UPSTREAM: xfrm: Add a new lookup key to match xfrm interfaces.
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / mpage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/mpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains functions related to preparing and submitting BIOs which contain
8 * multiple pagecache pages.
9 *
10 * 15May2002 Andrew Morton
11 * Initial version
12 * 27Jun2002 axboe@suse.de
13 * use bio_add_page() to build bio's just the right size
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include <linux/cleancache.h>
33 #include "internal.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/android_fs.h>
37
38 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_start);
39 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_end);
40 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_start);
41 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_end);
42
43 /*
44 * I/O completion handler for multipage BIOs.
45 *
46 * The mpage code never puts partial pages into a BIO (except for end-of-file).
47 * If a page does not map to a contiguous run of blocks then it simply falls
48 * back to block_read_full_page().
49 *
50 * Why is this? If a page's completion depends on a number of different BIOs
51 * which can complete in any order (or at the same time) then determining the
52 * status of that page is hard. See end_buffer_async_read() for the details.
53 * There is no point in duplicating all that complexity.
54 */
55 static void mpage_end_io(struct bio *bio)
56 {
57 struct bio_vec *bv;
58 int i;
59
60 if (trace_android_fs_dataread_end_enabled() &&
61 (bio_data_dir(bio) == READ)) {
62 struct page *first_page = bio->bi_io_vec[0].bv_page;
63
64 if (first_page != NULL)
65 trace_android_fs_dataread_end(first_page->mapping->host,
66 page_offset(first_page),
67 bio->bi_iter.bi_size);
68 }
69
70 bio_for_each_segment_all(bv, bio, i) {
71 struct page *page = bv->bv_page;
72 page_endio(page, op_is_write(bio_op(bio)),
73 blk_status_to_errno(bio->bi_status));
74 }
75
76 bio_put(bio);
77 }
78
79 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
80 {
81 if (trace_android_fs_dataread_start_enabled() && (op == REQ_OP_READ)) {
82 struct page *first_page = bio->bi_io_vec[0].bv_page;
83
84 if (first_page != NULL) {
85 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
86
87 path = android_fstrace_get_pathname(pathbuf,
88 MAX_TRACE_PATHBUF_LEN,
89 first_page->mapping->host);
90 trace_android_fs_dataread_start(
91 first_page->mapping->host,
92 page_offset(first_page),
93 bio->bi_iter.bi_size,
94 current->pid,
95 path,
96 current->comm);
97 }
98 }
99 bio->bi_end_io = mpage_end_io;
100 bio_set_op_attrs(bio, op, op_flags);
101 guard_bio_eod(op, bio);
102 submit_bio(bio);
103 return NULL;
104 }
105
106 static struct bio *
107 mpage_alloc(struct block_device *bdev,
108 sector_t first_sector, int nr_vecs,
109 gfp_t gfp_flags)
110 {
111 struct bio *bio;
112
113 /* Restrict the given (page cache) mask for slab allocations */
114 gfp_flags &= GFP_KERNEL;
115 bio = bio_alloc(gfp_flags, nr_vecs);
116
117 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
118 while (!bio && (nr_vecs /= 2))
119 bio = bio_alloc(gfp_flags, nr_vecs);
120 }
121
122 if (bio) {
123 bio_set_dev(bio, bdev);
124 bio->bi_iter.bi_sector = first_sector;
125 }
126 return bio;
127 }
128
129 /*
130 * support function for mpage_readpages. The fs supplied get_block might
131 * return an up to date buffer. This is used to map that buffer into
132 * the page, which allows readpage to avoid triggering a duplicate call
133 * to get_block.
134 *
135 * The idea is to avoid adding buffers to pages that don't already have
136 * them. So when the buffer is up to date and the page size == block size,
137 * this marks the page up to date instead of adding new buffers.
138 */
139 static void
140 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
141 {
142 struct inode *inode = page->mapping->host;
143 struct buffer_head *page_bh, *head;
144 int block = 0;
145
146 if (!page_has_buffers(page)) {
147 /*
148 * don't make any buffers if there is only one buffer on
149 * the page and the page just needs to be set up to date
150 */
151 if (inode->i_blkbits == PAGE_SHIFT &&
152 buffer_uptodate(bh)) {
153 SetPageUptodate(page);
154 return;
155 }
156 create_empty_buffers(page, i_blocksize(inode), 0);
157 }
158 head = page_buffers(page);
159 page_bh = head;
160 do {
161 if (block == page_block) {
162 page_bh->b_state = bh->b_state;
163 page_bh->b_bdev = bh->b_bdev;
164 page_bh->b_blocknr = bh->b_blocknr;
165 break;
166 }
167 page_bh = page_bh->b_this_page;
168 block++;
169 } while (page_bh != head);
170 }
171
172 /*
173 * This is the worker routine which does all the work of mapping the disk
174 * blocks and constructs largest possible bios, submits them for IO if the
175 * blocks are not contiguous on the disk.
176 *
177 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
178 * represent the validity of its disk mapping and to decide when to do the next
179 * get_block() call.
180 */
181 static struct bio *
182 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
183 sector_t *last_block_in_bio, struct buffer_head *map_bh,
184 unsigned long *first_logical_block, get_block_t get_block,
185 gfp_t gfp)
186 {
187 struct inode *inode = page->mapping->host;
188 const unsigned blkbits = inode->i_blkbits;
189 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
190 const unsigned blocksize = 1 << blkbits;
191 sector_t block_in_file;
192 sector_t last_block;
193 sector_t last_block_in_file;
194 sector_t blocks[MAX_BUF_PER_PAGE];
195 unsigned page_block;
196 unsigned first_hole = blocks_per_page;
197 struct block_device *bdev = NULL;
198 int length;
199 int fully_mapped = 1;
200 unsigned nblocks;
201 unsigned relative_block;
202
203 if (page_has_buffers(page))
204 goto confused;
205
206 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
207 last_block = block_in_file + nr_pages * blocks_per_page;
208 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
209 if (last_block > last_block_in_file)
210 last_block = last_block_in_file;
211 page_block = 0;
212
213 /*
214 * Map blocks using the result from the previous get_blocks call first.
215 */
216 nblocks = map_bh->b_size >> blkbits;
217 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
218 block_in_file < (*first_logical_block + nblocks)) {
219 unsigned map_offset = block_in_file - *first_logical_block;
220 unsigned last = nblocks - map_offset;
221
222 for (relative_block = 0; ; relative_block++) {
223 if (relative_block == last) {
224 clear_buffer_mapped(map_bh);
225 break;
226 }
227 if (page_block == blocks_per_page)
228 break;
229 blocks[page_block] = map_bh->b_blocknr + map_offset +
230 relative_block;
231 page_block++;
232 block_in_file++;
233 }
234 bdev = map_bh->b_bdev;
235 }
236
237 /*
238 * Then do more get_blocks calls until we are done with this page.
239 */
240 map_bh->b_page = page;
241 while (page_block < blocks_per_page) {
242 map_bh->b_state = 0;
243 map_bh->b_size = 0;
244
245 if (block_in_file < last_block) {
246 map_bh->b_size = (last_block-block_in_file) << blkbits;
247 if (get_block(inode, block_in_file, map_bh, 0))
248 goto confused;
249 *first_logical_block = block_in_file;
250 }
251
252 if (!buffer_mapped(map_bh)) {
253 fully_mapped = 0;
254 if (first_hole == blocks_per_page)
255 first_hole = page_block;
256 page_block++;
257 block_in_file++;
258 continue;
259 }
260
261 /* some filesystems will copy data into the page during
262 * the get_block call, in which case we don't want to
263 * read it again. map_buffer_to_page copies the data
264 * we just collected from get_block into the page's buffers
265 * so readpage doesn't have to repeat the get_block call
266 */
267 if (buffer_uptodate(map_bh)) {
268 map_buffer_to_page(page, map_bh, page_block);
269 goto confused;
270 }
271
272 if (first_hole != blocks_per_page)
273 goto confused; /* hole -> non-hole */
274
275 /* Contiguous blocks? */
276 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
277 goto confused;
278 nblocks = map_bh->b_size >> blkbits;
279 for (relative_block = 0; ; relative_block++) {
280 if (relative_block == nblocks) {
281 clear_buffer_mapped(map_bh);
282 break;
283 } else if (page_block == blocks_per_page)
284 break;
285 blocks[page_block] = map_bh->b_blocknr+relative_block;
286 page_block++;
287 block_in_file++;
288 }
289 bdev = map_bh->b_bdev;
290 }
291
292 if (first_hole != blocks_per_page) {
293 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
294 if (first_hole == 0) {
295 SetPageUptodate(page);
296 unlock_page(page);
297 goto out;
298 }
299 } else if (fully_mapped) {
300 SetPageMappedToDisk(page);
301 }
302
303 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
304 cleancache_get_page(page) == 0) {
305 SetPageUptodate(page);
306 goto confused;
307 }
308
309 /*
310 * This page will go to BIO. Do we need to send this BIO off first?
311 */
312 if (bio && (*last_block_in_bio != blocks[0] - 1))
313 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
314
315 alloc_new:
316 if (bio == NULL) {
317 if (first_hole == blocks_per_page) {
318 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
319 page))
320 goto out;
321 }
322 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
323 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
324 if (bio == NULL)
325 goto confused;
326 }
327
328 length = first_hole << blkbits;
329 if (bio_add_page(bio, page, length, 0) < length) {
330 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
331 goto alloc_new;
332 }
333
334 relative_block = block_in_file - *first_logical_block;
335 nblocks = map_bh->b_size >> blkbits;
336 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
337 (first_hole != blocks_per_page))
338 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
339 else
340 *last_block_in_bio = blocks[blocks_per_page - 1];
341 out:
342 return bio;
343
344 confused:
345 if (bio)
346 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
347 if (!PageUptodate(page))
348 block_read_full_page(page, get_block);
349 else
350 unlock_page(page);
351 goto out;
352 }
353
354 /**
355 * mpage_readpages - populate an address space with some pages & start reads against them
356 * @mapping: the address_space
357 * @pages: The address of a list_head which contains the target pages. These
358 * pages have their ->index populated and are otherwise uninitialised.
359 * The page at @pages->prev has the lowest file offset, and reads should be
360 * issued in @pages->prev to @pages->next order.
361 * @nr_pages: The number of pages at *@pages
362 * @get_block: The filesystem's block mapper function.
363 *
364 * This function walks the pages and the blocks within each page, building and
365 * emitting large BIOs.
366 *
367 * If anything unusual happens, such as:
368 *
369 * - encountering a page which has buffers
370 * - encountering a page which has a non-hole after a hole
371 * - encountering a page with non-contiguous blocks
372 *
373 * then this code just gives up and calls the buffer_head-based read function.
374 * It does handle a page which has holes at the end - that is a common case:
375 * the end-of-file on blocksize < PAGE_SIZE setups.
376 *
377 * BH_Boundary explanation:
378 *
379 * There is a problem. The mpage read code assembles several pages, gets all
380 * their disk mappings, and then submits them all. That's fine, but obtaining
381 * the disk mappings may require I/O. Reads of indirect blocks, for example.
382 *
383 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
384 * submitted in the following order:
385 *
386 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
387 *
388 * because the indirect block has to be read to get the mappings of blocks
389 * 13,14,15,16. Obviously, this impacts performance.
390 *
391 * So what we do it to allow the filesystem's get_block() function to set
392 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
393 * after this one will require I/O against a block which is probably close to
394 * this one. So you should push what I/O you have currently accumulated.
395 *
396 * This all causes the disk requests to be issued in the correct order.
397 */
398 int
399 mpage_readpages(struct address_space *mapping, struct list_head *pages,
400 unsigned nr_pages, get_block_t get_block)
401 {
402 struct bio *bio = NULL;
403 unsigned page_idx;
404 sector_t last_block_in_bio = 0;
405 struct buffer_head map_bh;
406 unsigned long first_logical_block = 0;
407 gfp_t gfp = readahead_gfp_mask(mapping);
408
409 map_bh.b_state = 0;
410 map_bh.b_size = 0;
411 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
412 struct page *page = lru_to_page(pages);
413
414 prefetchw(&page->flags);
415 list_del(&page->lru);
416 if (!add_to_page_cache_lru(page, mapping,
417 page->index,
418 gfp)) {
419 bio = do_mpage_readpage(bio, page,
420 nr_pages - page_idx,
421 &last_block_in_bio, &map_bh,
422 &first_logical_block,
423 get_block, gfp);
424 }
425 put_page(page);
426 }
427 BUG_ON(!list_empty(pages));
428 if (bio)
429 mpage_bio_submit(REQ_OP_READ, 0, bio);
430 return 0;
431 }
432 EXPORT_SYMBOL(mpage_readpages);
433
434 /*
435 * This isn't called much at all
436 */
437 int mpage_readpage(struct page *page, get_block_t get_block)
438 {
439 struct bio *bio = NULL;
440 sector_t last_block_in_bio = 0;
441 struct buffer_head map_bh;
442 unsigned long first_logical_block = 0;
443 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
444
445 map_bh.b_state = 0;
446 map_bh.b_size = 0;
447 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
448 &map_bh, &first_logical_block, get_block, gfp);
449 if (bio)
450 mpage_bio_submit(REQ_OP_READ, 0, bio);
451 return 0;
452 }
453 EXPORT_SYMBOL(mpage_readpage);
454
455 /*
456 * Writing is not so simple.
457 *
458 * If the page has buffers then they will be used for obtaining the disk
459 * mapping. We only support pages which are fully mapped-and-dirty, with a
460 * special case for pages which are unmapped at the end: end-of-file.
461 *
462 * If the page has no buffers (preferred) then the page is mapped here.
463 *
464 * If all blocks are found to be contiguous then the page can go into the
465 * BIO. Otherwise fall back to the mapping's writepage().
466 *
467 * FIXME: This code wants an estimate of how many pages are still to be
468 * written, so it can intelligently allocate a suitably-sized BIO. For now,
469 * just allocate full-size (16-page) BIOs.
470 */
471
472 struct mpage_data {
473 struct bio *bio;
474 sector_t last_block_in_bio;
475 get_block_t *get_block;
476 unsigned use_writepage;
477 };
478
479 /*
480 * We have our BIO, so we can now mark the buffers clean. Make
481 * sure to only clean buffers which we know we'll be writing.
482 */
483 static void clean_buffers(struct page *page, unsigned first_unmapped)
484 {
485 unsigned buffer_counter = 0;
486 struct buffer_head *bh, *head;
487 if (!page_has_buffers(page))
488 return;
489 head = page_buffers(page);
490 bh = head;
491
492 do {
493 if (buffer_counter++ == first_unmapped)
494 break;
495 clear_buffer_dirty(bh);
496 bh = bh->b_this_page;
497 } while (bh != head);
498
499 /*
500 * we cannot drop the bh if the page is not uptodate or a concurrent
501 * readpage would fail to serialize with the bh and it would read from
502 * disk before we reach the platter.
503 */
504 if (buffer_heads_over_limit && PageUptodate(page))
505 try_to_free_buffers(page);
506 }
507
508 /*
509 * For situations where we want to clean all buffers attached to a page.
510 * We don't need to calculate how many buffers are attached to the page,
511 * we just need to specify a number larger than the maximum number of buffers.
512 */
513 void clean_page_buffers(struct page *page)
514 {
515 clean_buffers(page, ~0U);
516 }
517
518 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
519 void *data)
520 {
521 struct mpage_data *mpd = data;
522 struct bio *bio = mpd->bio;
523 struct address_space *mapping = page->mapping;
524 struct inode *inode = page->mapping->host;
525 const unsigned blkbits = inode->i_blkbits;
526 unsigned long end_index;
527 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
528 sector_t last_block;
529 sector_t block_in_file;
530 sector_t blocks[MAX_BUF_PER_PAGE];
531 unsigned page_block;
532 unsigned first_unmapped = blocks_per_page;
533 struct block_device *bdev = NULL;
534 int boundary = 0;
535 sector_t boundary_block = 0;
536 struct block_device *boundary_bdev = NULL;
537 int length;
538 struct buffer_head map_bh;
539 loff_t i_size = i_size_read(inode);
540 int ret = 0;
541 int op_flags = wbc_to_write_flags(wbc);
542
543 if (page_has_buffers(page)) {
544 struct buffer_head *head = page_buffers(page);
545 struct buffer_head *bh = head;
546
547 /* If they're all mapped and dirty, do it */
548 page_block = 0;
549 do {
550 BUG_ON(buffer_locked(bh));
551 if (!buffer_mapped(bh)) {
552 /*
553 * unmapped dirty buffers are created by
554 * __set_page_dirty_buffers -> mmapped data
555 */
556 if (buffer_dirty(bh))
557 goto confused;
558 if (first_unmapped == blocks_per_page)
559 first_unmapped = page_block;
560 continue;
561 }
562
563 if (first_unmapped != blocks_per_page)
564 goto confused; /* hole -> non-hole */
565
566 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
567 goto confused;
568 if (page_block) {
569 if (bh->b_blocknr != blocks[page_block-1] + 1)
570 goto confused;
571 }
572 blocks[page_block++] = bh->b_blocknr;
573 boundary = buffer_boundary(bh);
574 if (boundary) {
575 boundary_block = bh->b_blocknr;
576 boundary_bdev = bh->b_bdev;
577 }
578 bdev = bh->b_bdev;
579 } while ((bh = bh->b_this_page) != head);
580
581 if (first_unmapped)
582 goto page_is_mapped;
583
584 /*
585 * Page has buffers, but they are all unmapped. The page was
586 * created by pagein or read over a hole which was handled by
587 * block_read_full_page(). If this address_space is also
588 * using mpage_readpages then this can rarely happen.
589 */
590 goto confused;
591 }
592
593 /*
594 * The page has no buffers: map it to disk
595 */
596 BUG_ON(!PageUptodate(page));
597 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
598 last_block = (i_size - 1) >> blkbits;
599 map_bh.b_page = page;
600 for (page_block = 0; page_block < blocks_per_page; ) {
601
602 map_bh.b_state = 0;
603 map_bh.b_size = 1 << blkbits;
604 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
605 goto confused;
606 if (buffer_new(&map_bh))
607 clean_bdev_bh_alias(&map_bh);
608 if (buffer_boundary(&map_bh)) {
609 boundary_block = map_bh.b_blocknr;
610 boundary_bdev = map_bh.b_bdev;
611 }
612 if (page_block) {
613 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
614 goto confused;
615 }
616 blocks[page_block++] = map_bh.b_blocknr;
617 boundary = buffer_boundary(&map_bh);
618 bdev = map_bh.b_bdev;
619 if (block_in_file == last_block)
620 break;
621 block_in_file++;
622 }
623 BUG_ON(page_block == 0);
624
625 first_unmapped = page_block;
626
627 page_is_mapped:
628 end_index = i_size >> PAGE_SHIFT;
629 if (page->index >= end_index) {
630 /*
631 * The page straddles i_size. It must be zeroed out on each
632 * and every writepage invocation because it may be mmapped.
633 * "A file is mapped in multiples of the page size. For a file
634 * that is not a multiple of the page size, the remaining memory
635 * is zeroed when mapped, and writes to that region are not
636 * written out to the file."
637 */
638 unsigned offset = i_size & (PAGE_SIZE - 1);
639
640 if (page->index > end_index || !offset)
641 goto confused;
642 zero_user_segment(page, offset, PAGE_SIZE);
643 }
644
645 /*
646 * This page will go to BIO. Do we need to send this BIO off first?
647 */
648 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
649 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
650
651 alloc_new:
652 if (bio == NULL) {
653 if (first_unmapped == blocks_per_page) {
654 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
655 page, wbc))
656 goto out;
657 }
658 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
659 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
660 if (bio == NULL)
661 goto confused;
662
663 wbc_init_bio(wbc, bio);
664 bio->bi_write_hint = inode->i_write_hint;
665 }
666
667 /*
668 * Must try to add the page before marking the buffer clean or
669 * the confused fail path above (OOM) will be very confused when
670 * it finds all bh marked clean (i.e. it will not write anything)
671 */
672 wbc_account_io(wbc, page, PAGE_SIZE);
673 length = first_unmapped << blkbits;
674 if (bio_add_page(bio, page, length, 0) < length) {
675 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
676 goto alloc_new;
677 }
678
679 clean_buffers(page, first_unmapped);
680
681 BUG_ON(PageWriteback(page));
682 set_page_writeback(page);
683 unlock_page(page);
684 if (boundary || (first_unmapped != blocks_per_page)) {
685 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
686 if (boundary_block) {
687 write_boundary_block(boundary_bdev,
688 boundary_block, 1 << blkbits);
689 }
690 } else {
691 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
692 }
693 goto out;
694
695 confused:
696 if (bio)
697 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
698
699 if (mpd->use_writepage) {
700 ret = mapping->a_ops->writepage(page, wbc);
701 } else {
702 ret = -EAGAIN;
703 goto out;
704 }
705 /*
706 * The caller has a ref on the inode, so *mapping is stable
707 */
708 mapping_set_error(mapping, ret);
709 out:
710 mpd->bio = bio;
711 return ret;
712 }
713
714 /**
715 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
716 * @mapping: address space structure to write
717 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
718 * @get_block: the filesystem's block mapper function.
719 * If this is NULL then use a_ops->writepage. Otherwise, go
720 * direct-to-BIO.
721 *
722 * This is a library function, which implements the writepages()
723 * address_space_operation.
724 *
725 * If a page is already under I/O, generic_writepages() skips it, even
726 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
727 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
728 * and msync() need to guarantee that all the data which was dirty at the time
729 * the call was made get new I/O started against them. If wbc->sync_mode is
730 * WB_SYNC_ALL then we were called for data integrity and we must wait for
731 * existing IO to complete.
732 */
733 int
734 mpage_writepages(struct address_space *mapping,
735 struct writeback_control *wbc, get_block_t get_block)
736 {
737 struct blk_plug plug;
738 int ret;
739
740 blk_start_plug(&plug);
741
742 if (!get_block)
743 ret = generic_writepages(mapping, wbc);
744 else {
745 struct mpage_data mpd = {
746 .bio = NULL,
747 .last_block_in_bio = 0,
748 .get_block = get_block,
749 .use_writepage = 1,
750 };
751
752 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
753 if (mpd.bio) {
754 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
755 REQ_SYNC : 0);
756 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
757 }
758 }
759 blk_finish_plug(&plug);
760 return ret;
761 }
762 EXPORT_SYMBOL(mpage_writepages);
763
764 int mpage_writepage(struct page *page, get_block_t get_block,
765 struct writeback_control *wbc)
766 {
767 struct mpage_data mpd = {
768 .bio = NULL,
769 .last_block_in_bio = 0,
770 .get_block = get_block,
771 .use_writepage = 0,
772 };
773 int ret = __mpage_writepage(page, wbc, &mpd);
774 if (mpd.bio) {
775 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
776 REQ_SYNC : 0);
777 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
778 }
779 return ret;
780 }
781 EXPORT_SYMBOL(mpage_writepage);