookup.
1572 */
1573 *inode = d_backing_inode(dentry);
1574 negative = d_is_negative(dentry);
1575 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1576 return -ECHILD;
1577
1578 /*
1579 * This sequence count validates that the parent had no
1580 * changes while we did the lookup of the dentry above.
1581 *
1582 * The memory barrier in read_seqcount_begin of child is
1583 * enough, we can use __read_seqcount_retry here.
1584 */
1585 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1586 return -ECHILD;
1587
1588 *seqp = seq;
1589 status = d_revalidate(dentry, nd->flags);
1590 if (likely(status > 0)) {
1591 /*
1592 * Note: do negative dentry check after revalidation in
1593 * case that drops it.
1594 */
1595 if (unlikely(negative))
1596 return -ENOENT;
1597 path->mnt = mnt;
1598 path->dentry = dentry;
1599 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1600 return 1;
1601 }
1602 if (unlazy_child(nd, dentry, seq))
1603 return -ECHILD;
1604 if (unlikely(status == -ECHILD))
1605 /* we'd been told to redo it in non-rcu mode */
1606 status = d_revalidate(dentry, nd->flags);
1607 } else {
1608 dentry = __d_lookup(parent, &nd->last);
1609 if (unlikely(!dentry))
1610 return 0;
1611 status = d_revalidate(dentry, nd->flags);
1612 }
1613 if (unlikely(status <= 0)) {
1614 if (!status)
1615 d_invalidate(dentry);
1616 dput(dentry);
1617 return status;
1618 }
1619 if (unlikely(d_is_negative(dentry))) {
1620 dput(dentry);
1621 return -ENOENT;
1622 }
1623
1624 path->mnt = mnt;
1625 path->dentry = dentry;
1626 err = follow_managed(path, nd);
1627 if (likely(err > 0))
1628 *inode = d_backing_inode(path->dentry);
1629 return err;
1630 }
1631
1632 /* Fast lookup failed, do it the slow way */
1633 static struct dentry *lookup_slow(const struct qstr *name,
1634 struct dentry *dir,
1635 unsigned int flags)
1636 {
1637 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1638 struct inode *inode = dir->d_inode;
1639 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1640
1641 inode_lock_shared(inode);
1642 /* Don't go there if it's already dead */
1643 if (unlikely(IS_DEADDIR(inode)))
1644 goto out;
1645 again:
1646 dentry = d_alloc_parallel(dir, name, &wq);
1647 if (IS_ERR(dentry))
1648 goto out;
1649 if (unlikely(!d_in_lookup(dentry))) {
1650 if (!(flags & LOOKUP_NO_REVAL)) {
1651 int error = d_revalidate(dentry, flags);
1652 if (unlikely(error <= 0)) {
1653 if (!error) {
1654 d_invalidate(dentry);
1655 dput(dentry);
1656 goto again;
1657 }
1658 dput(dentry);
1659 dentry = ERR_PTR(error);
1660 }
1661 }
1662 } else {
1663 old = inode->i_op->lookup(inode, dentry, flags);
1664 d_lookup_done(dentry);
1665 if (unlikely(old)) {
1666 dput(dentry);
1667 dentry = old;
1668 }
1669 }
1670 out:
1671 inode_unlock_shared(inode);
1672 return dentry;
1673 }
1674
1675 static inline int may_lookup(struct nameidata *nd)
1676 {
1677 if (nd->flags & LOOKUP_RCU) {
1678 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1679 if (err != -ECHILD)
1680 return err;
1681 if (unlazy_walk(nd))
1682 return -ECHILD;
1683 }
1684 return inode_permission(nd->inode, MAY_EXEC);
1685 }
1686
1687 static inline int handle_dots(struct nameidata *nd, int type)
1688 {
1689 if (type == LAST_DOTDOT) {
1690 if (!nd->root.mnt)
1691 set_root(nd);
1692 if (nd->flags & LOOKUP_RCU) {
1693 return follow_dotdot_rcu(nd);
1694 } else
1695 return follow_dotdot(nd);
1696 }
1697 return 0;
1698 }
1699
1700 static int pick_link(struct nameidata *nd, struct path *link,
1701 struct inode *inode, unsigned seq)
1702 {
1703 int error;
1704 struct saved *last;
1705 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1706 path_to_nameidata(link, nd);
1707 return -ELOOP;
1708 }
1709 if (!(nd->flags & LOOKUP_RCU)) {
1710 if (link->mnt == nd->path.mnt)
1711 mntget(link->mnt);
1712 }
1713 error = nd_alloc_stack(nd);
1714 if (unlikely(error)) {
1715 if (error == -ECHILD) {
1716 if (unlikely(!legitimize_path(nd, link, seq))) {
1717 drop_links(nd);
1718 nd->depth = 0;
1719 nd->flags &= ~LOOKUP_RCU;
1720 nd->path.mnt = NULL;
1721 nd->path.dentry = NULL;
1722 if (!(nd->flags & LOOKUP_ROOT))
1723 nd->root.mnt = NULL;
1724 rcu_read_unlock();
1725 } else if (likely(unlazy_walk(nd)) == 0)
1726 error = nd_alloc_stack(nd);
1727 }
1728 if (error) {
1729 path_put(link);
1730 return error;
1731 }
1732 }
1733
1734 last = nd->stack + nd->depth++;
1735 last->link = *link;
1736 clear_delayed_call(&last->done);
1737 nd->link_inode = inode;
1738 last->seq = seq;
1739 return 1;
1740 }
1741
1742 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1743
1744 /*
1745 * Do we need to follow links? We _really_ want to be able
1746 * to do this check without having to look at inode->i_op,
1747 * so we keep a cache of "no, this doesn't need follow_link"
1748 * for the common case.
1749 */
1750 static inline int step_into(struct nameidata *nd, struct path *path,
1751 int flags, struct inode *inode, unsigned seq)
1752 {
1753 if (!(flags & WALK_MORE) && nd->depth)
1754 put_link(nd);
1755 if (likely(!d_is_symlink(path->dentry)) ||
1756 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1757 /* not a symlink or should not follow */
1758 path_to_nameidata(path, nd);
1759 nd->inode = inode;
1760 nd->seq = seq;
1761 return 0;
1762 }
1763 /* make sure that d_is_symlink above matches inode */
1764 if (nd->flags & LOOKUP_RCU) {
1765 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1766 return -ECHILD;
1767 }
1768 return pick_link(nd, path, inode, seq);
1769 }
1770
1771 static int walk_component(struct nameidata *nd, int flags)
1772 {
1773 struct path path;
1774 struct inode *inode;
1775 unsigned seq;
1776 int err;
1777 /*
1778 * "." and ".." are special - ".." especially so because it has
1779 * to be able to know about the current root directory and
1780 * parent relationships.
1781 */
1782 if (unlikely(nd->last_type != LAST_NORM)) {
1783 err = handle_dots(nd, nd->last_type);
1784 if (!(flags & WALK_MORE) && nd->depth)
1785 put_link(nd);
1786 return err;
1787 }
1788 err = lookup_fast(nd, &path, &inode, &seq);
1789 if (unlikely(err <= 0)) {
1790 if (err < 0)
1791 return err;
1792 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1793 nd->flags);
1794 if (IS_ERR(path.dentry))
1795 return PTR_ERR(path.dentry);
1796
1797 path.mnt = nd->path.mnt;
1798 err = follow_managed(&path, nd);
1799 if (unlikely(err < 0))
1800 return err;
1801
1802 if (unlikely(d_is_negative(path.dentry))) {
1803 path_to_nameidata(&path, nd);
1804 return -ENOENT;
1805 }
1806
1807 seq = 0; /* we are already out of RCU mode */
1808 inode = d_backing_inode(path.dentry);
1809 }
1810
1811 return step_into(nd, &path, flags, inode, seq);
1812 }
1813
1814 /*
1815 * We can do the critical dentry name comparison and hashing
1816 * operations one word at a time, but we are limited to:
1817 *
1818 * - Architectures with fast unaligned word accesses. We could
1819 * do a "get_unaligned()" if this helps and is sufficiently
1820 * fast.
1821 *
1822 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1823 * do not trap on the (extremely unlikely) case of a page
1824 * crossing operation.
1825 *
1826 * - Furthermore, we need an efficient 64-bit compile for the
1827 * 64-bit case in order to generate the "number of bytes in
1828 * the final mask". Again, that could be replaced with a
1829 * efficient population count instruction or similar.
1830 */
1831 #ifdef CONFIG_DCACHE_WORD_ACCESS
1832
1833 #include <asm/word-at-a-time.h>
1834
1835 #ifdef HASH_MIX
1836
1837 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1838
1839 #elif defined(CONFIG_64BIT)
1840 /*
1841 * Register pressure in the mixing function is an issue, particularly
1842 * on 32-bit x86, but almost any function requires one state value and
1843 * one temporary. Instead, use a function designed for two state values
1844 * and no temporaries.
1845 *
1846 * This function cannot create a collision in only two iterations, so
1847 * we have two iterations to achieve avalanche. In those two iterations,
1848 * we have six layers of mixing, which is enough to spread one bit's
1849 * influence out to 2^6 = 64 state bits.
1850 *
1851 * Rotate constants are scored by considering either 64 one-bit input
1852 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1853 * probability of that delta causing a change to each of the 128 output
1854 * bits, using a sample of random initial states.
1855 *
1856 * The Shannon entropy of the computed probabilities is then summed
1857 * to produce a score. Ideally, any input change has a 50% chance of
1858 * toggling any given output bit.
1859 *
1860 * Mixing scores (in bits) for (12,45):
1861 * Input delta: 1-bit 2-bit
1862 * 1 round: 713.3 42542.6
1863 * 2 rounds: 2753.7 140389.8
1864 * 3 rounds: 5954.1 233458.2
1865 * 4 rounds: 7862.6 256672.2
1866 * Perfect: 8192 258048
1867 * (64*128) (64*63/2 * 128)
1868 */
1869 #define HASH_MIX(x, y, a) \
1870 ( x ^= (a), \
1871 y ^= x, x = rol64(x,12),\
1872 x += y, y = rol64(y,45),\
1873 y *= 9 )
1874
1875 /*
1876 * Fold two longs into one 32-bit hash value. This must be fast, but
1877 * latency isn't quite as critical, as there is a fair bit of additional
1878 * work done before the hash value is used.
1879 */
1880 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1881 {
1882 y ^= x * GOLDEN_RATIO_64;
1883 y *= GOLDEN_RATIO_64;
1884 return y >> 32;
1885 }
1886
1887 #else /* 32-bit case */
1888
1889 /*
1890 * Mixing scores (in bits) for (7,20):
1891 * Input delta: 1-bit 2-bit
1892 * 1 round: 330.3 9201.6
1893 * 2 rounds: 1246.4 25475.4
1894 * 3 rounds: 1907.1 31295.1
1895 * 4 rounds: 2042.3 31718.6
1896 * Perfect: 2048 31744
1897 * (32*64) (32*31/2 * 64)
1898 */
1899 #define HASH_MIX(x, y, a) \
1900 ( x ^= (a), \
1901 y ^= x, x = rol32(x, 7),\
1902 x += y, y = rol32(y,20),\
1903 y *= 9 )
1904
1905 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1906 {
1907 /* Use arch-optimized multiply if one exists */
1908 return __hash_32(y ^ __hash_32(x));
1909 }
1910
1911 #endif
1912
1913 /*
1914 * Return the hash of a string of known length. This is carfully
1915 * designed to match hash_name(), which is the more critical function.
1916 * In particular, we must end by hashing a final word containing 0..7
1917 * payload bytes, to match the way that hash_name() iterates until it
1918 * finds the delimiter after the name.
1919 */
1920 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1921 {
1922 unsigned long a, x = 0, y = (unsigned long)salt;
1923
1924 for (;;) {
1925 if (!len)
1926 goto done;
1927 a = load_unaligned_zeropad(name);
1928 if (len < sizeof(unsigned long))
1929 break;
1930 HASH_MIX(x, y, a);
1931 name += sizeof(unsigned long);
1932 len -= sizeof(unsigned long);
1933 }
1934 x ^= a & bytemask_from_count(len);
1935 done:
1936 return fold_hash(x, y);
1937 }
1938 EXPORT_SYMBOL(full_name_hash);
1939
1940 /* Return the "hash_len" (hash and length) of a null-terminated string */
1941 u64 hashlen_string(const void *salt, const char *name)
1942 {
1943 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1944 unsigned long adata, mask, len;
1945 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1946
1947 len = 0;
1948 goto inside;
1949
1950 do {
1951 HASH_MIX(x, y, a);
1952 len += sizeof(unsigned long);
1953 inside:
1954 a = load_unaligned_zeropad(name+len);
1955 } while (!has_zero(a, &adata, &constants));
1956
1957 adata = prep_zero_mask(a, adata, &constants);
1958 mask = create_zero_mask(adata);
1959 x ^= a & zero_bytemask(mask);
1960
1961 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1962 }
1963 EXPORT_SYMBOL(hashlen_string);
1964
1965 /*
1966 * Calculate the length and hash of the path component, and
1967 * return the "hash_len" as the result.
1968 */
1969 static inline u64 hash_name(const void *salt, const char *name)
1970 {
1971 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1972 unsigned long adata, bdata, mask, len;
1973 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1974
1975 len = 0;
1976 goto inside;
1977
1978 do {
1979 HASH_MIX(x, y, a);
1980 len += sizeof(unsigned long);
1981 inside:
1982 a = load_unaligned_zeropad(name+len);
1983 b = a ^ REPEAT_BYTE('/');
1984 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1985
1986 adata = prep_zero_mask(a, adata, &constants);
1987 bdata = prep_zero_mask(b, bdata, &constants);
1988 mask = create_zero_mask(adata | bdata);
1989 x ^= a & zero_bytemask(mask);
1990
1991 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1992 }
1993
1994 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1995
1996 /* Return the hash of a string of known length */
1997 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1998 {
1999 unsigned long hash = init_name_hash(salt);
2000 while (len--)
2001 hash = partial_name_hash((unsigned char)*name++, hash);
2002 return end_name_hash(hash);
2003 }
2004 EXPORT_SYMBOL(full_name_hash);
2005
2006 /* Return the "hash_len" (hash and length) of a null-terminated string */
2007 u64 hashlen_string(const void *salt, const char *name)
2008 {
2009 unsigned long hash = init_name_hash(salt);
2010 unsigned long len = 0, c;
2011
2012 c = (unsigned char)*name;
2013 while (c) {
2014 len++;
2015 hash = partial_name_hash(c, hash);
2016 c = (unsigned char)name[len];
2017 }
2018 return hashlen_create(end_name_hash(hash), len);
2019 }
2020 EXPORT_SYMBOL(hashlen_string);
2021
2022 /*
2023 * We know there's a real path component here of at least
2024 * one character.
2025 */
2026 static inline u64 hash_name(const void *salt, const char *name)
2027 {
2028 unsigned long hash = init_name_hash(salt);
2029 unsigned long len = 0, c;
2030
2031 c = (unsigned char)*name;
2032 do {
2033 len++;
2034 hash = partial_name_hash(c, hash);
2035 c = (unsigned char)name[len];
2036 } while (c && c != '/');
2037 return hashlen_create(end_name_hash(hash), len);
2038 }
2039
2040 #endif
2041
2042 /*
2043 * Name resolution.
2044 * This is the basic name resolution function, turning a pathname into
2045 * the final dentry. We expect 'base' to be positive and a directory.
2046 *
2047 * Returns 0 and nd will have valid dentry and mnt on success.
2048 * Returns error and drops reference to input namei data on failure.
2049 */
2050 static int link_path_walk(const char *name, struct nameidata *nd)
2051 {
2052 int err;
2053
2054 while (*name=='/')
2055 name++;
2056 if (!*name)
2057 return 0;
2058
2059 /* At this point we know we have a real path component. */
2060 for(;;) {
2061 u64 hash_len;
2062 int type;
2063
2064 err = may_lookup(nd);
2065 if (err)
2066 return err;
2067
2068 hash_len = hash_name(nd->path.dentry, name);
2069
2070 type = LAST_NORM;
2071 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2072 case 2:
2073 if (name[1] == '.') {
2074 type = LAST_DOTDOT;
2075 nd->flags |= LOOKUP_JUMPED;
2076 }
2077 break;
2078 case 1:
2079 type = LAST_DOT;
2080 }
2081 if (likely(type == LAST_NORM)) {
2082 struct dentry *parent = nd->path.dentry;
2083 nd->flags &= ~LOOKUP_JUMPED;
2084 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2085 struct qstr this = { { .hash_len = hash_len }, .name = name };
2086 err = parent->d_op->d_hash(parent, &this);
2087 if (err < 0)
2088 return err;
2089 hash_len = this.hash_len;
2090 name = this.name;
2091 }
2092 }
2093
2094 nd->last.hash_len = hash_len;
2095 nd->last.name = name;
2096 nd->last_type = type;
2097
2098 name += hashlen_len(hash_len);
2099 if (!*name)
2100 goto OK;
2101 /*
2102 * If it wasn't NUL, we know it was '/'. Skip that
2103 * slash, and continue until no more slashes.
2104 */
2105 do {
2106 name++;
2107 } while (unlikely(*name == '/'));
2108 if (unlikely(!*name)) {
2109 OK:
2110 /* pathname body, done */
2111 if (!nd->depth)
2112 return 0;
2113 name = nd->stack[nd->depth - 1].name;
2114 /* trailing symlink, done */
2115 if (!name)
2116 return 0;
2117 /* last component of nested symlink */
2118 err = walk_component(nd, WALK_FOLLOW);
2119 } else {
2120 /* not the last component */
2121 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2122 }
2123 if (err < 0)
2124 return err;
2125
2126 if (err) {
2127 const char *s = get_link(nd);
2128
2129 if (IS_ERR(s))
2130 return PTR_ERR(s);
2131 err = 0;
2132 if (unlikely(!s)) {
2133 /* jumped */
2134 put_link(nd);
2135 } else {
2136 nd->stack[nd->depth - 1].name = name;
2137 name = s;
2138 continue;
2139 }
2140 }
2141 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2142 if (nd->flags & LOOKUP_RCU) {
2143 if (unlazy_walk(nd))
2144 return -ECHILD;
2145 }
2146 return -ENOTDIR;
2147 }
2148 }
2149 }
2150
2151 static const char *path_init(struct nameidata *nd, unsigned flags)
2152 {
2153 const char *s = nd->name->name;
2154
2155 if (!*s)
2156 flags &= ~LOOKUP_RCU;
2157
2158 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2159 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2160 nd->depth = 0;
2161 if (flags & LOOKUP_ROOT) {
2162 struct dentry *root = nd->root.dentry;
2163 struct inode *inode = root->d_inode;
2164 if (*s && unlikely(!d_can_lookup(root)))
2165 return ERR_PTR(-ENOTDIR);
2166 nd->path = nd->root;
2167 nd->inode = inode;
2168 if (flags & LOOKUP_RCU) {
2169 rcu_read_lock();
2170 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2171 nd->root_seq = nd->seq;
2172 nd->m_seq = read_seqbegin(&mount_lock);
2173 } else {
2174 path_get(&nd->path);
2175 }
2176 return s;
2177 }
2178
2179 nd->root.mnt = NULL;
2180 nd->path.mnt = NULL;
2181 nd->path.dentry = NULL;
2182
2183 nd->m_seq = read_seqbegin(&mount_lock);
2184 if (*s == '/') {
2185 if (flags & LOOKUP_RCU)
2186 rcu_read_lock();
2187 set_root(nd);
2188 if (likely(!nd_jump_root(nd)))
2189 return s;
2190 nd->root.mnt = NULL;
2191 rcu_read_unlock();
2192 return ERR_PTR(-ECHILD);
2193 } else if (nd->dfd == AT_FDCWD) {
2194 if (flags & LOOKUP_RCU) {
2195 struct fs_struct *fs = current->fs;
2196 unsigned seq;
2197
2198 rcu_read_lock();
2199
2200 do {
2201 seq = read_seqcount_begin(&fs->seq);
2202 nd->path = fs->pwd;
2203 nd->inode = nd->path.dentry->d_inode;
2204 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2205 } while (read_seqcount_retry(&fs->seq, seq));
2206 } else {
2207 get_fs_pwd(current->fs, &nd->path);
2208 nd->inode = nd->path.dentry->d_inode;
2209 }
2210 return s;
2211 } else {
2212 /* Caller must check execute permissions on the starting path component */
2213 struct fd f = fdget_raw(nd->dfd);
2214 struct dentry *dentry;
2215
2216 if (!f.file)
2217 return ERR_PTR(-EBADF);
2218
2219 dentry = f.file->f_path.dentry;
2220
2221 if (*s) {
2222 if (!d_can_lookup(dentry)) {
2223 fdput(f);
2224 return ERR_PTR(-ENOTDIR);
2225 }
2226 }
2227
2228 nd->path = f.file->f_path;
2229 if (flags & LOOKUP_RCU) {
2230 rcu_read_lock();
2231 nd->inode = nd->path.dentry->d_inode;
2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 } else {
2234 path_get(&nd->path);
2235 nd->inode = nd->path.dentry->d_inode;
2236 }
2237 fdput(f);
2238 return s;
2239 }
2240 }
2241
2242 static const char *trailing_symlink(struct nameidata *nd)
2243 {
2244 const char *s;
2245 int error = may_follow_link(nd);
2246 if (unlikely(error))
2247 return ERR_PTR(error);
2248 nd->flags |= LOOKUP_PARENT;
2249 nd->stack[0].name = NULL;
2250 s = get_link(nd);
2251 return s ? s : "";
2252 }
2253
2254 static inline int lookup_last(struct nameidata *nd)
2255 {
2256 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2258
2259 nd->flags &= ~LOOKUP_PARENT;
2260 return walk_component(nd, 0);
2261 }
2262
2263 static int handle_lookup_down(struct nameidata *nd)
2264 {
2265 struct path path = nd->path;
2266 struct inode *inode = nd->inode;
2267 unsigned seq = nd->seq;
2268 int err;
2269
2270 if (nd->flags & LOOKUP_RCU) {
2271 /*
2272 * don't bother with unlazy_walk on failure - we are
2273 * at the very beginning of walk, so we lose nothing
2274 * if we simply redo everything in non-RCU mode
2275 */
2276 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2277 return -ECHILD;
2278 } else {
2279 dget(path.dentry);
2280 err = follow_managed(&path, nd);
2281 if (unlikely(err < 0))
2282 return err;
2283 inode = d_backing_inode(path.dentry);
2284 seq = 0;
2285 }
2286 path_to_nameidata(&path, nd);
2287 nd->inode = inode;
2288 nd->seq = seq;
2289 return 0;
2290 }
2291
2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2294 {
2295 const char *s = path_init(nd, flags);
2296 int err;
2297
2298 if (IS_ERR(s))
2299 return PTR_ERR(s);
2300
2301 if (unlikely(flags & LOOKUP_DOWN)) {
2302 err = handle_lookup_down(nd);
2303 if (unlikely(err < 0)) {
2304 terminate_walk(nd);
2305 return err;
2306 }
2307 }
2308
2309 while (!(err = link_path_walk(s, nd))
2310 && ((err = lookup_last(nd)) > 0)) {
2311 s = trailing_symlink(nd);
2312 if (IS_ERR(s)) {
2313 err = PTR_ERR(s);
2314 break;
2315 }
2316 }
2317 if (!err)
2318 err = complete_walk(nd);
2319
2320 if (!err && nd->flags & LOOKUP_DIRECTORY)
2321 if (!d_can_lookup(nd->path.dentry))
2322 err = -ENOTDIR;
2323 if (!err) {
2324 *path = nd->path;
2325 nd->path.mnt = NULL;
2326 nd->path.dentry = NULL;
2327 }
2328 terminate_walk(nd);
2329 return err;
2330 }
2331
2332 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2333 struct path *path, struct path *root)
2334 {
2335 int retval;
2336 struct nameidata nd;
2337 if (IS_ERR(name))
2338 return PTR_ERR(name);
2339 if (unlikely(root)) {
2340 nd.root = *root;
2341 flags |= LOOKUP_ROOT;
2342 }
2343 set_nameidata(&nd, dfd, name);
2344 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2345 if (unlikely(retval == -ECHILD))
2346 retval = path_lookupat(&nd, flags, path);
2347 if (unlikely(retval == -ESTALE))
2348 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2349
2350 if (likely(!retval))
2351 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2352 restore_nameidata();
2353 putname(name);
2354 return retval;
2355 }
2356
2357 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2358 static int path_parentat(struct nameidata *nd, unsigned flags,
2359 struct path *parent)
2360 {
2361 const char *s = path_init(nd, flags);
2362 int err;
2363 if (IS_ERR(s))
2364 return PTR_ERR(s);
2365 err = link_path_walk(s, nd);
2366 if (!err)
2367 err = complete_walk(nd);
2368 if (!err) {
2369 *parent = nd->path;
2370 nd->path.mnt = NULL;
2371 nd->path.dentry = NULL;
2372 }
2373 terminate_walk(nd);
2374 return err;
2375 }
2376
2377 static struct filename *filename_parentat(int dfd, struct filename *name,
2378 unsigned int flags, struct path *parent,
2379 struct qstr *last, int *type)
2380 {
2381 int retval;
2382 struct nameidata nd;
2383
2384 if (IS_ERR(name))
2385 return name;
2386 set_nameidata(&nd, dfd, name);
2387 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2388 if (unlikely(retval == -ECHILD))
2389 retval = path_parentat(&nd, flags, parent);
2390 if (unlikely(retval == -ESTALE))
2391 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2392 if (likely(!retval)) {
2393 *last = nd.last;
2394 *type = nd.last_type;
2395 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2396 } else {
2397 putname(name);
2398 name = ERR_PTR(retval);
2399 }
2400 restore_nameidata();
2401 return name;
2402 }
2403
2404 /* does lookup, returns the object with parent locked */
2405 struct dentry *kern_path_locked(const char *name, struct path *path)
2406 {
2407 struct filename *filename;
2408 struct dentry *d;
2409 struct qstr last;
2410 int type;
2411
2412 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2413 &last, &type);
2414 if (IS_ERR(filename))
2415 return ERR_CAST(filename);
2416 if (unlikely(type != LAST_NORM)) {
2417 path_put(path);
2418 putname(filename);
2419 return ERR_PTR(-EINVAL);
2420 }
2421 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2422 d = __lookup_hash(&last, path->dentry, 0);
2423 if (IS_ERR(d)) {
2424 inode_unlock(path->dentry->d_inode);
2425 path_put(path);
2426 }
2427 putname(filename);
2428 return d;
2429 }
2430
2431 int kern_path(const char *name, unsigned int flags, struct path *path)
2432 {
2433 return filename_lookup(AT_FDCWD, getname_kernel(name),
2434 flags, path, NULL);
2435 }
2436 EXPORT_SYMBOL(kern_path);
2437
2438 /**
2439 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2440 * @dentry: pointer to dentry of the base directory
2441 * @mnt: pointer to vfs mount of the base directory
2442 * @name: pointer to file name
2443 * @flags: lookup flags
2444 * @path: pointer to struct path to fill
2445 */
2446 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2447 const char *name, unsigned int flags,
2448 struct path *path)
2449 {
2450 struct path root = {.mnt = mnt, .dentry = dentry};
2451 /* the first argument of filename_lookup() is ignored with root */
2452 return filename_lookup(AT_FDCWD, getname_kernel(name),
2453 flags , path, &root);
2454 }
2455 EXPORT_SYMBOL(vfs_path_lookup);
2456
2457 /**
2458 * lookup_one_len - filesystem helper to lookup single pathname component
2459 * @name: pathname component to lookup
2460 * @base: base directory to lookup from
2461 * @len: maximum length @len should be interpreted to
2462 *
2463 * Note that this routine is purely a helper for filesystem usage and should
2464 * not be called by generic code.
2465 *
2466 * The caller must hold base->i_mutex.
2467 */
2468 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2469 {
2470 struct qstr this;
2471 unsigned int c;
2472 int err;
2473
2474 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2475
2476 this.name = name;
2477 this.len = len;
2478 this.hash = full_name_hash(base, name, len);
2479 if (!len)
2480 return ERR_PTR(-EACCES);
2481
2482 if (unlikely(name[0] == '.')) {
2483 if (len < 2 || (len == 2 && name[1] == '.'))
2484 return ERR_PTR(-EACCES);
2485 }
2486
2487 while (len--) {
2488 c = *(const unsigned char *)name++;
2489 if (c == '/' || c == '\0')
2490 return ERR_PTR(-EACCES);
2491 }
2492 /*
2493 * See if the low-level filesystem might want
2494 * to use its own hash..
2495 */
2496 if (base->d_flags & DCACHE_OP_HASH) {
2497 int err = base->d_op->d_hash(base, &this);
2498 if (err < 0)
2499 return ERR_PTR(err);
2500 }
2501
2502 err = inode_permission(base->d_inode, MAY_EXEC);
2503 if (err)
2504 return ERR_PTR(err);
2505
2506 return __lookup_hash(&this, base, 0);
2507 }
2508 EXPORT_SYMBOL(lookup_one_len);
2509
2510 /**
2511 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2512 * @name: pathname component to lookup
2513 * @base: base directory to lookup from
2514 * @len: maximum length @len should be interpreted to
2515 *
2516 * Note that this routine is purely a helper for filesystem usage and should
2517 * not be called by generic code.
2518 *
2519 * Unlike lookup_one_len, it should be called without the parent
2520 * i_mutex held, and will take the i_mutex itself if necessary.
2521 */
2522 struct dentry *lookup_one_len_unlocked(const char *name,
2523 struct dentry *base, int len)
2524 {
2525 struct qstr this;
2526 unsigned int c;
2527 int err;
2528 struct dentry *ret;
2529
2530 this.name = name;
2531 this.len = len;
2532 this.hash = full_name_hash(base, name, len);
2533 if (!len)
2534 return ERR_PTR(-EACCES);
2535
2536 if (unlikely(name[0] == '.')) {
2537 if (len < 2 || (len == 2 && name[1] == '.'))
2538 return ERR_PTR(-EACCES);
2539 }
2540
2541 while (len--) {
2542 c = *(const unsigned char *)name++;
2543 if (c == '/' || c == '\0')
2544 return ERR_PTR(-EACCES);
2545 }
2546 /*
2547 * See if the low-level filesystem might want
2548 * to use its own hash..
2549 */
2550 if (base->d_flags & DCACHE_OP_HASH) {
2551 int err = base->d_op->d_hash(base, &this);
2552 if (err < 0)
2553 return ERR_PTR(err);
2554 }
2555
2556 err = inode_permission(base->d_inode, MAY_EXEC);
2557 if (err)
2558 return ERR_PTR(err);
2559
2560 ret = lookup_dcache(&this, base, 0);
2561 if (!ret)
2562 ret = lookup_slow(&this, base, 0);
2563 return ret;
2564 }
2565 EXPORT_SYMBOL(lookup_one_len_unlocked);
2566
2567 #ifdef CONFIG_UNIX98_PTYS
2568 int path_pts(struct path *path)
2569 {
2570 /* Find something mounted on "pts" in the same directory as
2571 * the input path.
2572 */
2573 struct dentry *child, *parent;
2574 struct qstr this;
2575 int ret;
2576
2577 ret = path_parent_directory(path);
2578 if (ret)
2579 return ret;
2580
2581 parent = path->dentry;
2582 this.name = "pts";
2583 this.len = 3;
2584 child = d_hash_and_lookup(parent, &this);
2585 if (!child)
2586 return -ENOENT;
2587
2588 path->dentry = child;
2589 dput(parent);
2590 follow_mount(path);
2591 return 0;
2592 }
2593 #endif
2594
2595 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596 struct path *path, int *empty)
2597 {
2598 return filename_lookup(dfd, getname_flags(name, flags, empty),
2599 flags, path, NULL);
2600 }
2601 EXPORT_SYMBOL(user_path_at_empty);
2602
2603 /**
2604 * mountpoint_last - look up last component for umount
2605 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2606 *
2607 * This is a special lookup_last function just for umount. In this case, we
2608 * need to resolve the path without doing any revalidation.
2609 *
2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612 * in almost all cases, this lookup will be served out of the dcache. The only
2613 * cases where it won't are if nd->last refers to a symlink or the path is
2614 * bogus and it doesn't exist.
2615 *
2616 * Returns:
2617 * -error: if there was an error during lookup. This includes -ENOENT if the
2618 * lookup found a negative dentry.
2619 *
2620 * 0: if we successfully resolved nd->last and found it to not to be a
2621 * symlink that needs to be followed.
2622 *
2623 * 1: if we successfully resolved nd->last and found it to be a symlink
2624 * that needs to be followed.
2625 */
2626 static int
2627 mountpoint_last(struct nameidata *nd)
2628 {
2629 int error = 0;
2630 struct dentry *dir = nd->path.dentry;
2631 struct path path;
2632
2633 /* If we're in rcuwalk, drop out of it to handle last component */
2634 if (nd->flags & LOOKUP_RCU) {
2635 if (unlazy_walk(nd))
2636 return -ECHILD;
2637 }
2638
2639 nd->flags &= ~LOOKUP_PARENT;
2640
2641 if (unlikely(nd->last_type != LAST_NORM)) {
2642 error = handle_dots(nd, nd->last_type);
2643 if (error)
2644 return error;
2645 path.dentry = dget(nd->path.dentry);
2646 } else {
2647 path.dentry = d_lookup(dir, &nd->last);
2648 if (!path.dentry) {
2649 /*
2650 * No cached dentry. Mounted dentries are pinned in the
2651 * cache, so that means that this dentry is probably
2652 * a symlink or the path doesn't actually point
2653 * to a mounted dentry.
2654 */
2655 path.dentry = lookup_slow(&nd->last, dir,
2656 nd->flags | LOOKUP_NO_REVAL);
2657 if (IS_ERR(path.dentry))
2658 return PTR_ERR(path.dentry);
2659 }
2660 }
2661 if (d_is_negative(path.dentry)) {
2662 dput(path.dentry);
2663 return -ENOENT;
2664 }
2665 path.mnt = nd->path.mnt;
2666 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2667 }
2668
2669 /**
2670 * path_mountpoint - look up a path to be umounted
2671 * @nd: lookup context
2672 * @flags: lookup flags
2673 * @path: pointer to container for result
2674 *
2675 * Look up the given name, but don't attempt to revalidate the last component.
2676 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2677 */
2678 static int
2679 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2680 {
2681 const char *s = path_init(nd, flags);
2682 int err;
2683 if (IS_ERR(s))
2684 return PTR_ERR(s);
2685 while (!(err = link_path_walk(s, nd)) &&
2686 (err = mountpoint_last(nd)) > 0) {
2687 s = trailing_symlink(nd);
2688 if (IS_ERR(s)) {
2689 err = PTR_ERR(s);
2690 break;
2691 }
2692 }
2693 if (!err) {
2694 *path = nd->path;
2695 nd->path.mnt = NULL;
2696 nd->path.dentry = NULL;
2697 follow_mount(path);
2698 }
2699 terminate_walk(nd);
2700 return err;
2701 }
2702
2703 static int
2704 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2705 unsigned int flags)
2706 {
2707 struct nameidata nd;
2708 int error;
2709 if (IS_ERR(name))
2710 return PTR_ERR(name);
2711 set_nameidata(&nd, dfd, name);
2712 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2713 if (unlikely(error == -ECHILD))
2714 error = path_mountpoint(&nd, flags, path);
2715 if (unlikely(error == -ESTALE))
2716 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2717 if (likely(!error))
2718 audit_inode(name, path->dentry, 0);
2719 restore_nameidata();
2720 putname(name);
2721 return error;
2722 }
2723
2724 /**
2725 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2726 * @dfd: directory file descriptor
2727 * @name: pathname from userland
2728 * @flags: lookup flags
2729 * @path: pointer to container to hold result
2730 *
2731 * A umount is a special case for path walking. We're not actually interested
2732 * in the inode in this situation, and ESTALE errors can be a problem. We
2733 * simply want track down the dentry and vfsmount attached at the mountpoint
2734 * and avoid revalidating the last component.
2735 *
2736 * Returns 0 and populates "path" on success.
2737 */
2738 int
2739 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2740 struct path *path)
2741 {
2742 return filename_mountpoint(dfd, getname(name), path, flags);
2743 }
2744
2745 int
2746 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2747 unsigned int flags)
2748 {
2749 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2750 }
2751 EXPORT_SYMBOL(kern_path_mountpoint);
2752
2753 int __check_sticky(struct inode *dir, struct inode *inode)
2754 {
2755 kuid_t fsuid = current_fsuid();
2756
2757 if (uid_eq(inode->i_uid, fsuid))
2758 return 0;
2759 if (uid_eq(dir->i_uid, fsuid))
2760 return 0;
2761 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2762 }
2763 EXPORT_SYMBOL(__check_sticky);
2764
2765 /*
2766 * Check whether we can remove a link victim from directory dir, check
2767 * whether the type of victim is right.
2768 * 1. We can't do it if dir is read-only (done in permission())
2769 * 2. We should have write and exec permissions on dir
2770 * 3. We can't remove anything from append-only dir
2771 * 4. We can't do anything with immutable dir (done in permission())
2772 * 5. If the sticky bit on dir is set we should either
2773 * a. be owner of dir, or
2774 * b. be owner of victim, or
2775 * c. have CAP_FOWNER capability
2776 * 6. If the victim is append-only or immutable we can't do antyhing with
2777 * links pointing to it.
2778 * 7. If the victim has an unknown uid or gid we can't change the inode.
2779 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2780 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2781 * 10. We can't remove a root or mountpoint.
2782 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2783 * nfs_async_unlink().
2784 */
2785 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2786 {
2787 struct inode *inode = d_backing_inode(victim);
2788 int error;
2789
2790 if (d_is_negative(victim))
2791 return -ENOENT;
2792 BUG_ON(!inode);
2793
2794 BUG_ON(victim->d_parent->d_inode != dir);
2795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2796
2797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2798 if (error)
2799 return error;
2800 if (IS_APPEND(dir))
2801 return -EPERM;
2802
2803 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2805 return -EPERM;
2806 if (isdir) {
2807 if (!d_is_dir(victim))
2808 return -ENOTDIR;
2809 if (IS_ROOT(victim))
2810 return -EBUSY;
2811 } else if (d_is_dir(victim))
2812 return -EISDIR;
2813 if (IS_DEADDIR(dir))
2814 return -ENOENT;
2815 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2816 return -EBUSY;
2817 return 0;
2818 }
2819
2820 /* Check whether we can create an object with dentry child in directory
2821 * dir.
2822 * 1. We can't do it if child already exists (open has special treatment for
2823 * this case, but since we are inlined it's OK)
2824 * 2. We can't do it if dir is read-only (done in permission())
2825 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2826 * 4. We should have write and exec permissions on dir
2827 * 5. We can't do it if dir is immutable (done in permission())
2828 */
2829 static inline int may_create(struct inode *dir, struct dentry *child)
2830 {
2831 struct user_namespace *s_user_ns;
2832 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2833 if (child->d_inode)
2834 return -EEXIST;
2835 if (IS_DEADDIR(dir))
2836 return -ENOENT;
2837 s_user_ns = dir->i_sb->s_user_ns;
2838 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839 !kgid_has_mapping(s_user_ns, current_fsgid()))
2840 return -EOVERFLOW;
2841 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2842 }
2843
2844 /*
2845 * p1 and p2 should be directories on the same fs.
2846 */
2847 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2848 {
2849 struct dentry *p;
2850
2851 if (p1 == p2) {
2852 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853 return NULL;
2854 }
2855
2856 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2857
2858 p = d_ancestor(p2, p1);
2859 if (p) {
2860 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2862 return p;
2863 }
2864
2865 p = d_ancestor(p1, p2);
2866 if (p) {
2867 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2869 return p;
2870 }
2871
2872 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2874 return NULL;
2875 }
2876 EXPORT_SYMBOL(lock_rename);
2877
2878 void unlock_rename(struct dentry *p1, struct dentry *p2)
2879 {
2880 inode_unlock(p1->d_inode);
2881 if (p1 != p2) {
2882 inode_unlock(p2->d_inode);
2883 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2884 }
2885 }
2886 EXPORT_SYMBOL(unlock_rename);
2887
2888 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889 bool want_excl)
2890 {
2891 int error = may_create(dir, dentry);
2892 if (error)
2893 return error;
2894
2895 if (!dir->i_op->create)
2896 return -EACCES; /* shouldn't it be ENOSYS? */
2897 mode &= S_IALLUGO;
2898 mode |= S_IFREG;
2899 error = security_inode_create(dir, dentry, mode);
2900 if (error)
2901 return error;
2902 error = dir->i_op->create(dir, dentry, mode, want_excl);
2903 if (!error)
2904 fsnotify_create(dir, dentry);
2905 return error;
2906 }
2907 EXPORT_SYMBOL(vfs_create);
2908
2909 bool may_open_dev(const struct path *path)
2910 {
2911 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2912 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2913 }
2914
2915 static int may_open(const struct path *path, int acc_mode, int flag)
2916 {
2917 struct dentry *dentry = path->dentry;
2918 struct inode *inode = dentry->d_inode;
2919 int error;
2920
2921 if (!inode)
2922 return -ENOENT;
2923
2924 switch (inode->i_mode & S_IFMT) {
2925 case S_IFLNK:
2926 return -ELOOP;
2927 case S_IFDIR:
2928 if (acc_mode & MAY_WRITE)
2929 return -EISDIR;
2930 break;
2931 case S_IFBLK:
2932 case S_IFCHR:
2933 if (!may_open_dev(path))
2934 return -EACCES;
2935 /*FALLTHRU*/
2936 case S_IFIFO:
2937 case S_IFSOCK:
2938 flag &= ~O_TRUNC;
2939 break;
2940 }
2941
2942 error = inode_permission(inode, MAY_OPEN | acc_mode);
2943 if (error)
2944 return error;
2945
2946 /*
2947 * An append-only file must be opened in append mode for writing.
2948 */
2949 if (IS_APPEND(inode)) {
2950 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2951 return -EPERM;
2952 if (flag & O_TRUNC)
2953 return -EPERM;
2954 }
2955
2956 /* O_NOATIME can only be set by the owner or superuser */
2957 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2958 return -EPERM;
2959
2960 return 0;
2961 }
2962
2963 static int handle_truncate(struct file *filp)
2964 {
2965 const struct path *path = &filp->f_path;
2966 struct inode *inode = path->dentry->d_inode;
2967 int error = get_write_access(inode);
2968 if (error)
2969 return error;
2970 /*
2971 * Refuse to truncate files with mandatory locks held on them.
2972 */
2973 error = locks_verify_locked(filp);
2974 if (!error)
2975 error = security_path_truncate(path);
2976 if (!error) {
2977 error = do_truncate(path->dentry, 0,
2978 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2979 filp);
2980 }
2981 put_write_access(inode);
2982 return error;
2983 }
2984
2985 static inline int open_to_namei_flags(int flag)
2986 {
2987 if ((flag & O_ACCMODE) == 3)
2988 flag--;
2989 return flag;
2990 }
2991
2992 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2993 {
2994 struct user_namespace *s_user_ns;
2995 int error = security_path_mknod(dir, dentry, mode, 0);
2996 if (error)
2997 return error;
2998
2999 s_user_ns = dir->dentry->d_sb->s_user_ns;
3000 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3001 !kgid_has_mapping(s_user_ns, current_fsgid()))
3002 return -EOVERFLOW;
3003
3004 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3005 if (error)
3006 return error;
3007
3008 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3009 }
3010
3011 /*
3012 * Attempt to atomically look up, create and open a file from a negative
3013 * dentry.
3014 *
3015 * Returns 0 if successful. The file will have been created and attached to
3016 * @file by the filesystem calling finish_open().
3017 *
3018 * Returns 1 if the file was looked up only or didn't need creating. The
3019 * caller will need to perform the open themselves. @path will have been
3020 * updated to point to the new dentry. This may be negative.
3021 *
3022 * Returns an error code otherwise.
3023 */
3024 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3025 struct path *path, struct file *file,
3026 const struct open_flags *op,
3027 int open_flag, umode_t mode,
3028 int *opened)
3029 {
3030 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3031 struct inode *dir = nd->path.dentry->d_inode;
3032 int error;
3033
3034 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3035 open_flag &= ~O_TRUNC;
3036
3037 if (nd->flags & LOOKUP_DIRECTORY)
3038 open_flag |= O_DIRECTORY;
3039
3040 file->f_path.dentry = DENTRY_NOT_SET;
3041 file->f_path.mnt = nd->path.mnt;
3042 error = dir->i_op->atomic_open(dir, dentry, file,
3043 open_to_namei_flags(open_flag),
3044 mode, opened);
3045 d_lookup_done(dentry);
3046 if (!error) {
3047 /*
3048 * We didn't have the inode before the open, so check open
3049 * permission here.
3050 */
3051 int acc_mode = op->acc_mode;
3052 if (*opened & FILE_CREATED) {
3053 WARN_ON(!(open_flag & O_CREAT));
3054 fsnotify_create(dir, dentry);
3055 acc_mode = 0;
3056 }
3057 error = may_open(&file->f_path, acc_mode, open_flag);
3058 if (WARN_ON(error > 0))
3059 error = -EINVAL;
3060 } else if (error > 0) {
3061 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3062 error = -EIO;
3063 } else {
3064 if (file->f_path.dentry) {
3065 dput(dentry);
3066 dentry = file->f_path.dentry;
3067 }
3068 if (*opened & FILE_CREATED)
3069 fsnotify_create(dir, dentry);
3070 if (unlikely(d_is_negative(dentry))) {
3071 error = -ENOENT;
3072 } else {
3073 path->dentry = dentry;
3074 path->mnt = nd->path.mnt;
3075 return 1;
3076 }
3077 }
3078 }
3079 dput(dentry);
3080 return error;
3081 }
3082
3083 /*
3084 * Look up and maybe create and open the last component.
3085 *
3086 * Must be called with i_mutex held on parent.
3087 *
3088 * Returns 0 if the file was successfully atomically created (if necessary) and
3089 * opened. In this case the file will be returned attached to @file.
3090 *
3091 * Returns 1 if the file was not completely opened at this time, though lookups
3092 * and creations will have been performed and the dentry returned in @path will
3093 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3094 * specified then a negative dentry may be returned.
3095 *
3096 * An error code is returned otherwise.
3097 *
3098 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3099 * cleared otherwise prior to returning.
3100 */
3101 static int lookup_open(struct nameidata *nd, struct path *path,
3102 struct file *file,
3103 const struct open_flags *op,
3104 bool got_write, int *opened)
3105 {
3106 struct dentry *dir = nd->path.dentry;
3107 struct inode *dir_inode = dir->d_inode;
3108 int open_flag = op->open_flag;
3109 struct dentry *dentry;
3110 int error, create_error = 0;
3111 umode_t mode = op->mode;
3112 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3113
3114 if (unlikely(IS_DEADDIR(dir_inode)))
3115 return -ENOENT;
3116
3117 *opened &= ~FILE_CREATED;
3118 dentry = d_lookup(dir, &nd->last);
3119 for (;;) {
3120 if (!dentry) {
3121 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3122 if (IS_ERR(dentry))
3123 return PTR_ERR(dentry);
3124 }
3125 if (d_in_lookup(dentry))
3126 break;
3127
3128 error = d_revalidate(dentry, nd->flags);
3129 if (likely(error > 0))
3130 break;
3131 if (error)
3132 goto out_dput;
3133 d_invalidate(dentry);
3134 dput(dentry);
3135 dentry = NULL;
3136 }
3137 if (dentry->d_inode) {
3138 /* Cached positive dentry: will open in f_op->open */
3139 goto out_no_open;
3140 }
3141
3142 /*
3143 * Checking write permission is tricky, bacuse we don't know if we are
3144 * going to actually need it: O_CREAT opens should work as long as the
3145 * file exists. But checking existence breaks atomicity. The trick is
3146 * to check access and if not granted clear O_CREAT from the flags.
3147 *
3148 * Another problem is returing the "right" error value (e.g. for an
3149 * O_EXCL open we want to return EEXIST not EROFS).
3150 */
3151 if (open_flag & O_CREAT) {
3152 if (!IS_POSIXACL(dir->d_inode))
3153 mode &= ~current_umask();
3154 if (unlikely(!got_write)) {
3155 create_error = -EROFS;
3156 open_flag &= ~O_CREAT;
3157 if (open_flag & (O_EXCL | O_TRUNC))
3158 goto no_open;
3159 /* No side effects, safe to clear O_CREAT */
3160 } else {
3161 create_error = may_o_create(&nd->path, dentry, mode);
3162 if (create_error) {
3163 open_flag &= ~O_CREAT;
3164 if (open_flag & O_EXCL)
3165 goto no_open;
3166 }
3167 }
3168 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3169 unlikely(!got_write)) {
3170 /*
3171 * No O_CREATE -> atomicity not a requirement -> fall
3172 * back to lookup + open
3173 */
3174 goto no_open;
3175 }
3176
3177 if (dir_inode->i_op->atomic_open) {
3178 error = atomic_open(nd, dentry, path, file, op, open_flag,
3179 mode, opened);
3180 if (unlikely(error == -ENOENT) && create_error)
3181 error = create_error;
3182 return error;
3183 }
3184
3185 no_open:
3186 if (d_in_lookup(dentry)) {
3187 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3188 nd->flags);
3189 d_lookup_done(dentry);
3190 if (unlikely(res)) {
3191 if (IS_ERR(res)) {
3192 error = PTR_ERR(res);
3193 goto out_dput;
3194 }
3195 dput(dentry);
3196 dentry = res;
3197 }
3198 }
3199
3200 /* Negative dentry, just create the file */
3201 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3202 *opened |= FILE_CREATED;
3203 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3204 if (!dir_inode->i_op->create) {
3205 error = -EACCES;
3206 goto out_dput;
3207 }
3208 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3209 open_flag & O_EXCL);
3210 if (error)
3211 goto out_dput;
3212 fsnotify_create(dir_inode, dentry);
3213 }
3214 if (unlikely(create_error) && !dentry->d_inode) {
3215 error = create_error;
3216 goto out_dput;
3217 }
3218 out_no_open:
3219 path->dentry = dentry;
3220 path->mnt = nd->path.mnt;
3221 return 1;
3222
3223 out_dput:
3224 dput(dentry);
3225 return error;
3226 }
3227
3228 /*
3229 * Handle the last step of open()
3230 */
3231 static int do_last(struct nameidata *nd,
3232 struct file *file, const struct open_flags *op,
3233 int *opened)
3234 {
3235 struct dentry *dir = nd->path.dentry;
3236 int open_flag = op->open_flag;
3237 bool will_truncate = (open_flag & O_TRUNC) != 0;
3238 bool got_write = false;
3239 int acc_mode = op->acc_mode;
3240 unsigned seq;
3241 struct inode *inode;
3242 struct path path;
3243 int error;
3244
3245 nd->flags &= ~LOOKUP_PARENT;
3246 nd->flags |= op->intent;
3247
3248 if (nd->last_type != LAST_NORM) {
3249 error = handle_dots(nd, nd->last_type);
3250 if (unlikely(error))
3251 return error;
3252 goto finish_open;
3253 }
3254
3255 if (!(open_flag & O_CREAT)) {
3256 if (nd->last.name[nd->last.len])
3257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3258 /* we _can_ be in RCU mode here */
3259 error = lookup_fast(nd, &path, &inode, &seq);
3260 if (likely(error > 0))
3261 goto finish_lookup;
3262
3263 if (error < 0)
3264 return error;
3265
3266 BUG_ON(nd->inode != dir->d_inode);
3267 BUG_ON(nd->flags & LOOKUP_RCU);
3268 } else {
3269 /* create side of things */
3270 /*
3271 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3272 * has been cleared when we got to the last component we are
3273 * about to look up
3274 */
3275 error = complete_walk(nd);
3276 if (error)
3277 return error;
3278
3279 audit_inode(nd->name, dir, LOOKUP_PARENT);
3280 /* trailing slashes? */
3281 if (unlikely(nd->last.name[nd->last.len]))
3282 return -EISDIR;
3283 }
3284
3285 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3286 error = mnt_want_write(nd->path.mnt);
3287 if (!error)
3288 got_write = true;
3289 /*
3290 * do _not_ fail yet - we might not need that or fail with
3291 * a different error; let lookup_open() decide; we'll be
3292 * dropping this one anyway.
3293 */
3294 }
3295 if (open_flag & O_CREAT)
3296 inode_lock(dir->d_inode);
3297 else
3298 inode_lock_shared(dir->d_inode);
3299 error = lookup_open(nd, &path, file, op, got_write, opened);
3300 if (open_flag & O_CREAT)
3301 inode_unlock(dir->d_inode);
3302 else
3303 inode_unlock_shared(dir->d_inode);
3304
3305 if (error <= 0) {
3306 if (error)
3307 goto out;
3308
3309 if ((*opened & FILE_CREATED) ||
3310 !S_ISREG(file_inode(file)->i_mode))
3311 will_truncate = false;
3312
3313 audit_inode(nd->name, file->f_path.dentry, 0);
3314 goto opened;
3315 }
3316
3317 if (*opened & FILE_CREATED) {
3318 /* Don't check for write permission, don't truncate */
3319 open_flag &= ~O_TRUNC;
3320 will_truncate = false;
3321 acc_mode = 0;
3322 path_to_nameidata(&path, nd);
3323 goto finish_open_created;
3324 }
3325
3326 /*
3327 * If atomic_open() acquired write access it is dropped now due to
3328 * possible mount and symlink following (this might be optimized away if
3329 * necessary...)
3330 */
3331 if (got_write) {
3332 mnt_drop_write(nd->path.mnt);
3333 got_write = false;
3334 }
3335
3336 error = follow_managed(&path, nd);
3337 if (unlikely(error < 0))
3338 return error;
3339
3340 if (unlikely(d_is_negative(path.dentry))) {
3341 path_to_nameidata(&path, nd);
3342 return -ENOENT;
3343 }
3344
3345 /*
3346 * create/update audit record if it already exists.
3347 */
3348 audit_inode(nd->name, path.dentry, 0);
3349
3350 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3351 path_to_nameidata(&path, nd);
3352 return -EEXIST;
3353 }
3354
3355 seq = 0; /* out of RCU mode, so the value doesn't matter */
3356 inode = d_backing_inode(path.dentry);
3357 finish_lookup:
3358 error = step_into(nd, &path, 0, inode, seq);
3359 if (unlikely(error))
3360 return error;
3361 finish_open:
3362 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3363 error = complete_walk(nd);
3364 if (error)
3365 return error;
3366 audit_inode(nd->name, nd->path.dentry, 0);
3367 error = -EISDIR;
3368 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3369 goto out;
3370 error = -ENOTDIR;
3371 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3372 goto out;
3373 if (!d_is_reg(nd->path.dentry))
3374 will_truncate = false;
3375
3376 if (will_truncate) {
3377 error = mnt_want_write(nd->path.mnt);
3378 if (error)
3379 goto out;
3380 got_write = true;
3381 }
3382 finish_open_created:
3383 error = may_open(&nd->path, acc_mode, open_flag);
3384 if (error)
3385 goto out;
3386 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3387 error = vfs_open(&nd->path, file, current_cred());
3388 if (error)
3389 goto out;
3390 *opened |= FILE_OPENED;
3391 opened:
3392 error = open_check_o_direct(file);
3393 if (!error)
3394 error = ima_file_check(file, op->acc_mode, *opened);
3395 if (!error && will_truncate)
3396 error = handle_truncate(file);
3397 out:
3398 if (unlikely(error) && (*opened & FILE_OPENED))
3399 fput(file);
3400 if (unlikely(error > 0)) {
3401 WARN_ON(1);
3402 error = -EINVAL;
3403 }
3404 if (got_write)
3405 mnt_drop_write(nd->path.mnt);
3406 return error;
3407 }
3408
3409 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3410 {
3411 struct dentry *child = NULL;
3412 struct inode *dir = dentry->d_inode;
3413 struct inode *inode;
3414 int error;
3415
3416 /* we want directory to be writable */
3417 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3418 if (error)
3419 goto out_err;
3420 error = -EOPNOTSUPP;
3421 if (!dir->i_op->tmpfile)
3422 goto out_err;
3423 error = -ENOMEM;
3424 child = d_alloc(dentry, &slash_name);
3425 if (unlikely(!child))
3426 goto out_err;
3427 error = dir->i_op->tmpfile(dir, child, mode);
3428 if (error)
3429 goto out_err;
3430 error = -ENOENT;
3431 inode = child->d_inode;
3432 if (unlikely(!inode))
3433 goto out_err;
3434 if (!(open_flag & O_EXCL)) {
3435 spin_lock(&inode->i_lock);
3436 inode->i_state |= I_LINKABLE;
3437 spin_unlock(&inode->i_lock);
3438 }
3439 return child;
3440
3441 out_err:
3442 dput(child);
3443 return ERR_PTR(error);
3444 }
3445 EXPORT_SYMBOL(vfs_tmpfile);
3446
3447 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3448 const struct open_flags *op,
3449 struct file *file, int *opened)
3450 {
3451 struct dentry *child;
3452 struct path path;
3453 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3454 if (unlikely(error))
3455 return error;
3456 error = mnt_want_write(path.mnt);
3457 if (unlikely(error))
3458 goto out;
3459 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3460 error = PTR_ERR(child);
3461 if (unlikely(IS_ERR(child)))
3462 goto out2;
3463 dput(path.dentry);
3464 path.dentry = child;
3465 audit_inode(nd->name, child, 0);
3466 /* Don't check for other permissions, the inode was just created */
3467 error = may_open(&path, 0, op->open_flag);
3468 if (error)
3469 goto out2;
3470 file->f_path.mnt = path.mnt;
3471 error = finish_open(file, child, NULL, opened);
3472 if (error)
3473 goto out2;
3474 error = open_check_o_direct(file);
3475 if (error)
3476 fput(file);
3477 out2:
3478 mnt_drop_write(path.mnt);
3479 out:
3480 path_put(&path);
3481 return error;
3482 }
3483
3484 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3485 {
3486 struct path path;
3487 int error = path_lookupat(nd, flags, &path);
3488 if (!error) {
3489 audit_inode(nd->name, path.dentry, 0);
3490 error = vfs_open(&path, file, current_cred());
3491 path_put(&path);
3492 }
3493 return error;
3494 }
3495
3496 static struct file *path_openat(struct nameidata *nd,
3497 const struct open_flags *op, unsigned flags)
3498 {
3499 const char *s;
3500 struct file *file;
3501 int opened = 0;
3502 int error;
3503
3504 file = get_empty_filp();
3505 if (IS_ERR(file))
3506 return file;
3507
3508 file->f_flags = op->open_flag;
3509
3510 if (unlikely(file->f_flags & __O_TMPFILE)) {
3511 error = do_tmpfile(nd, flags, op, file, &opened);
3512 goto out2;
3513 }
3514
3515 if (unlikely(file->f_flags & O_PATH)) {
3516 error = do_o_path(nd, flags, file);
3517 if (!error)
3518 opened |= FILE_OPENED;
3519 goto out2;
3520 }
3521
3522 s = path_init(nd, flags);
3523 if (IS_ERR(s)) {
3524 put_filp(file);
3525 return ERR_CAST(s);
3526 }
3527 while (!(error = link_path_walk(s, nd)) &&
3528 (error = do_last(nd, file, op, &opened)) > 0) {
3529 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3530 s = trailing_symlink(nd);
3531 if (IS_ERR(s)) {
3532 error = PTR_ERR(s);
3533 break;
3534 }
3535 }
3536 terminate_walk(nd);
3537 out2:
3538 if (!(opened & FILE_OPENED)) {
3539 BUG_ON(!error);
3540 put_filp(file);
3541 }
3542 if (unlikely(error)) {
3543 if (error == -EOPENSTALE) {
3544 if (flags & LOOKUP_RCU)
3545 error = -ECHILD;
3546 else
3547 error = -ESTALE;
3548 }
3549 file = ERR_PTR(error);
3550 }
3551 return file;
3552 }
3553
3554 struct file *do_filp_open(int dfd, struct filename *pathname,
3555 const struct open_flags *op)
3556 {
3557 struct nameidata nd;
3558 int flags = op->lookup_flags;
3559 struct file *filp;
3560
3561 set_nameidata(&nd, dfd, pathname);
3562 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3563 if (unlikely(filp == ERR_PTR(-ECHILD)))
3564 filp = path_openat(&nd, op, flags);
3565 if (unlikely(filp == ERR_PTR(-ESTALE)))
3566 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3567 restore_nameidata();
3568 return filp;
3569 }
3570
3571 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3572 const char *name, const struct open_flags *op)
3573 {
3574 struct nameidata nd;
3575 struct file *file;
3576 struct filename *filename;
3577 int flags = op->lookup_flags | LOOKUP_ROOT;
3578
3579 nd.root.mnt = mnt;
3580 nd.root.dentry = dentry;
3581
3582 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3583 return ERR_PTR(-ELOOP);
3584
3585 filename = getname_kernel(name);
3586 if (IS_ERR(filename))
3587 return ERR_CAST(filename);
3588
3589 set_nameidata(&nd, -1, filename);
3590 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3591 if (unlikely(file == ERR_PTR(-ECHILD)))
3592 file = path_openat(&nd, op, flags);
3593 if (unlikely(file == ERR_PTR(-ESTALE)))
3594 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3595 restore_nameidata();
3596 putname(filename);
3597 return file;
3598 }
3599
3600 static struct dentry *filename_create(int dfd, struct filename *name,
3601 struct path *path, unsigned int lookup_flags)
3602 {
3603 struct dentry *dentry = ERR_PTR(-EEXIST);
3604 struct qstr last;
3605 int type;
3606 int err2;
3607 int error;
3608 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3609
3610 /*
3611 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3612 * other flags passed in are ignored!
3613 */
3614 lookup_flags &= LOOKUP_REVAL;
3615
3616 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3617 if (IS_ERR(name))
3618 return ERR_CAST(name);
3619
3620 /*
3621 * Yucky last component or no last component at all?
3622 * (foo/., foo/.., /////)
3623 */
3624 if (unlikely(type != LAST_NORM))
3625 goto out;
3626
3627 /* don't fail immediately if it's r/o, at least try to report other errors */
3628 err2 = mnt_want_write(path->mnt);
3629 /*
3630 * Do the final lookup.
3631 */
3632 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3633 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3634 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3635 if (IS_ERR(dentry))
3636 goto unlock;
3637
3638 error = -EEXIST;
3639 if (d_is_positive(dentry))
3640 goto fail;
3641
3642 /*
3643 * Special case - lookup gave negative, but... we had foo/bar/
3644 * From the vfs_mknod() POV we just have a negative dentry -
3645 * all is fine. Let's be bastards - you had / on the end, you've
3646 * been asking for (non-existent) directory. -ENOENT for you.
3647 */
3648 if (unlikely(!is_dir && last.name[last.len])) {
3649 error = -ENOENT;
3650 goto fail;
3651 }
3652 if (unlikely(err2)) {
3653 error = err2;
3654 goto fail;
3655 }
3656 putname(name);
3657 return dentry;
3658 fail:
3659 dput(dentry);
3660 dentry = ERR_PTR(error);
3661 unlock:
3662 inode_unlock(path->dentry->d_inode);
3663 if (!err2)
3664 mnt_drop_write(path->mnt);
3665 out:
3666 path_put(path);
3667 putname(name);
3668 return dentry;
3669 }
3670
3671 struct dentry *kern_path_create(int dfd, const char *pathname,
3672 struct path *path, unsigned int lookup_flags)
3673 {
3674 return filename_create(dfd, getname_kernel(pathname),
3675 path, lookup_flags);
3676 }
3677 EXPORT_SYMBOL(kern_path_create);
3678
3679 void done_path_create(struct path *path, struct dentry *dentry)
3680 {
3681 dput(dentry);
3682 inode_unlock(path->dentry->d_inode);
3683 mnt_drop_write(path->mnt);
3684 path_put(path);
3685 }
3686 EXPORT_SYMBOL(done_path_create);
3687
3688 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3689 struct path *path, unsigned int lookup_flags)
3690 {
3691 return filename_create(dfd, getname(pathname), path, lookup_flags);
3692 }
3693 EXPORT_SYMBOL(user_path_create);
3694
3695 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3696 {
3697 int error = may_create(dir, dentry);
3698
3699 if (error)
3700 return error;
3701
3702 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3703 return -EPERM;
3704
3705 if (!dir->i_op->mknod)
3706 return -EPERM;
3707
3708 error = devcgroup_inode_mknod(mode, dev);
3709 if (error)
3710 return error;
3711
3712 error = security_inode_mknod(dir, dentry, mode, dev);
3713 if (error)
3714 return error;
3715
3716 error = dir->i_op->mknod(dir, dentry, mode, dev);
3717 if (!error)
3718 fsnotify_create(dir, dentry);
3719 return error;
3720 }
3721 EXPORT_SYMBOL(vfs_mknod);
3722
3723 static int may_mknod(umode_t mode)
3724 {
3725 switch (mode & S_IFMT) {
3726 case S_IFREG:
3727 case S_IFCHR:
3728 case S_IFBLK:
3729 case S_IFIFO:
3730 case S_IFSOCK:
3731 case 0: /* zero mode translates to S_IFREG */
3732 return 0;
3733 case S_IFDIR:
3734 return -EPERM;
3735 default:
3736 return -EINVAL;
3737 }
3738 }
3739
3740 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3741 unsigned, dev)
3742 {
3743 struct dentry *dentry;
3744 struct path path;
3745 int error;
3746 unsigned int lookup_flags = 0;
3747
3748 error = may_mknod(mode);
3749 if (error)
3750 return error;
3751 retry:
3752 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3753 if (IS_ERR(dentry))
3754 return PTR_ERR(dentry);
3755
3756 if (!IS_POSIXACL(path.dentry->d_inode))
3757 mode &= ~current_umask();
3758 error = security_path_mknod(&path, dentry, mode, dev);
3759 if (error)
3760 goto out;
3761 switch (mode & S_IFMT) {
3762 case 0: case S_IFREG:
3763 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3764 if (!error)
3765 ima_post_path_mknod(dentry);
3766 break;
3767 case S_IFCHR: case S_IFBLK:
3768 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3769 new_decode_dev(dev));
3770 break;
3771 case S_IFIFO: case S_IFSOCK:
3772 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3773 break;
3774 }
3775 out:
3776 done_path_create(&path, dentry);
3777 if (retry_estale(error, lookup_flags)) {
3778 lookup_flags |= LOOKUP_REVAL;
3779 goto retry;
3780 }
3781 return error;
3782 }
3783
3784 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3785 {
3786 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3787 }
3788
3789 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3790 {
3791 int error = may_create(dir, dentry);
3792 unsigned max_links = dir->i_sb->s_max_links;
3793
3794 if (error)
3795 return error;
3796
3797 if (!dir->i_op->mkdir)
3798 return -EPERM;
3799
3800 mode &= (S_IRWXUGO|S_ISVTX);
3801 error = security_inode_mkdir(dir, dentry, mode);
3802 if (error)
3803 return error;
3804
3805 if (max_links && dir->i_nlink >= max_links)
3806 return -EMLINK;
3807
3808 error = dir->i_op->mkdir(dir, dentry, mode);
3809 if (!error)
3810 fsnotify_mkdir(dir, dentry);
3811 return error;
3812 }
3813 EXPORT_SYMBOL(vfs_mkdir);
3814
3815 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3816 {
3817 struct dentry *dentry;
3818 struct path path;
3819 int error;
3820 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3821
3822 retry:
3823 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3824 if (IS_ERR(dentry))
3825 return PTR_ERR(dentry);
3826
3827 if (!IS_POSIXACL(path.dentry->d_inode))
3828 mode &= ~current_umask();
3829 error = security_path_mkdir(&path, dentry, mode);
3830 if (!error)
3831 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3832 done_path_create(&path, dentry);
3833 if (retry_estale(error, lookup_flags)) {
3834 lookup_flags |= LOOKUP_REVAL;
3835 goto retry;
3836 }
3837 return error;
3838 }
3839
3840 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3841 {
3842 return sys_mkdirat(AT_FDCWD, pathname, mode);
3843 }
3844
3845 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3846 {
3847 int error = may_delete(dir, dentry, 1);
3848
3849 if (error)
3850 return error;
3851
3852 if (!dir->i_op->rmdir)
3853 return -EPERM;
3854
3855 dget(dentry);
3856 inode_lock(dentry->d_inode);
3857
3858 error = -EBUSY;
3859 if (is_local_mountpoint(dentry))
3860 goto out;
3861
3862 error = security_inode_rmdir(dir, dentry);
3863 if (error)
3864 goto out;
3865
3866 shrink_dcache_parent(dentry);
3867 error = dir->i_op->rmdir(dir, dentry);
3868 if (error)
3869 goto out;
3870
3871 dentry->d_inode->i_flags |= S_DEAD;
3872 dont_mount(dentry);
3873 detach_mounts(dentry);
3874
3875 out:
3876 inode_unlock(dentry->d_inode);
3877 dput(dentry);
3878 if (!error)
3879 d_delete(dentry);
3880 return error;
3881 }
3882 EXPORT_SYMBOL(vfs_rmdir);
3883
3884 static long do_rmdir(int dfd, const char __user *pathname)
3885 {
3886 int error = 0;
3887 struct filename *name;
3888 struct dentry *dentry;
3889 struct path path;
3890 struct qstr last;
3891 int type;
3892 unsigned int lookup_flags = 0;
3893 retry:
3894 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3895 &path, &last, &type);
3896 if (IS_ERR(name))
3897 return PTR_ERR(name);
3898
3899 switch (type) {
3900 case LAST_DOTDOT:
3901 error = -ENOTEMPTY;
3902 goto exit1;
3903 case LAST_DOT:
3904 error = -EINVAL;
3905 goto exit1;
3906 case LAST_ROOT:
3907 error = -EBUSY;
3908 goto exit1;
3909 }
3910
3911 error = mnt_want_write(path.mnt);
3912 if (error)
3913 goto exit1;
3914
3915 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3916 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3917 error = PTR_ERR(dentry);
3918 if (IS_ERR(dentry))
3919 goto exit2;
3920 if (!dentry->d_inode) {
3921 error = -ENOENT;
3922 goto exit3;
3923 }
3924 error = security_path_rmdir(&path, dentry);
3925 if (error)
3926 goto exit3;
3927 error = vfs_rmdir(path.dentry->d_inode, dentry);
3928 exit3:
3929 dput(dentry);
3930 exit2:
3931 inode_unlock(path.dentry->d_inode);
3932 mnt_drop_write(path.mnt);
3933 exit1:
3934 path_put(&path);
3935 putname(name);
3936 if (retry_estale(error, lookup_flags)) {
3937 lookup_flags |= LOOKUP_REVAL;
3938 goto retry;
3939 }
3940 return error;
3941 }
3942
3943 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3944 {
3945 return do_rmdir(AT_FDCWD, pathname);
3946 }
3947
3948 /**
3949 * vfs_unlink - unlink a filesystem object
3950 * @dir: parent directory
3951 * @dentry: victim
3952 * @delegated_inode: returns victim inode, if the inode is delegated.
3953 *
3954 * The caller must hold dir->i_mutex.
3955 *
3956 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3957 * return a reference to the inode in delegated_inode. The caller
3958 * should then break the delegation on that inode and retry. Because
3959 * breaking a delegation may take a long time, the caller should drop
3960 * dir->i_mutex before doing so.
3961 *
3962 * Alternatively, a caller may pass NULL for delegated_inode. This may
3963 * be appropriate for callers that expect the underlying filesystem not
3964 * to be NFS exported.
3965 */
3966 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3967 {
3968 struct inode *target = dentry->d_inode;
3969 int error = may_delete(dir, dentry, 0);
3970
3971 if (error)
3972 return error;
3973
3974 if (!dir->i_op->unlink)
3975 return -EPERM;
3976
3977 inode_lock(target);
3978 if (is_local_mountpoint(dentry))
3979 error = -EBUSY;
3980 else {
3981 error = security_inode_unlink(dir, dentry);
3982 if (!error) {
3983 error = try_break_deleg(target, delegated_inode);
3984 if (error)
3985 goto out;
3986 error = dir->i_op->unlink(dir, dentry);
3987 if (!error) {
3988 dont_mount(dentry);
3989 detach_mounts(dentry);
3990 }
3991 }
3992 }
3993 out:
3994 inode_unlock(target);
3995
3996 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3997 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3998 fsnotify_link_count(target);
3999 d_delete(dentry);
4000 }
4001
4002 return error;
4003 }
4004 EXPORT_SYMBOL(vfs_unlink);
4005
4006 /*
4007 * Make sure that the actual truncation of the file will occur outside its
4008 * directory's i_mutex. Truncate can take a long time if there is a lot of
4009 * writeout happening, and we don't want to prevent access to the directory
4010 * while waiting on the I/O.
4011 */
4012 static long do_unlinkat(int dfd, const char __user *pathname)
4013 {
4014 int error;
4015 struct filename *name;
4016 struct dentry *dentry;
4017 struct path path;
4018 struct qstr last;
4019 int type;
4020 struct inode *inode = NULL;
4021 struct inode *delegated_inode = NULL;
4022 unsigned int lookup_flags = 0;
4023 retry:
4024 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4025 &path, &last, &type);
4026 if (IS_ERR(name))
4027 return PTR_ERR(name);
4028
4029 error = -EISDIR;
4030 if (type != LAST_NORM)
4031 goto exit1;
4032
4033 error = mnt_want_write(path.mnt);
4034 if (error)
4035 goto exit1;
4036 retry_deleg:
4037 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4038 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4039 error = PTR_ERR(dentry);
4040 if (!IS_ERR(dentry)) {
4041 /* Why not before? Because we want correct error value */
4042 if (last.name[last.len])
4043 goto slashes;
4044 inode = dentry->d_inode;
4045 if (d_is_negative(dentry))
4046 goto slashes;
4047 ihold(inode);
4048 error = security_path_unlink(&path, dentry);
4049 if (error)
4050 goto exit2;
4051 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4052 exit2:
4053 dput(dentry);
4054 }
4055 inode_unlock(path.dentry->d_inode);
4056 if (inode)
4057 iput(inode); /* truncate the inode here */
4058 inode = NULL;
4059 if (delegated_inode) {
4060 error = break_deleg_wait(&delegated_inode);
4061 if (!error)
4062 goto retry_deleg;
4063 }
4064 mnt_drop_write(path.mnt);
4065 exit1:
4066 path_put(&path);
4067 putname(name);
4068 if (retry_estale(error, lookup_flags)) {
4069 lookup_flags |= LOOKUP_REVAL;
4070 inode = NULL;
4071 goto retry;
4072 }
4073 return error;
4074
4075 slashes:
4076 if (d_is_negative(dentry))
4077 error = -ENOENT;
4078 else if (d_is_dir(dentry))
4079 error = -EISDIR;
4080 else
4081 error = -ENOTDIR;
4082 goto exit2;
4083 }
4084
4085 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4086 {
4087 if ((flag & ~AT_REMOVEDIR) != 0)
4088 return -EINVAL;
4089
4090 if (flag & AT_REMOVEDIR)
4091 return do_rmdir(dfd, pathname);
4092
4093 return do_unlinkat(dfd, pathname);
4094 }
4095
4096 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4097 {
4098 return do_unlinkat(AT_FDCWD, pathname);
4099 }
4100
4101 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4102 {
4103 int error = may_create(dir, dentry);
4104
4105 if (error)
4106 return error;
4107
4108 if (!dir->i_op->symlink)
4109 return -EPERM;
4110
4111 error = security_inode_symlink(dir, dentry, oldname);
4112 if (error)
4113 return error;
4114
4115 error = dir->i_op->symlink(dir, dentry, oldname);
4116 if (!error)
4117 fsnotify_create(dir, dentry);
4118 return error;
4119 }
4120 EXPORT_SYMBOL(vfs_symlink);
4121
4122 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4123 int, newdfd, const char __user *, newname)
4124 {
4125 int error;
4126 struct filename *from;
4127 struct dentry *dentry;
4128 struct path path;
4129 unsigned int lookup_flags = 0;
4130
4131 from = getname(oldname);
4132 if (IS_ERR(from))
4133 return PTR_ERR(from);
4134 retry:
4135 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4136 error = PTR_ERR(dentry);
4137 if (IS_ERR(dentry))
4138 goto out_putname;
4139
4140 error = security_path_symlink(&path, dentry, from->name);
4141 if (!error)
4142 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4143 done_path_create(&path, dentry);
4144 if (retry_estale(error, lookup_flags)) {
4145 lookup_flags |= LOOKUP_REVAL;
4146 goto retry;
4147 }
4148 out_putname:
4149 putname(from);
4150 return error;
4151 }
4152
4153 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4154 {
4155 return sys_symlinkat(oldname, AT_FDCWD, newname);
4156 }
4157
4158 /**
4159 * vfs_link - create a new link
4160 * @old_dentry: object to be linked
4161 * @dir: new parent
4162 * @new_dentry: where to create the new link
4163 * @delegated_inode: returns inode needing a delegation break
4164 *
4165 * The caller must hold dir->i_mutex
4166 *
4167 * If vfs_link discovers a delegation on the to-be-linked file in need
4168 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4169 * inode in delegated_inode. The caller should then break the delegation
4170 * and retry. Because breaking a delegation may take a long time, the
4171 * caller should drop the i_mutex before doing so.
4172 *
4173 * Alternatively, a caller may pass NULL for delegated_inode. This may
4174 * be appropriate for callers that expect the underlying filesystem not
4175 * to be NFS exported.
4176 */
4177 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4178 {
4179 struct inode *inode = old_dentry->d_inode;
4180 unsigned max_links = dir->i_sb->s_max_links;
4181 int error;
4182
4183 if (!inode)
4184 return -ENOENT;
4185
4186 error = may_create(dir, new_dentry);
4187 if (error)
4188 return error;
4189
4190 if (dir->i_sb != inode->i_sb)
4191 return -EXDEV;
4192
4193 /*
4194 * A link to an append-only or immutable file cannot be created.
4195 */
4196 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4197 return -EPERM;
4198 /*
4199 * Updating the link count will likely cause i_uid and i_gid to
4200 * be writen back improperly if their true value is unknown to
4201 * the vfs.
4202 */
4203 if (HAS_UNMAPPED_ID(inode))
4204 return -EPERM;
4205 if (!dir->i_op->link)
4206 return -EPERM;
4207 if (S_ISDIR(inode->i_mode))
4208 return -EPERM;
4209
4210 error = security_inode_link(old_dentry, dir, new_dentry);
4211 if (error)
4212 return error;
4213
4214 inode_lock(inode);
4215 /* Make sure we don't allow creating hardlink to an unlinked file */
4216 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4217 error = -ENOENT;
4218 else if (max_links && inode->i_nlink >= max_links)
4219 error = -EMLINK;
4220 else {
4221 error = try_break_deleg(inode, delegated_inode);
4222 if (!error)
4223 error = dir->i_op->link(old_dentry, dir, new_dentry);
4224 }
4225
4226 if (!error && (inode->i_state & I_LINKABLE)) {
4227 spin_lock(&inode->i_lock);
4228 inode->i_state &= ~I_LINKABLE;
4229 spin_unlock(&inode->i_lock);
4230 }
4231 inode_unlock(inode);
4232 if (!error)
4233 fsnotify_link(dir, inode, new_dentry);
4234 return error;
4235 }
4236 EXPORT_SYMBOL(vfs_link);
4237
4238 /*
4239 * Hardlinks are often used in delicate situations. We avoid
4240 * security-related surprises by not following symlinks on the
4241 * newname. --KAB
4242 *
4243 * We don't follow them on the oldname either to be compatible
4244 * with linux 2.0, and to avoid hard-linking to directories
4245 * and other special files. --ADM
4246 */
4247 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4248 int, newdfd, const char __user *, newname, int, flags)
4249 {
4250 struct dentry *new_dentry;
4251 struct path old_path, new_path;
4252 struct inode *delegated_inode = NULL;
4253 int how = 0;
4254 int error;
4255
4256 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4257 return -EINVAL;
4258 /*
4259 * To use null names we require CAP_DAC_READ_SEARCH
4260 * This ensures that not everyone will be able to create
4261 * handlink using the passed filedescriptor.
4262 */
4263 if (flags & AT_EMPTY_PATH) {
4264 if (!capable(CAP_DAC_READ_SEARCH))
4265 return -ENOENT;
4266 how = LOOKUP_EMPTY;
4267 }
4268
4269 if (flags & AT_SYMLINK_FOLLOW)
4270 how |= LOOKUP_FOLLOW;
4271 retry:
4272 error = user_path_at(olddfd, oldname, how, &old_path);
4273 if (error)
4274 return error;
4275
4276 new_dentry = user_path_create(newdfd, newname, &new_path,
4277 (how & LOOKUP_REVAL));
4278 error = PTR_ERR(new_dentry);
4279 if (IS_ERR(new_dentry))
4280 goto out;
4281
4282 error = -EXDEV;
4283 if (old_path.mnt != new_path.mnt)
4284 goto out_dput;
4285 error = may_linkat(&old_path);
4286 if (unlikely(error))
4287 goto out_dput;
4288 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4289 if (error)
4290 goto out_dput;
4291 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4292 out_dput:
4293 done_path_create(&new_path, new_dentry);
4294 if (delegated_inode) {
4295 error = break_deleg_wait(&delegated_inode);
4296 if (!error) {
4297 path_put(&old_path);
4298 goto retry;
4299 }
4300 }
4301 if (retry_estale(error, how)) {
4302 path_put(&old_path);
4303 how |= LOOKUP_REVAL;
4304 goto retry;
4305 }
4306 out:
4307 path_put(&old_path);
4308
4309 return error;
4310 }
4311
4312 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4313 {
4314 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4315 }
4316
4317 /**
4318 * vfs_rename - rename a filesystem object
4319 * @old_dir: parent of source
4320 * @old_dentry: source
4321 * @new_dir: parent of destination
4322 * @new_dentry: destination
4323 * @delegated_inode: returns an inode needing a delegation break
4324 * @flags: rename flags
4325 *
4326 * The caller must hold multiple mutexes--see lock_rename()).
4327 *
4328 * If vfs_rename discovers a delegation in need of breaking at either
4329 * the source or destination, it will return -EWOULDBLOCK and return a
4330 * reference to the inode in delegated_inode. The caller should then
4331 * break the delegation and retry. Because breaking a delegation may
4332 * take a long time, the caller should drop all locks before doing
4333 * so.
4334 *
4335 * Alternatively, a caller may pass NULL for delegated_inode. This may
4336 * be appropriate for callers that expect the underlying filesystem not
4337 * to be NFS exported.
4338 *
4339 * The worst of all namespace operations - renaming directory. "Perverted"
4340 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4341 * Problems:
4342 *
4343 * a) we can get into loop creation.
4344 * b) race potential - two innocent renames can create a loop together.
4345 * That's where 4.4 screws up. Current fix: serialization on
4346 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4347 * story.
4348 * c) we have to lock _four_ objects - parents and victim (if it exists),
4349 * and source (if it is not a directory).
4350 * And that - after we got ->i_mutex on parents (until then we don't know
4351 * whether the target exists). Solution: try to be smart with locking
4352 * order for inodes. We rely on the fact that tree topology may change
4353 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4354 * move will be locked. Thus we can rank directories by the tree
4355 * (ancestors first) and rank all non-directories after them.
4356 * That works since everybody except rename does "lock parent, lookup,
4357 * lock child" and rename is under ->s_vfs_rename_mutex.
4358 * HOWEVER, it relies on the assumption that any object with ->lookup()
4359 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4360 * we'd better make sure that there's no link(2) for them.
4361 * d) conversion from fhandle to dentry may come in the wrong moment - when
4362 * we are removing the target. Solution: we will have to grab ->i_mutex
4363 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4364 * ->i_mutex on parents, which works but leads to some truly excessive
4365 * locking].
4366 */
4367 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4368 struct inode *new_dir, struct dentry *new_dentry,
4369 struct inode **delegated_inode, unsigned int flags)
4370 {
4371 int error;
4372 bool is_dir = d_is_dir(old_dentry);
4373 struct inode *source = old_dentry->d_inode;
4374 struct inode *target = new_dentry->d_inode;
4375 bool new_is_dir = false;
4376 unsigned max_links = new_dir->i_sb->s_max_links;
4377 struct name_snapshot old_name;
4378
4379 if (source == target)
4380 return 0;
4381
4382 error = may_delete(old_dir, old_dentry, is_dir);
4383 if (error)
4384 return error;
4385
4386 if (!target) {
4387 error = may_create(new_dir, new_dentry);
4388 } else {
4389 new_is_dir = d_is_dir(new_dentry);
4390
4391 if (!(flags & RENAME_EXCHANGE))
4392 error = may_delete(new_dir, new_dentry, is_dir);
4393 else
4394 error = may_delete(new_dir, new_dentry, new_is_dir);
4395 }
4396 if (error)
4397 return error;
4398
4399 if (!old_dir->i_op->rename)
4400 return -EPERM;
4401
4402 /*
4403 * If we are going to change the parent - check write permissions,
4404 * we'll need to flip '..'.
4405 */
4406 if (new_dir != old_dir) {
4407 if (is_dir) {
4408 error = inode_permission(source, MAY_WRITE);
4409 if (error)
4410 return error;
4411 }
4412 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4413 error = inode_permission(target, MAY_WRITE);
4414 if (error)
4415 return error;
4416 }
4417 }
4418
4419 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4420 flags);
4421 if (error)
4422 return error;
4423
4424 take_dentry_name_snapshot(&old_name, old_dentry);
4425 dget(new_dentry);
4426 if (!is_dir || (flags & RENAME_EXCHANGE))
4427 lock_two_nondirectories(source, target);
4428 else if (target)
4429 inode_lock(target);
4430
4431 error = -EBUSY;
4432 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4433 goto out;
4434
4435 if (max_links && new_dir != old_dir) {
4436 error = -EMLINK;
4437 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4438 goto out;
4439 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4440 old_dir->i_nlink >= max_links)
4441 goto out;
4442 }
4443 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4444 shrink_dcache_parent(new_dentry);
4445 if (!is_dir) {
4446 error = try_break_deleg(source, delegated_inode);
4447 if (error)
4448 goto out;
4449 }
4450 if (target && !new_is_dir) {
4451 error = try_break_deleg(target, delegated_inode);
4452 if (error)
4453 goto out;
4454 }
4455 error = old_dir->i_op->rename(old_dir, old_dentry,
4456 new_dir, new_dentry, flags);
4457 if (error)
4458 goto out;
4459
4460 if (!(flags & RENAME_EXCHANGE) && target) {
4461 if (is_dir)
4462 target->i_flags |= S_DEAD;
4463 dont_mount(new_dentry);
4464 detach_mounts(new_dentry);
4465 }
4466 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4467 if (!(flags & RENAME_EXCHANGE))
4468 d_move(old_dentry, new_dentry);
4469 else
4470 d_exchange(old_dentry, new_dentry);
4471 }
4472 out:
4473 if (!is_dir || (flags & RENAME_EXCHANGE))
4474 unlock_two_nondirectories(source, target);
4475 else if (target)
4476 inode_unlock(target);
4477 dput(new_dentry);
4478 if (!error) {
4479 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4480 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4481 if (flags & RENAME_EXCHANGE) {
4482 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4483 new_is_dir, NULL, new_dentry);
4484 }
4485 }
4486 release_dentry_name_snapshot(&old_name);
4487
4488 return error;
4489 }
4490 EXPORT_SYMBOL(vfs_rename);
4491
4492 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4493 int, newdfd, const char __user *, newname, unsigned int, flags)
4494 {
4495 struct dentry *old_dentry, *new_dentry;
4496 struct dentry *trap;
4497 struct path old_path, new_path;
4498 struct qstr old_last, new_last;
4499 int old_type, new_type;
4500 struct inode *delegated_inode = NULL;
4501 struct filename *from;
4502 struct filename *to;
4503 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4504 bool should_retry = false;
4505 int error;
4506
4507 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4508 return -EINVAL;
4509
4510 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4511 (flags & RENAME_EXCHANGE))
4512 return -EINVAL;
4513
4514 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4515 return -EPERM;
4516
4517 if (flags & RENAME_EXCHANGE)
4518 target_flags = 0;
4519
4520 retry:
4521 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4522 &old_path, &old_last, &old_type);
4523 if (IS_ERR(from)) {
4524 error = PTR_ERR(from);
4525 goto exit;
4526 }
4527
4528 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4529 &new_path, &new_last, &new_type);
4530 if (IS_ERR(to)) {
4531 error = PTR_ERR(to);
4532 goto exit1;
4533 }
4534
4535 error = -EXDEV;
4536 if (old_path.mnt != new_path.mnt)
4537 goto exit2;
4538
4539 error = -EBUSY;
4540 if (old_type != LAST_NORM)
4541 goto exit2;
4542
4543 if (flags & RENAME_NOREPLACE)
4544 error = -EEXIST;
4545 if (new_type != LAST_NORM)
4546 goto exit2;
4547
4548 error = mnt_want_write(old_path.mnt);
4549 if (error)
4550 goto exit2;
4551
4552 retry_deleg:
4553 trap = lock_rename(new_path.dentry, old_path.dentry);
4554
4555 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4556 error = PTR_ERR(old_dentry);
4557 if (IS_ERR(old_dentry))
4558 goto exit3;
4559 /* source must exist */
4560 error = -ENOENT;
4561 if (d_is_negative(old_dentry))
4562 goto exit4;
4563 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4564 error = PTR_ERR(new_dentry);
4565 if (IS_ERR(new_dentry))
4566 goto exit4;
4567 error = -EEXIST;
4568 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4569 goto exit5;
4570 if (flags & RENAME_EXCHANGE) {
4571 error = -ENOENT;
4572 if (d_is_negative(new_dentry))
4573 goto exit5;
4574
4575 if (!d_is_dir(new_dentry)) {
4576 error = -ENOTDIR;
4577 if (new_last.name[new_last.len])
4578 goto exit5;
4579 }
4580 }
4581 /* unless the source is a directory trailing slashes give -ENOTDIR */
4582 if (!d_is_dir(old_dentry)) {
4583 error = -ENOTDIR;
4584 if (old_last.name[old_last.len])
4585 goto exit5;
4586 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4587 goto exit5;
4588 }
4589 /* source should not be ancestor of target */
4590 error = -EINVAL;
4591 if (old_dentry == trap)
4592 goto exit5;
4593 /* target should not be an ancestor of source */
4594 if (!(flags & RENAME_EXCHANGE))
4595 error = -ENOTEMPTY;
4596 if (new_dentry == trap)
4597 goto exit5;
4598
4599 error = security_path_rename(&old_path, old_dentry,
4600 &new_path, new_dentry, flags);
4601 if (error)
4602 goto exit5;
4603 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4604 new_path.dentry->d_inode, new_dentry,
4605 &delegated_inode, flags);
4606 exit5:
4607 dput(new_dentry);
4608 exit4:
4609 dput(old_dentry);
4610 exit3:
4611 unlock_rename(new_path.dentry, old_path.dentry);
4612 if (delegated_inode) {
4613 error = break_deleg_wait(&delegated_inode);
4614 if (!error)
4615 goto retry_deleg;
4616 }
4617 mnt_drop_write(old_path.mnt);
4618 exit2:
4619 if (retry_estale(error, lookup_flags))
4620 should_retry = true;
4621 path_put(&new_path);
4622 putname(to);
4623 exit1:
4624 path_put(&old_path);
4625 putname(from);
4626 if (should_retry) {
4627 should_retry = false;
4628 lookup_flags |= LOOKUP_REVAL;
4629 goto retry;
4630 }
4631 exit:
4632 return error;
4633 }
4634
4635 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4636 int, newdfd, const char __user *, newname)
4637 {
4638 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4639 }
4640
4641 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4642 {
4643 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4644 }
4645
4646 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4647 {
4648 int error = may_create(dir, dentry);
4649 if (error)
4650 return error;
4651
4652 if (!dir->i_op->mknod)
4653 return -EPERM;
4654
4655 return dir->i_op->mknod(dir, dentry,
4656 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4657 }
4658 EXPORT_SYMBOL(vfs_whiteout);
4659
4660 int readlink_copy(char __user *buffer, int buflen, const char *link)
4661 {
4662 int len = PTR_ERR(link);
4663 if (IS_ERR(link))
4664 goto out;
4665
4666 len = strlen(link);
4667 if (len > (unsigned) buflen)
4668 len = buflen;
4669 if (copy_to_user(buffer, link, len))
4670 len = -EFAULT;
4671 out:
4672 return len;
4673 }
4674
4675 /*
4676 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4677 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4678 * for any given inode is up to filesystem.
4679 */
4680 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4681 int buflen)
4682 {
4683 DEFINE_DELAYED_CALL(done);
4684 struct inode *inode = d_inode(dentry);
4685 const char *link = inode->i_link;
4686 int res;
4687
4688 if (!link) {
4689 link = inode->i_op->get_link(dentry, inode, &done);
4690 if (IS_ERR(link))
4691 return PTR_ERR(link);
4692 }
4693 res = readlink_copy(buffer, buflen, link);
4694 do_delayed_call(&done);
4695 return res;
4696 }
4697
4698 /**
4699 * vfs_readlink - copy symlink body into userspace buffer
4700 * @dentry: dentry on which to get symbolic link
4701 * @buffer: user memory pointer
4702 * @buflen: size of buffer
4703 *
4704 * Does not touch atime. That's up to the caller if necessary
4705 *
4706 * Does not call security hook.
4707 */
4708 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4709 {
4710 struct inode *inode = d_inode(dentry);
4711
4712 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4713 if (unlikely(inode->i_op->readlink))
4714 return inode->i_op->readlink(dentry, buffer, buflen);
4715
4716 if (!d_is_symlink(dentry))
4717 return -EINVAL;
4718
4719 spin_lock(&inode->i_lock);
4720 inode->i_opflags |= IOP_DEFAULT_READLINK;
4721 spin_unlock(&inode->i_lock);
4722 }
4723
4724 return generic_readlink(dentry, buffer, buflen);
4725 }
4726 EXPORT_SYMBOL(vfs_readlink);
4727
4728 /**
4729 * vfs_get_link - get symlink body
4730 * @dentry: dentry on which to get symbolic link
4731 * @done: caller needs to free returned data with this
4732 *
4733 * Calls security hook and i_op->get_link() on the supplied inode.
4734 *
4735 * It does not touch atime. That's up to the caller if necessary.
4736 *
4737 * Does not work on "special" symlinks like /proc/$$/fd/N
4738 */
4739 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4740 {
4741 const char *res = ERR_PTR(-EINVAL);
4742 struct inode *inode = d_inode(dentry);
4743
4744 if (d_is_symlink(dentry)) {
4745 res = ERR_PTR(security_inode_readlink(dentry));
4746 if (!res)
4747 res = inode->i_op->get_link(dentry, inode, done);
4748 }
4749 return res;
4750 }
4751 EXPORT_SYMBOL(vfs_get_link);
4752
4753 /* get the link contents into pagecache */
4754 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4755 struct delayed_call *callback)
4756 {
4757 char *kaddr;
4758 struct page *page;
4759 struct address_space *mapping = inode->i_mapping;
4760
4761 if (!dentry) {
4762 page = find_get_page(mapping, 0);
4763 if (!page)
4764 return ERR_PTR(-ECHILD);
4765 if (!PageUptodate(page)) {
4766 put_page(page);
4767 return ERR_PTR(-ECHILD);
4768 }
4769 } else {
4770 page = read_mapping_page(mapping, 0, NULL);
4771 if (IS_ERR(page))
4772 return (char*)page;
4773 }
4774 set_delayed_call(callback, page_put_link, page);
4775 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4776 kaddr = page_address(page);
4777 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4778 return kaddr;
4779 }
4780
4781 EXPORT_SYMBOL(page_get_link);
4782
4783 void page_put_link(void *arg)
4784 {
4785 put_page(arg);
4786 }
4787 EXPORT_SYMBOL(page_put_link);
4788
4789 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4790 {
4791 DEFINE_DELAYED_CALL(done);
4792 int res = readlink_copy(buffer, buflen,
4793 page_get_link(dentry, d_inode(dentry),
4794 &done));
4795 do_delayed_call(&done);
4796 return res;
4797 }
4798 EXPORT_SYMBOL(page_readlink);
4799
4800 /*
4801 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4802 */
4803 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4804 {
4805 struct address_space *mapping = inode->i_mapping;
4806 struct page *page;
4807 void *fsdata;
4808 int err;
4809 unsigned int flags = 0;
4810 if (nofs)
4811 flags |= AOP_FLAG_NOFS;
4812
4813 retry:
4814 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4815 flags, &page, &fsdata);
4816 if (err)
4817 goto fail;
4818
4819 memcpy(page_address(page), symname, len-1);
4820
4821 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4822 page, fsdata);
4823 if (err < 0)
4824 goto fail;
4825 if (err < len-1)
4826 goto retry;
4827
4828 mark_inode_dirty(inode);
4829 return 0;
4830 fail:
4831 return err;
4832 }
4833 EXPORT_SYMBOL(__page_symlink);
4834
4835 int page_symlink(struct inode *inode, const char *symname, int len)
4836 {
4837 return __page_symlink(inode, symname, len,
4838 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4839 }
4840 EXPORT_SYMBOL(page_symlink);
4841
4842 const struct inode_operations page_symlink_inode_operations = {
4843 .get_link = page_get_link,
4844 };
4845 EXPORT_SYMBOL(page_symlink_inode_operations);