Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (transaction_cache)
46 return 0;
47 return -ENOMEM;
48 }
49
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 if (transaction_cache) {
53 kmem_cache_destroy(transaction_cache);
54 transaction_cache = NULL;
55 }
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66 * jbd2_get_transaction: obtain a new transaction_t object.
67 *
68 * Simply allocate and initialise a new transaction. Create it in
69 * RUNNING state and add it to the current journal (which should not
70 * have an existing running transaction: we only make a new transaction
71 * once we have started to commit the old one).
72 *
73 * Preconditions:
74 * The journal MUST be locked. We don't perform atomic mallocs on the
75 * new transaction and we can't block without protecting against other
76 * processes trying to touch the journal while it is in transition.
77 *
78 */
79
80 static transaction_t *
81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
82 {
83 transaction->t_journal = journal;
84 transaction->t_state = T_RUNNING;
85 transaction->t_start_time = ktime_get();
86 transaction->t_tid = journal->j_transaction_sequence++;
87 transaction->t_expires = jiffies + journal->j_commit_interval;
88 spin_lock_init(&transaction->t_handle_lock);
89 atomic_set(&transaction->t_updates, 0);
90 atomic_set(&transaction->t_outstanding_credits, 0);
91 atomic_set(&transaction->t_handle_count, 0);
92 INIT_LIST_HEAD(&transaction->t_inode_list);
93 INIT_LIST_HEAD(&transaction->t_private_list);
94
95 /* Set up the commit timer for the new transaction. */
96 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
97 add_timer(&journal->j_commit_timer);
98
99 J_ASSERT(journal->j_running_transaction == NULL);
100 journal->j_running_transaction = transaction;
101 transaction->t_max_wait = 0;
102 transaction->t_start = jiffies;
103
104 return transaction;
105 }
106
107 /*
108 * Handle management.
109 *
110 * A handle_t is an object which represents a single atomic update to a
111 * filesystem, and which tracks all of the modifications which form part
112 * of that one update.
113 */
114
115 /*
116 * Update transaction's maximum wait time, if debugging is enabled.
117 *
118 * In order for t_max_wait to be reliable, it must be protected by a
119 * lock. But doing so will mean that start_this_handle() can not be
120 * run in parallel on SMP systems, which limits our scalability. So
121 * unless debugging is enabled, we no longer update t_max_wait, which
122 * means that maximum wait time reported by the jbd2_run_stats
123 * tracepoint will always be zero.
124 */
125 static inline void update_t_max_wait(transaction_t *transaction,
126 unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 if (jbd2_journal_enable_debug &&
130 time_after(transaction->t_start, ts)) {
131 ts = jbd2_time_diff(ts, transaction->t_start);
132 spin_lock(&transaction->t_handle_lock);
133 if (ts > transaction->t_max_wait)
134 transaction->t_max_wait = ts;
135 spin_unlock(&transaction->t_handle_lock);
136 }
137 #endif
138 }
139
140 /*
141 * start_this_handle: Given a handle, deal with any locking or stalling
142 * needed to make sure that there is enough journal space for the handle
143 * to begin. Attach the handle to a transaction and set up the
144 * transaction's buffer credits.
145 */
146
147 static int start_this_handle(journal_t *journal, handle_t *handle,
148 gfp_t gfp_mask)
149 {
150 transaction_t *transaction, *new_transaction = NULL;
151 tid_t tid;
152 int needed, need_to_start;
153 int nblocks = handle->h_buffer_credits;
154 unsigned long ts = jiffies;
155
156 if (nblocks > journal->j_max_transaction_buffers) {
157 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
158 current->comm, nblocks,
159 journal->j_max_transaction_buffers);
160 return -ENOSPC;
161 }
162
163 alloc_transaction:
164 if (!journal->j_running_transaction) {
165 new_transaction = kmem_cache_zalloc(transaction_cache,
166 gfp_mask);
167 if (!new_transaction) {
168 /*
169 * If __GFP_FS is not present, then we may be
170 * being called from inside the fs writeback
171 * layer, so we MUST NOT fail. Since
172 * __GFP_NOFAIL is going away, we will arrange
173 * to retry the allocation ourselves.
174 */
175 if ((gfp_mask & __GFP_FS) == 0) {
176 congestion_wait(BLK_RW_ASYNC, HZ/50);
177 goto alloc_transaction;
178 }
179 return -ENOMEM;
180 }
181 }
182
183 jbd_debug(3, "New handle %p going live.\n", handle);
184
185 /*
186 * We need to hold j_state_lock until t_updates has been incremented,
187 * for proper journal barrier handling
188 */
189 repeat:
190 read_lock(&journal->j_state_lock);
191 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
192 if (is_journal_aborted(journal) ||
193 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
194 read_unlock(&journal->j_state_lock);
195 jbd2_journal_free_transaction(new_transaction);
196 return -EROFS;
197 }
198
199 /* Wait on the journal's transaction barrier if necessary */
200 if (journal->j_barrier_count) {
201 read_unlock(&journal->j_state_lock);
202 wait_event(journal->j_wait_transaction_locked,
203 journal->j_barrier_count == 0);
204 goto repeat;
205 }
206
207 if (!journal->j_running_transaction) {
208 read_unlock(&journal->j_state_lock);
209 if (!new_transaction)
210 goto alloc_transaction;
211 write_lock(&journal->j_state_lock);
212 if (!journal->j_running_transaction) {
213 jbd2_get_transaction(journal, new_transaction);
214 new_transaction = NULL;
215 }
216 write_unlock(&journal->j_state_lock);
217 goto repeat;
218 }
219
220 transaction = journal->j_running_transaction;
221
222 /*
223 * If the current transaction is locked down for commit, wait for the
224 * lock to be released.
225 */
226 if (transaction->t_state == T_LOCKED) {
227 DEFINE_WAIT(wait);
228
229 prepare_to_wait(&journal->j_wait_transaction_locked,
230 &wait, TASK_UNINTERRUPTIBLE);
231 read_unlock(&journal->j_state_lock);
232 schedule();
233 finish_wait(&journal->j_wait_transaction_locked, &wait);
234 goto repeat;
235 }
236
237 /*
238 * If there is not enough space left in the log to write all potential
239 * buffers requested by this operation, we need to stall pending a log
240 * checkpoint to free some more log space.
241 */
242 needed = atomic_add_return(nblocks,
243 &transaction->t_outstanding_credits);
244
245 if (needed > journal->j_max_transaction_buffers) {
246 /*
247 * If the current transaction is already too large, then start
248 * to commit it: we can then go back and attach this handle to
249 * a new transaction.
250 */
251 DEFINE_WAIT(wait);
252
253 jbd_debug(2, "Handle %p starting new commit...\n", handle);
254 atomic_sub(nblocks, &transaction->t_outstanding_credits);
255 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
256 TASK_UNINTERRUPTIBLE);
257 tid = transaction->t_tid;
258 need_to_start = !tid_geq(journal->j_commit_request, tid);
259 read_unlock(&journal->j_state_lock);
260 if (need_to_start)
261 jbd2_log_start_commit(journal, tid);
262 schedule();
263 finish_wait(&journal->j_wait_transaction_locked, &wait);
264 goto repeat;
265 }
266
267 /*
268 * The commit code assumes that it can get enough log space
269 * without forcing a checkpoint. This is *critical* for
270 * correctness: a checkpoint of a buffer which is also
271 * associated with a committing transaction creates a deadlock,
272 * so commit simply cannot force through checkpoints.
273 *
274 * We must therefore ensure the necessary space in the journal
275 * *before* starting to dirty potentially checkpointed buffers
276 * in the new transaction.
277 *
278 * The worst part is, any transaction currently committing can
279 * reduce the free space arbitrarily. Be careful to account for
280 * those buffers when checkpointing.
281 */
282
283 /*
284 * @@@ AKPM: This seems rather over-defensive. We're giving commit
285 * a _lot_ of headroom: 1/4 of the journal plus the size of
286 * the committing transaction. Really, we only need to give it
287 * committing_transaction->t_outstanding_credits plus "enough" for
288 * the log control blocks.
289 * Also, this test is inconsistent with the matching one in
290 * jbd2_journal_extend().
291 */
292 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
293 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
294 atomic_sub(nblocks, &transaction->t_outstanding_credits);
295 read_unlock(&journal->j_state_lock);
296 write_lock(&journal->j_state_lock);
297 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
298 __jbd2_log_wait_for_space(journal);
299 write_unlock(&journal->j_state_lock);
300 goto repeat;
301 }
302
303 /* OK, account for the buffers that this operation expects to
304 * use and add the handle to the running transaction.
305 */
306 update_t_max_wait(transaction, ts);
307 handle->h_transaction = transaction;
308 atomic_inc(&transaction->t_updates);
309 atomic_inc(&transaction->t_handle_count);
310 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
311 handle, nblocks,
312 atomic_read(&transaction->t_outstanding_credits),
313 __jbd2_log_space_left(journal));
314 read_unlock(&journal->j_state_lock);
315
316 lock_map_acquire(&handle->h_lockdep_map);
317 jbd2_journal_free_transaction(new_transaction);
318 return 0;
319 }
320
321 static struct lock_class_key jbd2_handle_key;
322
323 /* Allocate a new handle. This should probably be in a slab... */
324 static handle_t *new_handle(int nblocks)
325 {
326 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
327 if (!handle)
328 return NULL;
329 memset(handle, 0, sizeof(*handle));
330 handle->h_buffer_credits = nblocks;
331 handle->h_ref = 1;
332
333 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
334 &jbd2_handle_key, 0);
335
336 return handle;
337 }
338
339 /**
340 * handle_t *jbd2_journal_start() - Obtain a new handle.
341 * @journal: Journal to start transaction on.
342 * @nblocks: number of block buffer we might modify
343 *
344 * We make sure that the transaction can guarantee at least nblocks of
345 * modified buffers in the log. We block until the log can guarantee
346 * that much space.
347 *
348 * This function is visible to journal users (like ext3fs), so is not
349 * called with the journal already locked.
350 *
351 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
352 * on failure.
353 */
354 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
355 {
356 handle_t *handle = journal_current_handle();
357 int err;
358
359 if (!journal)
360 return ERR_PTR(-EROFS);
361
362 if (handle) {
363 J_ASSERT(handle->h_transaction->t_journal == journal);
364 handle->h_ref++;
365 return handle;
366 }
367
368 handle = new_handle(nblocks);
369 if (!handle)
370 return ERR_PTR(-ENOMEM);
371
372 current->journal_info = handle;
373
374 err = start_this_handle(journal, handle, gfp_mask);
375 if (err < 0) {
376 jbd2_free_handle(handle);
377 current->journal_info = NULL;
378 handle = ERR_PTR(err);
379 }
380 return handle;
381 }
382 EXPORT_SYMBOL(jbd2__journal_start);
383
384
385 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
386 {
387 return jbd2__journal_start(journal, nblocks, GFP_NOFS);
388 }
389 EXPORT_SYMBOL(jbd2_journal_start);
390
391
392 /**
393 * int jbd2_journal_extend() - extend buffer credits.
394 * @handle: handle to 'extend'
395 * @nblocks: nr blocks to try to extend by.
396 *
397 * Some transactions, such as large extends and truncates, can be done
398 * atomically all at once or in several stages. The operation requests
399 * a credit for a number of buffer modications in advance, but can
400 * extend its credit if it needs more.
401 *
402 * jbd2_journal_extend tries to give the running handle more buffer credits.
403 * It does not guarantee that allocation - this is a best-effort only.
404 * The calling process MUST be able to deal cleanly with a failure to
405 * extend here.
406 *
407 * Return 0 on success, non-zero on failure.
408 *
409 * return code < 0 implies an error
410 * return code > 0 implies normal transaction-full status.
411 */
412 int jbd2_journal_extend(handle_t *handle, int nblocks)
413 {
414 transaction_t *transaction = handle->h_transaction;
415 journal_t *journal = transaction->t_journal;
416 int result;
417 int wanted;
418
419 result = -EIO;
420 if (is_handle_aborted(handle))
421 goto out;
422
423 result = 1;
424
425 read_lock(&journal->j_state_lock);
426
427 /* Don't extend a locked-down transaction! */
428 if (handle->h_transaction->t_state != T_RUNNING) {
429 jbd_debug(3, "denied handle %p %d blocks: "
430 "transaction not running\n", handle, nblocks);
431 goto error_out;
432 }
433
434 spin_lock(&transaction->t_handle_lock);
435 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
436
437 if (wanted > journal->j_max_transaction_buffers) {
438 jbd_debug(3, "denied handle %p %d blocks: "
439 "transaction too large\n", handle, nblocks);
440 goto unlock;
441 }
442
443 if (wanted > __jbd2_log_space_left(journal)) {
444 jbd_debug(3, "denied handle %p %d blocks: "
445 "insufficient log space\n", handle, nblocks);
446 goto unlock;
447 }
448
449 handle->h_buffer_credits += nblocks;
450 atomic_add(nblocks, &transaction->t_outstanding_credits);
451 result = 0;
452
453 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
454 unlock:
455 spin_unlock(&transaction->t_handle_lock);
456 error_out:
457 read_unlock(&journal->j_state_lock);
458 out:
459 return result;
460 }
461
462
463 /**
464 * int jbd2_journal_restart() - restart a handle .
465 * @handle: handle to restart
466 * @nblocks: nr credits requested
467 *
468 * Restart a handle for a multi-transaction filesystem
469 * operation.
470 *
471 * If the jbd2_journal_extend() call above fails to grant new buffer credits
472 * to a running handle, a call to jbd2_journal_restart will commit the
473 * handle's transaction so far and reattach the handle to a new
474 * transaction capabable of guaranteeing the requested number of
475 * credits.
476 */
477 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
478 {
479 transaction_t *transaction = handle->h_transaction;
480 journal_t *journal = transaction->t_journal;
481 tid_t tid;
482 int need_to_start, ret;
483
484 /* If we've had an abort of any type, don't even think about
485 * actually doing the restart! */
486 if (is_handle_aborted(handle))
487 return 0;
488
489 /*
490 * First unlink the handle from its current transaction, and start the
491 * commit on that.
492 */
493 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
494 J_ASSERT(journal_current_handle() == handle);
495
496 read_lock(&journal->j_state_lock);
497 spin_lock(&transaction->t_handle_lock);
498 atomic_sub(handle->h_buffer_credits,
499 &transaction->t_outstanding_credits);
500 if (atomic_dec_and_test(&transaction->t_updates))
501 wake_up(&journal->j_wait_updates);
502 spin_unlock(&transaction->t_handle_lock);
503
504 jbd_debug(2, "restarting handle %p\n", handle);
505 tid = transaction->t_tid;
506 need_to_start = !tid_geq(journal->j_commit_request, tid);
507 read_unlock(&journal->j_state_lock);
508 if (need_to_start)
509 jbd2_log_start_commit(journal, tid);
510
511 lock_map_release(&handle->h_lockdep_map);
512 handle->h_buffer_credits = nblocks;
513 ret = start_this_handle(journal, handle, gfp_mask);
514 return ret;
515 }
516 EXPORT_SYMBOL(jbd2__journal_restart);
517
518
519 int jbd2_journal_restart(handle_t *handle, int nblocks)
520 {
521 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
522 }
523 EXPORT_SYMBOL(jbd2_journal_restart);
524
525 /**
526 * void jbd2_journal_lock_updates () - establish a transaction barrier.
527 * @journal: Journal to establish a barrier on.
528 *
529 * This locks out any further updates from being started, and blocks
530 * until all existing updates have completed, returning only once the
531 * journal is in a quiescent state with no updates running.
532 *
533 * The journal lock should not be held on entry.
534 */
535 void jbd2_journal_lock_updates(journal_t *journal)
536 {
537 DEFINE_WAIT(wait);
538
539 write_lock(&journal->j_state_lock);
540 ++journal->j_barrier_count;
541
542 /* Wait until there are no running updates */
543 while (1) {
544 transaction_t *transaction = journal->j_running_transaction;
545
546 if (!transaction)
547 break;
548
549 spin_lock(&transaction->t_handle_lock);
550 prepare_to_wait(&journal->j_wait_updates, &wait,
551 TASK_UNINTERRUPTIBLE);
552 if (!atomic_read(&transaction->t_updates)) {
553 spin_unlock(&transaction->t_handle_lock);
554 finish_wait(&journal->j_wait_updates, &wait);
555 break;
556 }
557 spin_unlock(&transaction->t_handle_lock);
558 write_unlock(&journal->j_state_lock);
559 schedule();
560 finish_wait(&journal->j_wait_updates, &wait);
561 write_lock(&journal->j_state_lock);
562 }
563 write_unlock(&journal->j_state_lock);
564
565 /*
566 * We have now established a barrier against other normal updates, but
567 * we also need to barrier against other jbd2_journal_lock_updates() calls
568 * to make sure that we serialise special journal-locked operations
569 * too.
570 */
571 mutex_lock(&journal->j_barrier);
572 }
573
574 /**
575 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
576 * @journal: Journal to release the barrier on.
577 *
578 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
579 *
580 * Should be called without the journal lock held.
581 */
582 void jbd2_journal_unlock_updates (journal_t *journal)
583 {
584 J_ASSERT(journal->j_barrier_count != 0);
585
586 mutex_unlock(&journal->j_barrier);
587 write_lock(&journal->j_state_lock);
588 --journal->j_barrier_count;
589 write_unlock(&journal->j_state_lock);
590 wake_up(&journal->j_wait_transaction_locked);
591 }
592
593 static void warn_dirty_buffer(struct buffer_head *bh)
594 {
595 char b[BDEVNAME_SIZE];
596
597 printk(KERN_WARNING
598 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
599 "There's a risk of filesystem corruption in case of system "
600 "crash.\n",
601 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
602 }
603
604 /*
605 * If the buffer is already part of the current transaction, then there
606 * is nothing we need to do. If it is already part of a prior
607 * transaction which we are still committing to disk, then we need to
608 * make sure that we do not overwrite the old copy: we do copy-out to
609 * preserve the copy going to disk. We also account the buffer against
610 * the handle's metadata buffer credits (unless the buffer is already
611 * part of the transaction, that is).
612 *
613 */
614 static int
615 do_get_write_access(handle_t *handle, struct journal_head *jh,
616 int force_copy)
617 {
618 struct buffer_head *bh;
619 transaction_t *transaction;
620 journal_t *journal;
621 int error;
622 char *frozen_buffer = NULL;
623 int need_copy = 0;
624
625 if (is_handle_aborted(handle))
626 return -EROFS;
627
628 transaction = handle->h_transaction;
629 journal = transaction->t_journal;
630
631 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
632
633 JBUFFER_TRACE(jh, "entry");
634 repeat:
635 bh = jh2bh(jh);
636
637 /* @@@ Need to check for errors here at some point. */
638
639 lock_buffer(bh);
640 jbd_lock_bh_state(bh);
641
642 /* We now hold the buffer lock so it is safe to query the buffer
643 * state. Is the buffer dirty?
644 *
645 * If so, there are two possibilities. The buffer may be
646 * non-journaled, and undergoing a quite legitimate writeback.
647 * Otherwise, it is journaled, and we don't expect dirty buffers
648 * in that state (the buffers should be marked JBD_Dirty
649 * instead.) So either the IO is being done under our own
650 * control and this is a bug, or it's a third party IO such as
651 * dump(8) (which may leave the buffer scheduled for read ---
652 * ie. locked but not dirty) or tune2fs (which may actually have
653 * the buffer dirtied, ugh.) */
654
655 if (buffer_dirty(bh)) {
656 /*
657 * First question: is this buffer already part of the current
658 * transaction or the existing committing transaction?
659 */
660 if (jh->b_transaction) {
661 J_ASSERT_JH(jh,
662 jh->b_transaction == transaction ||
663 jh->b_transaction ==
664 journal->j_committing_transaction);
665 if (jh->b_next_transaction)
666 J_ASSERT_JH(jh, jh->b_next_transaction ==
667 transaction);
668 warn_dirty_buffer(bh);
669 }
670 /*
671 * In any case we need to clean the dirty flag and we must
672 * do it under the buffer lock to be sure we don't race
673 * with running write-out.
674 */
675 JBUFFER_TRACE(jh, "Journalling dirty buffer");
676 clear_buffer_dirty(bh);
677 set_buffer_jbddirty(bh);
678 }
679
680 unlock_buffer(bh);
681
682 error = -EROFS;
683 if (is_handle_aborted(handle)) {
684 jbd_unlock_bh_state(bh);
685 goto out;
686 }
687 error = 0;
688
689 /*
690 * The buffer is already part of this transaction if b_transaction or
691 * b_next_transaction points to it
692 */
693 if (jh->b_transaction == transaction ||
694 jh->b_next_transaction == transaction)
695 goto done;
696
697 /*
698 * this is the first time this transaction is touching this buffer,
699 * reset the modified flag
700 */
701 jh->b_modified = 0;
702
703 /*
704 * If there is already a copy-out version of this buffer, then we don't
705 * need to make another one
706 */
707 if (jh->b_frozen_data) {
708 JBUFFER_TRACE(jh, "has frozen data");
709 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
710 jh->b_next_transaction = transaction;
711 goto done;
712 }
713
714 /* Is there data here we need to preserve? */
715
716 if (jh->b_transaction && jh->b_transaction != transaction) {
717 JBUFFER_TRACE(jh, "owned by older transaction");
718 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
719 J_ASSERT_JH(jh, jh->b_transaction ==
720 journal->j_committing_transaction);
721
722 /* There is one case we have to be very careful about.
723 * If the committing transaction is currently writing
724 * this buffer out to disk and has NOT made a copy-out,
725 * then we cannot modify the buffer contents at all
726 * right now. The essence of copy-out is that it is the
727 * extra copy, not the primary copy, which gets
728 * journaled. If the primary copy is already going to
729 * disk then we cannot do copy-out here. */
730
731 if (jh->b_jlist == BJ_Shadow) {
732 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
733 wait_queue_head_t *wqh;
734
735 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
736
737 JBUFFER_TRACE(jh, "on shadow: sleep");
738 jbd_unlock_bh_state(bh);
739 /* commit wakes up all shadow buffers after IO */
740 for ( ; ; ) {
741 prepare_to_wait(wqh, &wait.wait,
742 TASK_UNINTERRUPTIBLE);
743 if (jh->b_jlist != BJ_Shadow)
744 break;
745 schedule();
746 }
747 finish_wait(wqh, &wait.wait);
748 goto repeat;
749 }
750
751 /* Only do the copy if the currently-owning transaction
752 * still needs it. If it is on the Forget list, the
753 * committing transaction is past that stage. The
754 * buffer had better remain locked during the kmalloc,
755 * but that should be true --- we hold the journal lock
756 * still and the buffer is already on the BUF_JOURNAL
757 * list so won't be flushed.
758 *
759 * Subtle point, though: if this is a get_undo_access,
760 * then we will be relying on the frozen_data to contain
761 * the new value of the committed_data record after the
762 * transaction, so we HAVE to force the frozen_data copy
763 * in that case. */
764
765 if (jh->b_jlist != BJ_Forget || force_copy) {
766 JBUFFER_TRACE(jh, "generate frozen data");
767 if (!frozen_buffer) {
768 JBUFFER_TRACE(jh, "allocate memory for buffer");
769 jbd_unlock_bh_state(bh);
770 frozen_buffer =
771 jbd2_alloc(jh2bh(jh)->b_size,
772 GFP_NOFS);
773 if (!frozen_buffer) {
774 printk(KERN_EMERG
775 "%s: OOM for frozen_buffer\n",
776 __func__);
777 JBUFFER_TRACE(jh, "oom!");
778 error = -ENOMEM;
779 jbd_lock_bh_state(bh);
780 goto done;
781 }
782 goto repeat;
783 }
784 jh->b_frozen_data = frozen_buffer;
785 frozen_buffer = NULL;
786 need_copy = 1;
787 }
788 jh->b_next_transaction = transaction;
789 }
790
791
792 /*
793 * Finally, if the buffer is not journaled right now, we need to make
794 * sure it doesn't get written to disk before the caller actually
795 * commits the new data
796 */
797 if (!jh->b_transaction) {
798 JBUFFER_TRACE(jh, "no transaction");
799 J_ASSERT_JH(jh, !jh->b_next_transaction);
800 JBUFFER_TRACE(jh, "file as BJ_Reserved");
801 spin_lock(&journal->j_list_lock);
802 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
803 spin_unlock(&journal->j_list_lock);
804 }
805
806 done:
807 if (need_copy) {
808 struct page *page;
809 int offset;
810 char *source;
811
812 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
813 "Possible IO failure.\n");
814 page = jh2bh(jh)->b_page;
815 offset = offset_in_page(jh2bh(jh)->b_data);
816 source = kmap_atomic(page);
817 /* Fire data frozen trigger just before we copy the data */
818 jbd2_buffer_frozen_trigger(jh, source + offset,
819 jh->b_triggers);
820 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
821 kunmap_atomic(source);
822
823 /*
824 * Now that the frozen data is saved off, we need to store
825 * any matching triggers.
826 */
827 jh->b_frozen_triggers = jh->b_triggers;
828 }
829 jbd_unlock_bh_state(bh);
830
831 /*
832 * If we are about to journal a buffer, then any revoke pending on it is
833 * no longer valid
834 */
835 jbd2_journal_cancel_revoke(handle, jh);
836
837 out:
838 if (unlikely(frozen_buffer)) /* It's usually NULL */
839 jbd2_free(frozen_buffer, bh->b_size);
840
841 JBUFFER_TRACE(jh, "exit");
842 return error;
843 }
844
845 /**
846 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
847 * @handle: transaction to add buffer modifications to
848 * @bh: bh to be used for metadata writes
849 *
850 * Returns an error code or 0 on success.
851 *
852 * In full data journalling mode the buffer may be of type BJ_AsyncData,
853 * because we're write()ing a buffer which is also part of a shared mapping.
854 */
855
856 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
857 {
858 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
859 int rc;
860
861 /* We do not want to get caught playing with fields which the
862 * log thread also manipulates. Make sure that the buffer
863 * completes any outstanding IO before proceeding. */
864 rc = do_get_write_access(handle, jh, 0);
865 jbd2_journal_put_journal_head(jh);
866 return rc;
867 }
868
869
870 /*
871 * When the user wants to journal a newly created buffer_head
872 * (ie. getblk() returned a new buffer and we are going to populate it
873 * manually rather than reading off disk), then we need to keep the
874 * buffer_head locked until it has been completely filled with new
875 * data. In this case, we should be able to make the assertion that
876 * the bh is not already part of an existing transaction.
877 *
878 * The buffer should already be locked by the caller by this point.
879 * There is no lock ranking violation: it was a newly created,
880 * unlocked buffer beforehand. */
881
882 /**
883 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
884 * @handle: transaction to new buffer to
885 * @bh: new buffer.
886 *
887 * Call this if you create a new bh.
888 */
889 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
890 {
891 transaction_t *transaction = handle->h_transaction;
892 journal_t *journal = transaction->t_journal;
893 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
894 int err;
895
896 jbd_debug(5, "journal_head %p\n", jh);
897 err = -EROFS;
898 if (is_handle_aborted(handle))
899 goto out;
900 err = 0;
901
902 JBUFFER_TRACE(jh, "entry");
903 /*
904 * The buffer may already belong to this transaction due to pre-zeroing
905 * in the filesystem's new_block code. It may also be on the previous,
906 * committing transaction's lists, but it HAS to be in Forget state in
907 * that case: the transaction must have deleted the buffer for it to be
908 * reused here.
909 */
910 jbd_lock_bh_state(bh);
911 spin_lock(&journal->j_list_lock);
912 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
913 jh->b_transaction == NULL ||
914 (jh->b_transaction == journal->j_committing_transaction &&
915 jh->b_jlist == BJ_Forget)));
916
917 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
918 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
919
920 if (jh->b_transaction == NULL) {
921 /*
922 * Previous jbd2_journal_forget() could have left the buffer
923 * with jbddirty bit set because it was being committed. When
924 * the commit finished, we've filed the buffer for
925 * checkpointing and marked it dirty. Now we are reallocating
926 * the buffer so the transaction freeing it must have
927 * committed and so it's safe to clear the dirty bit.
928 */
929 clear_buffer_dirty(jh2bh(jh));
930 /* first access by this transaction */
931 jh->b_modified = 0;
932
933 JBUFFER_TRACE(jh, "file as BJ_Reserved");
934 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
935 } else if (jh->b_transaction == journal->j_committing_transaction) {
936 /* first access by this transaction */
937 jh->b_modified = 0;
938
939 JBUFFER_TRACE(jh, "set next transaction");
940 jh->b_next_transaction = transaction;
941 }
942 spin_unlock(&journal->j_list_lock);
943 jbd_unlock_bh_state(bh);
944
945 /*
946 * akpm: I added this. ext3_alloc_branch can pick up new indirect
947 * blocks which contain freed but then revoked metadata. We need
948 * to cancel the revoke in case we end up freeing it yet again
949 * and the reallocating as data - this would cause a second revoke,
950 * which hits an assertion error.
951 */
952 JBUFFER_TRACE(jh, "cancelling revoke");
953 jbd2_journal_cancel_revoke(handle, jh);
954 out:
955 jbd2_journal_put_journal_head(jh);
956 return err;
957 }
958
959 /**
960 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
961 * non-rewindable consequences
962 * @handle: transaction
963 * @bh: buffer to undo
964 *
965 * Sometimes there is a need to distinguish between metadata which has
966 * been committed to disk and that which has not. The ext3fs code uses
967 * this for freeing and allocating space, we have to make sure that we
968 * do not reuse freed space until the deallocation has been committed,
969 * since if we overwrote that space we would make the delete
970 * un-rewindable in case of a crash.
971 *
972 * To deal with that, jbd2_journal_get_undo_access requests write access to a
973 * buffer for parts of non-rewindable operations such as delete
974 * operations on the bitmaps. The journaling code must keep a copy of
975 * the buffer's contents prior to the undo_access call until such time
976 * as we know that the buffer has definitely been committed to disk.
977 *
978 * We never need to know which transaction the committed data is part
979 * of, buffers touched here are guaranteed to be dirtied later and so
980 * will be committed to a new transaction in due course, at which point
981 * we can discard the old committed data pointer.
982 *
983 * Returns error number or 0 on success.
984 */
985 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
986 {
987 int err;
988 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
989 char *committed_data = NULL;
990
991 JBUFFER_TRACE(jh, "entry");
992
993 /*
994 * Do this first --- it can drop the journal lock, so we want to
995 * make sure that obtaining the committed_data is done
996 * atomically wrt. completion of any outstanding commits.
997 */
998 err = do_get_write_access(handle, jh, 1);
999 if (err)
1000 goto out;
1001
1002 repeat:
1003 if (!jh->b_committed_data) {
1004 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1005 if (!committed_data) {
1006 printk(KERN_EMERG "%s: No memory for committed data\n",
1007 __func__);
1008 err = -ENOMEM;
1009 goto out;
1010 }
1011 }
1012
1013 jbd_lock_bh_state(bh);
1014 if (!jh->b_committed_data) {
1015 /* Copy out the current buffer contents into the
1016 * preserved, committed copy. */
1017 JBUFFER_TRACE(jh, "generate b_committed data");
1018 if (!committed_data) {
1019 jbd_unlock_bh_state(bh);
1020 goto repeat;
1021 }
1022
1023 jh->b_committed_data = committed_data;
1024 committed_data = NULL;
1025 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1026 }
1027 jbd_unlock_bh_state(bh);
1028 out:
1029 jbd2_journal_put_journal_head(jh);
1030 if (unlikely(committed_data))
1031 jbd2_free(committed_data, bh->b_size);
1032 return err;
1033 }
1034
1035 /**
1036 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1037 * @bh: buffer to trigger on
1038 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1039 *
1040 * Set any triggers on this journal_head. This is always safe, because
1041 * triggers for a committing buffer will be saved off, and triggers for
1042 * a running transaction will match the buffer in that transaction.
1043 *
1044 * Call with NULL to clear the triggers.
1045 */
1046 void jbd2_journal_set_triggers(struct buffer_head *bh,
1047 struct jbd2_buffer_trigger_type *type)
1048 {
1049 struct journal_head *jh = bh2jh(bh);
1050
1051 jh->b_triggers = type;
1052 }
1053
1054 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1055 struct jbd2_buffer_trigger_type *triggers)
1056 {
1057 struct buffer_head *bh = jh2bh(jh);
1058
1059 if (!triggers || !triggers->t_frozen)
1060 return;
1061
1062 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1063 }
1064
1065 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1066 struct jbd2_buffer_trigger_type *triggers)
1067 {
1068 if (!triggers || !triggers->t_abort)
1069 return;
1070
1071 triggers->t_abort(triggers, jh2bh(jh));
1072 }
1073
1074
1075
1076 /**
1077 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1078 * @handle: transaction to add buffer to.
1079 * @bh: buffer to mark
1080 *
1081 * mark dirty metadata which needs to be journaled as part of the current
1082 * transaction.
1083 *
1084 * The buffer must have previously had jbd2_journal_get_write_access()
1085 * called so that it has a valid journal_head attached to the buffer
1086 * head.
1087 *
1088 * The buffer is placed on the transaction's metadata list and is marked
1089 * as belonging to the transaction.
1090 *
1091 * Returns error number or 0 on success.
1092 *
1093 * Special care needs to be taken if the buffer already belongs to the
1094 * current committing transaction (in which case we should have frozen
1095 * data present for that commit). In that case, we don't relink the
1096 * buffer: that only gets done when the old transaction finally
1097 * completes its commit.
1098 */
1099 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1100 {
1101 transaction_t *transaction = handle->h_transaction;
1102 journal_t *journal = transaction->t_journal;
1103 struct journal_head *jh = bh2jh(bh);
1104 int ret = 0;
1105
1106 jbd_debug(5, "journal_head %p\n", jh);
1107 JBUFFER_TRACE(jh, "entry");
1108 if (is_handle_aborted(handle))
1109 goto out;
1110 if (!buffer_jbd(bh)) {
1111 ret = -EUCLEAN;
1112 goto out;
1113 }
1114
1115 jbd_lock_bh_state(bh);
1116
1117 if (jh->b_modified == 0) {
1118 /*
1119 * This buffer's got modified and becoming part
1120 * of the transaction. This needs to be done
1121 * once a transaction -bzzz
1122 */
1123 jh->b_modified = 1;
1124 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1125 handle->h_buffer_credits--;
1126 }
1127
1128 /*
1129 * fastpath, to avoid expensive locking. If this buffer is already
1130 * on the running transaction's metadata list there is nothing to do.
1131 * Nobody can take it off again because there is a handle open.
1132 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1133 * result in this test being false, so we go in and take the locks.
1134 */
1135 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1136 JBUFFER_TRACE(jh, "fastpath");
1137 if (unlikely(jh->b_transaction !=
1138 journal->j_running_transaction)) {
1139 printk(KERN_EMERG "JBD: %s: "
1140 "jh->b_transaction (%llu, %p, %u) != "
1141 "journal->j_running_transaction (%p, %u)",
1142 journal->j_devname,
1143 (unsigned long long) bh->b_blocknr,
1144 jh->b_transaction,
1145 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1146 journal->j_running_transaction,
1147 journal->j_running_transaction ?
1148 journal->j_running_transaction->t_tid : 0);
1149 ret = -EINVAL;
1150 }
1151 goto out_unlock_bh;
1152 }
1153
1154 set_buffer_jbddirty(bh);
1155
1156 /*
1157 * Metadata already on the current transaction list doesn't
1158 * need to be filed. Metadata on another transaction's list must
1159 * be committing, and will be refiled once the commit completes:
1160 * leave it alone for now.
1161 */
1162 if (jh->b_transaction != transaction) {
1163 JBUFFER_TRACE(jh, "already on other transaction");
1164 if (unlikely(jh->b_transaction !=
1165 journal->j_committing_transaction)) {
1166 printk(KERN_EMERG "JBD: %s: "
1167 "jh->b_transaction (%llu, %p, %u) != "
1168 "journal->j_committing_transaction (%p, %u)",
1169 journal->j_devname,
1170 (unsigned long long) bh->b_blocknr,
1171 jh->b_transaction,
1172 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1173 journal->j_committing_transaction,
1174 journal->j_committing_transaction ?
1175 journal->j_committing_transaction->t_tid : 0);
1176 ret = -EINVAL;
1177 }
1178 if (unlikely(jh->b_next_transaction != transaction)) {
1179 printk(KERN_EMERG "JBD: %s: "
1180 "jh->b_next_transaction (%llu, %p, %u) != "
1181 "transaction (%p, %u)",
1182 journal->j_devname,
1183 (unsigned long long) bh->b_blocknr,
1184 jh->b_next_transaction,
1185 jh->b_next_transaction ?
1186 jh->b_next_transaction->t_tid : 0,
1187 transaction, transaction->t_tid);
1188 ret = -EINVAL;
1189 }
1190 /* And this case is illegal: we can't reuse another
1191 * transaction's data buffer, ever. */
1192 goto out_unlock_bh;
1193 }
1194
1195 /* That test should have eliminated the following case: */
1196 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1197
1198 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1199 spin_lock(&journal->j_list_lock);
1200 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1201 spin_unlock(&journal->j_list_lock);
1202 out_unlock_bh:
1203 jbd_unlock_bh_state(bh);
1204 out:
1205 JBUFFER_TRACE(jh, "exit");
1206 WARN_ON(ret); /* All errors are bugs, so dump the stack */
1207 return ret;
1208 }
1209
1210 /**
1211 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1212 * @handle: transaction handle
1213 * @bh: bh to 'forget'
1214 *
1215 * We can only do the bforget if there are no commits pending against the
1216 * buffer. If the buffer is dirty in the current running transaction we
1217 * can safely unlink it.
1218 *
1219 * bh may not be a journalled buffer at all - it may be a non-JBD
1220 * buffer which came off the hashtable. Check for this.
1221 *
1222 * Decrements bh->b_count by one.
1223 *
1224 * Allow this call even if the handle has aborted --- it may be part of
1225 * the caller's cleanup after an abort.
1226 */
1227 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1228 {
1229 transaction_t *transaction = handle->h_transaction;
1230 journal_t *journal = transaction->t_journal;
1231 struct journal_head *jh;
1232 int drop_reserve = 0;
1233 int err = 0;
1234 int was_modified = 0;
1235
1236 BUFFER_TRACE(bh, "entry");
1237
1238 jbd_lock_bh_state(bh);
1239 spin_lock(&journal->j_list_lock);
1240
1241 if (!buffer_jbd(bh))
1242 goto not_jbd;
1243 jh = bh2jh(bh);
1244
1245 /* Critical error: attempting to delete a bitmap buffer, maybe?
1246 * Don't do any jbd operations, and return an error. */
1247 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1248 "inconsistent data on disk")) {
1249 err = -EIO;
1250 goto not_jbd;
1251 }
1252
1253 /* keep track of whether or not this transaction modified us */
1254 was_modified = jh->b_modified;
1255
1256 /*
1257 * The buffer's going from the transaction, we must drop
1258 * all references -bzzz
1259 */
1260 jh->b_modified = 0;
1261
1262 if (jh->b_transaction == handle->h_transaction) {
1263 J_ASSERT_JH(jh, !jh->b_frozen_data);
1264
1265 /* If we are forgetting a buffer which is already part
1266 * of this transaction, then we can just drop it from
1267 * the transaction immediately. */
1268 clear_buffer_dirty(bh);
1269 clear_buffer_jbddirty(bh);
1270
1271 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1272
1273 /*
1274 * we only want to drop a reference if this transaction
1275 * modified the buffer
1276 */
1277 if (was_modified)
1278 drop_reserve = 1;
1279
1280 /*
1281 * We are no longer going to journal this buffer.
1282 * However, the commit of this transaction is still
1283 * important to the buffer: the delete that we are now
1284 * processing might obsolete an old log entry, so by
1285 * committing, we can satisfy the buffer's checkpoint.
1286 *
1287 * So, if we have a checkpoint on the buffer, we should
1288 * now refile the buffer on our BJ_Forget list so that
1289 * we know to remove the checkpoint after we commit.
1290 */
1291
1292 if (jh->b_cp_transaction) {
1293 __jbd2_journal_temp_unlink_buffer(jh);
1294 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1295 } else {
1296 __jbd2_journal_unfile_buffer(jh);
1297 if (!buffer_jbd(bh)) {
1298 spin_unlock(&journal->j_list_lock);
1299 jbd_unlock_bh_state(bh);
1300 __bforget(bh);
1301 goto drop;
1302 }
1303 }
1304 } else if (jh->b_transaction) {
1305 J_ASSERT_JH(jh, (jh->b_transaction ==
1306 journal->j_committing_transaction));
1307 /* However, if the buffer is still owned by a prior
1308 * (committing) transaction, we can't drop it yet... */
1309 JBUFFER_TRACE(jh, "belongs to older transaction");
1310 /* ... but we CAN drop it from the new transaction if we
1311 * have also modified it since the original commit. */
1312
1313 if (jh->b_next_transaction) {
1314 J_ASSERT(jh->b_next_transaction == transaction);
1315 jh->b_next_transaction = NULL;
1316
1317 /*
1318 * only drop a reference if this transaction modified
1319 * the buffer
1320 */
1321 if (was_modified)
1322 drop_reserve = 1;
1323 }
1324 }
1325
1326 not_jbd:
1327 spin_unlock(&journal->j_list_lock);
1328 jbd_unlock_bh_state(bh);
1329 __brelse(bh);
1330 drop:
1331 if (drop_reserve) {
1332 /* no need to reserve log space for this block -bzzz */
1333 handle->h_buffer_credits++;
1334 }
1335 return err;
1336 }
1337
1338 /**
1339 * int jbd2_journal_stop() - complete a transaction
1340 * @handle: tranaction to complete.
1341 *
1342 * All done for a particular handle.
1343 *
1344 * There is not much action needed here. We just return any remaining
1345 * buffer credits to the transaction and remove the handle. The only
1346 * complication is that we need to start a commit operation if the
1347 * filesystem is marked for synchronous update.
1348 *
1349 * jbd2_journal_stop itself will not usually return an error, but it may
1350 * do so in unusual circumstances. In particular, expect it to
1351 * return -EIO if a jbd2_journal_abort has been executed since the
1352 * transaction began.
1353 */
1354 int jbd2_journal_stop(handle_t *handle)
1355 {
1356 transaction_t *transaction = handle->h_transaction;
1357 journal_t *journal = transaction->t_journal;
1358 int err, wait_for_commit = 0;
1359 tid_t tid;
1360 pid_t pid;
1361
1362 J_ASSERT(journal_current_handle() == handle);
1363
1364 if (is_handle_aborted(handle))
1365 err = -EIO;
1366 else {
1367 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1368 err = 0;
1369 }
1370
1371 if (--handle->h_ref > 0) {
1372 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1373 handle->h_ref);
1374 return err;
1375 }
1376
1377 jbd_debug(4, "Handle %p going down\n", handle);
1378
1379 /*
1380 * Implement synchronous transaction batching. If the handle
1381 * was synchronous, don't force a commit immediately. Let's
1382 * yield and let another thread piggyback onto this
1383 * transaction. Keep doing that while new threads continue to
1384 * arrive. It doesn't cost much - we're about to run a commit
1385 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1386 * operations by 30x or more...
1387 *
1388 * We try and optimize the sleep time against what the
1389 * underlying disk can do, instead of having a static sleep
1390 * time. This is useful for the case where our storage is so
1391 * fast that it is more optimal to go ahead and force a flush
1392 * and wait for the transaction to be committed than it is to
1393 * wait for an arbitrary amount of time for new writers to
1394 * join the transaction. We achieve this by measuring how
1395 * long it takes to commit a transaction, and compare it with
1396 * how long this transaction has been running, and if run time
1397 * < commit time then we sleep for the delta and commit. This
1398 * greatly helps super fast disks that would see slowdowns as
1399 * more threads started doing fsyncs.
1400 *
1401 * But don't do this if this process was the most recent one
1402 * to perform a synchronous write. We do this to detect the
1403 * case where a single process is doing a stream of sync
1404 * writes. No point in waiting for joiners in that case.
1405 */
1406 pid = current->pid;
1407 if (handle->h_sync && journal->j_last_sync_writer != pid) {
1408 u64 commit_time, trans_time;
1409
1410 journal->j_last_sync_writer = pid;
1411
1412 read_lock(&journal->j_state_lock);
1413 commit_time = journal->j_average_commit_time;
1414 read_unlock(&journal->j_state_lock);
1415
1416 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1417 transaction->t_start_time));
1418
1419 commit_time = max_t(u64, commit_time,
1420 1000*journal->j_min_batch_time);
1421 commit_time = min_t(u64, commit_time,
1422 1000*journal->j_max_batch_time);
1423
1424 if (trans_time < commit_time) {
1425 ktime_t expires = ktime_add_ns(ktime_get(),
1426 commit_time);
1427 set_current_state(TASK_UNINTERRUPTIBLE);
1428 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1429 }
1430 }
1431
1432 if (handle->h_sync)
1433 transaction->t_synchronous_commit = 1;
1434 current->journal_info = NULL;
1435 atomic_sub(handle->h_buffer_credits,
1436 &transaction->t_outstanding_credits);
1437
1438 /*
1439 * If the handle is marked SYNC, we need to set another commit
1440 * going! We also want to force a commit if the current
1441 * transaction is occupying too much of the log, or if the
1442 * transaction is too old now.
1443 */
1444 if (handle->h_sync ||
1445 (atomic_read(&transaction->t_outstanding_credits) >
1446 journal->j_max_transaction_buffers) ||
1447 time_after_eq(jiffies, transaction->t_expires)) {
1448 /* Do this even for aborted journals: an abort still
1449 * completes the commit thread, it just doesn't write
1450 * anything to disk. */
1451
1452 jbd_debug(2, "transaction too old, requesting commit for "
1453 "handle %p\n", handle);
1454 /* This is non-blocking */
1455 jbd2_log_start_commit(journal, transaction->t_tid);
1456
1457 /*
1458 * Special case: JBD2_SYNC synchronous updates require us
1459 * to wait for the commit to complete.
1460 */
1461 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1462 wait_for_commit = 1;
1463 }
1464
1465 /*
1466 * Once we drop t_updates, if it goes to zero the transaction
1467 * could start committing on us and eventually disappear. So
1468 * once we do this, we must not dereference transaction
1469 * pointer again.
1470 */
1471 tid = transaction->t_tid;
1472 if (atomic_dec_and_test(&transaction->t_updates)) {
1473 wake_up(&journal->j_wait_updates);
1474 if (journal->j_barrier_count)
1475 wake_up(&journal->j_wait_transaction_locked);
1476 }
1477
1478 if (wait_for_commit)
1479 err = jbd2_log_wait_commit(journal, tid);
1480
1481 lock_map_release(&handle->h_lockdep_map);
1482
1483 jbd2_free_handle(handle);
1484 return err;
1485 }
1486
1487 /**
1488 * int jbd2_journal_force_commit() - force any uncommitted transactions
1489 * @journal: journal to force
1490 *
1491 * For synchronous operations: force any uncommitted transactions
1492 * to disk. May seem kludgy, but it reuses all the handle batching
1493 * code in a very simple manner.
1494 */
1495 int jbd2_journal_force_commit(journal_t *journal)
1496 {
1497 handle_t *handle;
1498 int ret;
1499
1500 handle = jbd2_journal_start(journal, 1);
1501 if (IS_ERR(handle)) {
1502 ret = PTR_ERR(handle);
1503 } else {
1504 handle->h_sync = 1;
1505 ret = jbd2_journal_stop(handle);
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 *
1512 * List management code snippets: various functions for manipulating the
1513 * transaction buffer lists.
1514 *
1515 */
1516
1517 /*
1518 * Append a buffer to a transaction list, given the transaction's list head
1519 * pointer.
1520 *
1521 * j_list_lock is held.
1522 *
1523 * jbd_lock_bh_state(jh2bh(jh)) is held.
1524 */
1525
1526 static inline void
1527 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1528 {
1529 if (!*list) {
1530 jh->b_tnext = jh->b_tprev = jh;
1531 *list = jh;
1532 } else {
1533 /* Insert at the tail of the list to preserve order */
1534 struct journal_head *first = *list, *last = first->b_tprev;
1535 jh->b_tprev = last;
1536 jh->b_tnext = first;
1537 last->b_tnext = first->b_tprev = jh;
1538 }
1539 }
1540
1541 /*
1542 * Remove a buffer from a transaction list, given the transaction's list
1543 * head pointer.
1544 *
1545 * Called with j_list_lock held, and the journal may not be locked.
1546 *
1547 * jbd_lock_bh_state(jh2bh(jh)) is held.
1548 */
1549
1550 static inline void
1551 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1552 {
1553 if (*list == jh) {
1554 *list = jh->b_tnext;
1555 if (*list == jh)
1556 *list = NULL;
1557 }
1558 jh->b_tprev->b_tnext = jh->b_tnext;
1559 jh->b_tnext->b_tprev = jh->b_tprev;
1560 }
1561
1562 /*
1563 * Remove a buffer from the appropriate transaction list.
1564 *
1565 * Note that this function can *change* the value of
1566 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1567 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one
1568 * of these pointers, it could go bad. Generally the caller needs to re-read
1569 * the pointer from the transaction_t.
1570 *
1571 * Called under j_list_lock.
1572 */
1573 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1574 {
1575 struct journal_head **list = NULL;
1576 transaction_t *transaction;
1577 struct buffer_head *bh = jh2bh(jh);
1578
1579 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1580 transaction = jh->b_transaction;
1581 if (transaction)
1582 assert_spin_locked(&transaction->t_journal->j_list_lock);
1583
1584 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1585 if (jh->b_jlist != BJ_None)
1586 J_ASSERT_JH(jh, transaction != NULL);
1587
1588 switch (jh->b_jlist) {
1589 case BJ_None:
1590 return;
1591 case BJ_Metadata:
1592 transaction->t_nr_buffers--;
1593 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1594 list = &transaction->t_buffers;
1595 break;
1596 case BJ_Forget:
1597 list = &transaction->t_forget;
1598 break;
1599 case BJ_IO:
1600 list = &transaction->t_iobuf_list;
1601 break;
1602 case BJ_Shadow:
1603 list = &transaction->t_shadow_list;
1604 break;
1605 case BJ_LogCtl:
1606 list = &transaction->t_log_list;
1607 break;
1608 case BJ_Reserved:
1609 list = &transaction->t_reserved_list;
1610 break;
1611 }
1612
1613 __blist_del_buffer(list, jh);
1614 jh->b_jlist = BJ_None;
1615 if (test_clear_buffer_jbddirty(bh))
1616 mark_buffer_dirty(bh); /* Expose it to the VM */
1617 }
1618
1619 /*
1620 * Remove buffer from all transactions.
1621 *
1622 * Called with bh_state lock and j_list_lock
1623 *
1624 * jh and bh may be already freed when this function returns.
1625 */
1626 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1627 {
1628 __jbd2_journal_temp_unlink_buffer(jh);
1629 jh->b_transaction = NULL;
1630 jbd2_journal_put_journal_head(jh);
1631 }
1632
1633 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1634 {
1635 struct buffer_head *bh = jh2bh(jh);
1636
1637 /* Get reference so that buffer cannot be freed before we unlock it */
1638 get_bh(bh);
1639 jbd_lock_bh_state(bh);
1640 spin_lock(&journal->j_list_lock);
1641 __jbd2_journal_unfile_buffer(jh);
1642 spin_unlock(&journal->j_list_lock);
1643 jbd_unlock_bh_state(bh);
1644 __brelse(bh);
1645 }
1646
1647 /*
1648 * Called from jbd2_journal_try_to_free_buffers().
1649 *
1650 * Called under jbd_lock_bh_state(bh)
1651 */
1652 static void
1653 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1654 {
1655 struct journal_head *jh;
1656
1657 jh = bh2jh(bh);
1658
1659 if (buffer_locked(bh) || buffer_dirty(bh))
1660 goto out;
1661
1662 if (jh->b_next_transaction != NULL)
1663 goto out;
1664
1665 spin_lock(&journal->j_list_lock);
1666 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1667 /* written-back checkpointed metadata buffer */
1668 JBUFFER_TRACE(jh, "remove from checkpoint list");
1669 __jbd2_journal_remove_checkpoint(jh);
1670 }
1671 spin_unlock(&journal->j_list_lock);
1672 out:
1673 return;
1674 }
1675
1676 /**
1677 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1678 * @journal: journal for operation
1679 * @page: to try and free
1680 * @gfp_mask: we use the mask to detect how hard should we try to release
1681 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1682 * release the buffers.
1683 *
1684 *
1685 * For all the buffers on this page,
1686 * if they are fully written out ordered data, move them onto BUF_CLEAN
1687 * so try_to_free_buffers() can reap them.
1688 *
1689 * This function returns non-zero if we wish try_to_free_buffers()
1690 * to be called. We do this if the page is releasable by try_to_free_buffers().
1691 * We also do it if the page has locked or dirty buffers and the caller wants
1692 * us to perform sync or async writeout.
1693 *
1694 * This complicates JBD locking somewhat. We aren't protected by the
1695 * BKL here. We wish to remove the buffer from its committing or
1696 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1697 *
1698 * This may *change* the value of transaction_t->t_datalist, so anyone
1699 * who looks at t_datalist needs to lock against this function.
1700 *
1701 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1702 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1703 * will come out of the lock with the buffer dirty, which makes it
1704 * ineligible for release here.
1705 *
1706 * Who else is affected by this? hmm... Really the only contender
1707 * is do_get_write_access() - it could be looking at the buffer while
1708 * journal_try_to_free_buffer() is changing its state. But that
1709 * cannot happen because we never reallocate freed data as metadata
1710 * while the data is part of a transaction. Yes?
1711 *
1712 * Return 0 on failure, 1 on success
1713 */
1714 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1715 struct page *page, gfp_t gfp_mask)
1716 {
1717 struct buffer_head *head;
1718 struct buffer_head *bh;
1719 int ret = 0;
1720
1721 J_ASSERT(PageLocked(page));
1722
1723 head = page_buffers(page);
1724 bh = head;
1725 do {
1726 struct journal_head *jh;
1727
1728 /*
1729 * We take our own ref against the journal_head here to avoid
1730 * having to add tons of locking around each instance of
1731 * jbd2_journal_put_journal_head().
1732 */
1733 jh = jbd2_journal_grab_journal_head(bh);
1734 if (!jh)
1735 continue;
1736
1737 jbd_lock_bh_state(bh);
1738 __journal_try_to_free_buffer(journal, bh);
1739 jbd2_journal_put_journal_head(jh);
1740 jbd_unlock_bh_state(bh);
1741 if (buffer_jbd(bh))
1742 goto busy;
1743 } while ((bh = bh->b_this_page) != head);
1744
1745 ret = try_to_free_buffers(page);
1746
1747 busy:
1748 return ret;
1749 }
1750
1751 /*
1752 * This buffer is no longer needed. If it is on an older transaction's
1753 * checkpoint list we need to record it on this transaction's forget list
1754 * to pin this buffer (and hence its checkpointing transaction) down until
1755 * this transaction commits. If the buffer isn't on a checkpoint list, we
1756 * release it.
1757 * Returns non-zero if JBD no longer has an interest in the buffer.
1758 *
1759 * Called under j_list_lock.
1760 *
1761 * Called under jbd_lock_bh_state(bh).
1762 */
1763 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1764 {
1765 int may_free = 1;
1766 struct buffer_head *bh = jh2bh(jh);
1767
1768 if (jh->b_cp_transaction) {
1769 JBUFFER_TRACE(jh, "on running+cp transaction");
1770 __jbd2_journal_temp_unlink_buffer(jh);
1771 /*
1772 * We don't want to write the buffer anymore, clear the
1773 * bit so that we don't confuse checks in
1774 * __journal_file_buffer
1775 */
1776 clear_buffer_dirty(bh);
1777 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1778 may_free = 0;
1779 } else {
1780 JBUFFER_TRACE(jh, "on running transaction");
1781 __jbd2_journal_unfile_buffer(jh);
1782 }
1783 return may_free;
1784 }
1785
1786 /*
1787 * jbd2_journal_invalidatepage
1788 *
1789 * This code is tricky. It has a number of cases to deal with.
1790 *
1791 * There are two invariants which this code relies on:
1792 *
1793 * i_size must be updated on disk before we start calling invalidatepage on the
1794 * data.
1795 *
1796 * This is done in ext3 by defining an ext3_setattr method which
1797 * updates i_size before truncate gets going. By maintaining this
1798 * invariant, we can be sure that it is safe to throw away any buffers
1799 * attached to the current transaction: once the transaction commits,
1800 * we know that the data will not be needed.
1801 *
1802 * Note however that we can *not* throw away data belonging to the
1803 * previous, committing transaction!
1804 *
1805 * Any disk blocks which *are* part of the previous, committing
1806 * transaction (and which therefore cannot be discarded immediately) are
1807 * not going to be reused in the new running transaction
1808 *
1809 * The bitmap committed_data images guarantee this: any block which is
1810 * allocated in one transaction and removed in the next will be marked
1811 * as in-use in the committed_data bitmap, so cannot be reused until
1812 * the next transaction to delete the block commits. This means that
1813 * leaving committing buffers dirty is quite safe: the disk blocks
1814 * cannot be reallocated to a different file and so buffer aliasing is
1815 * not possible.
1816 *
1817 *
1818 * The above applies mainly to ordered data mode. In writeback mode we
1819 * don't make guarantees about the order in which data hits disk --- in
1820 * particular we don't guarantee that new dirty data is flushed before
1821 * transaction commit --- so it is always safe just to discard data
1822 * immediately in that mode. --sct
1823 */
1824
1825 /*
1826 * The journal_unmap_buffer helper function returns zero if the buffer
1827 * concerned remains pinned as an anonymous buffer belonging to an older
1828 * transaction.
1829 *
1830 * We're outside-transaction here. Either or both of j_running_transaction
1831 * and j_committing_transaction may be NULL.
1832 */
1833 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1834 int partial_page)
1835 {
1836 transaction_t *transaction;
1837 struct journal_head *jh;
1838 int may_free = 1;
1839
1840 BUFFER_TRACE(bh, "entry");
1841
1842 retry:
1843 /*
1844 * It is safe to proceed here without the j_list_lock because the
1845 * buffers cannot be stolen by try_to_free_buffers as long as we are
1846 * holding the page lock. --sct
1847 */
1848
1849 if (!buffer_jbd(bh))
1850 goto zap_buffer_unlocked;
1851
1852 /* OK, we have data buffer in journaled mode */
1853 write_lock(&journal->j_state_lock);
1854 jbd_lock_bh_state(bh);
1855 spin_lock(&journal->j_list_lock);
1856
1857 jh = jbd2_journal_grab_journal_head(bh);
1858 if (!jh)
1859 goto zap_buffer_no_jh;
1860
1861 /*
1862 * We cannot remove the buffer from checkpoint lists until the
1863 * transaction adding inode to orphan list (let's call it T)
1864 * is committed. Otherwise if the transaction changing the
1865 * buffer would be cleaned from the journal before T is
1866 * committed, a crash will cause that the correct contents of
1867 * the buffer will be lost. On the other hand we have to
1868 * clear the buffer dirty bit at latest at the moment when the
1869 * transaction marking the buffer as freed in the filesystem
1870 * structures is committed because from that moment on the
1871 * block can be reallocated and used by a different page.
1872 * Since the block hasn't been freed yet but the inode has
1873 * already been added to orphan list, it is safe for us to add
1874 * the buffer to BJ_Forget list of the newest transaction.
1875 *
1876 * Also we have to clear buffer_mapped flag of a truncated buffer
1877 * because the buffer_head may be attached to the page straddling
1878 * i_size (can happen only when blocksize < pagesize) and thus the
1879 * buffer_head can be reused when the file is extended again. So we end
1880 * up keeping around invalidated buffers attached to transactions'
1881 * BJ_Forget list just to stop checkpointing code from cleaning up
1882 * the transaction this buffer was modified in.
1883 */
1884 transaction = jh->b_transaction;
1885 if (transaction == NULL) {
1886 /* First case: not on any transaction. If it
1887 * has no checkpoint link, then we can zap it:
1888 * it's a writeback-mode buffer so we don't care
1889 * if it hits disk safely. */
1890 if (!jh->b_cp_transaction) {
1891 JBUFFER_TRACE(jh, "not on any transaction: zap");
1892 goto zap_buffer;
1893 }
1894
1895 if (!buffer_dirty(bh)) {
1896 /* bdflush has written it. We can drop it now */
1897 goto zap_buffer;
1898 }
1899
1900 /* OK, it must be in the journal but still not
1901 * written fully to disk: it's metadata or
1902 * journaled data... */
1903
1904 if (journal->j_running_transaction) {
1905 /* ... and once the current transaction has
1906 * committed, the buffer won't be needed any
1907 * longer. */
1908 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1909 may_free = __dispose_buffer(jh,
1910 journal->j_running_transaction);
1911 goto zap_buffer;
1912 } else {
1913 /* There is no currently-running transaction. So the
1914 * orphan record which we wrote for this file must have
1915 * passed into commit. We must attach this buffer to
1916 * the committing transaction, if it exists. */
1917 if (journal->j_committing_transaction) {
1918 JBUFFER_TRACE(jh, "give to committing trans");
1919 may_free = __dispose_buffer(jh,
1920 journal->j_committing_transaction);
1921 goto zap_buffer;
1922 } else {
1923 /* The orphan record's transaction has
1924 * committed. We can cleanse this buffer */
1925 clear_buffer_jbddirty(bh);
1926 goto zap_buffer;
1927 }
1928 }
1929 } else if (transaction == journal->j_committing_transaction) {
1930 JBUFFER_TRACE(jh, "on committing transaction");
1931 /*
1932 * The buffer is committing, we simply cannot touch
1933 * it. If the page is straddling i_size we have to wait
1934 * for commit and try again.
1935 */
1936 if (partial_page) {
1937 tid_t tid = journal->j_committing_transaction->t_tid;
1938
1939 jbd2_journal_put_journal_head(jh);
1940 spin_unlock(&journal->j_list_lock);
1941 jbd_unlock_bh_state(bh);
1942 write_unlock(&journal->j_state_lock);
1943 jbd2_log_wait_commit(journal, tid);
1944 goto retry;
1945 }
1946 /*
1947 * OK, buffer won't be reachable after truncate. We just set
1948 * j_next_transaction to the running transaction (if there is
1949 * one) and mark buffer as freed so that commit code knows it
1950 * should clear dirty bits when it is done with the buffer.
1951 */
1952 set_buffer_freed(bh);
1953 if (journal->j_running_transaction && buffer_jbddirty(bh))
1954 jh->b_next_transaction = journal->j_running_transaction;
1955 jbd2_journal_put_journal_head(jh);
1956 spin_unlock(&journal->j_list_lock);
1957 jbd_unlock_bh_state(bh);
1958 write_unlock(&journal->j_state_lock);
1959 return 0;
1960 } else {
1961 /* Good, the buffer belongs to the running transaction.
1962 * We are writing our own transaction's data, not any
1963 * previous one's, so it is safe to throw it away
1964 * (remember that we expect the filesystem to have set
1965 * i_size already for this truncate so recovery will not
1966 * expose the disk blocks we are discarding here.) */
1967 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1968 JBUFFER_TRACE(jh, "on running transaction");
1969 may_free = __dispose_buffer(jh, transaction);
1970 }
1971
1972 zap_buffer:
1973 /*
1974 * This is tricky. Although the buffer is truncated, it may be reused
1975 * if blocksize < pagesize and it is attached to the page straddling
1976 * EOF. Since the buffer might have been added to BJ_Forget list of the
1977 * running transaction, journal_get_write_access() won't clear
1978 * b_modified and credit accounting gets confused. So clear b_modified
1979 * here.
1980 */
1981 jh->b_modified = 0;
1982 jbd2_journal_put_journal_head(jh);
1983 zap_buffer_no_jh:
1984 spin_unlock(&journal->j_list_lock);
1985 jbd_unlock_bh_state(bh);
1986 write_unlock(&journal->j_state_lock);
1987 zap_buffer_unlocked:
1988 clear_buffer_dirty(bh);
1989 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1990 clear_buffer_mapped(bh);
1991 clear_buffer_req(bh);
1992 clear_buffer_new(bh);
1993 clear_buffer_delay(bh);
1994 clear_buffer_unwritten(bh);
1995 bh->b_bdev = NULL;
1996 return may_free;
1997 }
1998
1999 /**
2000 * void jbd2_journal_invalidatepage()
2001 * @journal: journal to use for flush...
2002 * @page: page to flush
2003 * @offset: length of page to invalidate.
2004 *
2005 * Reap page buffers containing data after offset in page.
2006 *
2007 */
2008 void jbd2_journal_invalidatepage(journal_t *journal,
2009 struct page *page,
2010 unsigned long offset)
2011 {
2012 struct buffer_head *head, *bh, *next;
2013 unsigned int curr_off = 0;
2014 int may_free = 1;
2015
2016 if (!PageLocked(page))
2017 BUG();
2018 if (!page_has_buffers(page))
2019 return;
2020
2021 /* We will potentially be playing with lists other than just the
2022 * data lists (especially for journaled data mode), so be
2023 * cautious in our locking. */
2024
2025 head = bh = page_buffers(page);
2026 do {
2027 unsigned int next_off = curr_off + bh->b_size;
2028 next = bh->b_this_page;
2029
2030 if (offset <= curr_off) {
2031 /* This block is wholly outside the truncation point */
2032 lock_buffer(bh);
2033 may_free &= journal_unmap_buffer(journal, bh,
2034 offset > 0);
2035 unlock_buffer(bh);
2036 }
2037 curr_off = next_off;
2038 bh = next;
2039
2040 } while (bh != head);
2041
2042 if (!offset) {
2043 if (may_free && try_to_free_buffers(page))
2044 J_ASSERT(!page_has_buffers(page));
2045 }
2046 }
2047
2048 /*
2049 * File a buffer on the given transaction list.
2050 */
2051 void __jbd2_journal_file_buffer(struct journal_head *jh,
2052 transaction_t *transaction, int jlist)
2053 {
2054 struct journal_head **list = NULL;
2055 int was_dirty = 0;
2056 struct buffer_head *bh = jh2bh(jh);
2057
2058 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2059 assert_spin_locked(&transaction->t_journal->j_list_lock);
2060
2061 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2062 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2063 jh->b_transaction == NULL);
2064
2065 if (jh->b_transaction && jh->b_jlist == jlist)
2066 return;
2067
2068 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2069 jlist == BJ_Shadow || jlist == BJ_Forget) {
2070 /*
2071 * For metadata buffers, we track dirty bit in buffer_jbddirty
2072 * instead of buffer_dirty. We should not see a dirty bit set
2073 * here because we clear it in do_get_write_access but e.g.
2074 * tune2fs can modify the sb and set the dirty bit at any time
2075 * so we try to gracefully handle that.
2076 */
2077 if (buffer_dirty(bh))
2078 warn_dirty_buffer(bh);
2079 if (test_clear_buffer_dirty(bh) ||
2080 test_clear_buffer_jbddirty(bh))
2081 was_dirty = 1;
2082 }
2083
2084 if (jh->b_transaction)
2085 __jbd2_journal_temp_unlink_buffer(jh);
2086 else
2087 jbd2_journal_grab_journal_head(bh);
2088 jh->b_transaction = transaction;
2089
2090 switch (jlist) {
2091 case BJ_None:
2092 J_ASSERT_JH(jh, !jh->b_committed_data);
2093 J_ASSERT_JH(jh, !jh->b_frozen_data);
2094 return;
2095 case BJ_Metadata:
2096 transaction->t_nr_buffers++;
2097 list = &transaction->t_buffers;
2098 break;
2099 case BJ_Forget:
2100 list = &transaction->t_forget;
2101 break;
2102 case BJ_IO:
2103 list = &transaction->t_iobuf_list;
2104 break;
2105 case BJ_Shadow:
2106 list = &transaction->t_shadow_list;
2107 break;
2108 case BJ_LogCtl:
2109 list = &transaction->t_log_list;
2110 break;
2111 case BJ_Reserved:
2112 list = &transaction->t_reserved_list;
2113 break;
2114 }
2115
2116 __blist_add_buffer(list, jh);
2117 jh->b_jlist = jlist;
2118
2119 if (was_dirty)
2120 set_buffer_jbddirty(bh);
2121 }
2122
2123 void jbd2_journal_file_buffer(struct journal_head *jh,
2124 transaction_t *transaction, int jlist)
2125 {
2126 jbd_lock_bh_state(jh2bh(jh));
2127 spin_lock(&transaction->t_journal->j_list_lock);
2128 __jbd2_journal_file_buffer(jh, transaction, jlist);
2129 spin_unlock(&transaction->t_journal->j_list_lock);
2130 jbd_unlock_bh_state(jh2bh(jh));
2131 }
2132
2133 /*
2134 * Remove a buffer from its current buffer list in preparation for
2135 * dropping it from its current transaction entirely. If the buffer has
2136 * already started to be used by a subsequent transaction, refile the
2137 * buffer on that transaction's metadata list.
2138 *
2139 * Called under j_list_lock
2140 * Called under jbd_lock_bh_state(jh2bh(jh))
2141 *
2142 * jh and bh may be already free when this function returns
2143 */
2144 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2145 {
2146 int was_dirty, jlist;
2147 struct buffer_head *bh = jh2bh(jh);
2148
2149 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2150 if (jh->b_transaction)
2151 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2152
2153 /* If the buffer is now unused, just drop it. */
2154 if (jh->b_next_transaction == NULL) {
2155 __jbd2_journal_unfile_buffer(jh);
2156 return;
2157 }
2158
2159 /*
2160 * It has been modified by a later transaction: add it to the new
2161 * transaction's metadata list.
2162 */
2163
2164 was_dirty = test_clear_buffer_jbddirty(bh);
2165 __jbd2_journal_temp_unlink_buffer(jh);
2166 /*
2167 * We set b_transaction here because b_next_transaction will inherit
2168 * our jh reference and thus __jbd2_journal_file_buffer() must not
2169 * take a new one.
2170 */
2171 jh->b_transaction = jh->b_next_transaction;
2172 jh->b_next_transaction = NULL;
2173 if (buffer_freed(bh))
2174 jlist = BJ_Forget;
2175 else if (jh->b_modified)
2176 jlist = BJ_Metadata;
2177 else
2178 jlist = BJ_Reserved;
2179 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2180 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2181
2182 if (was_dirty)
2183 set_buffer_jbddirty(bh);
2184 }
2185
2186 /*
2187 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2188 * bh reference so that we can safely unlock bh.
2189 *
2190 * The jh and bh may be freed by this call.
2191 */
2192 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2193 {
2194 struct buffer_head *bh = jh2bh(jh);
2195
2196 /* Get reference so that buffer cannot be freed before we unlock it */
2197 get_bh(bh);
2198 jbd_lock_bh_state(bh);
2199 spin_lock(&journal->j_list_lock);
2200 __jbd2_journal_refile_buffer(jh);
2201 jbd_unlock_bh_state(bh);
2202 spin_unlock(&journal->j_list_lock);
2203 __brelse(bh);
2204 }
2205
2206 /*
2207 * File inode in the inode list of the handle's transaction
2208 */
2209 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2210 {
2211 transaction_t *transaction = handle->h_transaction;
2212 journal_t *journal = transaction->t_journal;
2213
2214 if (is_handle_aborted(handle))
2215 return -EIO;
2216
2217 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2218 transaction->t_tid);
2219
2220 /*
2221 * First check whether inode isn't already on the transaction's
2222 * lists without taking the lock. Note that this check is safe
2223 * without the lock as we cannot race with somebody removing inode
2224 * from the transaction. The reason is that we remove inode from the
2225 * transaction only in journal_release_jbd_inode() and when we commit
2226 * the transaction. We are guarded from the first case by holding
2227 * a reference to the inode. We are safe against the second case
2228 * because if jinode->i_transaction == transaction, commit code
2229 * cannot touch the transaction because we hold reference to it,
2230 * and if jinode->i_next_transaction == transaction, commit code
2231 * will only file the inode where we want it.
2232 */
2233 if (jinode->i_transaction == transaction ||
2234 jinode->i_next_transaction == transaction)
2235 return 0;
2236
2237 spin_lock(&journal->j_list_lock);
2238
2239 if (jinode->i_transaction == transaction ||
2240 jinode->i_next_transaction == transaction)
2241 goto done;
2242
2243 /*
2244 * We only ever set this variable to 1 so the test is safe. Since
2245 * t_need_data_flush is likely to be set, we do the test to save some
2246 * cacheline bouncing
2247 */
2248 if (!transaction->t_need_data_flush)
2249 transaction->t_need_data_flush = 1;
2250 /* On some different transaction's list - should be
2251 * the committing one */
2252 if (jinode->i_transaction) {
2253 J_ASSERT(jinode->i_next_transaction == NULL);
2254 J_ASSERT(jinode->i_transaction ==
2255 journal->j_committing_transaction);
2256 jinode->i_next_transaction = transaction;
2257 goto done;
2258 }
2259 /* Not on any transaction list... */
2260 J_ASSERT(!jinode->i_next_transaction);
2261 jinode->i_transaction = transaction;
2262 list_add(&jinode->i_list, &transaction->t_inode_list);
2263 done:
2264 spin_unlock(&journal->j_list_lock);
2265
2266 return 0;
2267 }
2268
2269 /*
2270 * File truncate and transaction commit interact with each other in a
2271 * non-trivial way. If a transaction writing data block A is
2272 * committing, we cannot discard the data by truncate until we have
2273 * written them. Otherwise if we crashed after the transaction with
2274 * write has committed but before the transaction with truncate has
2275 * committed, we could see stale data in block A. This function is a
2276 * helper to solve this problem. It starts writeout of the truncated
2277 * part in case it is in the committing transaction.
2278 *
2279 * Filesystem code must call this function when inode is journaled in
2280 * ordered mode before truncation happens and after the inode has been
2281 * placed on orphan list with the new inode size. The second condition
2282 * avoids the race that someone writes new data and we start
2283 * committing the transaction after this function has been called but
2284 * before a transaction for truncate is started (and furthermore it
2285 * allows us to optimize the case where the addition to orphan list
2286 * happens in the same transaction as write --- we don't have to write
2287 * any data in such case).
2288 */
2289 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2290 struct jbd2_inode *jinode,
2291 loff_t new_size)
2292 {
2293 transaction_t *inode_trans, *commit_trans;
2294 int ret = 0;
2295
2296 /* This is a quick check to avoid locking if not necessary */
2297 if (!jinode->i_transaction)
2298 goto out;
2299 /* Locks are here just to force reading of recent values, it is
2300 * enough that the transaction was not committing before we started
2301 * a transaction adding the inode to orphan list */
2302 read_lock(&journal->j_state_lock);
2303 commit_trans = journal->j_committing_transaction;
2304 read_unlock(&journal->j_state_lock);
2305 spin_lock(&journal->j_list_lock);
2306 inode_trans = jinode->i_transaction;
2307 spin_unlock(&journal->j_list_lock);
2308 if (inode_trans == commit_trans) {
2309 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2310 new_size, LLONG_MAX);
2311 if (ret)
2312 jbd2_journal_abort(journal, ret);
2313 }
2314 out:
2315 return ret;
2316 }