Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_forget);
64 #if 0
65 EXPORT_SYMBOL(journal_sync_buffer);
66 #endif
67 EXPORT_SYMBOL(jbd2_journal_flush);
68 EXPORT_SYMBOL(jbd2_journal_revoke);
69
70 EXPORT_SYMBOL(jbd2_journal_init_dev);
71 EXPORT_SYMBOL(jbd2_journal_init_inode);
72 EXPORT_SYMBOL(jbd2_journal_check_used_features);
73 EXPORT_SYMBOL(jbd2_journal_check_available_features);
74 EXPORT_SYMBOL(jbd2_journal_set_features);
75 EXPORT_SYMBOL(jbd2_journal_load);
76 EXPORT_SYMBOL(jbd2_journal_destroy);
77 EXPORT_SYMBOL(jbd2_journal_abort);
78 EXPORT_SYMBOL(jbd2_journal_errno);
79 EXPORT_SYMBOL(jbd2_journal_ack_err);
80 EXPORT_SYMBOL(jbd2_journal_clear_err);
81 EXPORT_SYMBOL(jbd2_log_wait_commit);
82 EXPORT_SYMBOL(jbd2_log_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_file_inode);
91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
94 EXPORT_SYMBOL(jbd2_inode_cache);
95
96 static void __journal_abort_soft (journal_t *journal, int errno);
97 static int jbd2_journal_create_slab(size_t slab_size);
98
99 /* Checksumming functions */
100 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
101 {
102 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
103 return 1;
104
105 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
106 }
107
108 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
109 {
110 __u32 csum, old_csum;
111
112 old_csum = sb->s_checksum;
113 sb->s_checksum = 0;
114 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
115 sb->s_checksum = old_csum;
116
117 return cpu_to_be32(csum);
118 }
119
120 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
121 {
122 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
123 return 1;
124
125 return sb->s_checksum == jbd2_superblock_csum(j, sb);
126 }
127
128 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
129 {
130 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
131 return;
132
133 sb->s_checksum = jbd2_superblock_csum(j, sb);
134 }
135
136 /*
137 * Helper function used to manage commit timeouts
138 */
139
140 static void commit_timeout(unsigned long __data)
141 {
142 struct task_struct * p = (struct task_struct *) __data;
143
144 wake_up_process(p);
145 }
146
147 /*
148 * kjournald2: The main thread function used to manage a logging device
149 * journal.
150 *
151 * This kernel thread is responsible for two things:
152 *
153 * 1) COMMIT: Every so often we need to commit the current state of the
154 * filesystem to disk. The journal thread is responsible for writing
155 * all of the metadata buffers to disk.
156 *
157 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
158 * of the data in that part of the log has been rewritten elsewhere on
159 * the disk. Flushing these old buffers to reclaim space in the log is
160 * known as checkpointing, and this thread is responsible for that job.
161 */
162
163 static int kjournald2(void *arg)
164 {
165 journal_t *journal = arg;
166 transaction_t *transaction;
167
168 /*
169 * Set up an interval timer which can be used to trigger a commit wakeup
170 * after the commit interval expires
171 */
172 setup_timer(&journal->j_commit_timer, commit_timeout,
173 (unsigned long)current);
174
175 set_freezable();
176
177 /* Record that the journal thread is running */
178 journal->j_task = current;
179 wake_up(&journal->j_wait_done_commit);
180
181 /*
182 * And now, wait forever for commit wakeup events.
183 */
184 write_lock(&journal->j_state_lock);
185
186 loop:
187 if (journal->j_flags & JBD2_UNMOUNT)
188 goto end_loop;
189
190 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
191 journal->j_commit_sequence, journal->j_commit_request);
192
193 if (journal->j_commit_sequence != journal->j_commit_request) {
194 jbd_debug(1, "OK, requests differ\n");
195 write_unlock(&journal->j_state_lock);
196 del_timer_sync(&journal->j_commit_timer);
197 jbd2_journal_commit_transaction(journal);
198 write_lock(&journal->j_state_lock);
199 goto loop;
200 }
201
202 wake_up(&journal->j_wait_done_commit);
203 if (freezing(current)) {
204 /*
205 * The simpler the better. Flushing journal isn't a
206 * good idea, because that depends on threads that may
207 * be already stopped.
208 */
209 jbd_debug(1, "Now suspending kjournald2\n");
210 write_unlock(&journal->j_state_lock);
211 try_to_freeze();
212 write_lock(&journal->j_state_lock);
213 } else {
214 /*
215 * We assume on resume that commits are already there,
216 * so we don't sleep
217 */
218 DEFINE_WAIT(wait);
219 int should_sleep = 1;
220
221 prepare_to_wait(&journal->j_wait_commit, &wait,
222 TASK_INTERRUPTIBLE);
223 if (journal->j_commit_sequence != journal->j_commit_request)
224 should_sleep = 0;
225 transaction = journal->j_running_transaction;
226 if (transaction && time_after_eq(jiffies,
227 transaction->t_expires))
228 should_sleep = 0;
229 if (journal->j_flags & JBD2_UNMOUNT)
230 should_sleep = 0;
231 if (should_sleep) {
232 write_unlock(&journal->j_state_lock);
233 schedule();
234 write_lock(&journal->j_state_lock);
235 }
236 finish_wait(&journal->j_wait_commit, &wait);
237 }
238
239 jbd_debug(1, "kjournald2 wakes\n");
240
241 /*
242 * Were we woken up by a commit wakeup event?
243 */
244 transaction = journal->j_running_transaction;
245 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
246 journal->j_commit_request = transaction->t_tid;
247 jbd_debug(1, "woke because of timeout\n");
248 }
249 goto loop;
250
251 end_loop:
252 write_unlock(&journal->j_state_lock);
253 del_timer_sync(&journal->j_commit_timer);
254 journal->j_task = NULL;
255 wake_up(&journal->j_wait_done_commit);
256 jbd_debug(1, "Journal thread exiting.\n");
257 return 0;
258 }
259
260 static int jbd2_journal_start_thread(journal_t *journal)
261 {
262 struct task_struct *t;
263
264 t = kthread_run(kjournald2, journal, "jbd2/%s",
265 journal->j_devname);
266 if (IS_ERR(t))
267 return PTR_ERR(t);
268
269 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
270 return 0;
271 }
272
273 static void journal_kill_thread(journal_t *journal)
274 {
275 write_lock(&journal->j_state_lock);
276 journal->j_flags |= JBD2_UNMOUNT;
277
278 while (journal->j_task) {
279 wake_up(&journal->j_wait_commit);
280 write_unlock(&journal->j_state_lock);
281 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
282 write_lock(&journal->j_state_lock);
283 }
284 write_unlock(&journal->j_state_lock);
285 }
286
287 /*
288 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
289 *
290 * Writes a metadata buffer to a given disk block. The actual IO is not
291 * performed but a new buffer_head is constructed which labels the data
292 * to be written with the correct destination disk block.
293 *
294 * Any magic-number escaping which needs to be done will cause a
295 * copy-out here. If the buffer happens to start with the
296 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
297 * magic number is only written to the log for descripter blocks. In
298 * this case, we copy the data and replace the first word with 0, and we
299 * return a result code which indicates that this buffer needs to be
300 * marked as an escaped buffer in the corresponding log descriptor
301 * block. The missing word can then be restored when the block is read
302 * during recovery.
303 *
304 * If the source buffer has already been modified by a new transaction
305 * since we took the last commit snapshot, we use the frozen copy of
306 * that data for IO. If we end up using the existing buffer_head's data
307 * for the write, then we *have* to lock the buffer to prevent anyone
308 * else from using and possibly modifying it while the IO is in
309 * progress.
310 *
311 * The function returns a pointer to the buffer_heads to be used for IO.
312 *
313 * We assume that the journal has already been locked in this function.
314 *
315 * Return value:
316 * <0: Error
317 * >=0: Finished OK
318 *
319 * On success:
320 * Bit 0 set == escape performed on the data
321 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
322 */
323
324 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
325 struct journal_head *jh_in,
326 struct journal_head **jh_out,
327 unsigned long long blocknr)
328 {
329 int need_copy_out = 0;
330 int done_copy_out = 0;
331 int do_escape = 0;
332 char *mapped_data;
333 struct buffer_head *new_bh;
334 struct journal_head *new_jh;
335 struct page *new_page;
336 unsigned int new_offset;
337 struct buffer_head *bh_in = jh2bh(jh_in);
338 journal_t *journal = transaction->t_journal;
339
340 /*
341 * The buffer really shouldn't be locked: only the current committing
342 * transaction is allowed to write it, so nobody else is allowed
343 * to do any IO.
344 *
345 * akpm: except if we're journalling data, and write() output is
346 * also part of a shared mapping, and another thread has
347 * decided to launch a writepage() against this buffer.
348 */
349 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
350
351 retry_alloc:
352 new_bh = alloc_buffer_head(GFP_NOFS);
353 if (!new_bh) {
354 /*
355 * Failure is not an option, but __GFP_NOFAIL is going
356 * away; so we retry ourselves here.
357 */
358 congestion_wait(BLK_RW_ASYNC, HZ/50);
359 goto retry_alloc;
360 }
361
362 /* keep subsequent assertions sane */
363 new_bh->b_state = 0;
364 init_buffer(new_bh, NULL, NULL);
365 atomic_set(&new_bh->b_count, 1);
366 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
367
368 /*
369 * If a new transaction has already done a buffer copy-out, then
370 * we use that version of the data for the commit.
371 */
372 jbd_lock_bh_state(bh_in);
373 repeat:
374 if (jh_in->b_frozen_data) {
375 done_copy_out = 1;
376 new_page = virt_to_page(jh_in->b_frozen_data);
377 new_offset = offset_in_page(jh_in->b_frozen_data);
378 } else {
379 new_page = jh2bh(jh_in)->b_page;
380 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
381 }
382
383 mapped_data = kmap_atomic(new_page);
384 /*
385 * Fire data frozen trigger if data already wasn't frozen. Do this
386 * before checking for escaping, as the trigger may modify the magic
387 * offset. If a copy-out happens afterwards, it will have the correct
388 * data in the buffer.
389 */
390 if (!done_copy_out)
391 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
392 jh_in->b_triggers);
393
394 /*
395 * Check for escaping
396 */
397 if (*((__be32 *)(mapped_data + new_offset)) ==
398 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
399 need_copy_out = 1;
400 do_escape = 1;
401 }
402 kunmap_atomic(mapped_data);
403
404 /*
405 * Do we need to do a data copy?
406 */
407 if (need_copy_out && !done_copy_out) {
408 char *tmp;
409
410 jbd_unlock_bh_state(bh_in);
411 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
412 if (!tmp) {
413 jbd2_journal_put_journal_head(new_jh);
414 return -ENOMEM;
415 }
416 jbd_lock_bh_state(bh_in);
417 if (jh_in->b_frozen_data) {
418 jbd2_free(tmp, bh_in->b_size);
419 goto repeat;
420 }
421
422 jh_in->b_frozen_data = tmp;
423 mapped_data = kmap_atomic(new_page);
424 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
425 kunmap_atomic(mapped_data);
426
427 new_page = virt_to_page(tmp);
428 new_offset = offset_in_page(tmp);
429 done_copy_out = 1;
430
431 /*
432 * This isn't strictly necessary, as we're using frozen
433 * data for the escaping, but it keeps consistency with
434 * b_frozen_data usage.
435 */
436 jh_in->b_frozen_triggers = jh_in->b_triggers;
437 }
438
439 /*
440 * Did we need to do an escaping? Now we've done all the
441 * copying, we can finally do so.
442 */
443 if (do_escape) {
444 mapped_data = kmap_atomic(new_page);
445 *((unsigned int *)(mapped_data + new_offset)) = 0;
446 kunmap_atomic(mapped_data);
447 }
448
449 set_bh_page(new_bh, new_page, new_offset);
450 new_jh->b_transaction = NULL;
451 new_bh->b_size = jh2bh(jh_in)->b_size;
452 new_bh->b_bdev = transaction->t_journal->j_dev;
453 new_bh->b_blocknr = blocknr;
454 set_buffer_mapped(new_bh);
455 set_buffer_dirty(new_bh);
456
457 *jh_out = new_jh;
458
459 /*
460 * The to-be-written buffer needs to get moved to the io queue,
461 * and the original buffer whose contents we are shadowing or
462 * copying is moved to the transaction's shadow queue.
463 */
464 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
465 spin_lock(&journal->j_list_lock);
466 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
467 spin_unlock(&journal->j_list_lock);
468 jbd_unlock_bh_state(bh_in);
469
470 JBUFFER_TRACE(new_jh, "file as BJ_IO");
471 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
472
473 return do_escape | (done_copy_out << 1);
474 }
475
476 /*
477 * Allocation code for the journal file. Manage the space left in the
478 * journal, so that we can begin checkpointing when appropriate.
479 */
480
481 /*
482 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
483 *
484 * Called with the journal already locked.
485 *
486 * Called under j_state_lock
487 */
488
489 int __jbd2_log_space_left(journal_t *journal)
490 {
491 int left = journal->j_free;
492
493 /* assert_spin_locked(&journal->j_state_lock); */
494
495 /*
496 * Be pessimistic here about the number of those free blocks which
497 * might be required for log descriptor control blocks.
498 */
499
500 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
501
502 left -= MIN_LOG_RESERVED_BLOCKS;
503
504 if (left <= 0)
505 return 0;
506 left -= (left >> 3);
507 return left;
508 }
509
510 /*
511 * Called with j_state_lock locked for writing.
512 * Returns true if a transaction commit was started.
513 */
514 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
515 {
516 /*
517 * The only transaction we can possibly wait upon is the
518 * currently running transaction (if it exists). Otherwise,
519 * the target tid must be an old one.
520 */
521 if (journal->j_running_transaction &&
522 journal->j_running_transaction->t_tid == target) {
523 /*
524 * We want a new commit: OK, mark the request and wakeup the
525 * commit thread. We do _not_ do the commit ourselves.
526 */
527
528 journal->j_commit_request = target;
529 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
530 journal->j_commit_request,
531 journal->j_commit_sequence);
532 wake_up(&journal->j_wait_commit);
533 return 1;
534 } else if (!tid_geq(journal->j_commit_request, target))
535 /* This should never happen, but if it does, preserve
536 the evidence before kjournald goes into a loop and
537 increments j_commit_sequence beyond all recognition. */
538 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
539 journal->j_commit_request,
540 journal->j_commit_sequence,
541 target, journal->j_running_transaction ?
542 journal->j_running_transaction->t_tid : 0);
543 return 0;
544 }
545
546 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
547 {
548 int ret;
549
550 write_lock(&journal->j_state_lock);
551 ret = __jbd2_log_start_commit(journal, tid);
552 write_unlock(&journal->j_state_lock);
553 return ret;
554 }
555
556 /*
557 * Force and wait upon a commit if the calling process is not within
558 * transaction. This is used for forcing out undo-protected data which contains
559 * bitmaps, when the fs is running out of space.
560 *
561 * We can only force the running transaction if we don't have an active handle;
562 * otherwise, we will deadlock.
563 *
564 * Returns true if a transaction was started.
565 */
566 int jbd2_journal_force_commit_nested(journal_t *journal)
567 {
568 transaction_t *transaction = NULL;
569 tid_t tid;
570 int need_to_start = 0;
571
572 read_lock(&journal->j_state_lock);
573 if (journal->j_running_transaction && !current->journal_info) {
574 transaction = journal->j_running_transaction;
575 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
576 need_to_start = 1;
577 } else if (journal->j_committing_transaction)
578 transaction = journal->j_committing_transaction;
579
580 if (!transaction) {
581 read_unlock(&journal->j_state_lock);
582 return 0; /* Nothing to retry */
583 }
584
585 tid = transaction->t_tid;
586 read_unlock(&journal->j_state_lock);
587 if (need_to_start)
588 jbd2_log_start_commit(journal, tid);
589 jbd2_log_wait_commit(journal, tid);
590 return 1;
591 }
592
593 /*
594 * Start a commit of the current running transaction (if any). Returns true
595 * if a transaction is going to be committed (or is currently already
596 * committing), and fills its tid in at *ptid
597 */
598 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
599 {
600 int ret = 0;
601
602 write_lock(&journal->j_state_lock);
603 if (journal->j_running_transaction) {
604 tid_t tid = journal->j_running_transaction->t_tid;
605
606 __jbd2_log_start_commit(journal, tid);
607 /* There's a running transaction and we've just made sure
608 * it's commit has been scheduled. */
609 if (ptid)
610 *ptid = tid;
611 ret = 1;
612 } else if (journal->j_committing_transaction) {
613 /*
614 * If commit has been started, then we have to wait for
615 * completion of that transaction.
616 */
617 if (ptid)
618 *ptid = journal->j_committing_transaction->t_tid;
619 ret = 1;
620 }
621 write_unlock(&journal->j_state_lock);
622 return ret;
623 }
624
625 /*
626 * Return 1 if a given transaction has not yet sent barrier request
627 * connected with a transaction commit. If 0 is returned, transaction
628 * may or may not have sent the barrier. Used to avoid sending barrier
629 * twice in common cases.
630 */
631 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
632 {
633 int ret = 0;
634 transaction_t *commit_trans;
635
636 if (!(journal->j_flags & JBD2_BARRIER))
637 return 0;
638 read_lock(&journal->j_state_lock);
639 /* Transaction already committed? */
640 if (tid_geq(journal->j_commit_sequence, tid))
641 goto out;
642 commit_trans = journal->j_committing_transaction;
643 if (!commit_trans || commit_trans->t_tid != tid) {
644 ret = 1;
645 goto out;
646 }
647 /*
648 * Transaction is being committed and we already proceeded to
649 * submitting a flush to fs partition?
650 */
651 if (journal->j_fs_dev != journal->j_dev) {
652 if (!commit_trans->t_need_data_flush ||
653 commit_trans->t_state >= T_COMMIT_DFLUSH)
654 goto out;
655 } else {
656 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
657 goto out;
658 }
659 ret = 1;
660 out:
661 read_unlock(&journal->j_state_lock);
662 return ret;
663 }
664 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
665
666 /*
667 * Wait for a specified commit to complete.
668 * The caller may not hold the journal lock.
669 */
670 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
671 {
672 int err = 0;
673
674 read_lock(&journal->j_state_lock);
675 #ifdef CONFIG_JBD2_DEBUG
676 if (!tid_geq(journal->j_commit_request, tid)) {
677 printk(KERN_EMERG
678 "%s: error: j_commit_request=%d, tid=%d\n",
679 __func__, journal->j_commit_request, tid);
680 }
681 #endif
682 while (tid_gt(tid, journal->j_commit_sequence)) {
683 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
684 tid, journal->j_commit_sequence);
685 wake_up(&journal->j_wait_commit);
686 read_unlock(&journal->j_state_lock);
687 wait_event(journal->j_wait_done_commit,
688 !tid_gt(tid, journal->j_commit_sequence));
689 read_lock(&journal->j_state_lock);
690 }
691 read_unlock(&journal->j_state_lock);
692
693 if (unlikely(is_journal_aborted(journal))) {
694 printk(KERN_EMERG "journal commit I/O error\n");
695 err = -EIO;
696 }
697 return err;
698 }
699
700 /*
701 * Log buffer allocation routines:
702 */
703
704 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
705 {
706 unsigned long blocknr;
707
708 write_lock(&journal->j_state_lock);
709 J_ASSERT(journal->j_free > 1);
710
711 blocknr = journal->j_head;
712 journal->j_head++;
713 journal->j_free--;
714 if (journal->j_head == journal->j_last)
715 journal->j_head = journal->j_first;
716 write_unlock(&journal->j_state_lock);
717 return jbd2_journal_bmap(journal, blocknr, retp);
718 }
719
720 /*
721 * Conversion of logical to physical block numbers for the journal
722 *
723 * On external journals the journal blocks are identity-mapped, so
724 * this is a no-op. If needed, we can use j_blk_offset - everything is
725 * ready.
726 */
727 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
728 unsigned long long *retp)
729 {
730 int err = 0;
731 unsigned long long ret;
732
733 if (journal->j_inode) {
734 ret = bmap(journal->j_inode, blocknr);
735 if (ret)
736 *retp = ret;
737 else {
738 printk(KERN_ALERT "%s: journal block not found "
739 "at offset %lu on %s\n",
740 __func__, blocknr, journal->j_devname);
741 err = -EIO;
742 __journal_abort_soft(journal, err);
743 }
744 } else {
745 *retp = blocknr; /* +journal->j_blk_offset */
746 }
747 return err;
748 }
749
750 /*
751 * We play buffer_head aliasing tricks to write data/metadata blocks to
752 * the journal without copying their contents, but for journal
753 * descriptor blocks we do need to generate bona fide buffers.
754 *
755 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
756 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
757 * But we don't bother doing that, so there will be coherency problems with
758 * mmaps of blockdevs which hold live JBD-controlled filesystems.
759 */
760 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
761 {
762 struct buffer_head *bh;
763 unsigned long long blocknr;
764 int err;
765
766 err = jbd2_journal_next_log_block(journal, &blocknr);
767
768 if (err)
769 return NULL;
770
771 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
772 if (!bh)
773 return NULL;
774 lock_buffer(bh);
775 memset(bh->b_data, 0, journal->j_blocksize);
776 set_buffer_uptodate(bh);
777 unlock_buffer(bh);
778 BUFFER_TRACE(bh, "return this buffer");
779 return jbd2_journal_add_journal_head(bh);
780 }
781
782 /*
783 * Return tid of the oldest transaction in the journal and block in the journal
784 * where the transaction starts.
785 *
786 * If the journal is now empty, return which will be the next transaction ID
787 * we will write and where will that transaction start.
788 *
789 * The return value is 0 if journal tail cannot be pushed any further, 1 if
790 * it can.
791 */
792 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
793 unsigned long *block)
794 {
795 transaction_t *transaction;
796 int ret;
797
798 read_lock(&journal->j_state_lock);
799 spin_lock(&journal->j_list_lock);
800 transaction = journal->j_checkpoint_transactions;
801 if (transaction) {
802 *tid = transaction->t_tid;
803 *block = transaction->t_log_start;
804 } else if ((transaction = journal->j_committing_transaction) != NULL) {
805 *tid = transaction->t_tid;
806 *block = transaction->t_log_start;
807 } else if ((transaction = journal->j_running_transaction) != NULL) {
808 *tid = transaction->t_tid;
809 *block = journal->j_head;
810 } else {
811 *tid = journal->j_transaction_sequence;
812 *block = journal->j_head;
813 }
814 ret = tid_gt(*tid, journal->j_tail_sequence);
815 spin_unlock(&journal->j_list_lock);
816 read_unlock(&journal->j_state_lock);
817
818 return ret;
819 }
820
821 /*
822 * Update information in journal structure and in on disk journal superblock
823 * about log tail. This function does not check whether information passed in
824 * really pushes log tail further. It's responsibility of the caller to make
825 * sure provided log tail information is valid (e.g. by holding
826 * j_checkpoint_mutex all the time between computing log tail and calling this
827 * function as is the case with jbd2_cleanup_journal_tail()).
828 *
829 * Requires j_checkpoint_mutex
830 */
831 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
832 {
833 unsigned long freed;
834
835 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
836
837 /*
838 * We cannot afford for write to remain in drive's caches since as
839 * soon as we update j_tail, next transaction can start reusing journal
840 * space and if we lose sb update during power failure we'd replay
841 * old transaction with possibly newly overwritten data.
842 */
843 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
844 write_lock(&journal->j_state_lock);
845 freed = block - journal->j_tail;
846 if (block < journal->j_tail)
847 freed += journal->j_last - journal->j_first;
848
849 trace_jbd2_update_log_tail(journal, tid, block, freed);
850 jbd_debug(1,
851 "Cleaning journal tail from %d to %d (offset %lu), "
852 "freeing %lu\n",
853 journal->j_tail_sequence, tid, block, freed);
854
855 journal->j_free += freed;
856 journal->j_tail_sequence = tid;
857 journal->j_tail = block;
858 write_unlock(&journal->j_state_lock);
859 }
860
861 /*
862 * This is a variaon of __jbd2_update_log_tail which checks for validity of
863 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
864 * with other threads updating log tail.
865 */
866 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
867 {
868 mutex_lock(&journal->j_checkpoint_mutex);
869 if (tid_gt(tid, journal->j_tail_sequence))
870 __jbd2_update_log_tail(journal, tid, block);
871 mutex_unlock(&journal->j_checkpoint_mutex);
872 }
873
874 struct jbd2_stats_proc_session {
875 journal_t *journal;
876 struct transaction_stats_s *stats;
877 int start;
878 int max;
879 };
880
881 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
882 {
883 return *pos ? NULL : SEQ_START_TOKEN;
884 }
885
886 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
887 {
888 return NULL;
889 }
890
891 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
892 {
893 struct jbd2_stats_proc_session *s = seq->private;
894
895 if (v != SEQ_START_TOKEN)
896 return 0;
897 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
898 s->stats->ts_tid,
899 s->journal->j_max_transaction_buffers);
900 if (s->stats->ts_tid == 0)
901 return 0;
902 seq_printf(seq, "average: \n %ums waiting for transaction\n",
903 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
904 seq_printf(seq, " %ums running transaction\n",
905 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
906 seq_printf(seq, " %ums transaction was being locked\n",
907 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
908 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
909 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
910 seq_printf(seq, " %ums logging transaction\n",
911 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
912 seq_printf(seq, " %lluus average transaction commit time\n",
913 div_u64(s->journal->j_average_commit_time, 1000));
914 seq_printf(seq, " %lu handles per transaction\n",
915 s->stats->run.rs_handle_count / s->stats->ts_tid);
916 seq_printf(seq, " %lu blocks per transaction\n",
917 s->stats->run.rs_blocks / s->stats->ts_tid);
918 seq_printf(seq, " %lu logged blocks per transaction\n",
919 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
920 return 0;
921 }
922
923 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
924 {
925 }
926
927 static const struct seq_operations jbd2_seq_info_ops = {
928 .start = jbd2_seq_info_start,
929 .next = jbd2_seq_info_next,
930 .stop = jbd2_seq_info_stop,
931 .show = jbd2_seq_info_show,
932 };
933
934 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
935 {
936 journal_t *journal = PDE(inode)->data;
937 struct jbd2_stats_proc_session *s;
938 int rc, size;
939
940 s = kmalloc(sizeof(*s), GFP_KERNEL);
941 if (s == NULL)
942 return -ENOMEM;
943 size = sizeof(struct transaction_stats_s);
944 s->stats = kmalloc(size, GFP_KERNEL);
945 if (s->stats == NULL) {
946 kfree(s);
947 return -ENOMEM;
948 }
949 spin_lock(&journal->j_history_lock);
950 memcpy(s->stats, &journal->j_stats, size);
951 s->journal = journal;
952 spin_unlock(&journal->j_history_lock);
953
954 rc = seq_open(file, &jbd2_seq_info_ops);
955 if (rc == 0) {
956 struct seq_file *m = file->private_data;
957 m->private = s;
958 } else {
959 kfree(s->stats);
960 kfree(s);
961 }
962 return rc;
963
964 }
965
966 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
967 {
968 struct seq_file *seq = file->private_data;
969 struct jbd2_stats_proc_session *s = seq->private;
970 kfree(s->stats);
971 kfree(s);
972 return seq_release(inode, file);
973 }
974
975 static const struct file_operations jbd2_seq_info_fops = {
976 .owner = THIS_MODULE,
977 .open = jbd2_seq_info_open,
978 .read = seq_read,
979 .llseek = seq_lseek,
980 .release = jbd2_seq_info_release,
981 };
982
983 static struct proc_dir_entry *proc_jbd2_stats;
984
985 static void jbd2_stats_proc_init(journal_t *journal)
986 {
987 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
988 if (journal->j_proc_entry) {
989 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
990 &jbd2_seq_info_fops, journal);
991 }
992 }
993
994 static void jbd2_stats_proc_exit(journal_t *journal)
995 {
996 remove_proc_entry("info", journal->j_proc_entry);
997 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
998 }
999
1000 /*
1001 * Management for journal control blocks: functions to create and
1002 * destroy journal_t structures, and to initialise and read existing
1003 * journal blocks from disk. */
1004
1005 /* First: create and setup a journal_t object in memory. We initialise
1006 * very few fields yet: that has to wait until we have created the
1007 * journal structures from from scratch, or loaded them from disk. */
1008
1009 static journal_t * journal_init_common (void)
1010 {
1011 journal_t *journal;
1012 int err;
1013
1014 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1015 if (!journal)
1016 return NULL;
1017
1018 init_waitqueue_head(&journal->j_wait_transaction_locked);
1019 init_waitqueue_head(&journal->j_wait_logspace);
1020 init_waitqueue_head(&journal->j_wait_done_commit);
1021 init_waitqueue_head(&journal->j_wait_checkpoint);
1022 init_waitqueue_head(&journal->j_wait_commit);
1023 init_waitqueue_head(&journal->j_wait_updates);
1024 mutex_init(&journal->j_barrier);
1025 mutex_init(&journal->j_checkpoint_mutex);
1026 spin_lock_init(&journal->j_revoke_lock);
1027 spin_lock_init(&journal->j_list_lock);
1028 rwlock_init(&journal->j_state_lock);
1029
1030 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1031 journal->j_min_batch_time = 0;
1032 journal->j_max_batch_time = 15000; /* 15ms */
1033
1034 /* The journal is marked for error until we succeed with recovery! */
1035 journal->j_flags = JBD2_ABORT;
1036
1037 /* Set up a default-sized revoke table for the new mount. */
1038 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1039 if (err) {
1040 kfree(journal);
1041 return NULL;
1042 }
1043
1044 spin_lock_init(&journal->j_history_lock);
1045
1046 return journal;
1047 }
1048
1049 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1050 *
1051 * Create a journal structure assigned some fixed set of disk blocks to
1052 * the journal. We don't actually touch those disk blocks yet, but we
1053 * need to set up all of the mapping information to tell the journaling
1054 * system where the journal blocks are.
1055 *
1056 */
1057
1058 /**
1059 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1060 * @bdev: Block device on which to create the journal
1061 * @fs_dev: Device which hold journalled filesystem for this journal.
1062 * @start: Block nr Start of journal.
1063 * @len: Length of the journal in blocks.
1064 * @blocksize: blocksize of journalling device
1065 *
1066 * Returns: a newly created journal_t *
1067 *
1068 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1069 * range of blocks on an arbitrary block device.
1070 *
1071 */
1072 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1073 struct block_device *fs_dev,
1074 unsigned long long start, int len, int blocksize)
1075 {
1076 journal_t *journal = journal_init_common();
1077 struct buffer_head *bh;
1078 char *p;
1079 int n;
1080
1081 if (!journal)
1082 return NULL;
1083
1084 /* journal descriptor can store up to n blocks -bzzz */
1085 journal->j_blocksize = blocksize;
1086 journal->j_dev = bdev;
1087 journal->j_fs_dev = fs_dev;
1088 journal->j_blk_offset = start;
1089 journal->j_maxlen = len;
1090 bdevname(journal->j_dev, journal->j_devname);
1091 p = journal->j_devname;
1092 while ((p = strchr(p, '/')))
1093 *p = '!';
1094 jbd2_stats_proc_init(journal);
1095 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1096 journal->j_wbufsize = n;
1097 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1098 if (!journal->j_wbuf) {
1099 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1100 __func__);
1101 goto out_err;
1102 }
1103
1104 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1105 if (!bh) {
1106 printk(KERN_ERR
1107 "%s: Cannot get buffer for journal superblock\n",
1108 __func__);
1109 goto out_err;
1110 }
1111 journal->j_sb_buffer = bh;
1112 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1113
1114 return journal;
1115 out_err:
1116 kfree(journal->j_wbuf);
1117 jbd2_stats_proc_exit(journal);
1118 kfree(journal);
1119 return NULL;
1120 }
1121
1122 /**
1123 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1124 * @inode: An inode to create the journal in
1125 *
1126 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1127 * the journal. The inode must exist already, must support bmap() and
1128 * must have all data blocks preallocated.
1129 */
1130 journal_t * jbd2_journal_init_inode (struct inode *inode)
1131 {
1132 struct buffer_head *bh;
1133 journal_t *journal = journal_init_common();
1134 char *p;
1135 int err;
1136 int n;
1137 unsigned long long blocknr;
1138
1139 if (!journal)
1140 return NULL;
1141
1142 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1143 journal->j_inode = inode;
1144 bdevname(journal->j_dev, journal->j_devname);
1145 p = journal->j_devname;
1146 while ((p = strchr(p, '/')))
1147 *p = '!';
1148 p = journal->j_devname + strlen(journal->j_devname);
1149 sprintf(p, "-%lu", journal->j_inode->i_ino);
1150 jbd_debug(1,
1151 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1152 journal, inode->i_sb->s_id, inode->i_ino,
1153 (long long) inode->i_size,
1154 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1155
1156 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1157 journal->j_blocksize = inode->i_sb->s_blocksize;
1158 jbd2_stats_proc_init(journal);
1159
1160 /* journal descriptor can store up to n blocks -bzzz */
1161 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162 journal->j_wbufsize = n;
1163 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1164 if (!journal->j_wbuf) {
1165 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1166 __func__);
1167 goto out_err;
1168 }
1169
1170 err = jbd2_journal_bmap(journal, 0, &blocknr);
1171 /* If that failed, give up */
1172 if (err) {
1173 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1174 __func__);
1175 goto out_err;
1176 }
1177
1178 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1179 if (!bh) {
1180 printk(KERN_ERR
1181 "%s: Cannot get buffer for journal superblock\n",
1182 __func__);
1183 goto out_err;
1184 }
1185 journal->j_sb_buffer = bh;
1186 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1187
1188 return journal;
1189 out_err:
1190 kfree(journal->j_wbuf);
1191 jbd2_stats_proc_exit(journal);
1192 kfree(journal);
1193 return NULL;
1194 }
1195
1196 /*
1197 * If the journal init or create aborts, we need to mark the journal
1198 * superblock as being NULL to prevent the journal destroy from writing
1199 * back a bogus superblock.
1200 */
1201 static void journal_fail_superblock (journal_t *journal)
1202 {
1203 struct buffer_head *bh = journal->j_sb_buffer;
1204 brelse(bh);
1205 journal->j_sb_buffer = NULL;
1206 }
1207
1208 /*
1209 * Given a journal_t structure, initialise the various fields for
1210 * startup of a new journaling session. We use this both when creating
1211 * a journal, and after recovering an old journal to reset it for
1212 * subsequent use.
1213 */
1214
1215 static int journal_reset(journal_t *journal)
1216 {
1217 journal_superblock_t *sb = journal->j_superblock;
1218 unsigned long long first, last;
1219
1220 first = be32_to_cpu(sb->s_first);
1221 last = be32_to_cpu(sb->s_maxlen);
1222 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1223 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1224 first, last);
1225 journal_fail_superblock(journal);
1226 return -EINVAL;
1227 }
1228
1229 journal->j_first = first;
1230 journal->j_last = last;
1231
1232 journal->j_head = first;
1233 journal->j_tail = first;
1234 journal->j_free = last - first;
1235
1236 journal->j_tail_sequence = journal->j_transaction_sequence;
1237 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1238 journal->j_commit_request = journal->j_commit_sequence;
1239
1240 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1241
1242 /*
1243 * As a special case, if the on-disk copy is already marked as needing
1244 * no recovery (s_start == 0), then we can safely defer the superblock
1245 * update until the next commit by setting JBD2_FLUSHED. This avoids
1246 * attempting a write to a potential-readonly device.
1247 */
1248 if (sb->s_start == 0) {
1249 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1250 "(start %ld, seq %d, errno %d)\n",
1251 journal->j_tail, journal->j_tail_sequence,
1252 journal->j_errno);
1253 journal->j_flags |= JBD2_FLUSHED;
1254 } else {
1255 /* Lock here to make assertions happy... */
1256 mutex_lock(&journal->j_checkpoint_mutex);
1257 /*
1258 * Update log tail information. We use WRITE_FUA since new
1259 * transaction will start reusing journal space and so we
1260 * must make sure information about current log tail is on
1261 * disk before that.
1262 */
1263 jbd2_journal_update_sb_log_tail(journal,
1264 journal->j_tail_sequence,
1265 journal->j_tail,
1266 WRITE_FUA);
1267 mutex_unlock(&journal->j_checkpoint_mutex);
1268 }
1269 return jbd2_journal_start_thread(journal);
1270 }
1271
1272 static void jbd2_write_superblock(journal_t *journal, int write_op)
1273 {
1274 struct buffer_head *bh = journal->j_sb_buffer;
1275 int ret;
1276
1277 trace_jbd2_write_superblock(journal, write_op);
1278 if (!(journal->j_flags & JBD2_BARRIER))
1279 write_op &= ~(REQ_FUA | REQ_FLUSH);
1280 lock_buffer(bh);
1281 if (buffer_write_io_error(bh)) {
1282 /*
1283 * Oh, dear. A previous attempt to write the journal
1284 * superblock failed. This could happen because the
1285 * USB device was yanked out. Or it could happen to
1286 * be a transient write error and maybe the block will
1287 * be remapped. Nothing we can do but to retry the
1288 * write and hope for the best.
1289 */
1290 printk(KERN_ERR "JBD2: previous I/O error detected "
1291 "for journal superblock update for %s.\n",
1292 journal->j_devname);
1293 clear_buffer_write_io_error(bh);
1294 set_buffer_uptodate(bh);
1295 }
1296 get_bh(bh);
1297 bh->b_end_io = end_buffer_write_sync;
1298 ret = submit_bh(write_op, bh);
1299 wait_on_buffer(bh);
1300 if (buffer_write_io_error(bh)) {
1301 clear_buffer_write_io_error(bh);
1302 set_buffer_uptodate(bh);
1303 ret = -EIO;
1304 }
1305 if (ret) {
1306 printk(KERN_ERR "JBD2: Error %d detected when updating "
1307 "journal superblock for %s.\n", ret,
1308 journal->j_devname);
1309 }
1310 }
1311
1312 /**
1313 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1314 * @journal: The journal to update.
1315 * @tail_tid: TID of the new transaction at the tail of the log
1316 * @tail_block: The first block of the transaction at the tail of the log
1317 * @write_op: With which operation should we write the journal sb
1318 *
1319 * Update a journal's superblock information about log tail and write it to
1320 * disk, waiting for the IO to complete.
1321 */
1322 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1323 unsigned long tail_block, int write_op)
1324 {
1325 journal_superblock_t *sb = journal->j_superblock;
1326
1327 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1328 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1329 tail_block, tail_tid);
1330
1331 sb->s_sequence = cpu_to_be32(tail_tid);
1332 sb->s_start = cpu_to_be32(tail_block);
1333
1334 jbd2_write_superblock(journal, write_op);
1335
1336 /* Log is no longer empty */
1337 write_lock(&journal->j_state_lock);
1338 WARN_ON(!sb->s_sequence);
1339 journal->j_flags &= ~JBD2_FLUSHED;
1340 write_unlock(&journal->j_state_lock);
1341 }
1342
1343 /**
1344 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1345 * @journal: The journal to update.
1346 *
1347 * Update a journal's dynamic superblock fields to show that journal is empty.
1348 * Write updated superblock to disk waiting for IO to complete.
1349 */
1350 static void jbd2_mark_journal_empty(journal_t *journal)
1351 {
1352 journal_superblock_t *sb = journal->j_superblock;
1353
1354 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1355 read_lock(&journal->j_state_lock);
1356 /* Is it already empty? */
1357 if (sb->s_start == 0) {
1358 read_unlock(&journal->j_state_lock);
1359 return;
1360 }
1361 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1362 journal->j_tail_sequence);
1363
1364 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1365 sb->s_start = cpu_to_be32(0);
1366 read_unlock(&journal->j_state_lock);
1367
1368 jbd2_write_superblock(journal, WRITE_FUA);
1369
1370 /* Log is no longer empty */
1371 write_lock(&journal->j_state_lock);
1372 journal->j_flags |= JBD2_FLUSHED;
1373 write_unlock(&journal->j_state_lock);
1374 }
1375
1376
1377 /**
1378 * jbd2_journal_update_sb_errno() - Update error in the journal.
1379 * @journal: The journal to update.
1380 *
1381 * Update a journal's errno. Write updated superblock to disk waiting for IO
1382 * to complete.
1383 */
1384 void jbd2_journal_update_sb_errno(journal_t *journal)
1385 {
1386 journal_superblock_t *sb = journal->j_superblock;
1387
1388 read_lock(&journal->j_state_lock);
1389 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1390 journal->j_errno);
1391 sb->s_errno = cpu_to_be32(journal->j_errno);
1392 jbd2_superblock_csum_set(journal, sb);
1393 read_unlock(&journal->j_state_lock);
1394
1395 jbd2_write_superblock(journal, WRITE_SYNC);
1396 }
1397 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1398
1399 /*
1400 * Read the superblock for a given journal, performing initial
1401 * validation of the format.
1402 */
1403 static int journal_get_superblock(journal_t *journal)
1404 {
1405 struct buffer_head *bh;
1406 journal_superblock_t *sb;
1407 int err = -EIO;
1408
1409 bh = journal->j_sb_buffer;
1410
1411 J_ASSERT(bh != NULL);
1412 if (!buffer_uptodate(bh)) {
1413 ll_rw_block(READ, 1, &bh);
1414 wait_on_buffer(bh);
1415 if (!buffer_uptodate(bh)) {
1416 printk(KERN_ERR
1417 "JBD2: IO error reading journal superblock\n");
1418 goto out;
1419 }
1420 }
1421
1422 if (buffer_verified(bh))
1423 return 0;
1424
1425 sb = journal->j_superblock;
1426
1427 err = -EINVAL;
1428
1429 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1430 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1431 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1432 goto out;
1433 }
1434
1435 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1436 case JBD2_SUPERBLOCK_V1:
1437 journal->j_format_version = 1;
1438 break;
1439 case JBD2_SUPERBLOCK_V2:
1440 journal->j_format_version = 2;
1441 break;
1442 default:
1443 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1444 goto out;
1445 }
1446
1447 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1448 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1449 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1450 printk(KERN_WARNING "JBD2: journal file too short\n");
1451 goto out;
1452 }
1453
1454 if (be32_to_cpu(sb->s_first) == 0 ||
1455 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1456 printk(KERN_WARNING
1457 "JBD2: Invalid start block of journal: %u\n",
1458 be32_to_cpu(sb->s_first));
1459 goto out;
1460 }
1461
1462 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1463 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1464 /* Can't have checksum v1 and v2 on at the same time! */
1465 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1466 "at the same time!\n");
1467 goto out;
1468 }
1469
1470 if (!jbd2_verify_csum_type(journal, sb)) {
1471 printk(KERN_ERR "JBD: Unknown checksum type\n");
1472 goto out;
1473 }
1474
1475 /* Load the checksum driver */
1476 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1477 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1478 if (IS_ERR(journal->j_chksum_driver)) {
1479 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1480 err = PTR_ERR(journal->j_chksum_driver);
1481 journal->j_chksum_driver = NULL;
1482 goto out;
1483 }
1484 }
1485
1486 /* Check superblock checksum */
1487 if (!jbd2_superblock_csum_verify(journal, sb)) {
1488 printk(KERN_ERR "JBD: journal checksum error\n");
1489 goto out;
1490 }
1491
1492 /* Precompute checksum seed for all metadata */
1493 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1494 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1495 sizeof(sb->s_uuid));
1496
1497 set_buffer_verified(bh);
1498
1499 return 0;
1500
1501 out:
1502 journal_fail_superblock(journal);
1503 return err;
1504 }
1505
1506 /*
1507 * Load the on-disk journal superblock and read the key fields into the
1508 * journal_t.
1509 */
1510
1511 static int load_superblock(journal_t *journal)
1512 {
1513 int err;
1514 journal_superblock_t *sb;
1515
1516 err = journal_get_superblock(journal);
1517 if (err)
1518 return err;
1519
1520 sb = journal->j_superblock;
1521
1522 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1523 journal->j_tail = be32_to_cpu(sb->s_start);
1524 journal->j_first = be32_to_cpu(sb->s_first);
1525 journal->j_last = be32_to_cpu(sb->s_maxlen);
1526 journal->j_errno = be32_to_cpu(sb->s_errno);
1527
1528 return 0;
1529 }
1530
1531
1532 /**
1533 * int jbd2_journal_load() - Read journal from disk.
1534 * @journal: Journal to act on.
1535 *
1536 * Given a journal_t structure which tells us which disk blocks contain
1537 * a journal, read the journal from disk to initialise the in-memory
1538 * structures.
1539 */
1540 int jbd2_journal_load(journal_t *journal)
1541 {
1542 int err;
1543 journal_superblock_t *sb;
1544
1545 err = load_superblock(journal);
1546 if (err)
1547 return err;
1548
1549 sb = journal->j_superblock;
1550 /* If this is a V2 superblock, then we have to check the
1551 * features flags on it. */
1552
1553 if (journal->j_format_version >= 2) {
1554 if ((sb->s_feature_ro_compat &
1555 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1556 (sb->s_feature_incompat &
1557 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1558 printk(KERN_WARNING
1559 "JBD2: Unrecognised features on journal\n");
1560 return -EINVAL;
1561 }
1562 }
1563
1564 /*
1565 * Create a slab for this blocksize
1566 */
1567 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1568 if (err)
1569 return err;
1570
1571 /* Let the recovery code check whether it needs to recover any
1572 * data from the journal. */
1573 if (jbd2_journal_recover(journal))
1574 goto recovery_error;
1575
1576 if (journal->j_failed_commit) {
1577 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1578 "is corrupt.\n", journal->j_failed_commit,
1579 journal->j_devname);
1580 return -EIO;
1581 }
1582
1583 /* OK, we've finished with the dynamic journal bits:
1584 * reinitialise the dynamic contents of the superblock in memory
1585 * and reset them on disk. */
1586 if (journal_reset(journal))
1587 goto recovery_error;
1588
1589 journal->j_flags &= ~JBD2_ABORT;
1590 journal->j_flags |= JBD2_LOADED;
1591 return 0;
1592
1593 recovery_error:
1594 printk(KERN_WARNING "JBD2: recovery failed\n");
1595 return -EIO;
1596 }
1597
1598 /**
1599 * void jbd2_journal_destroy() - Release a journal_t structure.
1600 * @journal: Journal to act on.
1601 *
1602 * Release a journal_t structure once it is no longer in use by the
1603 * journaled object.
1604 * Return <0 if we couldn't clean up the journal.
1605 */
1606 int jbd2_journal_destroy(journal_t *journal)
1607 {
1608 int err = 0;
1609
1610 /* Wait for the commit thread to wake up and die. */
1611 journal_kill_thread(journal);
1612
1613 /* Force a final log commit */
1614 if (journal->j_running_transaction)
1615 jbd2_journal_commit_transaction(journal);
1616
1617 /* Force any old transactions to disk */
1618
1619 /* Totally anal locking here... */
1620 spin_lock(&journal->j_list_lock);
1621 while (journal->j_checkpoint_transactions != NULL) {
1622 spin_unlock(&journal->j_list_lock);
1623 mutex_lock(&journal->j_checkpoint_mutex);
1624 jbd2_log_do_checkpoint(journal);
1625 mutex_unlock(&journal->j_checkpoint_mutex);
1626 spin_lock(&journal->j_list_lock);
1627 }
1628
1629 J_ASSERT(journal->j_running_transaction == NULL);
1630 J_ASSERT(journal->j_committing_transaction == NULL);
1631 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1632 spin_unlock(&journal->j_list_lock);
1633
1634 if (journal->j_sb_buffer) {
1635 if (!is_journal_aborted(journal)) {
1636 mutex_lock(&journal->j_checkpoint_mutex);
1637 jbd2_mark_journal_empty(journal);
1638 mutex_unlock(&journal->j_checkpoint_mutex);
1639 } else
1640 err = -EIO;
1641 brelse(journal->j_sb_buffer);
1642 }
1643
1644 if (journal->j_proc_entry)
1645 jbd2_stats_proc_exit(journal);
1646 if (journal->j_inode)
1647 iput(journal->j_inode);
1648 if (journal->j_revoke)
1649 jbd2_journal_destroy_revoke(journal);
1650 if (journal->j_chksum_driver)
1651 crypto_free_shash(journal->j_chksum_driver);
1652 kfree(journal->j_wbuf);
1653 kfree(journal);
1654
1655 return err;
1656 }
1657
1658
1659 /**
1660 *int jbd2_journal_check_used_features () - Check if features specified are used.
1661 * @journal: Journal to check.
1662 * @compat: bitmask of compatible features
1663 * @ro: bitmask of features that force read-only mount
1664 * @incompat: bitmask of incompatible features
1665 *
1666 * Check whether the journal uses all of a given set of
1667 * features. Return true (non-zero) if it does.
1668 **/
1669
1670 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1671 unsigned long ro, unsigned long incompat)
1672 {
1673 journal_superblock_t *sb;
1674
1675 if (!compat && !ro && !incompat)
1676 return 1;
1677 /* Load journal superblock if it is not loaded yet. */
1678 if (journal->j_format_version == 0 &&
1679 journal_get_superblock(journal) != 0)
1680 return 0;
1681 if (journal->j_format_version == 1)
1682 return 0;
1683
1684 sb = journal->j_superblock;
1685
1686 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1687 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1688 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1689 return 1;
1690
1691 return 0;
1692 }
1693
1694 /**
1695 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1696 * @journal: Journal to check.
1697 * @compat: bitmask of compatible features
1698 * @ro: bitmask of features that force read-only mount
1699 * @incompat: bitmask of incompatible features
1700 *
1701 * Check whether the journaling code supports the use of
1702 * all of a given set of features on this journal. Return true
1703 * (non-zero) if it can. */
1704
1705 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1706 unsigned long ro, unsigned long incompat)
1707 {
1708 if (!compat && !ro && !incompat)
1709 return 1;
1710
1711 /* We can support any known requested features iff the
1712 * superblock is in version 2. Otherwise we fail to support any
1713 * extended sb features. */
1714
1715 if (journal->j_format_version != 2)
1716 return 0;
1717
1718 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1719 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1720 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1721 return 1;
1722
1723 return 0;
1724 }
1725
1726 /**
1727 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1728 * @journal: Journal to act on.
1729 * @compat: bitmask of compatible features
1730 * @ro: bitmask of features that force read-only mount
1731 * @incompat: bitmask of incompatible features
1732 *
1733 * Mark a given journal feature as present on the
1734 * superblock. Returns true if the requested features could be set.
1735 *
1736 */
1737
1738 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1739 unsigned long ro, unsigned long incompat)
1740 {
1741 #define INCOMPAT_FEATURE_ON(f) \
1742 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1743 #define COMPAT_FEATURE_ON(f) \
1744 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1745 journal_superblock_t *sb;
1746
1747 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1748 return 1;
1749
1750 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1751 return 0;
1752
1753 /* Asking for checksumming v2 and v1? Only give them v2. */
1754 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1755 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1756 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1757
1758 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1759 compat, ro, incompat);
1760
1761 sb = journal->j_superblock;
1762
1763 /* If enabling v2 checksums, update superblock */
1764 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1765 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1766 sb->s_feature_compat &=
1767 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1768
1769 /* Load the checksum driver */
1770 if (journal->j_chksum_driver == NULL) {
1771 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1772 0, 0);
1773 if (IS_ERR(journal->j_chksum_driver)) {
1774 printk(KERN_ERR "JBD: Cannot load crc32c "
1775 "driver.\n");
1776 journal->j_chksum_driver = NULL;
1777 return 0;
1778 }
1779 }
1780
1781 /* Precompute checksum seed for all metadata */
1782 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1783 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1784 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1785 sb->s_uuid,
1786 sizeof(sb->s_uuid));
1787 }
1788
1789 /* If enabling v1 checksums, downgrade superblock */
1790 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1791 sb->s_feature_incompat &=
1792 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1793
1794 sb->s_feature_compat |= cpu_to_be32(compat);
1795 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1796 sb->s_feature_incompat |= cpu_to_be32(incompat);
1797
1798 return 1;
1799 #undef COMPAT_FEATURE_ON
1800 #undef INCOMPAT_FEATURE_ON
1801 }
1802
1803 /*
1804 * jbd2_journal_clear_features () - Clear a given journal feature in the
1805 * superblock
1806 * @journal: Journal to act on.
1807 * @compat: bitmask of compatible features
1808 * @ro: bitmask of features that force read-only mount
1809 * @incompat: bitmask of incompatible features
1810 *
1811 * Clear a given journal feature as present on the
1812 * superblock.
1813 */
1814 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1815 unsigned long ro, unsigned long incompat)
1816 {
1817 journal_superblock_t *sb;
1818
1819 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1820 compat, ro, incompat);
1821
1822 sb = journal->j_superblock;
1823
1824 sb->s_feature_compat &= ~cpu_to_be32(compat);
1825 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1826 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1827 }
1828 EXPORT_SYMBOL(jbd2_journal_clear_features);
1829
1830 /**
1831 * int jbd2_journal_flush () - Flush journal
1832 * @journal: Journal to act on.
1833 *
1834 * Flush all data for a given journal to disk and empty the journal.
1835 * Filesystems can use this when remounting readonly to ensure that
1836 * recovery does not need to happen on remount.
1837 */
1838
1839 int jbd2_journal_flush(journal_t *journal)
1840 {
1841 int err = 0;
1842 transaction_t *transaction = NULL;
1843
1844 write_lock(&journal->j_state_lock);
1845
1846 /* Force everything buffered to the log... */
1847 if (journal->j_running_transaction) {
1848 transaction = journal->j_running_transaction;
1849 __jbd2_log_start_commit(journal, transaction->t_tid);
1850 } else if (journal->j_committing_transaction)
1851 transaction = journal->j_committing_transaction;
1852
1853 /* Wait for the log commit to complete... */
1854 if (transaction) {
1855 tid_t tid = transaction->t_tid;
1856
1857 write_unlock(&journal->j_state_lock);
1858 jbd2_log_wait_commit(journal, tid);
1859 } else {
1860 write_unlock(&journal->j_state_lock);
1861 }
1862
1863 /* ...and flush everything in the log out to disk. */
1864 spin_lock(&journal->j_list_lock);
1865 while (!err && journal->j_checkpoint_transactions != NULL) {
1866 spin_unlock(&journal->j_list_lock);
1867 mutex_lock(&journal->j_checkpoint_mutex);
1868 err = jbd2_log_do_checkpoint(journal);
1869 mutex_unlock(&journal->j_checkpoint_mutex);
1870 spin_lock(&journal->j_list_lock);
1871 }
1872 spin_unlock(&journal->j_list_lock);
1873
1874 if (is_journal_aborted(journal))
1875 return -EIO;
1876
1877 mutex_lock(&journal->j_checkpoint_mutex);
1878 jbd2_cleanup_journal_tail(journal);
1879
1880 /* Finally, mark the journal as really needing no recovery.
1881 * This sets s_start==0 in the underlying superblock, which is
1882 * the magic code for a fully-recovered superblock. Any future
1883 * commits of data to the journal will restore the current
1884 * s_start value. */
1885 jbd2_mark_journal_empty(journal);
1886 mutex_unlock(&journal->j_checkpoint_mutex);
1887 write_lock(&journal->j_state_lock);
1888 J_ASSERT(!journal->j_running_transaction);
1889 J_ASSERT(!journal->j_committing_transaction);
1890 J_ASSERT(!journal->j_checkpoint_transactions);
1891 J_ASSERT(journal->j_head == journal->j_tail);
1892 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1893 write_unlock(&journal->j_state_lock);
1894 return 0;
1895 }
1896
1897 /**
1898 * int jbd2_journal_wipe() - Wipe journal contents
1899 * @journal: Journal to act on.
1900 * @write: flag (see below)
1901 *
1902 * Wipe out all of the contents of a journal, safely. This will produce
1903 * a warning if the journal contains any valid recovery information.
1904 * Must be called between journal_init_*() and jbd2_journal_load().
1905 *
1906 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1907 * we merely suppress recovery.
1908 */
1909
1910 int jbd2_journal_wipe(journal_t *journal, int write)
1911 {
1912 int err = 0;
1913
1914 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1915
1916 err = load_superblock(journal);
1917 if (err)
1918 return err;
1919
1920 if (!journal->j_tail)
1921 goto no_recovery;
1922
1923 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1924 write ? "Clearing" : "Ignoring");
1925
1926 err = jbd2_journal_skip_recovery(journal);
1927 if (write) {
1928 /* Lock to make assertions happy... */
1929 mutex_lock(&journal->j_checkpoint_mutex);
1930 jbd2_mark_journal_empty(journal);
1931 mutex_unlock(&journal->j_checkpoint_mutex);
1932 }
1933
1934 no_recovery:
1935 return err;
1936 }
1937
1938 /*
1939 * Journal abort has very specific semantics, which we describe
1940 * for journal abort.
1941 *
1942 * Two internal functions, which provide abort to the jbd layer
1943 * itself are here.
1944 */
1945
1946 /*
1947 * Quick version for internal journal use (doesn't lock the journal).
1948 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1949 * and don't attempt to make any other journal updates.
1950 */
1951 void __jbd2_journal_abort_hard(journal_t *journal)
1952 {
1953 transaction_t *transaction;
1954
1955 if (journal->j_flags & JBD2_ABORT)
1956 return;
1957
1958 printk(KERN_ERR "Aborting journal on device %s.\n",
1959 journal->j_devname);
1960
1961 write_lock(&journal->j_state_lock);
1962 journal->j_flags |= JBD2_ABORT;
1963 transaction = journal->j_running_transaction;
1964 if (transaction)
1965 __jbd2_log_start_commit(journal, transaction->t_tid);
1966 write_unlock(&journal->j_state_lock);
1967 }
1968
1969 /* Soft abort: record the abort error status in the journal superblock,
1970 * but don't do any other IO. */
1971 static void __journal_abort_soft (journal_t *journal, int errno)
1972 {
1973 if (journal->j_flags & JBD2_ABORT)
1974 return;
1975
1976 if (!journal->j_errno)
1977 journal->j_errno = errno;
1978
1979 __jbd2_journal_abort_hard(journal);
1980
1981 if (errno)
1982 jbd2_journal_update_sb_errno(journal);
1983 }
1984
1985 /**
1986 * void jbd2_journal_abort () - Shutdown the journal immediately.
1987 * @journal: the journal to shutdown.
1988 * @errno: an error number to record in the journal indicating
1989 * the reason for the shutdown.
1990 *
1991 * Perform a complete, immediate shutdown of the ENTIRE
1992 * journal (not of a single transaction). This operation cannot be
1993 * undone without closing and reopening the journal.
1994 *
1995 * The jbd2_journal_abort function is intended to support higher level error
1996 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1997 * mode.
1998 *
1999 * Journal abort has very specific semantics. Any existing dirty,
2000 * unjournaled buffers in the main filesystem will still be written to
2001 * disk by bdflush, but the journaling mechanism will be suspended
2002 * immediately and no further transaction commits will be honoured.
2003 *
2004 * Any dirty, journaled buffers will be written back to disk without
2005 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2006 * filesystem, but we _do_ attempt to leave as much data as possible
2007 * behind for fsck to use for cleanup.
2008 *
2009 * Any attempt to get a new transaction handle on a journal which is in
2010 * ABORT state will just result in an -EROFS error return. A
2011 * jbd2_journal_stop on an existing handle will return -EIO if we have
2012 * entered abort state during the update.
2013 *
2014 * Recursive transactions are not disturbed by journal abort until the
2015 * final jbd2_journal_stop, which will receive the -EIO error.
2016 *
2017 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2018 * which will be recorded (if possible) in the journal superblock. This
2019 * allows a client to record failure conditions in the middle of a
2020 * transaction without having to complete the transaction to record the
2021 * failure to disk. ext3_error, for example, now uses this
2022 * functionality.
2023 *
2024 * Errors which originate from within the journaling layer will NOT
2025 * supply an errno; a null errno implies that absolutely no further
2026 * writes are done to the journal (unless there are any already in
2027 * progress).
2028 *
2029 */
2030
2031 void jbd2_journal_abort(journal_t *journal, int errno)
2032 {
2033 __journal_abort_soft(journal, errno);
2034 }
2035
2036 /**
2037 * int jbd2_journal_errno () - returns the journal's error state.
2038 * @journal: journal to examine.
2039 *
2040 * This is the errno number set with jbd2_journal_abort(), the last
2041 * time the journal was mounted - if the journal was stopped
2042 * without calling abort this will be 0.
2043 *
2044 * If the journal has been aborted on this mount time -EROFS will
2045 * be returned.
2046 */
2047 int jbd2_journal_errno(journal_t *journal)
2048 {
2049 int err;
2050
2051 read_lock(&journal->j_state_lock);
2052 if (journal->j_flags & JBD2_ABORT)
2053 err = -EROFS;
2054 else
2055 err = journal->j_errno;
2056 read_unlock(&journal->j_state_lock);
2057 return err;
2058 }
2059
2060 /**
2061 * int jbd2_journal_clear_err () - clears the journal's error state
2062 * @journal: journal to act on.
2063 *
2064 * An error must be cleared or acked to take a FS out of readonly
2065 * mode.
2066 */
2067 int jbd2_journal_clear_err(journal_t *journal)
2068 {
2069 int err = 0;
2070
2071 write_lock(&journal->j_state_lock);
2072 if (journal->j_flags & JBD2_ABORT)
2073 err = -EROFS;
2074 else
2075 journal->j_errno = 0;
2076 write_unlock(&journal->j_state_lock);
2077 return err;
2078 }
2079
2080 /**
2081 * void jbd2_journal_ack_err() - Ack journal err.
2082 * @journal: journal to act on.
2083 *
2084 * An error must be cleared or acked to take a FS out of readonly
2085 * mode.
2086 */
2087 void jbd2_journal_ack_err(journal_t *journal)
2088 {
2089 write_lock(&journal->j_state_lock);
2090 if (journal->j_errno)
2091 journal->j_flags |= JBD2_ACK_ERR;
2092 write_unlock(&journal->j_state_lock);
2093 }
2094
2095 int jbd2_journal_blocks_per_page(struct inode *inode)
2096 {
2097 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2098 }
2099
2100 /*
2101 * helper functions to deal with 32 or 64bit block numbers.
2102 */
2103 size_t journal_tag_bytes(journal_t *journal)
2104 {
2105 journal_block_tag_t tag;
2106 size_t x = 0;
2107
2108 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2109 x += sizeof(tag.t_checksum);
2110
2111 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2112 return x + JBD2_TAG_SIZE64;
2113 else
2114 return x + JBD2_TAG_SIZE32;
2115 }
2116
2117 /*
2118 * JBD memory management
2119 *
2120 * These functions are used to allocate block-sized chunks of memory
2121 * used for making copies of buffer_head data. Very often it will be
2122 * page-sized chunks of data, but sometimes it will be in
2123 * sub-page-size chunks. (For example, 16k pages on Power systems
2124 * with a 4k block file system.) For blocks smaller than a page, we
2125 * use a SLAB allocator. There are slab caches for each block size,
2126 * which are allocated at mount time, if necessary, and we only free
2127 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2128 * this reason we don't need to a mutex to protect access to
2129 * jbd2_slab[] allocating or releasing memory; only in
2130 * jbd2_journal_create_slab().
2131 */
2132 #define JBD2_MAX_SLABS 8
2133 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2134
2135 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2136 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2137 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2138 };
2139
2140
2141 static void jbd2_journal_destroy_slabs(void)
2142 {
2143 int i;
2144
2145 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2146 if (jbd2_slab[i])
2147 kmem_cache_destroy(jbd2_slab[i]);
2148 jbd2_slab[i] = NULL;
2149 }
2150 }
2151
2152 static int jbd2_journal_create_slab(size_t size)
2153 {
2154 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2155 int i = order_base_2(size) - 10;
2156 size_t slab_size;
2157
2158 if (size == PAGE_SIZE)
2159 return 0;
2160
2161 if (i >= JBD2_MAX_SLABS)
2162 return -EINVAL;
2163
2164 if (unlikely(i < 0))
2165 i = 0;
2166 mutex_lock(&jbd2_slab_create_mutex);
2167 if (jbd2_slab[i]) {
2168 mutex_unlock(&jbd2_slab_create_mutex);
2169 return 0; /* Already created */
2170 }
2171
2172 slab_size = 1 << (i+10);
2173 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2174 slab_size, 0, NULL);
2175 mutex_unlock(&jbd2_slab_create_mutex);
2176 if (!jbd2_slab[i]) {
2177 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2178 return -ENOMEM;
2179 }
2180 return 0;
2181 }
2182
2183 static struct kmem_cache *get_slab(size_t size)
2184 {
2185 int i = order_base_2(size) - 10;
2186
2187 BUG_ON(i >= JBD2_MAX_SLABS);
2188 if (unlikely(i < 0))
2189 i = 0;
2190 BUG_ON(jbd2_slab[i] == NULL);
2191 return jbd2_slab[i];
2192 }
2193
2194 void *jbd2_alloc(size_t size, gfp_t flags)
2195 {
2196 void *ptr;
2197
2198 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2199
2200 flags |= __GFP_REPEAT;
2201 if (size == PAGE_SIZE)
2202 ptr = (void *)__get_free_pages(flags, 0);
2203 else if (size > PAGE_SIZE) {
2204 int order = get_order(size);
2205
2206 if (order < 3)
2207 ptr = (void *)__get_free_pages(flags, order);
2208 else
2209 ptr = vmalloc(size);
2210 } else
2211 ptr = kmem_cache_alloc(get_slab(size), flags);
2212
2213 /* Check alignment; SLUB has gotten this wrong in the past,
2214 * and this can lead to user data corruption! */
2215 BUG_ON(((unsigned long) ptr) & (size-1));
2216
2217 return ptr;
2218 }
2219
2220 void jbd2_free(void *ptr, size_t size)
2221 {
2222 if (size == PAGE_SIZE) {
2223 free_pages((unsigned long)ptr, 0);
2224 return;
2225 }
2226 if (size > PAGE_SIZE) {
2227 int order = get_order(size);
2228
2229 if (order < 3)
2230 free_pages((unsigned long)ptr, order);
2231 else
2232 vfree(ptr);
2233 return;
2234 }
2235 kmem_cache_free(get_slab(size), ptr);
2236 };
2237
2238 /*
2239 * Journal_head storage management
2240 */
2241 static struct kmem_cache *jbd2_journal_head_cache;
2242 #ifdef CONFIG_JBD2_DEBUG
2243 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2244 #endif
2245
2246 static int jbd2_journal_init_journal_head_cache(void)
2247 {
2248 int retval;
2249
2250 J_ASSERT(jbd2_journal_head_cache == NULL);
2251 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2252 sizeof(struct journal_head),
2253 0, /* offset */
2254 SLAB_TEMPORARY, /* flags */
2255 NULL); /* ctor */
2256 retval = 0;
2257 if (!jbd2_journal_head_cache) {
2258 retval = -ENOMEM;
2259 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2260 }
2261 return retval;
2262 }
2263
2264 static void jbd2_journal_destroy_journal_head_cache(void)
2265 {
2266 if (jbd2_journal_head_cache) {
2267 kmem_cache_destroy(jbd2_journal_head_cache);
2268 jbd2_journal_head_cache = NULL;
2269 }
2270 }
2271
2272 /*
2273 * journal_head splicing and dicing
2274 */
2275 static struct journal_head *journal_alloc_journal_head(void)
2276 {
2277 struct journal_head *ret;
2278
2279 #ifdef CONFIG_JBD2_DEBUG
2280 atomic_inc(&nr_journal_heads);
2281 #endif
2282 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2283 if (!ret) {
2284 jbd_debug(1, "out of memory for journal_head\n");
2285 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2286 while (!ret) {
2287 yield();
2288 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2289 }
2290 }
2291 return ret;
2292 }
2293
2294 static void journal_free_journal_head(struct journal_head *jh)
2295 {
2296 #ifdef CONFIG_JBD2_DEBUG
2297 atomic_dec(&nr_journal_heads);
2298 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2299 #endif
2300 kmem_cache_free(jbd2_journal_head_cache, jh);
2301 }
2302
2303 /*
2304 * A journal_head is attached to a buffer_head whenever JBD has an
2305 * interest in the buffer.
2306 *
2307 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2308 * is set. This bit is tested in core kernel code where we need to take
2309 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2310 * there.
2311 *
2312 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2313 *
2314 * When a buffer has its BH_JBD bit set it is immune from being released by
2315 * core kernel code, mainly via ->b_count.
2316 *
2317 * A journal_head is detached from its buffer_head when the journal_head's
2318 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2319 * transaction (b_cp_transaction) hold their references to b_jcount.
2320 *
2321 * Various places in the kernel want to attach a journal_head to a buffer_head
2322 * _before_ attaching the journal_head to a transaction. To protect the
2323 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2324 * journal_head's b_jcount refcount by one. The caller must call
2325 * jbd2_journal_put_journal_head() to undo this.
2326 *
2327 * So the typical usage would be:
2328 *
2329 * (Attach a journal_head if needed. Increments b_jcount)
2330 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2331 * ...
2332 * (Get another reference for transaction)
2333 * jbd2_journal_grab_journal_head(bh);
2334 * jh->b_transaction = xxx;
2335 * (Put original reference)
2336 * jbd2_journal_put_journal_head(jh);
2337 */
2338
2339 /*
2340 * Give a buffer_head a journal_head.
2341 *
2342 * May sleep.
2343 */
2344 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2345 {
2346 struct journal_head *jh;
2347 struct journal_head *new_jh = NULL;
2348
2349 repeat:
2350 if (!buffer_jbd(bh)) {
2351 new_jh = journal_alloc_journal_head();
2352 memset(new_jh, 0, sizeof(*new_jh));
2353 }
2354
2355 jbd_lock_bh_journal_head(bh);
2356 if (buffer_jbd(bh)) {
2357 jh = bh2jh(bh);
2358 } else {
2359 J_ASSERT_BH(bh,
2360 (atomic_read(&bh->b_count) > 0) ||
2361 (bh->b_page && bh->b_page->mapping));
2362
2363 if (!new_jh) {
2364 jbd_unlock_bh_journal_head(bh);
2365 goto repeat;
2366 }
2367
2368 jh = new_jh;
2369 new_jh = NULL; /* We consumed it */
2370 set_buffer_jbd(bh);
2371 bh->b_private = jh;
2372 jh->b_bh = bh;
2373 get_bh(bh);
2374 BUFFER_TRACE(bh, "added journal_head");
2375 }
2376 jh->b_jcount++;
2377 jbd_unlock_bh_journal_head(bh);
2378 if (new_jh)
2379 journal_free_journal_head(new_jh);
2380 return bh->b_private;
2381 }
2382
2383 /*
2384 * Grab a ref against this buffer_head's journal_head. If it ended up not
2385 * having a journal_head, return NULL
2386 */
2387 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2388 {
2389 struct journal_head *jh = NULL;
2390
2391 jbd_lock_bh_journal_head(bh);
2392 if (buffer_jbd(bh)) {
2393 jh = bh2jh(bh);
2394 jh->b_jcount++;
2395 }
2396 jbd_unlock_bh_journal_head(bh);
2397 return jh;
2398 }
2399
2400 static void __journal_remove_journal_head(struct buffer_head *bh)
2401 {
2402 struct journal_head *jh = bh2jh(bh);
2403
2404 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2405 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2406 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2407 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2408 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2409 J_ASSERT_BH(bh, buffer_jbd(bh));
2410 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2411 BUFFER_TRACE(bh, "remove journal_head");
2412 if (jh->b_frozen_data) {
2413 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2414 jbd2_free(jh->b_frozen_data, bh->b_size);
2415 }
2416 if (jh->b_committed_data) {
2417 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2418 jbd2_free(jh->b_committed_data, bh->b_size);
2419 }
2420 bh->b_private = NULL;
2421 jh->b_bh = NULL; /* debug, really */
2422 clear_buffer_jbd(bh);
2423 journal_free_journal_head(jh);
2424 }
2425
2426 /*
2427 * Drop a reference on the passed journal_head. If it fell to zero then
2428 * release the journal_head from the buffer_head.
2429 */
2430 void jbd2_journal_put_journal_head(struct journal_head *jh)
2431 {
2432 struct buffer_head *bh = jh2bh(jh);
2433
2434 jbd_lock_bh_journal_head(bh);
2435 J_ASSERT_JH(jh, jh->b_jcount > 0);
2436 --jh->b_jcount;
2437 if (!jh->b_jcount) {
2438 __journal_remove_journal_head(bh);
2439 jbd_unlock_bh_journal_head(bh);
2440 __brelse(bh);
2441 } else
2442 jbd_unlock_bh_journal_head(bh);
2443 }
2444
2445 /*
2446 * Initialize jbd inode head
2447 */
2448 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2449 {
2450 jinode->i_transaction = NULL;
2451 jinode->i_next_transaction = NULL;
2452 jinode->i_vfs_inode = inode;
2453 jinode->i_flags = 0;
2454 INIT_LIST_HEAD(&jinode->i_list);
2455 }
2456
2457 /*
2458 * Function to be called before we start removing inode from memory (i.e.,
2459 * clear_inode() is a fine place to be called from). It removes inode from
2460 * transaction's lists.
2461 */
2462 void jbd2_journal_release_jbd_inode(journal_t *journal,
2463 struct jbd2_inode *jinode)
2464 {
2465 if (!journal)
2466 return;
2467 restart:
2468 spin_lock(&journal->j_list_lock);
2469 /* Is commit writing out inode - we have to wait */
2470 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2471 wait_queue_head_t *wq;
2472 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2473 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2474 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2475 spin_unlock(&journal->j_list_lock);
2476 schedule();
2477 finish_wait(wq, &wait.wait);
2478 goto restart;
2479 }
2480
2481 if (jinode->i_transaction) {
2482 list_del(&jinode->i_list);
2483 jinode->i_transaction = NULL;
2484 }
2485 spin_unlock(&journal->j_list_lock);
2486 }
2487
2488 /*
2489 * debugfs tunables
2490 */
2491 #ifdef CONFIG_JBD2_DEBUG
2492 u8 jbd2_journal_enable_debug __read_mostly;
2493 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2494
2495 #define JBD2_DEBUG_NAME "jbd2-debug"
2496
2497 static struct dentry *jbd2_debugfs_dir;
2498 static struct dentry *jbd2_debug;
2499
2500 static void __init jbd2_create_debugfs_entry(void)
2501 {
2502 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2503 if (jbd2_debugfs_dir)
2504 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2505 S_IRUGO | S_IWUSR,
2506 jbd2_debugfs_dir,
2507 &jbd2_journal_enable_debug);
2508 }
2509
2510 static void __exit jbd2_remove_debugfs_entry(void)
2511 {
2512 debugfs_remove(jbd2_debug);
2513 debugfs_remove(jbd2_debugfs_dir);
2514 }
2515
2516 #else
2517
2518 static void __init jbd2_create_debugfs_entry(void)
2519 {
2520 }
2521
2522 static void __exit jbd2_remove_debugfs_entry(void)
2523 {
2524 }
2525
2526 #endif
2527
2528 #ifdef CONFIG_PROC_FS
2529
2530 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2531
2532 static void __init jbd2_create_jbd_stats_proc_entry(void)
2533 {
2534 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2535 }
2536
2537 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2538 {
2539 if (proc_jbd2_stats)
2540 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2541 }
2542
2543 #else
2544
2545 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2546 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2547
2548 #endif
2549
2550 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2551
2552 static int __init jbd2_journal_init_handle_cache(void)
2553 {
2554 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2555 if (jbd2_handle_cache == NULL) {
2556 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2557 return -ENOMEM;
2558 }
2559 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2560 if (jbd2_inode_cache == NULL) {
2561 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2562 kmem_cache_destroy(jbd2_handle_cache);
2563 return -ENOMEM;
2564 }
2565 return 0;
2566 }
2567
2568 static void jbd2_journal_destroy_handle_cache(void)
2569 {
2570 if (jbd2_handle_cache)
2571 kmem_cache_destroy(jbd2_handle_cache);
2572 if (jbd2_inode_cache)
2573 kmem_cache_destroy(jbd2_inode_cache);
2574
2575 }
2576
2577 /*
2578 * Module startup and shutdown
2579 */
2580
2581 static int __init journal_init_caches(void)
2582 {
2583 int ret;
2584
2585 ret = jbd2_journal_init_revoke_caches();
2586 if (ret == 0)
2587 ret = jbd2_journal_init_journal_head_cache();
2588 if (ret == 0)
2589 ret = jbd2_journal_init_handle_cache();
2590 if (ret == 0)
2591 ret = jbd2_journal_init_transaction_cache();
2592 return ret;
2593 }
2594
2595 static void jbd2_journal_destroy_caches(void)
2596 {
2597 jbd2_journal_destroy_revoke_caches();
2598 jbd2_journal_destroy_journal_head_cache();
2599 jbd2_journal_destroy_handle_cache();
2600 jbd2_journal_destroy_transaction_cache();
2601 jbd2_journal_destroy_slabs();
2602 }
2603
2604 static int __init journal_init(void)
2605 {
2606 int ret;
2607
2608 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2609
2610 ret = journal_init_caches();
2611 if (ret == 0) {
2612 jbd2_create_debugfs_entry();
2613 jbd2_create_jbd_stats_proc_entry();
2614 } else {
2615 jbd2_journal_destroy_caches();
2616 }
2617 return ret;
2618 }
2619
2620 static void __exit journal_exit(void)
2621 {
2622 #ifdef CONFIG_JBD2_DEBUG
2623 int n = atomic_read(&nr_journal_heads);
2624 if (n)
2625 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2626 #endif
2627 jbd2_remove_debugfs_entry();
2628 jbd2_remove_jbd_stats_proc_entry();
2629 jbd2_journal_destroy_caches();
2630 }
2631
2632 MODULE_LICENSE("GPL");
2633 module_init(journal_init);
2634 module_exit(journal_exit);
2635