3ecf7309eb41837e868bab4ec112adb51c6561c1
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21
22 /*
23 * Inode locking rules:
24 *
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
35 *
36 * Lock ordering:
37 *
38 * inode_sb_list_lock
39 * inode->i_lock
40 * inode->i_sb->s_inode_lru_lock
41 *
42 * bdi->wb.list_lock
43 * inode->i_lock
44 *
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
48 *
49 * iunique_lock
50 * inode_hash_lock
51 */
52
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static int get_nr_inodes(void)
79 {
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline int get_nr_inodes_unused(void)
88 {
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 int get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 /**
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
120 *
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
123 */
124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 static const struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->__i_nlink = 1;
137 inode->i_opflags = 0;
138 i_uid_write(inode, 0);
139 i_gid_write(inode, 0);
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
153
154 if (security_inode_alloc(inode))
155 goto out;
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161
162 atomic_set(&inode->i_dio_count, 0);
163
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
167 atomic_set(&mapping->i_mmap_writable, 0);
168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
169 mapping->private_data = NULL;
170 mapping->backing_dev_info = &default_backing_dev_info;
171 mapping->writeback_index = 0;
172 #if defined(CONFIG_MMC_DW_FMP_ECRYPT_FS) || defined(CONFIG_UFS_FMP_ECRYPT_FS)
173 mapping->iv = NULL;
174 mapping->key = NULL;
175 mapping->key_length = 0;
176 mapping->alg = NULL;
177 mapping->sensitive_data_index = 0;
178 mapping->hash_tfm = NULL;
179 #ifdef CONFIG_CRYPTO_FIPS
180 mapping->cc_enable = 0;
181 #endif
182 #endif
183 #ifdef CONFIG_SDP
184 mapping->userid = 0;
185 #endif
186
187 /*
188 * If the block_device provides a backing_dev_info for client
189 * inodes then use that. Otherwise the inode share the bdev's
190 * backing_dev_info.
191 */
192 if (sb->s_bdev) {
193 struct backing_dev_info *bdi;
194
195 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
196 mapping->backing_dev_info = bdi;
197 }
198 inode->i_private = NULL;
199 inode->i_mapping = mapping;
200 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
201 #ifdef CONFIG_FS_POSIX_ACL
202 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
203 #endif
204
205 #ifdef CONFIG_FSNOTIFY
206 inode->i_fsnotify_mask = 0;
207 #endif
208
209 this_cpu_inc(nr_inodes);
210
211 return 0;
212 out:
213 return -ENOMEM;
214 }
215 EXPORT_SYMBOL(inode_init_always);
216
217 static struct inode *alloc_inode(struct super_block *sb)
218 {
219 struct inode *inode;
220
221 if (sb->s_op->alloc_inode)
222 inode = sb->s_op->alloc_inode(sb);
223 else
224 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
225
226 if (!inode)
227 return NULL;
228
229 if (unlikely(inode_init_always(sb, inode))) {
230 if (inode->i_sb->s_op->destroy_inode)
231 inode->i_sb->s_op->destroy_inode(inode);
232 else
233 kmem_cache_free(inode_cachep, inode);
234 return NULL;
235 }
236
237 return inode;
238 }
239
240 void free_inode_nonrcu(struct inode *inode)
241 {
242 kmem_cache_free(inode_cachep, inode);
243 }
244 EXPORT_SYMBOL(free_inode_nonrcu);
245
246 void __destroy_inode(struct inode *inode)
247 {
248 BUG_ON(inode_has_buffers(inode));
249 security_inode_free(inode);
250 fsnotify_inode_delete(inode);
251 if (!inode->i_nlink) {
252 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
253 atomic_long_dec(&inode->i_sb->s_remove_count);
254 }
255
256 #ifdef CONFIG_FS_POSIX_ACL
257 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
258 posix_acl_release(inode->i_acl);
259 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
260 posix_acl_release(inode->i_default_acl);
261 #endif
262 this_cpu_dec(nr_inodes);
263 }
264 EXPORT_SYMBOL(__destroy_inode);
265
266 static void i_callback(struct rcu_head *head)
267 {
268 struct inode *inode = container_of(head, struct inode, i_rcu);
269 kmem_cache_free(inode_cachep, inode);
270 }
271
272 static void destroy_inode(struct inode *inode)
273 {
274 BUG_ON(!list_empty(&inode->i_lru));
275 __destroy_inode(inode);
276 if (inode->i_sb->s_op->destroy_inode)
277 inode->i_sb->s_op->destroy_inode(inode);
278 else
279 call_rcu(&inode->i_rcu, i_callback);
280 }
281
282 /**
283 * drop_nlink - directly drop an inode's link count
284 * @inode: inode
285 *
286 * This is a low-level filesystem helper to replace any
287 * direct filesystem manipulation of i_nlink. In cases
288 * where we are attempting to track writes to the
289 * filesystem, a decrement to zero means an imminent
290 * write when the file is truncated and actually unlinked
291 * on the filesystem.
292 */
293 void drop_nlink(struct inode *inode)
294 {
295 WARN_ON(inode->i_nlink == 0);
296 inode->__i_nlink--;
297 if (!inode->i_nlink)
298 atomic_long_inc(&inode->i_sb->s_remove_count);
299 }
300 EXPORT_SYMBOL(drop_nlink);
301
302 /**
303 * clear_nlink - directly zero an inode's link count
304 * @inode: inode
305 *
306 * This is a low-level filesystem helper to replace any
307 * direct filesystem manipulation of i_nlink. See
308 * drop_nlink() for why we care about i_nlink hitting zero.
309 */
310 void clear_nlink(struct inode *inode)
311 {
312 if (inode->i_nlink) {
313 inode->__i_nlink = 0;
314 atomic_long_inc(&inode->i_sb->s_remove_count);
315 }
316 }
317 EXPORT_SYMBOL(clear_nlink);
318
319 /**
320 * set_nlink - directly set an inode's link count
321 * @inode: inode
322 * @nlink: new nlink (should be non-zero)
323 *
324 * This is a low-level filesystem helper to replace any
325 * direct filesystem manipulation of i_nlink.
326 */
327 void set_nlink(struct inode *inode, unsigned int nlink)
328 {
329 if (!nlink) {
330 clear_nlink(inode);
331 } else {
332 /* Yes, some filesystems do change nlink from zero to one */
333 if (inode->i_nlink == 0)
334 atomic_long_dec(&inode->i_sb->s_remove_count);
335
336 inode->__i_nlink = nlink;
337 }
338 }
339 EXPORT_SYMBOL(set_nlink);
340
341 /**
342 * inc_nlink - directly increment an inode's link count
343 * @inode: inode
344 *
345 * This is a low-level filesystem helper to replace any
346 * direct filesystem manipulation of i_nlink. Currently,
347 * it is only here for parity with dec_nlink().
348 */
349 void inc_nlink(struct inode *inode)
350 {
351 if (WARN_ON(inode->i_nlink == 0))
352 atomic_long_dec(&inode->i_sb->s_remove_count);
353
354 inode->__i_nlink++;
355 }
356 EXPORT_SYMBOL(inc_nlink);
357
358 void address_space_init_once(struct address_space *mapping)
359 {
360 memset(mapping, 0, sizeof(*mapping));
361 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
362 spin_lock_init(&mapping->tree_lock);
363 mutex_init(&mapping->i_mmap_mutex);
364 INIT_LIST_HEAD(&mapping->private_list);
365 spin_lock_init(&mapping->private_lock);
366 mapping->i_mmap = RB_ROOT;
367 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
368 }
369 EXPORT_SYMBOL(address_space_init_once);
370
371 /*
372 * These are initializations that only need to be done
373 * once, because the fields are idempotent across use
374 * of the inode, so let the slab aware of that.
375 */
376 void inode_init_once(struct inode *inode)
377 {
378 memset(inode, 0, sizeof(*inode));
379 INIT_HLIST_NODE(&inode->i_hash);
380 INIT_LIST_HEAD(&inode->i_devices);
381 INIT_LIST_HEAD(&inode->i_wb_list);
382 INIT_LIST_HEAD(&inode->i_lru);
383 address_space_init_once(&inode->i_data);
384 i_size_ordered_init(inode);
385 #ifdef CONFIG_FSNOTIFY
386 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
387 #endif
388 }
389 EXPORT_SYMBOL(inode_init_once);
390
391 static void init_once(void *foo)
392 {
393 struct inode *inode = (struct inode *) foo;
394
395 inode_init_once(inode);
396 }
397
398 /*
399 * inode->i_lock must be held
400 */
401 void __iget(struct inode *inode)
402 {
403 atomic_inc(&inode->i_count);
404 }
405
406 /*
407 * get additional reference to inode; caller must already hold one.
408 */
409 void ihold(struct inode *inode)
410 {
411 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
412 }
413 EXPORT_SYMBOL(ihold);
414
415 static void inode_lru_list_add(struct inode *inode)
416 {
417 spin_lock(&inode->i_sb->s_inode_lru_lock);
418 if (list_empty(&inode->i_lru)) {
419 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
420 inode->i_sb->s_nr_inodes_unused++;
421 this_cpu_inc(nr_unused);
422 }
423 spin_unlock(&inode->i_sb->s_inode_lru_lock);
424 }
425
426 /*
427 * Add inode to LRU if needed (inode is unused and clean).
428 *
429 * Needs inode->i_lock held.
430 */
431 void inode_add_lru(struct inode *inode)
432 {
433 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
434 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
435 inode_lru_list_add(inode);
436 }
437
438
439 static void inode_lru_list_del(struct inode *inode)
440 {
441 spin_lock(&inode->i_sb->s_inode_lru_lock);
442 if (!list_empty(&inode->i_lru)) {
443 list_del_init(&inode->i_lru);
444 inode->i_sb->s_nr_inodes_unused--;
445 this_cpu_dec(nr_unused);
446 }
447 spin_unlock(&inode->i_sb->s_inode_lru_lock);
448 }
449
450 /**
451 * inode_sb_list_add - add inode to the superblock list of inodes
452 * @inode: inode to add
453 */
454 void inode_sb_list_add(struct inode *inode)
455 {
456 spin_lock(&inode_sb_list_lock);
457 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
458 spin_unlock(&inode_sb_list_lock);
459 }
460 EXPORT_SYMBOL_GPL(inode_sb_list_add);
461
462 static inline void inode_sb_list_del(struct inode *inode)
463 {
464 if (!list_empty(&inode->i_sb_list)) {
465 spin_lock(&inode_sb_list_lock);
466 list_del_init(&inode->i_sb_list);
467 spin_unlock(&inode_sb_list_lock);
468 }
469 }
470
471 static unsigned long hash(struct super_block *sb, unsigned long hashval)
472 {
473 unsigned long tmp;
474
475 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
476 L1_CACHE_BYTES;
477 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
478 return tmp & i_hash_mask;
479 }
480
481 /**
482 * __insert_inode_hash - hash an inode
483 * @inode: unhashed inode
484 * @hashval: unsigned long value used to locate this object in the
485 * inode_hashtable.
486 *
487 * Add an inode to the inode hash for this superblock.
488 */
489 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
490 {
491 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
492
493 spin_lock(&inode_hash_lock);
494 spin_lock(&inode->i_lock);
495 hlist_add_head(&inode->i_hash, b);
496 spin_unlock(&inode->i_lock);
497 spin_unlock(&inode_hash_lock);
498 }
499 EXPORT_SYMBOL(__insert_inode_hash);
500
501 /**
502 * __remove_inode_hash - remove an inode from the hash
503 * @inode: inode to unhash
504 *
505 * Remove an inode from the superblock.
506 */
507 void __remove_inode_hash(struct inode *inode)
508 {
509 spin_lock(&inode_hash_lock);
510 spin_lock(&inode->i_lock);
511 hlist_del_init(&inode->i_hash);
512 spin_unlock(&inode->i_lock);
513 spin_unlock(&inode_hash_lock);
514 }
515 EXPORT_SYMBOL(__remove_inode_hash);
516
517 void clear_inode(struct inode *inode)
518 {
519 might_sleep();
520 /*
521 * We have to cycle tree_lock here because reclaim can be still in the
522 * process of removing the last page (in __delete_from_page_cache())
523 * and we must not free mapping under it.
524 */
525 spin_lock_irq(&inode->i_data.tree_lock);
526 BUG_ON(inode->i_data.nrpages);
527 BUG_ON(inode->i_data.nrshadows);
528 spin_unlock_irq(&inode->i_data.tree_lock);
529 BUG_ON(!list_empty(&inode->i_data.private_list));
530 BUG_ON(!(inode->i_state & I_FREEING));
531 BUG_ON(inode->i_state & I_CLEAR);
532 /* don't need i_lock here, no concurrent mods to i_state */
533 inode->i_state = I_FREEING | I_CLEAR;
534 }
535 EXPORT_SYMBOL(clear_inode);
536
537 /*
538 * Free the inode passed in, removing it from the lists it is still connected
539 * to. We remove any pages still attached to the inode and wait for any IO that
540 * is still in progress before finally destroying the inode.
541 *
542 * An inode must already be marked I_FREEING so that we avoid the inode being
543 * moved back onto lists if we race with other code that manipulates the lists
544 * (e.g. writeback_single_inode). The caller is responsible for setting this.
545 *
546 * An inode must already be removed from the LRU list before being evicted from
547 * the cache. This should occur atomically with setting the I_FREEING state
548 * flag, so no inodes here should ever be on the LRU when being evicted.
549 */
550 static void evict(struct inode *inode)
551 {
552 const struct super_operations *op = inode->i_sb->s_op;
553
554 BUG_ON(!(inode->i_state & I_FREEING));
555 BUG_ON(!list_empty(&inode->i_lru));
556
557 if (!list_empty(&inode->i_wb_list))
558 inode_wb_list_del(inode);
559
560 inode_sb_list_del(inode);
561
562 /*
563 * Wait for flusher thread to be done with the inode so that filesystem
564 * does not start destroying it while writeback is still running. Since
565 * the inode has I_FREEING set, flusher thread won't start new work on
566 * the inode. We just have to wait for running writeback to finish.
567 */
568 inode_wait_for_writeback(inode);
569
570 if (op->evict_inode) {
571 op->evict_inode(inode);
572 } else {
573 truncate_inode_pages_final(&inode->i_data);
574 clear_inode(inode);
575 }
576 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
577 bd_forget(inode);
578 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
579 cd_forget(inode);
580
581 remove_inode_hash(inode);
582
583 spin_lock(&inode->i_lock);
584 wake_up_bit(&inode->i_state, __I_NEW);
585 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
586 spin_unlock(&inode->i_lock);
587
588 destroy_inode(inode);
589 }
590
591 /*
592 * dispose_list - dispose of the contents of a local list
593 * @head: the head of the list to free
594 *
595 * Dispose-list gets a local list with local inodes in it, so it doesn't
596 * need to worry about list corruption and SMP locks.
597 */
598 static void dispose_list(struct list_head *head)
599 {
600 while (!list_empty(head)) {
601 struct inode *inode;
602
603 inode = list_first_entry(head, struct inode, i_lru);
604 list_del_init(&inode->i_lru);
605
606 evict(inode);
607 }
608 }
609
610 /**
611 * evict_inodes - evict all evictable inodes for a superblock
612 * @sb: superblock to operate on
613 *
614 * Make sure that no inodes with zero refcount are retained. This is
615 * called by superblock shutdown after having MS_ACTIVE flag removed,
616 * so any inode reaching zero refcount during or after that call will
617 * be immediately evicted.
618 */
619 void evict_inodes(struct super_block *sb)
620 {
621 struct inode *inode, *next;
622 LIST_HEAD(dispose);
623
624 spin_lock(&inode_sb_list_lock);
625 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
626 if (atomic_read(&inode->i_count))
627 continue;
628
629 spin_lock(&inode->i_lock);
630 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
631 spin_unlock(&inode->i_lock);
632 continue;
633 }
634
635 inode->i_state |= I_FREEING;
636 inode_lru_list_del(inode);
637 spin_unlock(&inode->i_lock);
638 list_add(&inode->i_lru, &dispose);
639 }
640 spin_unlock(&inode_sb_list_lock);
641
642 dispose_list(&dispose);
643 }
644
645 /**
646 * invalidate_inodes - attempt to free all inodes on a superblock
647 * @sb: superblock to operate on
648 * @kill_dirty: flag to guide handling of dirty inodes
649 *
650 * Attempts to free all inodes for a given superblock. If there were any
651 * busy inodes return a non-zero value, else zero.
652 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
653 * them as busy.
654 */
655 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
656 {
657 int busy = 0;
658 struct inode *inode, *next;
659 LIST_HEAD(dispose);
660
661 spin_lock(&inode_sb_list_lock);
662 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
663 spin_lock(&inode->i_lock);
664 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
665 spin_unlock(&inode->i_lock);
666 continue;
667 }
668 if (inode->i_state & I_DIRTY && !kill_dirty) {
669 spin_unlock(&inode->i_lock);
670 busy = 1;
671 continue;
672 }
673 if (atomic_read(&inode->i_count)) {
674 spin_unlock(&inode->i_lock);
675 busy = 1;
676 continue;
677 }
678
679 inode->i_state |= I_FREEING;
680 inode_lru_list_del(inode);
681 spin_unlock(&inode->i_lock);
682 list_add(&inode->i_lru, &dispose);
683 }
684 spin_unlock(&inode_sb_list_lock);
685
686 dispose_list(&dispose);
687
688 return busy;
689 }
690
691 static int can_unuse(struct inode *inode)
692 {
693 if (inode->i_state & ~I_REFERENCED)
694 return 0;
695 if (inode_has_buffers(inode))
696 return 0;
697 if (atomic_read(&inode->i_count))
698 return 0;
699 if (inode->i_data.nrpages)
700 return 0;
701 return 1;
702 }
703
704 /*
705 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
706 * This is called from the superblock shrinker function with a number of inodes
707 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
708 * then are freed outside inode_lock by dispose_list().
709 *
710 * Any inodes which are pinned purely because of attached pagecache have their
711 * pagecache removed. If the inode has metadata buffers attached to
712 * mapping->private_list then try to remove them.
713 *
714 * If the inode has the I_REFERENCED flag set, then it means that it has been
715 * used recently - the flag is set in iput_final(). When we encounter such an
716 * inode, clear the flag and move it to the back of the LRU so it gets another
717 * pass through the LRU before it gets reclaimed. This is necessary because of
718 * the fact we are doing lazy LRU updates to minimise lock contention so the
719 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
720 * with this flag set because they are the inodes that are out of order.
721 */
722 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
723 {
724 LIST_HEAD(freeable);
725 int nr_scanned;
726 unsigned long reap = 0;
727
728 spin_lock(&sb->s_inode_lru_lock);
729 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
730 struct inode *inode;
731
732 if (list_empty(&sb->s_inode_lru))
733 break;
734
735 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
736
737 /*
738 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
739 * so use a trylock. If we fail to get the lock, just move the
740 * inode to the back of the list so we don't spin on it.
741 */
742 if (!spin_trylock(&inode->i_lock)) {
743 list_move(&inode->i_lru, &sb->s_inode_lru);
744 continue;
745 }
746
747 /*
748 * Referenced or dirty inodes are still in use. Give them
749 * another pass through the LRU as we canot reclaim them now.
750 */
751 if (atomic_read(&inode->i_count) ||
752 (inode->i_state & ~I_REFERENCED)) {
753 list_del_init(&inode->i_lru);
754 spin_unlock(&inode->i_lock);
755 sb->s_nr_inodes_unused--;
756 this_cpu_dec(nr_unused);
757 continue;
758 }
759
760 /* recently referenced inodes get one more pass */
761 if (inode->i_state & I_REFERENCED) {
762 inode->i_state &= ~I_REFERENCED;
763 list_move(&inode->i_lru, &sb->s_inode_lru);
764 spin_unlock(&inode->i_lock);
765 continue;
766 }
767 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
768 __iget(inode);
769 spin_unlock(&inode->i_lock);
770 spin_unlock(&sb->s_inode_lru_lock);
771 if (remove_inode_buffers(inode))
772 reap += invalidate_mapping_pages(&inode->i_data,
773 0, -1);
774 iput(inode);
775 spin_lock(&sb->s_inode_lru_lock);
776
777 if (inode != list_entry(sb->s_inode_lru.next,
778 struct inode, i_lru))
779 continue; /* wrong inode or list_empty */
780 /* avoid lock inversions with trylock */
781 if (!spin_trylock(&inode->i_lock))
782 continue;
783 if (!can_unuse(inode)) {
784 spin_unlock(&inode->i_lock);
785 continue;
786 }
787 }
788 WARN_ON(inode->i_state & I_NEW);
789 inode->i_state |= I_FREEING;
790 spin_unlock(&inode->i_lock);
791
792 list_move(&inode->i_lru, &freeable);
793 sb->s_nr_inodes_unused--;
794 this_cpu_dec(nr_unused);
795 }
796 if (current_is_kswapd())
797 __count_vm_events(KSWAPD_INODESTEAL, reap);
798 else
799 __count_vm_events(PGINODESTEAL, reap);
800 spin_unlock(&sb->s_inode_lru_lock);
801 if (current->reclaim_state)
802 current->reclaim_state->reclaimed_slab += reap;
803
804 dispose_list(&freeable);
805 }
806
807 static void __wait_on_freeing_inode(struct inode *inode);
808 /*
809 * Called with the inode lock held.
810 */
811 static struct inode *find_inode(struct super_block *sb,
812 struct hlist_head *head,
813 int (*test)(struct inode *, void *),
814 void *data)
815 {
816 struct inode *inode = NULL;
817
818 repeat:
819 hlist_for_each_entry(inode, head, i_hash) {
820 spin_lock(&inode->i_lock);
821 if (inode->i_sb != sb) {
822 spin_unlock(&inode->i_lock);
823 continue;
824 }
825 if (!test(inode, data)) {
826 spin_unlock(&inode->i_lock);
827 continue;
828 }
829 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
830 __wait_on_freeing_inode(inode);
831 goto repeat;
832 }
833 __iget(inode);
834 spin_unlock(&inode->i_lock);
835 return inode;
836 }
837 return NULL;
838 }
839
840 /*
841 * find_inode_fast is the fast path version of find_inode, see the comment at
842 * iget_locked for details.
843 */
844 static struct inode *find_inode_fast(struct super_block *sb,
845 struct hlist_head *head, unsigned long ino)
846 {
847 struct inode *inode = NULL;
848
849 repeat:
850 hlist_for_each_entry(inode, head, i_hash) {
851 spin_lock(&inode->i_lock);
852 if (inode->i_ino != ino) {
853 spin_unlock(&inode->i_lock);
854 continue;
855 }
856 if (inode->i_sb != sb) {
857 spin_unlock(&inode->i_lock);
858 continue;
859 }
860 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
861 __wait_on_freeing_inode(inode);
862 goto repeat;
863 }
864 __iget(inode);
865 spin_unlock(&inode->i_lock);
866 return inode;
867 }
868 return NULL;
869 }
870
871 /*
872 * Each cpu owns a range of LAST_INO_BATCH numbers.
873 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
874 * to renew the exhausted range.
875 *
876 * This does not significantly increase overflow rate because every CPU can
877 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
878 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
879 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
880 * overflow rate by 2x, which does not seem too significant.
881 *
882 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
883 * error if st_ino won't fit in target struct field. Use 32bit counter
884 * here to attempt to avoid that.
885 */
886 #define LAST_INO_BATCH 1024
887 static DEFINE_PER_CPU(unsigned int, last_ino);
888
889 unsigned int get_next_ino(void)
890 {
891 unsigned int *p = &get_cpu_var(last_ino);
892 unsigned int res = *p;
893
894 #ifdef CONFIG_SMP
895 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
896 static atomic_t shared_last_ino;
897 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
898
899 res = next - LAST_INO_BATCH;
900 }
901 #endif
902
903 *p = ++res;
904 put_cpu_var(last_ino);
905 return res;
906 }
907 EXPORT_SYMBOL(get_next_ino);
908
909 /**
910 * new_inode_pseudo - obtain an inode
911 * @sb: superblock
912 *
913 * Allocates a new inode for given superblock.
914 * Inode wont be chained in superblock s_inodes list
915 * This means :
916 * - fs can't be unmount
917 * - quotas, fsnotify, writeback can't work
918 */
919 struct inode *new_inode_pseudo(struct super_block *sb)
920 {
921 struct inode *inode = alloc_inode(sb);
922
923 if (inode) {
924 spin_lock(&inode->i_lock);
925 inode->i_state = 0;
926 spin_unlock(&inode->i_lock);
927 INIT_LIST_HEAD(&inode->i_sb_list);
928 }
929 return inode;
930 }
931
932 /**
933 * new_inode - obtain an inode
934 * @sb: superblock
935 *
936 * Allocates a new inode for given superblock. The default gfp_mask
937 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
938 * If HIGHMEM pages are unsuitable or it is known that pages allocated
939 * for the page cache are not reclaimable or migratable,
940 * mapping_set_gfp_mask() must be called with suitable flags on the
941 * newly created inode's mapping
942 *
943 */
944 struct inode *new_inode(struct super_block *sb)
945 {
946 struct inode *inode;
947
948 spin_lock_prefetch(&inode_sb_list_lock);
949
950 inode = new_inode_pseudo(sb);
951 if (inode)
952 inode_sb_list_add(inode);
953 return inode;
954 }
955 EXPORT_SYMBOL(new_inode);
956
957 #ifdef CONFIG_DEBUG_LOCK_ALLOC
958 void lockdep_annotate_inode_mutex_key(struct inode *inode)
959 {
960 if (S_ISDIR(inode->i_mode)) {
961 struct file_system_type *type = inode->i_sb->s_type;
962
963 /* Set new key only if filesystem hasn't already changed it */
964 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
965 /*
966 * ensure nobody is actually holding i_mutex
967 */
968 mutex_destroy(&inode->i_mutex);
969 mutex_init(&inode->i_mutex);
970 lockdep_set_class(&inode->i_mutex,
971 &type->i_mutex_dir_key);
972 }
973 }
974 }
975 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
976 #endif
977
978 /**
979 * unlock_new_inode - clear the I_NEW state and wake up any waiters
980 * @inode: new inode to unlock
981 *
982 * Called when the inode is fully initialised to clear the new state of the
983 * inode and wake up anyone waiting for the inode to finish initialisation.
984 */
985 void unlock_new_inode(struct inode *inode)
986 {
987 lockdep_annotate_inode_mutex_key(inode);
988 spin_lock(&inode->i_lock);
989 WARN_ON(!(inode->i_state & I_NEW));
990 inode->i_state &= ~I_NEW;
991 smp_mb();
992 wake_up_bit(&inode->i_state, __I_NEW);
993 spin_unlock(&inode->i_lock);
994 }
995 EXPORT_SYMBOL(unlock_new_inode);
996
997 /**
998 * iget5_locked - obtain an inode from a mounted file system
999 * @sb: super block of file system
1000 * @hashval: hash value (usually inode number) to get
1001 * @test: callback used for comparisons between inodes
1002 * @set: callback used to initialize a new struct inode
1003 * @data: opaque data pointer to pass to @test and @set
1004 *
1005 * Search for the inode specified by @hashval and @data in the inode cache,
1006 * and if present it is return it with an increased reference count. This is
1007 * a generalized version of iget_locked() for file systems where the inode
1008 * number is not sufficient for unique identification of an inode.
1009 *
1010 * If the inode is not in cache, allocate a new inode and return it locked,
1011 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1012 * before unlocking it via unlock_new_inode().
1013 *
1014 * Note both @test and @set are called with the inode_hash_lock held, so can't
1015 * sleep.
1016 */
1017 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1018 int (*test)(struct inode *, void *),
1019 int (*set)(struct inode *, void *), void *data)
1020 {
1021 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1022 struct inode *inode;
1023
1024 spin_lock(&inode_hash_lock);
1025 inode = find_inode(sb, head, test, data);
1026 spin_unlock(&inode_hash_lock);
1027
1028 if (inode) {
1029 wait_on_inode(inode);
1030 return inode;
1031 }
1032
1033 inode = alloc_inode(sb);
1034 if (inode) {
1035 struct inode *old;
1036
1037 spin_lock(&inode_hash_lock);
1038 /* We released the lock, so.. */
1039 old = find_inode(sb, head, test, data);
1040 if (!old) {
1041 if (set(inode, data))
1042 goto set_failed;
1043
1044 spin_lock(&inode->i_lock);
1045 inode->i_state = I_NEW;
1046 hlist_add_head(&inode->i_hash, head);
1047 spin_unlock(&inode->i_lock);
1048 inode_sb_list_add(inode);
1049 spin_unlock(&inode_hash_lock);
1050
1051 /* Return the locked inode with I_NEW set, the
1052 * caller is responsible for filling in the contents
1053 */
1054 return inode;
1055 }
1056
1057 /*
1058 * Uhhuh, somebody else created the same inode under
1059 * us. Use the old inode instead of the one we just
1060 * allocated.
1061 */
1062 spin_unlock(&inode_hash_lock);
1063 destroy_inode(inode);
1064 inode = old;
1065 wait_on_inode(inode);
1066 }
1067 return inode;
1068
1069 set_failed:
1070 spin_unlock(&inode_hash_lock);
1071 destroy_inode(inode);
1072 return NULL;
1073 }
1074 EXPORT_SYMBOL(iget5_locked);
1075
1076 /**
1077 * iget_locked - obtain an inode from a mounted file system
1078 * @sb: super block of file system
1079 * @ino: inode number to get
1080 *
1081 * Search for the inode specified by @ino in the inode cache and if present
1082 * return it with an increased reference count. This is for file systems
1083 * where the inode number is sufficient for unique identification of an inode.
1084 *
1085 * If the inode is not in cache, allocate a new inode and return it locked,
1086 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1087 * before unlocking it via unlock_new_inode().
1088 */
1089 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1090 {
1091 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1092 struct inode *inode;
1093
1094 spin_lock(&inode_hash_lock);
1095 inode = find_inode_fast(sb, head, ino);
1096 spin_unlock(&inode_hash_lock);
1097 if (inode) {
1098 wait_on_inode(inode);
1099 return inode;
1100 }
1101
1102 inode = alloc_inode(sb);
1103 if (inode) {
1104 struct inode *old;
1105
1106 spin_lock(&inode_hash_lock);
1107 /* We released the lock, so.. */
1108 old = find_inode_fast(sb, head, ino);
1109 if (!old) {
1110 inode->i_ino = ino;
1111 spin_lock(&inode->i_lock);
1112 inode->i_state = I_NEW;
1113 hlist_add_head(&inode->i_hash, head);
1114 spin_unlock(&inode->i_lock);
1115 inode_sb_list_add(inode);
1116 spin_unlock(&inode_hash_lock);
1117
1118 /* Return the locked inode with I_NEW set, the
1119 * caller is responsible for filling in the contents
1120 */
1121 return inode;
1122 }
1123
1124 /*
1125 * Uhhuh, somebody else created the same inode under
1126 * us. Use the old inode instead of the one we just
1127 * allocated.
1128 */
1129 spin_unlock(&inode_hash_lock);
1130 destroy_inode(inode);
1131 inode = old;
1132 wait_on_inode(inode);
1133 }
1134 return inode;
1135 }
1136 EXPORT_SYMBOL(iget_locked);
1137
1138 /*
1139 * search the inode cache for a matching inode number.
1140 * If we find one, then the inode number we are trying to
1141 * allocate is not unique and so we should not use it.
1142 *
1143 * Returns 1 if the inode number is unique, 0 if it is not.
1144 */
1145 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1146 {
1147 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1148 struct inode *inode;
1149
1150 spin_lock(&inode_hash_lock);
1151 hlist_for_each_entry(inode, b, i_hash) {
1152 if (inode->i_ino == ino && inode->i_sb == sb) {
1153 spin_unlock(&inode_hash_lock);
1154 return 0;
1155 }
1156 }
1157 spin_unlock(&inode_hash_lock);
1158
1159 return 1;
1160 }
1161
1162 /**
1163 * iunique - get a unique inode number
1164 * @sb: superblock
1165 * @max_reserved: highest reserved inode number
1166 *
1167 * Obtain an inode number that is unique on the system for a given
1168 * superblock. This is used by file systems that have no natural
1169 * permanent inode numbering system. An inode number is returned that
1170 * is higher than the reserved limit but unique.
1171 *
1172 * BUGS:
1173 * With a large number of inodes live on the file system this function
1174 * currently becomes quite slow.
1175 */
1176 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1177 {
1178 /*
1179 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1180 * error if st_ino won't fit in target struct field. Use 32bit counter
1181 * here to attempt to avoid that.
1182 */
1183 static DEFINE_SPINLOCK(iunique_lock);
1184 static unsigned int counter;
1185 ino_t res;
1186
1187 spin_lock(&iunique_lock);
1188 do {
1189 if (counter <= max_reserved)
1190 counter = max_reserved + 1;
1191 res = counter++;
1192 } while (!test_inode_iunique(sb, res));
1193 spin_unlock(&iunique_lock);
1194
1195 return res;
1196 }
1197 EXPORT_SYMBOL(iunique);
1198
1199 struct inode *igrab(struct inode *inode)
1200 {
1201 spin_lock(&inode->i_lock);
1202 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1203 __iget(inode);
1204 spin_unlock(&inode->i_lock);
1205 } else {
1206 spin_unlock(&inode->i_lock);
1207 /*
1208 * Handle the case where s_op->clear_inode is not been
1209 * called yet, and somebody is calling igrab
1210 * while the inode is getting freed.
1211 */
1212 inode = NULL;
1213 }
1214 return inode;
1215 }
1216 EXPORT_SYMBOL(igrab);
1217
1218 /**
1219 * ilookup5_nowait - search for an inode in the inode cache
1220 * @sb: super block of file system to search
1221 * @hashval: hash value (usually inode number) to search for
1222 * @test: callback used for comparisons between inodes
1223 * @data: opaque data pointer to pass to @test
1224 *
1225 * Search for the inode specified by @hashval and @data in the inode cache.
1226 * If the inode is in the cache, the inode is returned with an incremented
1227 * reference count.
1228 *
1229 * Note: I_NEW is not waited upon so you have to be very careful what you do
1230 * with the returned inode. You probably should be using ilookup5() instead.
1231 *
1232 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1233 */
1234 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1235 int (*test)(struct inode *, void *), void *data)
1236 {
1237 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1238 struct inode *inode;
1239
1240 spin_lock(&inode_hash_lock);
1241 inode = find_inode(sb, head, test, data);
1242 spin_unlock(&inode_hash_lock);
1243
1244 return inode;
1245 }
1246 EXPORT_SYMBOL(ilookup5_nowait);
1247
1248 /**
1249 * ilookup5 - search for an inode in the inode cache
1250 * @sb: super block of file system to search
1251 * @hashval: hash value (usually inode number) to search for
1252 * @test: callback used for comparisons between inodes
1253 * @data: opaque data pointer to pass to @test
1254 *
1255 * Search for the inode specified by @hashval and @data in the inode cache,
1256 * and if the inode is in the cache, return the inode with an incremented
1257 * reference count. Waits on I_NEW before returning the inode.
1258 * returned with an incremented reference count.
1259 *
1260 * This is a generalized version of ilookup() for file systems where the
1261 * inode number is not sufficient for unique identification of an inode.
1262 *
1263 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1264 */
1265 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1266 int (*test)(struct inode *, void *), void *data)
1267 {
1268 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1269
1270 if (inode)
1271 wait_on_inode(inode);
1272 return inode;
1273 }
1274 EXPORT_SYMBOL(ilookup5);
1275
1276 /**
1277 * ilookup - search for an inode in the inode cache
1278 * @sb: super block of file system to search
1279 * @ino: inode number to search for
1280 *
1281 * Search for the inode @ino in the inode cache, and if the inode is in the
1282 * cache, the inode is returned with an incremented reference count.
1283 */
1284 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1285 {
1286 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1287 struct inode *inode;
1288
1289 spin_lock(&inode_hash_lock);
1290 inode = find_inode_fast(sb, head, ino);
1291 spin_unlock(&inode_hash_lock);
1292
1293 if (inode)
1294 wait_on_inode(inode);
1295 return inode;
1296 }
1297 EXPORT_SYMBOL(ilookup);
1298
1299 int insert_inode_locked(struct inode *inode)
1300 {
1301 struct super_block *sb = inode->i_sb;
1302 ino_t ino = inode->i_ino;
1303 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1304
1305 while (1) {
1306 struct inode *old = NULL;
1307 spin_lock(&inode_hash_lock);
1308 hlist_for_each_entry(old, head, i_hash) {
1309 if (old->i_ino != ino)
1310 continue;
1311 if (old->i_sb != sb)
1312 continue;
1313 spin_lock(&old->i_lock);
1314 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1315 spin_unlock(&old->i_lock);
1316 continue;
1317 }
1318 break;
1319 }
1320 if (likely(!old)) {
1321 spin_lock(&inode->i_lock);
1322 inode->i_state |= I_NEW;
1323 hlist_add_head(&inode->i_hash, head);
1324 spin_unlock(&inode->i_lock);
1325 spin_unlock(&inode_hash_lock);
1326 return 0;
1327 }
1328 __iget(old);
1329 spin_unlock(&old->i_lock);
1330 spin_unlock(&inode_hash_lock);
1331 wait_on_inode(old);
1332 if (unlikely(!inode_unhashed(old))) {
1333 iput(old);
1334 return -EBUSY;
1335 }
1336 iput(old);
1337 }
1338 }
1339 EXPORT_SYMBOL(insert_inode_locked);
1340
1341 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1342 int (*test)(struct inode *, void *), void *data)
1343 {
1344 struct super_block *sb = inode->i_sb;
1345 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1346
1347 while (1) {
1348 struct inode *old = NULL;
1349
1350 spin_lock(&inode_hash_lock);
1351 hlist_for_each_entry(old, head, i_hash) {
1352 if (old->i_sb != sb)
1353 continue;
1354 if (!test(old, data))
1355 continue;
1356 spin_lock(&old->i_lock);
1357 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1358 spin_unlock(&old->i_lock);
1359 continue;
1360 }
1361 break;
1362 }
1363 if (likely(!old)) {
1364 spin_lock(&inode->i_lock);
1365 inode->i_state |= I_NEW;
1366 hlist_add_head(&inode->i_hash, head);
1367 spin_unlock(&inode->i_lock);
1368 spin_unlock(&inode_hash_lock);
1369 return 0;
1370 }
1371 __iget(old);
1372 spin_unlock(&old->i_lock);
1373 spin_unlock(&inode_hash_lock);
1374 wait_on_inode(old);
1375 if (unlikely(!inode_unhashed(old))) {
1376 iput(old);
1377 return -EBUSY;
1378 }
1379 iput(old);
1380 }
1381 }
1382 EXPORT_SYMBOL(insert_inode_locked4);
1383
1384
1385 int generic_delete_inode(struct inode *inode)
1386 {
1387 return 1;
1388 }
1389 EXPORT_SYMBOL(generic_delete_inode);
1390
1391 /*
1392 * Called when we're dropping the last reference
1393 * to an inode.
1394 *
1395 * Call the FS "drop_inode()" function, defaulting to
1396 * the legacy UNIX filesystem behaviour. If it tells
1397 * us to evict inode, do so. Otherwise, retain inode
1398 * in cache if fs is alive, sync and evict if fs is
1399 * shutting down.
1400 */
1401 static void iput_final(struct inode *inode)
1402 {
1403 struct super_block *sb = inode->i_sb;
1404 const struct super_operations *op = inode->i_sb->s_op;
1405 int drop;
1406
1407 WARN_ON(inode->i_state & I_NEW);
1408
1409 if (op->drop_inode)
1410 drop = op->drop_inode(inode);
1411 else
1412 drop = generic_drop_inode(inode);
1413
1414 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1415 inode->i_state |= I_REFERENCED;
1416 inode_add_lru(inode);
1417 spin_unlock(&inode->i_lock);
1418 return;
1419 }
1420
1421 if (!drop) {
1422 inode->i_state |= I_WILL_FREE;
1423 spin_unlock(&inode->i_lock);
1424 write_inode_now(inode, 1);
1425 spin_lock(&inode->i_lock);
1426 WARN_ON(inode->i_state & I_NEW);
1427 inode->i_state &= ~I_WILL_FREE;
1428 }
1429
1430 inode->i_state |= I_FREEING;
1431 if (!list_empty(&inode->i_lru))
1432 inode_lru_list_del(inode);
1433 spin_unlock(&inode->i_lock);
1434
1435 evict(inode);
1436 }
1437
1438 /**
1439 * iput - put an inode
1440 * @inode: inode to put
1441 *
1442 * Puts an inode, dropping its usage count. If the inode use count hits
1443 * zero, the inode is then freed and may also be destroyed.
1444 *
1445 * Consequently, iput() can sleep.
1446 */
1447 void iput(struct inode *inode)
1448 {
1449 if (inode) {
1450 BUG_ON(inode->i_state & I_CLEAR);
1451
1452 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1453 iput_final(inode);
1454 }
1455 }
1456 EXPORT_SYMBOL(iput);
1457
1458 /**
1459 * bmap - find a block number in a file
1460 * @inode: inode of file
1461 * @block: block to find
1462 *
1463 * Returns the block number on the device holding the inode that
1464 * is the disk block number for the block of the file requested.
1465 * That is, asked for block 4 of inode 1 the function will return the
1466 * disk block relative to the disk start that holds that block of the
1467 * file.
1468 */
1469 sector_t bmap(struct inode *inode, sector_t block)
1470 {
1471 sector_t res = 0;
1472 if (inode->i_mapping->a_ops->bmap)
1473 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1474 return res;
1475 }
1476 EXPORT_SYMBOL(bmap);
1477
1478 /*
1479 * With relative atime, only update atime if the previous atime is
1480 * earlier than either the ctime or mtime or if at least a day has
1481 * passed since the last atime update.
1482 */
1483 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1484 struct timespec now)
1485 {
1486
1487 if (!(mnt->mnt_flags & MNT_RELATIME))
1488 return 1;
1489 /*
1490 * Is mtime younger than atime? If yes, update atime:
1491 */
1492 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1493 return 1;
1494 /*
1495 * Is ctime younger than atime? If yes, update atime:
1496 */
1497 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1498 return 1;
1499
1500 /*
1501 * Is the previous atime value older than a day? If yes,
1502 * update atime:
1503 */
1504 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1505 return 1;
1506 /*
1507 * Good, we can skip the atime update:
1508 */
1509 return 0;
1510 }
1511
1512 /*
1513 * This does the actual work of updating an inodes time or version. Must have
1514 * had called mnt_want_write() before calling this.
1515 */
1516 static int update_time(struct inode *inode, struct timespec *time, int flags)
1517 {
1518 if (inode->i_op->update_time)
1519 return inode->i_op->update_time(inode, time, flags);
1520
1521 if (flags & S_ATIME)
1522 inode->i_atime = *time;
1523 if (flags & S_VERSION)
1524 inode_inc_iversion(inode);
1525 if (flags & S_CTIME)
1526 inode->i_ctime = *time;
1527 if (flags & S_MTIME)
1528 inode->i_mtime = *time;
1529 mark_inode_dirty_sync(inode);
1530 return 0;
1531 }
1532
1533 /**
1534 * touch_atime - update the access time
1535 * @path: the &struct path to update
1536 *
1537 * Update the accessed time on an inode and mark it for writeback.
1538 * This function automatically handles read only file systems and media,
1539 * as well as the "noatime" flag and inode specific "noatime" markers.
1540 */
1541 void touch_atime(struct path *path)
1542 {
1543 struct vfsmount *mnt = path->mnt;
1544 struct inode *inode = path->dentry->d_inode;
1545 struct timespec now;
1546
1547 if (inode->i_flags & S_NOATIME)
1548 return;
1549 if (IS_NOATIME(inode))
1550 return;
1551 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1552 return;
1553
1554 if (mnt->mnt_flags & MNT_NOATIME)
1555 return;
1556 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1557 return;
1558
1559 now = current_fs_time(inode->i_sb);
1560
1561 if (!relatime_need_update(mnt, inode, now))
1562 return;
1563
1564 if (timespec_equal(&inode->i_atime, &now))
1565 return;
1566
1567 if (!sb_start_write_trylock(inode->i_sb))
1568 return;
1569
1570 if (__mnt_want_write(mnt))
1571 goto skip_update;
1572 /*
1573 * File systems can error out when updating inodes if they need to
1574 * allocate new space to modify an inode (such is the case for
1575 * Btrfs), but since we touch atime while walking down the path we
1576 * really don't care if we failed to update the atime of the file,
1577 * so just ignore the return value.
1578 * We may also fail on filesystems that have the ability to make parts
1579 * of the fs read only, e.g. subvolumes in Btrfs.
1580 */
1581 update_time(inode, &now, S_ATIME);
1582 __mnt_drop_write(mnt);
1583 skip_update:
1584 sb_end_write(inode->i_sb);
1585 }
1586 EXPORT_SYMBOL(touch_atime);
1587
1588 /*
1589 * The logic we want is
1590 *
1591 * if suid or (sgid and xgrp)
1592 * remove privs
1593 */
1594 int should_remove_suid(struct dentry *dentry)
1595 {
1596 umode_t mode = dentry->d_inode->i_mode;
1597 int kill = 0;
1598
1599 /* suid always must be killed */
1600 if (unlikely(mode & S_ISUID))
1601 kill = ATTR_KILL_SUID;
1602
1603 /*
1604 * sgid without any exec bits is just a mandatory locking mark; leave
1605 * it alone. If some exec bits are set, it's a real sgid; kill it.
1606 */
1607 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1608 kill |= ATTR_KILL_SGID;
1609
1610 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1611 return kill;
1612
1613 return 0;
1614 }
1615 EXPORT_SYMBOL(should_remove_suid);
1616
1617 static int __remove_suid(struct vfsmount *mnt, struct dentry *dentry, int kill)
1618 {
1619 struct iattr newattrs;
1620
1621 newattrs.ia_valid = ATTR_FORCE | kill;
1622 return notify_change2(mnt, dentry, &newattrs);
1623 }
1624
1625 int file_remove_suid(struct file *file)
1626 {
1627 struct dentry *dentry = file->f_path.dentry;
1628 struct inode *inode = dentry->d_inode;
1629 int killsuid;
1630 int killpriv;
1631 int error = 0;
1632
1633 /* Fast path for nothing security related */
1634 if (IS_NOSEC(inode))
1635 return 0;
1636
1637 killsuid = should_remove_suid(dentry);
1638 killpriv = security_inode_need_killpriv(dentry);
1639
1640 if (killpriv < 0)
1641 return killpriv;
1642 if (killpriv)
1643 error = security_inode_killpriv(dentry);
1644 if (!error && killsuid)
1645 error = __remove_suid(file->f_path.mnt, dentry, killsuid);
1646 if (!error)
1647 inode_has_no_xattr(inode);
1648
1649 return error;
1650 }
1651 EXPORT_SYMBOL(file_remove_suid);
1652
1653 /**
1654 * file_update_time - update mtime and ctime time
1655 * @file: file accessed
1656 *
1657 * Update the mtime and ctime members of an inode and mark the inode
1658 * for writeback. Note that this function is meant exclusively for
1659 * usage in the file write path of filesystems, and filesystems may
1660 * choose to explicitly ignore update via this function with the
1661 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1662 * timestamps are handled by the server. This can return an error for
1663 * file systems who need to allocate space in order to update an inode.
1664 */
1665
1666 int file_update_time(struct file *file)
1667 {
1668 struct inode *inode = file_inode(file);
1669 struct timespec now;
1670 int sync_it = 0;
1671 int ret;
1672
1673 /* First try to exhaust all avenues to not sync */
1674 if (IS_NOCMTIME(inode))
1675 return 0;
1676
1677 now = current_fs_time(inode->i_sb);
1678 if (!timespec_equal(&inode->i_mtime, &now))
1679 sync_it = S_MTIME;
1680
1681 if (!timespec_equal(&inode->i_ctime, &now))
1682 sync_it |= S_CTIME;
1683
1684 if (IS_I_VERSION(inode))
1685 sync_it |= S_VERSION;
1686
1687 if (!sync_it)
1688 return 0;
1689
1690 /* Finally allowed to write? Takes lock. */
1691 if (__mnt_want_write_file(file))
1692 return 0;
1693
1694 ret = update_time(inode, &now, sync_it);
1695 __mnt_drop_write_file(file);
1696
1697 return ret;
1698 }
1699 EXPORT_SYMBOL(file_update_time);
1700
1701 int inode_needs_sync(struct inode *inode)
1702 {
1703 if (IS_SYNC(inode))
1704 return 1;
1705 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1706 return 1;
1707 return 0;
1708 }
1709 EXPORT_SYMBOL(inode_needs_sync);
1710
1711 int inode_wait(void *word)
1712 {
1713 schedule();
1714 return 0;
1715 }
1716 EXPORT_SYMBOL(inode_wait);
1717
1718 /*
1719 * If we try to find an inode in the inode hash while it is being
1720 * deleted, we have to wait until the filesystem completes its
1721 * deletion before reporting that it isn't found. This function waits
1722 * until the deletion _might_ have completed. Callers are responsible
1723 * to recheck inode state.
1724 *
1725 * It doesn't matter if I_NEW is not set initially, a call to
1726 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1727 * will DTRT.
1728 */
1729 static void __wait_on_freeing_inode(struct inode *inode)
1730 {
1731 wait_queue_head_t *wq;
1732 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1733 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1734 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1735 spin_unlock(&inode->i_lock);
1736 spin_unlock(&inode_hash_lock);
1737 schedule();
1738 finish_wait(wq, &wait.wait);
1739 spin_lock(&inode_hash_lock);
1740 }
1741
1742 static __initdata unsigned long ihash_entries;
1743 static int __init set_ihash_entries(char *str)
1744 {
1745 if (!str)
1746 return 0;
1747 ihash_entries = simple_strtoul(str, &str, 0);
1748 return 1;
1749 }
1750 __setup("ihash_entries=", set_ihash_entries);
1751
1752 /*
1753 * Initialize the waitqueues and inode hash table.
1754 */
1755 void __init inode_init_early(void)
1756 {
1757 unsigned int loop;
1758
1759 /* If hashes are distributed across NUMA nodes, defer
1760 * hash allocation until vmalloc space is available.
1761 */
1762 if (hashdist)
1763 return;
1764
1765 inode_hashtable =
1766 alloc_large_system_hash("Inode-cache",
1767 sizeof(struct hlist_head),
1768 ihash_entries,
1769 14,
1770 HASH_EARLY,
1771 &i_hash_shift,
1772 &i_hash_mask,
1773 0,
1774 0);
1775
1776 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1777 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1778 }
1779
1780 void __init inode_init(void)
1781 {
1782 unsigned int loop;
1783
1784 /* inode slab cache */
1785 inode_cachep = kmem_cache_create("inode_cache",
1786 sizeof(struct inode),
1787 0,
1788 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1789 SLAB_MEM_SPREAD),
1790 init_once);
1791
1792 /* Hash may have been set up in inode_init_early */
1793 if (!hashdist)
1794 return;
1795
1796 inode_hashtable =
1797 alloc_large_system_hash("Inode-cache",
1798 sizeof(struct hlist_head),
1799 ihash_entries,
1800 14,
1801 0,
1802 &i_hash_shift,
1803 &i_hash_mask,
1804 0,
1805 0);
1806
1807 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1808 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1809 }
1810
1811 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1812 {
1813 inode->i_mode = mode;
1814 if (S_ISCHR(mode)) {
1815 inode->i_fop = &def_chr_fops;
1816 inode->i_rdev = rdev;
1817 } else if (S_ISBLK(mode)) {
1818 inode->i_fop = &def_blk_fops;
1819 inode->i_rdev = rdev;
1820 } else if (S_ISFIFO(mode))
1821 inode->i_fop = &pipefifo_fops;
1822 else if (S_ISSOCK(mode))
1823 inode->i_fop = &bad_sock_fops;
1824 else
1825 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1826 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1827 inode->i_ino);
1828 }
1829 EXPORT_SYMBOL(init_special_inode);
1830
1831 /**
1832 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1833 * @inode: New inode
1834 * @dir: Directory inode
1835 * @mode: mode of the new inode
1836 */
1837 void inode_init_owner(struct inode *inode, const struct inode *dir,
1838 umode_t mode)
1839 {
1840 inode->i_uid = current_fsuid();
1841 if (dir && dir->i_mode & S_ISGID) {
1842 inode->i_gid = dir->i_gid;
1843 if (S_ISDIR(mode))
1844 mode |= S_ISGID;
1845 } else
1846 inode->i_gid = current_fsgid();
1847 inode->i_mode = mode;
1848 }
1849 EXPORT_SYMBOL(inode_init_owner);
1850
1851 /**
1852 * inode_owner_or_capable - check current task permissions to inode
1853 * @inode: inode being checked
1854 *
1855 * Return true if current either has CAP_FOWNER in a namespace with the
1856 * inode owner uid mapped, or owns the file.
1857 */
1858 bool inode_owner_or_capable(const struct inode *inode)
1859 {
1860 struct user_namespace *ns;
1861
1862 if (uid_eq(current_fsuid(), inode->i_uid))
1863 return true;
1864
1865 ns = current_user_ns();
1866 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1867 return true;
1868 return false;
1869 }
1870 EXPORT_SYMBOL(inode_owner_or_capable);
1871
1872 /*
1873 * Direct i/o helper functions
1874 */
1875 static void __inode_dio_wait(struct inode *inode)
1876 {
1877 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1878 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1879
1880 do {
1881 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1882 if (atomic_read(&inode->i_dio_count))
1883 schedule();
1884 } while (atomic_read(&inode->i_dio_count));
1885 finish_wait(wq, &q.wait);
1886 }
1887
1888 /**
1889 * inode_dio_wait - wait for outstanding DIO requests to finish
1890 * @inode: inode to wait for
1891 *
1892 * Waits for all pending direct I/O requests to finish so that we can
1893 * proceed with a truncate or equivalent operation.
1894 *
1895 * Must be called under a lock that serializes taking new references
1896 * to i_dio_count, usually by inode->i_mutex.
1897 */
1898 void inode_dio_wait(struct inode *inode)
1899 {
1900 if (atomic_read(&inode->i_dio_count))
1901 __inode_dio_wait(inode);
1902 }
1903 EXPORT_SYMBOL(inode_dio_wait);
1904
1905 /*
1906 * inode_dio_done - signal finish of a direct I/O requests
1907 * @inode: inode the direct I/O happens on
1908 *
1909 * This is called once we've finished processing a direct I/O request,
1910 * and is used to wake up callers waiting for direct I/O to be quiesced.
1911 */
1912 void inode_dio_done(struct inode *inode)
1913 {
1914 if (atomic_dec_and_test(&inode->i_dio_count))
1915 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1916 }
1917 EXPORT_SYMBOL(inode_dio_done);