Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 #include <linux/cred.h>
29 #include "internal.h"
30
31 /*
32 * inode locking rules.
33 *
34 * inode->i_lock protects:
35 * inode->i_state, inode->i_hash, __iget()
36 * inode_lru_lock protects:
37 * inode_lru, inode->i_lru
38 * inode_sb_list_lock protects:
39 * sb->s_inodes, inode->i_sb_list
40 * inode_wb_list_lock protects:
41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42 * inode_hash_lock protects:
43 * inode_hashtable, inode->i_hash
44 *
45 * Lock ordering:
46 *
47 * inode_sb_list_lock
48 * inode->i_lock
49 * inode_lru_lock
50 *
51 * inode_wb_list_lock
52 * inode->i_lock
53 *
54 * inode_hash_lock
55 * inode_sb_list_lock
56 * inode->i_lock
57 *
58 * iunique_lock
59 * inode_hash_lock
60 */
61
62 /*
63 * This is needed for the following functions:
64 * - inode_has_buffers
65 * - invalidate_bdev
66 *
67 * FIXME: remove all knowledge of the buffer layer from this file
68 */
69 #include <linux/buffer_head.h>
70
71 /*
72 * New inode.c implementation.
73 *
74 * This implementation has the basic premise of trying
75 * to be extremely low-overhead and SMP-safe, yet be
76 * simple enough to be "obviously correct".
77 *
78 * Famous last words.
79 */
80
81 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
82
83 /* #define INODE_PARANOIA 1 */
84 /* #define INODE_DEBUG 1 */
85
86 /*
87 * Inode lookup is no longer as critical as it used to be:
88 * most of the lookups are going to be through the dcache.
89 */
90 #define I_HASHBITS i_hash_shift
91 #define I_HASHMASK i_hash_mask
92
93 static unsigned int i_hash_mask __read_mostly;
94 static unsigned int i_hash_shift __read_mostly;
95 static struct hlist_head *inode_hashtable __read_mostly;
96 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
97
98 /*
99 * Each inode can be on two separate lists. One is
100 * the hash list of the inode, used for lookups. The
101 * other linked list is the "type" list:
102 * "in_use" - valid inode, i_count > 0, i_nlink > 0
103 * "dirty" - as "in_use" but also dirty
104 * "unused" - valid inode, i_count = 0
105 *
106 * A "dirty" list is maintained for each super block,
107 * allowing for low-overhead inode sync() operations.
108 */
109
110 static LIST_HEAD(inode_lru);
111 static DEFINE_SPINLOCK(inode_lru_lock);
112
113 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
114 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
115
116 /*
117 * iprune_sem provides exclusion between the icache shrinking and the
118 * umount path.
119 *
120 * We don't actually need it to protect anything in the umount path,
121 * but only need to cycle through it to make sure any inode that
122 * prune_icache took off the LRU list has been fully torn down by the
123 * time we are past evict_inodes.
124 */
125 static DECLARE_RWSEM(iprune_sem);
126
127 /*
128 * Statistics gathering..
129 */
130 struct inodes_stat_t inodes_stat;
131
132 static DEFINE_PER_CPU(unsigned int, nr_inodes);
133
134 static struct kmem_cache *inode_cachep __read_mostly;
135
136 static int get_nr_inodes(void)
137 {
138 int i;
139 int sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_inodes, i);
142 return sum < 0 ? 0 : sum;
143 }
144
145 static inline int get_nr_inodes_unused(void)
146 {
147 return inodes_stat.nr_unused;
148 }
149
150 int get_nr_dirty_inodes(void)
151 {
152 /* not actually dirty inodes, but a wild approximation */
153 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
154 return nr_dirty > 0 ? nr_dirty : 0;
155 }
156
157 /*
158 * Handle nr_inode sysctl
159 */
160 #ifdef CONFIG_SYSCTL
161 int proc_nr_inodes(ctl_table *table, int write,
162 void __user *buffer, size_t *lenp, loff_t *ppos)
163 {
164 inodes_stat.nr_inodes = get_nr_inodes();
165 return proc_dointvec(table, write, buffer, lenp, ppos);
166 }
167 #endif
168
169 /**
170 * inode_init_always - perform inode structure intialisation
171 * @sb: superblock inode belongs to
172 * @inode: inode to initialise
173 *
174 * These are initializations that need to be done on every inode
175 * allocation as the fields are not initialised by slab allocation.
176 */
177 int inode_init_always(struct super_block *sb, struct inode *inode)
178 {
179 static const struct address_space_operations empty_aops;
180 static const struct inode_operations empty_iops;
181 static const struct file_operations empty_fops;
182 struct address_space *const mapping = &inode->i_data;
183
184 inode->i_sb = sb;
185 inode->i_blkbits = sb->s_blocksize_bits;
186 inode->i_flags = 0;
187 atomic_set(&inode->i_count, 1);
188 inode->i_op = &empty_iops;
189 inode->i_fop = &empty_fops;
190 inode->i_nlink = 1;
191 inode->i_uid = 0;
192 inode->i_gid = 0;
193 atomic_set(&inode->i_writecount, 0);
194 inode->i_size = 0;
195 inode->i_blocks = 0;
196 inode->i_bytes = 0;
197 inode->i_generation = 0;
198 #ifdef CONFIG_QUOTA
199 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
200 #endif
201 inode->i_pipe = NULL;
202 inode->i_bdev = NULL;
203 inode->i_cdev = NULL;
204 inode->i_rdev = 0;
205 inode->dirtied_when = 0;
206
207 if (security_inode_alloc(inode))
208 goto out;
209 spin_lock_init(&inode->i_lock);
210 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
211
212 mutex_init(&inode->i_mutex);
213 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
214
215 init_rwsem(&inode->i_alloc_sem);
216 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
217
218 mapping->a_ops = &empty_aops;
219 mapping->host = inode;
220 mapping->flags = 0;
221 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
222 mapping->assoc_mapping = NULL;
223 mapping->backing_dev_info = &default_backing_dev_info;
224 mapping->writeback_index = 0;
225
226 /*
227 * If the block_device provides a backing_dev_info for client
228 * inodes then use that. Otherwise the inode share the bdev's
229 * backing_dev_info.
230 */
231 if (sb->s_bdev) {
232 struct backing_dev_info *bdi;
233
234 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
235 mapping->backing_dev_info = bdi;
236 }
237 inode->i_private = NULL;
238 inode->i_mapping = mapping;
239 #ifdef CONFIG_FS_POSIX_ACL
240 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
241 #endif
242
243 #ifdef CONFIG_FSNOTIFY
244 inode->i_fsnotify_mask = 0;
245 #endif
246
247 this_cpu_inc(nr_inodes);
248
249 return 0;
250 out:
251 return -ENOMEM;
252 }
253 EXPORT_SYMBOL(inode_init_always);
254
255 static struct inode *alloc_inode(struct super_block *sb)
256 {
257 struct inode *inode;
258
259 if (sb->s_op->alloc_inode)
260 inode = sb->s_op->alloc_inode(sb);
261 else
262 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
263
264 if (!inode)
265 return NULL;
266
267 if (unlikely(inode_init_always(sb, inode))) {
268 if (inode->i_sb->s_op->destroy_inode)
269 inode->i_sb->s_op->destroy_inode(inode);
270 else
271 kmem_cache_free(inode_cachep, inode);
272 return NULL;
273 }
274
275 return inode;
276 }
277
278 void free_inode_nonrcu(struct inode *inode)
279 {
280 kmem_cache_free(inode_cachep, inode);
281 }
282 EXPORT_SYMBOL(free_inode_nonrcu);
283
284 void __destroy_inode(struct inode *inode)
285 {
286 BUG_ON(inode_has_buffers(inode));
287 security_inode_free(inode);
288 fsnotify_inode_delete(inode);
289 #ifdef CONFIG_FS_POSIX_ACL
290 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
291 posix_acl_release(inode->i_acl);
292 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
293 posix_acl_release(inode->i_default_acl);
294 #endif
295 this_cpu_dec(nr_inodes);
296 }
297 EXPORT_SYMBOL(__destroy_inode);
298
299 static void i_callback(struct rcu_head *head)
300 {
301 struct inode *inode = container_of(head, struct inode, i_rcu);
302 INIT_LIST_HEAD(&inode->i_dentry);
303 kmem_cache_free(inode_cachep, inode);
304 }
305
306 static void destroy_inode(struct inode *inode)
307 {
308 BUG_ON(!list_empty(&inode->i_lru));
309 __destroy_inode(inode);
310 if (inode->i_sb->s_op->destroy_inode)
311 inode->i_sb->s_op->destroy_inode(inode);
312 else
313 call_rcu(&inode->i_rcu, i_callback);
314 }
315
316 void address_space_init_once(struct address_space *mapping)
317 {
318 memset(mapping, 0, sizeof(*mapping));
319 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
320 spin_lock_init(&mapping->tree_lock);
321 spin_lock_init(&mapping->i_mmap_lock);
322 INIT_LIST_HEAD(&mapping->private_list);
323 spin_lock_init(&mapping->private_lock);
324 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
325 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
326 mutex_init(&mapping->unmap_mutex);
327 }
328 EXPORT_SYMBOL(address_space_init_once);
329
330 /*
331 * These are initializations that only need to be done
332 * once, because the fields are idempotent across use
333 * of the inode, so let the slab aware of that.
334 */
335 void inode_init_once(struct inode *inode)
336 {
337 memset(inode, 0, sizeof(*inode));
338 INIT_HLIST_NODE(&inode->i_hash);
339 INIT_LIST_HEAD(&inode->i_dentry);
340 INIT_LIST_HEAD(&inode->i_devices);
341 INIT_LIST_HEAD(&inode->i_wb_list);
342 INIT_LIST_HEAD(&inode->i_lru);
343 address_space_init_once(&inode->i_data);
344 i_size_ordered_init(inode);
345 #ifdef CONFIG_FSNOTIFY
346 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
347 #endif
348 }
349 EXPORT_SYMBOL(inode_init_once);
350
351 static void init_once(void *foo)
352 {
353 struct inode *inode = (struct inode *) foo;
354
355 inode_init_once(inode);
356 }
357
358 /*
359 * inode->i_lock must be held
360 */
361 void __iget(struct inode *inode)
362 {
363 atomic_inc(&inode->i_count);
364 }
365
366 /*
367 * get additional reference to inode; caller must already hold one.
368 */
369 void ihold(struct inode *inode)
370 {
371 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
372 }
373 EXPORT_SYMBOL(ihold);
374
375 static void inode_lru_list_add(struct inode *inode)
376 {
377 spin_lock(&inode_lru_lock);
378 if (list_empty(&inode->i_lru)) {
379 list_add(&inode->i_lru, &inode_lru);
380 inodes_stat.nr_unused++;
381 }
382 spin_unlock(&inode_lru_lock);
383 }
384
385 static void inode_lru_list_del(struct inode *inode)
386 {
387 spin_lock(&inode_lru_lock);
388 if (!list_empty(&inode->i_lru)) {
389 list_del_init(&inode->i_lru);
390 inodes_stat.nr_unused--;
391 }
392 spin_unlock(&inode_lru_lock);
393 }
394
395 /**
396 * inode_sb_list_add - add inode to the superblock list of inodes
397 * @inode: inode to add
398 */
399 void inode_sb_list_add(struct inode *inode)
400 {
401 spin_lock(&inode_sb_list_lock);
402 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
403 spin_unlock(&inode_sb_list_lock);
404 }
405 EXPORT_SYMBOL_GPL(inode_sb_list_add);
406
407 static inline void inode_sb_list_del(struct inode *inode)
408 {
409 spin_lock(&inode_sb_list_lock);
410 list_del_init(&inode->i_sb_list);
411 spin_unlock(&inode_sb_list_lock);
412 }
413
414 static unsigned long hash(struct super_block *sb, unsigned long hashval)
415 {
416 unsigned long tmp;
417
418 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
419 L1_CACHE_BYTES;
420 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
421 return tmp & I_HASHMASK;
422 }
423
424 /**
425 * __insert_inode_hash - hash an inode
426 * @inode: unhashed inode
427 * @hashval: unsigned long value used to locate this object in the
428 * inode_hashtable.
429 *
430 * Add an inode to the inode hash for this superblock.
431 */
432 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
433 {
434 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
435
436 spin_lock(&inode_hash_lock);
437 spin_lock(&inode->i_lock);
438 hlist_add_head(&inode->i_hash, b);
439 spin_unlock(&inode->i_lock);
440 spin_unlock(&inode_hash_lock);
441 }
442 EXPORT_SYMBOL(__insert_inode_hash);
443
444 /**
445 * remove_inode_hash - remove an inode from the hash
446 * @inode: inode to unhash
447 *
448 * Remove an inode from the superblock.
449 */
450 void remove_inode_hash(struct inode *inode)
451 {
452 spin_lock(&inode_hash_lock);
453 spin_lock(&inode->i_lock);
454 hlist_del_init(&inode->i_hash);
455 spin_unlock(&inode->i_lock);
456 spin_unlock(&inode_hash_lock);
457 }
458 EXPORT_SYMBOL(remove_inode_hash);
459
460 void end_writeback(struct inode *inode)
461 {
462 might_sleep();
463 BUG_ON(inode->i_data.nrpages);
464 BUG_ON(!list_empty(&inode->i_data.private_list));
465 BUG_ON(!(inode->i_state & I_FREEING));
466 BUG_ON(inode->i_state & I_CLEAR);
467 inode_sync_wait(inode);
468 /* don't need i_lock here, no concurrent mods to i_state */
469 inode->i_state = I_FREEING | I_CLEAR;
470 }
471 EXPORT_SYMBOL(end_writeback);
472
473 /*
474 * Free the inode passed in, removing it from the lists it is still connected
475 * to. We remove any pages still attached to the inode and wait for any IO that
476 * is still in progress before finally destroying the inode.
477 *
478 * An inode must already be marked I_FREEING so that we avoid the inode being
479 * moved back onto lists if we race with other code that manipulates the lists
480 * (e.g. writeback_single_inode). The caller is responsible for setting this.
481 *
482 * An inode must already be removed from the LRU list before being evicted from
483 * the cache. This should occur atomically with setting the I_FREEING state
484 * flag, so no inodes here should ever be on the LRU when being evicted.
485 */
486 static void evict(struct inode *inode)
487 {
488 const struct super_operations *op = inode->i_sb->s_op;
489
490 BUG_ON(!(inode->i_state & I_FREEING));
491 BUG_ON(!list_empty(&inode->i_lru));
492
493 inode_wb_list_del(inode);
494 inode_sb_list_del(inode);
495
496 if (op->evict_inode) {
497 op->evict_inode(inode);
498 } else {
499 if (inode->i_data.nrpages)
500 truncate_inode_pages(&inode->i_data, 0);
501 end_writeback(inode);
502 }
503 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
504 bd_forget(inode);
505 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
506 cd_forget(inode);
507
508 remove_inode_hash(inode);
509
510 spin_lock(&inode->i_lock);
511 wake_up_bit(&inode->i_state, __I_NEW);
512 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
513 spin_unlock(&inode->i_lock);
514
515 destroy_inode(inode);
516 }
517
518 /*
519 * dispose_list - dispose of the contents of a local list
520 * @head: the head of the list to free
521 *
522 * Dispose-list gets a local list with local inodes in it, so it doesn't
523 * need to worry about list corruption and SMP locks.
524 */
525 static void dispose_list(struct list_head *head)
526 {
527 while (!list_empty(head)) {
528 struct inode *inode;
529
530 inode = list_first_entry(head, struct inode, i_lru);
531 list_del_init(&inode->i_lru);
532
533 evict(inode);
534 }
535 }
536
537 /**
538 * evict_inodes - evict all evictable inodes for a superblock
539 * @sb: superblock to operate on
540 *
541 * Make sure that no inodes with zero refcount are retained. This is
542 * called by superblock shutdown after having MS_ACTIVE flag removed,
543 * so any inode reaching zero refcount during or after that call will
544 * be immediately evicted.
545 */
546 void evict_inodes(struct super_block *sb)
547 {
548 struct inode *inode, *next;
549 LIST_HEAD(dispose);
550
551 spin_lock(&inode_sb_list_lock);
552 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
553 if (atomic_read(&inode->i_count))
554 continue;
555
556 spin_lock(&inode->i_lock);
557 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
558 spin_unlock(&inode->i_lock);
559 continue;
560 }
561
562 inode->i_state |= I_FREEING;
563 inode_lru_list_del(inode);
564 spin_unlock(&inode->i_lock);
565 list_add(&inode->i_lru, &dispose);
566 }
567 spin_unlock(&inode_sb_list_lock);
568
569 dispose_list(&dispose);
570
571 /*
572 * Cycle through iprune_sem to make sure any inode that prune_icache
573 * moved off the list before we took the lock has been fully torn
574 * down.
575 */
576 down_write(&iprune_sem);
577 up_write(&iprune_sem);
578 }
579
580 /**
581 * invalidate_inodes - attempt to free all inodes on a superblock
582 * @sb: superblock to operate on
583 * @kill_dirty: flag to guide handling of dirty inodes
584 *
585 * Attempts to free all inodes for a given superblock. If there were any
586 * busy inodes return a non-zero value, else zero.
587 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
588 * them as busy.
589 */
590 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
591 {
592 int busy = 0;
593 struct inode *inode, *next;
594 LIST_HEAD(dispose);
595
596 spin_lock(&inode_sb_list_lock);
597 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
598 spin_lock(&inode->i_lock);
599 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
600 spin_unlock(&inode->i_lock);
601 continue;
602 }
603 if (inode->i_state & I_DIRTY && !kill_dirty) {
604 spin_unlock(&inode->i_lock);
605 busy = 1;
606 continue;
607 }
608 if (atomic_read(&inode->i_count)) {
609 spin_unlock(&inode->i_lock);
610 busy = 1;
611 continue;
612 }
613
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
618 }
619 spin_unlock(&inode_sb_list_lock);
620
621 dispose_list(&dispose);
622
623 return busy;
624 }
625
626 static int can_unuse(struct inode *inode)
627 {
628 if (inode->i_state & ~I_REFERENCED)
629 return 0;
630 if (inode_has_buffers(inode))
631 return 0;
632 if (atomic_read(&inode->i_count))
633 return 0;
634 if (inode->i_data.nrpages)
635 return 0;
636 return 1;
637 }
638
639 /*
640 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
641 * temporary list and then are freed outside inode_lru_lock by dispose_list().
642 *
643 * Any inodes which are pinned purely because of attached pagecache have their
644 * pagecache removed. If the inode has metadata buffers attached to
645 * mapping->private_list then try to remove them.
646 *
647 * If the inode has the I_REFERENCED flag set, then it means that it has been
648 * used recently - the flag is set in iput_final(). When we encounter such an
649 * inode, clear the flag and move it to the back of the LRU so it gets another
650 * pass through the LRU before it gets reclaimed. This is necessary because of
651 * the fact we are doing lazy LRU updates to minimise lock contention so the
652 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
653 * with this flag set because they are the inodes that are out of order.
654 */
655 static void prune_icache(int nr_to_scan)
656 {
657 LIST_HEAD(freeable);
658 int nr_scanned;
659 unsigned long reap = 0;
660
661 down_read(&iprune_sem);
662 spin_lock(&inode_lru_lock);
663 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
664 struct inode *inode;
665
666 if (list_empty(&inode_lru))
667 break;
668
669 inode = list_entry(inode_lru.prev, struct inode, i_lru);
670
671 /*
672 * we are inverting the inode_lru_lock/inode->i_lock here,
673 * so use a trylock. If we fail to get the lock, just move the
674 * inode to the back of the list so we don't spin on it.
675 */
676 if (!spin_trylock(&inode->i_lock)) {
677 list_move(&inode->i_lru, &inode_lru);
678 continue;
679 }
680
681 /*
682 * Referenced or dirty inodes are still in use. Give them
683 * another pass through the LRU as we canot reclaim them now.
684 */
685 if (atomic_read(&inode->i_count) ||
686 (inode->i_state & ~I_REFERENCED)) {
687 list_del_init(&inode->i_lru);
688 spin_unlock(&inode->i_lock);
689 inodes_stat.nr_unused--;
690 continue;
691 }
692
693 /* recently referenced inodes get one more pass */
694 if (inode->i_state & I_REFERENCED) {
695 inode->i_state &= ~I_REFERENCED;
696 list_move(&inode->i_lru, &inode_lru);
697 spin_unlock(&inode->i_lock);
698 continue;
699 }
700 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
701 __iget(inode);
702 spin_unlock(&inode->i_lock);
703 spin_unlock(&inode_lru_lock);
704 if (remove_inode_buffers(inode))
705 reap += invalidate_mapping_pages(&inode->i_data,
706 0, -1);
707 iput(inode);
708 spin_lock(&inode_lru_lock);
709
710 if (inode != list_entry(inode_lru.next,
711 struct inode, i_lru))
712 continue; /* wrong inode or list_empty */
713 /* avoid lock inversions with trylock */
714 if (!spin_trylock(&inode->i_lock))
715 continue;
716 if (!can_unuse(inode)) {
717 spin_unlock(&inode->i_lock);
718 continue;
719 }
720 }
721 WARN_ON(inode->i_state & I_NEW);
722 inode->i_state |= I_FREEING;
723 spin_unlock(&inode->i_lock);
724
725 list_move(&inode->i_lru, &freeable);
726 inodes_stat.nr_unused--;
727 }
728 if (current_is_kswapd())
729 __count_vm_events(KSWAPD_INODESTEAL, reap);
730 else
731 __count_vm_events(PGINODESTEAL, reap);
732 spin_unlock(&inode_lru_lock);
733
734 dispose_list(&freeable);
735 up_read(&iprune_sem);
736 }
737
738 /*
739 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
740 * "unused" means that no dentries are referring to the inodes: the files are
741 * not open and the dcache references to those inodes have already been
742 * reclaimed.
743 *
744 * This function is passed the number of inodes to scan, and it returns the
745 * total number of remaining possibly-reclaimable inodes.
746 */
747 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
748 {
749 if (nr) {
750 /*
751 * Nasty deadlock avoidance. We may hold various FS locks,
752 * and we don't want to recurse into the FS that called us
753 * in clear_inode() and friends..
754 */
755 if (!(gfp_mask & __GFP_FS))
756 return -1;
757 prune_icache(nr);
758 }
759 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
760 }
761
762 static struct shrinker icache_shrinker = {
763 .shrink = shrink_icache_memory,
764 .seeks = DEFAULT_SEEKS,
765 };
766
767 static void __wait_on_freeing_inode(struct inode *inode);
768 /*
769 * Called with the inode lock held.
770 */
771 static struct inode *find_inode(struct super_block *sb,
772 struct hlist_head *head,
773 int (*test)(struct inode *, void *),
774 void *data)
775 {
776 struct hlist_node *node;
777 struct inode *inode = NULL;
778
779 repeat:
780 hlist_for_each_entry(inode, node, head, i_hash) {
781 spin_lock(&inode->i_lock);
782 if (inode->i_sb != sb) {
783 spin_unlock(&inode->i_lock);
784 continue;
785 }
786 if (!test(inode, data)) {
787 spin_unlock(&inode->i_lock);
788 continue;
789 }
790 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
791 __wait_on_freeing_inode(inode);
792 goto repeat;
793 }
794 __iget(inode);
795 spin_unlock(&inode->i_lock);
796 return inode;
797 }
798 return NULL;
799 }
800
801 /*
802 * find_inode_fast is the fast path version of find_inode, see the comment at
803 * iget_locked for details.
804 */
805 static struct inode *find_inode_fast(struct super_block *sb,
806 struct hlist_head *head, unsigned long ino)
807 {
808 struct hlist_node *node;
809 struct inode *inode = NULL;
810
811 repeat:
812 hlist_for_each_entry(inode, node, head, i_hash) {
813 spin_lock(&inode->i_lock);
814 if (inode->i_ino != ino) {
815 spin_unlock(&inode->i_lock);
816 continue;
817 }
818 if (inode->i_sb != sb) {
819 spin_unlock(&inode->i_lock);
820 continue;
821 }
822 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
823 __wait_on_freeing_inode(inode);
824 goto repeat;
825 }
826 __iget(inode);
827 spin_unlock(&inode->i_lock);
828 return inode;
829 }
830 return NULL;
831 }
832
833 /*
834 * Each cpu owns a range of LAST_INO_BATCH numbers.
835 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
836 * to renew the exhausted range.
837 *
838 * This does not significantly increase overflow rate because every CPU can
839 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
840 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
841 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
842 * overflow rate by 2x, which does not seem too significant.
843 *
844 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
845 * error if st_ino won't fit in target struct field. Use 32bit counter
846 * here to attempt to avoid that.
847 */
848 #define LAST_INO_BATCH 1024
849 static DEFINE_PER_CPU(unsigned int, last_ino);
850
851 unsigned int get_next_ino(void)
852 {
853 unsigned int *p = &get_cpu_var(last_ino);
854 unsigned int res = *p;
855
856 #ifdef CONFIG_SMP
857 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
858 static atomic_t shared_last_ino;
859 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
860
861 res = next - LAST_INO_BATCH;
862 }
863 #endif
864
865 *p = ++res;
866 put_cpu_var(last_ino);
867 return res;
868 }
869 EXPORT_SYMBOL(get_next_ino);
870
871 /**
872 * new_inode - obtain an inode
873 * @sb: superblock
874 *
875 * Allocates a new inode for given superblock. The default gfp_mask
876 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
877 * If HIGHMEM pages are unsuitable or it is known that pages allocated
878 * for the page cache are not reclaimable or migratable,
879 * mapping_set_gfp_mask() must be called with suitable flags on the
880 * newly created inode's mapping
881 *
882 */
883 struct inode *new_inode(struct super_block *sb)
884 {
885 struct inode *inode;
886
887 spin_lock_prefetch(&inode_sb_list_lock);
888
889 inode = alloc_inode(sb);
890 if (inode) {
891 spin_lock(&inode->i_lock);
892 inode->i_state = 0;
893 spin_unlock(&inode->i_lock);
894 inode_sb_list_add(inode);
895 }
896 return inode;
897 }
898 EXPORT_SYMBOL(new_inode);
899
900 /**
901 * unlock_new_inode - clear the I_NEW state and wake up any waiters
902 * @inode: new inode to unlock
903 *
904 * Called when the inode is fully initialised to clear the new state of the
905 * inode and wake up anyone waiting for the inode to finish initialisation.
906 */
907 void unlock_new_inode(struct inode *inode)
908 {
909 #ifdef CONFIG_DEBUG_LOCK_ALLOC
910 if (S_ISDIR(inode->i_mode)) {
911 struct file_system_type *type = inode->i_sb->s_type;
912
913 /* Set new key only if filesystem hasn't already changed it */
914 if (!lockdep_match_class(&inode->i_mutex,
915 &type->i_mutex_key)) {
916 /*
917 * ensure nobody is actually holding i_mutex
918 */
919 mutex_destroy(&inode->i_mutex);
920 mutex_init(&inode->i_mutex);
921 lockdep_set_class(&inode->i_mutex,
922 &type->i_mutex_dir_key);
923 }
924 }
925 #endif
926 spin_lock(&inode->i_lock);
927 WARN_ON(!(inode->i_state & I_NEW));
928 inode->i_state &= ~I_NEW;
929 wake_up_bit(&inode->i_state, __I_NEW);
930 spin_unlock(&inode->i_lock);
931 }
932 EXPORT_SYMBOL(unlock_new_inode);
933
934 /**
935 * iget5_locked - obtain an inode from a mounted file system
936 * @sb: super block of file system
937 * @hashval: hash value (usually inode number) to get
938 * @test: callback used for comparisons between inodes
939 * @set: callback used to initialize a new struct inode
940 * @data: opaque data pointer to pass to @test and @set
941 *
942 * Search for the inode specified by @hashval and @data in the inode cache,
943 * and if present it is return it with an increased reference count. This is
944 * a generalized version of iget_locked() for file systems where the inode
945 * number is not sufficient for unique identification of an inode.
946 *
947 * If the inode is not in cache, allocate a new inode and return it locked,
948 * hashed, and with the I_NEW flag set. The file system gets to fill it in
949 * before unlocking it via unlock_new_inode().
950 *
951 * Note both @test and @set are called with the inode_hash_lock held, so can't
952 * sleep.
953 */
954 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
955 int (*test)(struct inode *, void *),
956 int (*set)(struct inode *, void *), void *data)
957 {
958 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
959 struct inode *inode;
960
961 spin_lock(&inode_hash_lock);
962 inode = find_inode(sb, head, test, data);
963 spin_unlock(&inode_hash_lock);
964
965 if (inode) {
966 wait_on_inode(inode);
967 return inode;
968 }
969
970 inode = alloc_inode(sb);
971 if (inode) {
972 struct inode *old;
973
974 spin_lock(&inode_hash_lock);
975 /* We released the lock, so.. */
976 old = find_inode(sb, head, test, data);
977 if (!old) {
978 if (set(inode, data))
979 goto set_failed;
980
981 spin_lock(&inode->i_lock);
982 inode->i_state = I_NEW;
983 hlist_add_head(&inode->i_hash, head);
984 spin_unlock(&inode->i_lock);
985 inode_sb_list_add(inode);
986 spin_unlock(&inode_hash_lock);
987
988 /* Return the locked inode with I_NEW set, the
989 * caller is responsible for filling in the contents
990 */
991 return inode;
992 }
993
994 /*
995 * Uhhuh, somebody else created the same inode under
996 * us. Use the old inode instead of the one we just
997 * allocated.
998 */
999 spin_unlock(&inode_hash_lock);
1000 destroy_inode(inode);
1001 inode = old;
1002 wait_on_inode(inode);
1003 }
1004 return inode;
1005
1006 set_failed:
1007 spin_unlock(&inode_hash_lock);
1008 destroy_inode(inode);
1009 return NULL;
1010 }
1011 EXPORT_SYMBOL(iget5_locked);
1012
1013 /**
1014 * iget_locked - obtain an inode from a mounted file system
1015 * @sb: super block of file system
1016 * @ino: inode number to get
1017 *
1018 * Search for the inode specified by @ino in the inode cache and if present
1019 * return it with an increased reference count. This is for file systems
1020 * where the inode number is sufficient for unique identification of an inode.
1021 *
1022 * If the inode is not in cache, allocate a new inode and return it locked,
1023 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1024 * before unlocking it via unlock_new_inode().
1025 */
1026 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1027 {
1028 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1029 struct inode *inode;
1030
1031 spin_lock(&inode_hash_lock);
1032 inode = find_inode_fast(sb, head, ino);
1033 spin_unlock(&inode_hash_lock);
1034 if (inode) {
1035 wait_on_inode(inode);
1036 return inode;
1037 }
1038
1039 inode = alloc_inode(sb);
1040 if (inode) {
1041 struct inode *old;
1042
1043 spin_lock(&inode_hash_lock);
1044 /* We released the lock, so.. */
1045 old = find_inode_fast(sb, head, ino);
1046 if (!old) {
1047 inode->i_ino = ino;
1048 spin_lock(&inode->i_lock);
1049 inode->i_state = I_NEW;
1050 hlist_add_head(&inode->i_hash, head);
1051 spin_unlock(&inode->i_lock);
1052 inode_sb_list_add(inode);
1053 spin_unlock(&inode_hash_lock);
1054
1055 /* Return the locked inode with I_NEW set, the
1056 * caller is responsible for filling in the contents
1057 */
1058 return inode;
1059 }
1060
1061 /*
1062 * Uhhuh, somebody else created the same inode under
1063 * us. Use the old inode instead of the one we just
1064 * allocated.
1065 */
1066 spin_unlock(&inode_hash_lock);
1067 destroy_inode(inode);
1068 inode = old;
1069 wait_on_inode(inode);
1070 }
1071 return inode;
1072 }
1073 EXPORT_SYMBOL(iget_locked);
1074
1075 /*
1076 * search the inode cache for a matching inode number.
1077 * If we find one, then the inode number we are trying to
1078 * allocate is not unique and so we should not use it.
1079 *
1080 * Returns 1 if the inode number is unique, 0 if it is not.
1081 */
1082 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1083 {
1084 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1085 struct hlist_node *node;
1086 struct inode *inode;
1087
1088 spin_lock(&inode_hash_lock);
1089 hlist_for_each_entry(inode, node, b, i_hash) {
1090 if (inode->i_ino == ino && inode->i_sb == sb) {
1091 spin_unlock(&inode_hash_lock);
1092 return 0;
1093 }
1094 }
1095 spin_unlock(&inode_hash_lock);
1096
1097 return 1;
1098 }
1099
1100 /**
1101 * iunique - get a unique inode number
1102 * @sb: superblock
1103 * @max_reserved: highest reserved inode number
1104 *
1105 * Obtain an inode number that is unique on the system for a given
1106 * superblock. This is used by file systems that have no natural
1107 * permanent inode numbering system. An inode number is returned that
1108 * is higher than the reserved limit but unique.
1109 *
1110 * BUGS:
1111 * With a large number of inodes live on the file system this function
1112 * currently becomes quite slow.
1113 */
1114 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1115 {
1116 /*
1117 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1118 * error if st_ino won't fit in target struct field. Use 32bit counter
1119 * here to attempt to avoid that.
1120 */
1121 static DEFINE_SPINLOCK(iunique_lock);
1122 static unsigned int counter;
1123 ino_t res;
1124
1125 spin_lock(&iunique_lock);
1126 do {
1127 if (counter <= max_reserved)
1128 counter = max_reserved + 1;
1129 res = counter++;
1130 } while (!test_inode_iunique(sb, res));
1131 spin_unlock(&iunique_lock);
1132
1133 return res;
1134 }
1135 EXPORT_SYMBOL(iunique);
1136
1137 struct inode *igrab(struct inode *inode)
1138 {
1139 spin_lock(&inode->i_lock);
1140 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1141 __iget(inode);
1142 spin_unlock(&inode->i_lock);
1143 } else {
1144 spin_unlock(&inode->i_lock);
1145 /*
1146 * Handle the case where s_op->clear_inode is not been
1147 * called yet, and somebody is calling igrab
1148 * while the inode is getting freed.
1149 */
1150 inode = NULL;
1151 }
1152 return inode;
1153 }
1154 EXPORT_SYMBOL(igrab);
1155
1156 /**
1157 * ilookup5_nowait - search for an inode in the inode cache
1158 * @sb: super block of file system to search
1159 * @hashval: hash value (usually inode number) to search for
1160 * @test: callback used for comparisons between inodes
1161 * @data: opaque data pointer to pass to @test
1162 *
1163 * Search for the inode specified by @hashval and @data in the inode cache.
1164 * If the inode is in the cache, the inode is returned with an incremented
1165 * reference count.
1166 *
1167 * Note: I_NEW is not waited upon so you have to be very careful what you do
1168 * with the returned inode. You probably should be using ilookup5() instead.
1169 *
1170 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1171 */
1172 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1173 int (*test)(struct inode *, void *), void *data)
1174 {
1175 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1176 struct inode *inode;
1177
1178 spin_lock(&inode_hash_lock);
1179 inode = find_inode(sb, head, test, data);
1180 spin_unlock(&inode_hash_lock);
1181
1182 return inode;
1183 }
1184 EXPORT_SYMBOL(ilookup5_nowait);
1185
1186 /**
1187 * ilookup5 - search for an inode in the inode cache
1188 * @sb: super block of file system to search
1189 * @hashval: hash value (usually inode number) to search for
1190 * @test: callback used for comparisons between inodes
1191 * @data: opaque data pointer to pass to @test
1192 *
1193 * Search for the inode specified by @hashval and @data in the inode cache,
1194 * and if the inode is in the cache, return the inode with an incremented
1195 * reference count. Waits on I_NEW before returning the inode.
1196 * returned with an incremented reference count.
1197 *
1198 * This is a generalized version of ilookup() for file systems where the
1199 * inode number is not sufficient for unique identification of an inode.
1200 *
1201 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1202 */
1203 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1204 int (*test)(struct inode *, void *), void *data)
1205 {
1206 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1207
1208 if (inode)
1209 wait_on_inode(inode);
1210 return inode;
1211 }
1212 EXPORT_SYMBOL(ilookup5);
1213
1214 /**
1215 * ilookup - search for an inode in the inode cache
1216 * @sb: super block of file system to search
1217 * @ino: inode number to search for
1218 *
1219 * Search for the inode @ino in the inode cache, and if the inode is in the
1220 * cache, the inode is returned with an incremented reference count.
1221 */
1222 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1223 {
1224 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1225 struct inode *inode;
1226
1227 spin_lock(&inode_hash_lock);
1228 inode = find_inode_fast(sb, head, ino);
1229 spin_unlock(&inode_hash_lock);
1230
1231 if (inode)
1232 wait_on_inode(inode);
1233 return inode;
1234 }
1235 EXPORT_SYMBOL(ilookup);
1236
1237 int insert_inode_locked(struct inode *inode)
1238 {
1239 struct super_block *sb = inode->i_sb;
1240 ino_t ino = inode->i_ino;
1241 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1242
1243 while (1) {
1244 struct hlist_node *node;
1245 struct inode *old = NULL;
1246 spin_lock(&inode_hash_lock);
1247 hlist_for_each_entry(old, node, head, i_hash) {
1248 if (old->i_ino != ino)
1249 continue;
1250 if (old->i_sb != sb)
1251 continue;
1252 spin_lock(&old->i_lock);
1253 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1254 spin_unlock(&old->i_lock);
1255 continue;
1256 }
1257 break;
1258 }
1259 if (likely(!node)) {
1260 spin_lock(&inode->i_lock);
1261 inode->i_state |= I_NEW;
1262 hlist_add_head(&inode->i_hash, head);
1263 spin_unlock(&inode->i_lock);
1264 spin_unlock(&inode_hash_lock);
1265 return 0;
1266 }
1267 __iget(old);
1268 spin_unlock(&old->i_lock);
1269 spin_unlock(&inode_hash_lock);
1270 wait_on_inode(old);
1271 if (unlikely(!inode_unhashed(old))) {
1272 iput(old);
1273 return -EBUSY;
1274 }
1275 iput(old);
1276 }
1277 }
1278 EXPORT_SYMBOL(insert_inode_locked);
1279
1280 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1281 int (*test)(struct inode *, void *), void *data)
1282 {
1283 struct super_block *sb = inode->i_sb;
1284 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1285
1286 while (1) {
1287 struct hlist_node *node;
1288 struct inode *old = NULL;
1289
1290 spin_lock(&inode_hash_lock);
1291 hlist_for_each_entry(old, node, head, i_hash) {
1292 if (old->i_sb != sb)
1293 continue;
1294 if (!test(old, data))
1295 continue;
1296 spin_lock(&old->i_lock);
1297 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1298 spin_unlock(&old->i_lock);
1299 continue;
1300 }
1301 break;
1302 }
1303 if (likely(!node)) {
1304 spin_lock(&inode->i_lock);
1305 inode->i_state |= I_NEW;
1306 hlist_add_head(&inode->i_hash, head);
1307 spin_unlock(&inode->i_lock);
1308 spin_unlock(&inode_hash_lock);
1309 return 0;
1310 }
1311 __iget(old);
1312 spin_unlock(&old->i_lock);
1313 spin_unlock(&inode_hash_lock);
1314 wait_on_inode(old);
1315 if (unlikely(!inode_unhashed(old))) {
1316 iput(old);
1317 return -EBUSY;
1318 }
1319 iput(old);
1320 }
1321 }
1322 EXPORT_SYMBOL(insert_inode_locked4);
1323
1324
1325 int generic_delete_inode(struct inode *inode)
1326 {
1327 return 1;
1328 }
1329 EXPORT_SYMBOL(generic_delete_inode);
1330
1331 /*
1332 * Normal UNIX filesystem behaviour: delete the
1333 * inode when the usage count drops to zero, and
1334 * i_nlink is zero.
1335 */
1336 int generic_drop_inode(struct inode *inode)
1337 {
1338 return !inode->i_nlink || inode_unhashed(inode);
1339 }
1340 EXPORT_SYMBOL_GPL(generic_drop_inode);
1341
1342 /*
1343 * Called when we're dropping the last reference
1344 * to an inode.
1345 *
1346 * Call the FS "drop_inode()" function, defaulting to
1347 * the legacy UNIX filesystem behaviour. If it tells
1348 * us to evict inode, do so. Otherwise, retain inode
1349 * in cache if fs is alive, sync and evict if fs is
1350 * shutting down.
1351 */
1352 static void iput_final(struct inode *inode)
1353 {
1354 struct super_block *sb = inode->i_sb;
1355 const struct super_operations *op = inode->i_sb->s_op;
1356 int drop;
1357
1358 WARN_ON(inode->i_state & I_NEW);
1359
1360 if (op && op->drop_inode)
1361 drop = op->drop_inode(inode);
1362 else
1363 drop = generic_drop_inode(inode);
1364
1365 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1366 inode->i_state |= I_REFERENCED;
1367 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1368 inode_lru_list_add(inode);
1369 spin_unlock(&inode->i_lock);
1370 return;
1371 }
1372
1373 if (!drop) {
1374 inode->i_state |= I_WILL_FREE;
1375 spin_unlock(&inode->i_lock);
1376 write_inode_now(inode, 1);
1377 spin_lock(&inode->i_lock);
1378 WARN_ON(inode->i_state & I_NEW);
1379 inode->i_state &= ~I_WILL_FREE;
1380 }
1381
1382 inode->i_state |= I_FREEING;
1383 inode_lru_list_del(inode);
1384 spin_unlock(&inode->i_lock);
1385
1386 evict(inode);
1387 }
1388
1389 /**
1390 * iput - put an inode
1391 * @inode: inode to put
1392 *
1393 * Puts an inode, dropping its usage count. If the inode use count hits
1394 * zero, the inode is then freed and may also be destroyed.
1395 *
1396 * Consequently, iput() can sleep.
1397 */
1398 void iput(struct inode *inode)
1399 {
1400 if (inode) {
1401 BUG_ON(inode->i_state & I_CLEAR);
1402
1403 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1404 iput_final(inode);
1405 }
1406 }
1407 EXPORT_SYMBOL(iput);
1408
1409 /**
1410 * bmap - find a block number in a file
1411 * @inode: inode of file
1412 * @block: block to find
1413 *
1414 * Returns the block number on the device holding the inode that
1415 * is the disk block number for the block of the file requested.
1416 * That is, asked for block 4 of inode 1 the function will return the
1417 * disk block relative to the disk start that holds that block of the
1418 * file.
1419 */
1420 sector_t bmap(struct inode *inode, sector_t block)
1421 {
1422 sector_t res = 0;
1423 if (inode->i_mapping->a_ops->bmap)
1424 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1425 return res;
1426 }
1427 EXPORT_SYMBOL(bmap);
1428
1429 /*
1430 * With relative atime, only update atime if the previous atime is
1431 * earlier than either the ctime or mtime or if at least a day has
1432 * passed since the last atime update.
1433 */
1434 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1435 struct timespec now)
1436 {
1437
1438 if (!(mnt->mnt_flags & MNT_RELATIME))
1439 return 1;
1440 /*
1441 * Is mtime younger than atime? If yes, update atime:
1442 */
1443 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1444 return 1;
1445 /*
1446 * Is ctime younger than atime? If yes, update atime:
1447 */
1448 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1449 return 1;
1450
1451 /*
1452 * Is the previous atime value older than a day? If yes,
1453 * update atime:
1454 */
1455 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1456 return 1;
1457 /*
1458 * Good, we can skip the atime update:
1459 */
1460 return 0;
1461 }
1462
1463 /**
1464 * touch_atime - update the access time
1465 * @mnt: mount the inode is accessed on
1466 * @dentry: dentry accessed
1467 *
1468 * Update the accessed time on an inode and mark it for writeback.
1469 * This function automatically handles read only file systems and media,
1470 * as well as the "noatime" flag and inode specific "noatime" markers.
1471 */
1472 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1473 {
1474 struct inode *inode = dentry->d_inode;
1475 struct timespec now;
1476
1477 if (inode->i_flags & S_NOATIME)
1478 return;
1479 if (IS_NOATIME(inode))
1480 return;
1481 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1482 return;
1483
1484 if (mnt->mnt_flags & MNT_NOATIME)
1485 return;
1486 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1487 return;
1488
1489 now = current_fs_time(inode->i_sb);
1490
1491 if (!relatime_need_update(mnt, inode, now))
1492 return;
1493
1494 if (timespec_equal(&inode->i_atime, &now))
1495 return;
1496
1497 if (mnt_want_write(mnt))
1498 return;
1499
1500 inode->i_atime = now;
1501 mark_inode_dirty_sync(inode);
1502 mnt_drop_write(mnt);
1503 }
1504 EXPORT_SYMBOL(touch_atime);
1505
1506 /**
1507 * file_update_time - update mtime and ctime time
1508 * @file: file accessed
1509 *
1510 * Update the mtime and ctime members of an inode and mark the inode
1511 * for writeback. Note that this function is meant exclusively for
1512 * usage in the file write path of filesystems, and filesystems may
1513 * choose to explicitly ignore update via this function with the
1514 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1515 * timestamps are handled by the server.
1516 */
1517
1518 void file_update_time(struct file *file)
1519 {
1520 struct inode *inode = file->f_path.dentry->d_inode;
1521 struct timespec now;
1522 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1523
1524 /* First try to exhaust all avenues to not sync */
1525 if (IS_NOCMTIME(inode))
1526 return;
1527
1528 now = current_fs_time(inode->i_sb);
1529 if (!timespec_equal(&inode->i_mtime, &now))
1530 sync_it = S_MTIME;
1531
1532 if (!timespec_equal(&inode->i_ctime, &now))
1533 sync_it |= S_CTIME;
1534
1535 if (IS_I_VERSION(inode))
1536 sync_it |= S_VERSION;
1537
1538 if (!sync_it)
1539 return;
1540
1541 /* Finally allowed to write? Takes lock. */
1542 if (mnt_want_write_file(file))
1543 return;
1544
1545 /* Only change inode inside the lock region */
1546 if (sync_it & S_VERSION)
1547 inode_inc_iversion(inode);
1548 if (sync_it & S_CTIME)
1549 inode->i_ctime = now;
1550 if (sync_it & S_MTIME)
1551 inode->i_mtime = now;
1552 mark_inode_dirty_sync(inode);
1553 mnt_drop_write(file->f_path.mnt);
1554 }
1555 EXPORT_SYMBOL(file_update_time);
1556
1557 int inode_needs_sync(struct inode *inode)
1558 {
1559 if (IS_SYNC(inode))
1560 return 1;
1561 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1562 return 1;
1563 return 0;
1564 }
1565 EXPORT_SYMBOL(inode_needs_sync);
1566
1567 int inode_wait(void *word)
1568 {
1569 schedule();
1570 return 0;
1571 }
1572 EXPORT_SYMBOL(inode_wait);
1573
1574 /*
1575 * If we try to find an inode in the inode hash while it is being
1576 * deleted, we have to wait until the filesystem completes its
1577 * deletion before reporting that it isn't found. This function waits
1578 * until the deletion _might_ have completed. Callers are responsible
1579 * to recheck inode state.
1580 *
1581 * It doesn't matter if I_NEW is not set initially, a call to
1582 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1583 * will DTRT.
1584 */
1585 static void __wait_on_freeing_inode(struct inode *inode)
1586 {
1587 wait_queue_head_t *wq;
1588 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1589 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1590 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1591 spin_unlock(&inode->i_lock);
1592 spin_unlock(&inode_hash_lock);
1593 schedule();
1594 finish_wait(wq, &wait.wait);
1595 spin_lock(&inode_hash_lock);
1596 }
1597
1598 static __initdata unsigned long ihash_entries;
1599 static int __init set_ihash_entries(char *str)
1600 {
1601 if (!str)
1602 return 0;
1603 ihash_entries = simple_strtoul(str, &str, 0);
1604 return 1;
1605 }
1606 __setup("ihash_entries=", set_ihash_entries);
1607
1608 /*
1609 * Initialize the waitqueues and inode hash table.
1610 */
1611 void __init inode_init_early(void)
1612 {
1613 int loop;
1614
1615 /* If hashes are distributed across NUMA nodes, defer
1616 * hash allocation until vmalloc space is available.
1617 */
1618 if (hashdist)
1619 return;
1620
1621 inode_hashtable =
1622 alloc_large_system_hash("Inode-cache",
1623 sizeof(struct hlist_head),
1624 ihash_entries,
1625 14,
1626 HASH_EARLY,
1627 &i_hash_shift,
1628 &i_hash_mask,
1629 0);
1630
1631 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1632 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1633 }
1634
1635 void __init inode_init(void)
1636 {
1637 int loop;
1638
1639 /* inode slab cache */
1640 inode_cachep = kmem_cache_create("inode_cache",
1641 sizeof(struct inode),
1642 0,
1643 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1644 SLAB_MEM_SPREAD),
1645 init_once);
1646 register_shrinker(&icache_shrinker);
1647
1648 /* Hash may have been set up in inode_init_early */
1649 if (!hashdist)
1650 return;
1651
1652 inode_hashtable =
1653 alloc_large_system_hash("Inode-cache",
1654 sizeof(struct hlist_head),
1655 ihash_entries,
1656 14,
1657 0,
1658 &i_hash_shift,
1659 &i_hash_mask,
1660 0);
1661
1662 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1663 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1664 }
1665
1666 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1667 {
1668 inode->i_mode = mode;
1669 if (S_ISCHR(mode)) {
1670 inode->i_fop = &def_chr_fops;
1671 inode->i_rdev = rdev;
1672 } else if (S_ISBLK(mode)) {
1673 inode->i_fop = &def_blk_fops;
1674 inode->i_rdev = rdev;
1675 } else if (S_ISFIFO(mode))
1676 inode->i_fop = &def_fifo_fops;
1677 else if (S_ISSOCK(mode))
1678 inode->i_fop = &bad_sock_fops;
1679 else
1680 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1681 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1682 inode->i_ino);
1683 }
1684 EXPORT_SYMBOL(init_special_inode);
1685
1686 /**
1687 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1688 * @inode: New inode
1689 * @dir: Directory inode
1690 * @mode: mode of the new inode
1691 */
1692 void inode_init_owner(struct inode *inode, const struct inode *dir,
1693 mode_t mode)
1694 {
1695 inode->i_uid = current_fsuid();
1696 if (dir && dir->i_mode & S_ISGID) {
1697 inode->i_gid = dir->i_gid;
1698 if (S_ISDIR(mode))
1699 mode |= S_ISGID;
1700 } else
1701 inode->i_gid = current_fsgid();
1702 inode->i_mode = mode;
1703 }
1704 EXPORT_SYMBOL(inode_init_owner);
1705
1706 /**
1707 * inode_owner_or_capable - check current task permissions to inode
1708 * @inode: inode being checked
1709 *
1710 * Return true if current either has CAP_FOWNER to the inode, or
1711 * owns the file.
1712 */
1713 bool inode_owner_or_capable(const struct inode *inode)
1714 {
1715 struct user_namespace *ns = inode_userns(inode);
1716
1717 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1718 return true;
1719 if (ns_capable(ns, CAP_FOWNER))
1720 return true;
1721 return false;
1722 }
1723 EXPORT_SYMBOL(inode_owner_or_capable);