Merge tag 'battery-fixes-for-v3.3-rc2' of git://git.infradead.org/users/cbou/battery...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include <linux/ratelimit.h>
30 #include "internal.h"
31
32 /*
33 * Inode locking rules:
34 *
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget()
37 * inode->i_sb->s_inode_lru_lock protects:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode_sb_list_lock protects:
40 * sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
45 *
46 * Lock ordering:
47 *
48 * inode_sb_list_lock
49 * inode->i_lock
50 * inode->i_sb->s_inode_lru_lock
51 *
52 * bdi->wb.list_lock
53 * inode->i_lock
54 *
55 * inode_hash_lock
56 * inode_sb_list_lock
57 * inode->i_lock
58 *
59 * iunique_lock
60 * inode_hash_lock
61 */
62
63 static unsigned int i_hash_mask __read_mostly;
64 static unsigned int i_hash_shift __read_mostly;
65 static struct hlist_head *inode_hashtable __read_mostly;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67
68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
69
70 /*
71 * Empty aops. Can be used for the cases where the user does not
72 * define any of the address_space operations.
73 */
74 const struct address_space_operations empty_aops = {
75 };
76 EXPORT_SYMBOL(empty_aops);
77
78 /*
79 * Statistics gathering..
80 */
81 struct inodes_stat_t inodes_stat;
82
83 static DEFINE_PER_CPU(unsigned int, nr_inodes);
84 static DEFINE_PER_CPU(unsigned int, nr_unused);
85
86 static struct kmem_cache *inode_cachep __read_mostly;
87
88 static int get_nr_inodes(void)
89 {
90 int i;
91 int sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_inodes, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 static inline int get_nr_inodes_unused(void)
98 {
99 int i;
100 int sum = 0;
101 for_each_possible_cpu(i)
102 sum += per_cpu(nr_unused, i);
103 return sum < 0 ? 0 : sum;
104 }
105
106 int get_nr_dirty_inodes(void)
107 {
108 /* not actually dirty inodes, but a wild approximation */
109 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
110 return nr_dirty > 0 ? nr_dirty : 0;
111 }
112
113 /*
114 * Handle nr_inode sysctl
115 */
116 #ifdef CONFIG_SYSCTL
117 int proc_nr_inodes(ctl_table *table, int write,
118 void __user *buffer, size_t *lenp, loff_t *ppos)
119 {
120 inodes_stat.nr_inodes = get_nr_inodes();
121 inodes_stat.nr_unused = get_nr_inodes_unused();
122 return proc_dointvec(table, write, buffer, lenp, ppos);
123 }
124 #endif
125
126 /**
127 * inode_init_always - perform inode structure intialisation
128 * @sb: superblock inode belongs to
129 * @inode: inode to initialise
130 *
131 * These are initializations that need to be done on every inode
132 * allocation as the fields are not initialised by slab allocation.
133 */
134 int inode_init_always(struct super_block *sb, struct inode *inode)
135 {
136 static const struct inode_operations empty_iops;
137 static const struct file_operations empty_fops;
138 struct address_space *const mapping = &inode->i_data;
139
140 inode->i_sb = sb;
141 inode->i_blkbits = sb->s_blocksize_bits;
142 inode->i_flags = 0;
143 atomic_set(&inode->i_count, 1);
144 inode->i_op = &empty_iops;
145 inode->i_fop = &empty_fops;
146 inode->__i_nlink = 1;
147 inode->i_opflags = 0;
148 inode->i_uid = 0;
149 inode->i_gid = 0;
150 atomic_set(&inode->i_writecount, 0);
151 inode->i_size = 0;
152 inode->i_blocks = 0;
153 inode->i_bytes = 0;
154 inode->i_generation = 0;
155 #ifdef CONFIG_QUOTA
156 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
157 #endif
158 inode->i_pipe = NULL;
159 inode->i_bdev = NULL;
160 inode->i_cdev = NULL;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 if (security_inode_alloc(inode))
165 goto out;
166 spin_lock_init(&inode->i_lock);
167 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168
169 mutex_init(&inode->i_mutex);
170 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171
172 atomic_set(&inode->i_dio_count, 0);
173
174 mapping->a_ops = &empty_aops;
175 mapping->host = inode;
176 mapping->flags = 0;
177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 mapping->assoc_mapping = NULL;
179 mapping->backing_dev_info = &default_backing_dev_info;
180 mapping->writeback_index = 0;
181
182 /*
183 * If the block_device provides a backing_dev_info for client
184 * inodes then use that. Otherwise the inode share the bdev's
185 * backing_dev_info.
186 */
187 if (sb->s_bdev) {
188 struct backing_dev_info *bdi;
189
190 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
191 mapping->backing_dev_info = bdi;
192 }
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199
200 #ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202 #endif
203
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207 out:
208 return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211
212 static struct inode *alloc_inode(struct super_block *sb)
213 {
214 struct inode *inode;
215
216 if (sb->s_op->alloc_inode)
217 inode = sb->s_op->alloc_inode(sb);
218 else
219 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
220
221 if (!inode)
222 return NULL;
223
224 if (unlikely(inode_init_always(sb, inode))) {
225 if (inode->i_sb->s_op->destroy_inode)
226 inode->i_sb->s_op->destroy_inode(inode);
227 else
228 kmem_cache_free(inode_cachep, inode);
229 return NULL;
230 }
231
232 return inode;
233 }
234
235 void free_inode_nonrcu(struct inode *inode)
236 {
237 kmem_cache_free(inode_cachep, inode);
238 }
239 EXPORT_SYMBOL(free_inode_nonrcu);
240
241 void __destroy_inode(struct inode *inode)
242 {
243 BUG_ON(inode_has_buffers(inode));
244 security_inode_free(inode);
245 fsnotify_inode_delete(inode);
246 if (!inode->i_nlink) {
247 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
248 atomic_long_dec(&inode->i_sb->s_remove_count);
249 }
250
251 #ifdef CONFIG_FS_POSIX_ACL
252 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
253 posix_acl_release(inode->i_acl);
254 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
255 posix_acl_release(inode->i_default_acl);
256 #endif
257 this_cpu_dec(nr_inodes);
258 }
259 EXPORT_SYMBOL(__destroy_inode);
260
261 static void i_callback(struct rcu_head *head)
262 {
263 struct inode *inode = container_of(head, struct inode, i_rcu);
264 kmem_cache_free(inode_cachep, inode);
265 }
266
267 static void destroy_inode(struct inode *inode)
268 {
269 BUG_ON(!list_empty(&inode->i_lru));
270 __destroy_inode(inode);
271 if (inode->i_sb->s_op->destroy_inode)
272 inode->i_sb->s_op->destroy_inode(inode);
273 else
274 call_rcu(&inode->i_rcu, i_callback);
275 }
276
277 /**
278 * drop_nlink - directly drop an inode's link count
279 * @inode: inode
280 *
281 * This is a low-level filesystem helper to replace any
282 * direct filesystem manipulation of i_nlink. In cases
283 * where we are attempting to track writes to the
284 * filesystem, a decrement to zero means an imminent
285 * write when the file is truncated and actually unlinked
286 * on the filesystem.
287 */
288 void drop_nlink(struct inode *inode)
289 {
290 WARN_ON(inode->i_nlink == 0);
291 inode->__i_nlink--;
292 if (!inode->i_nlink)
293 atomic_long_inc(&inode->i_sb->s_remove_count);
294 }
295 EXPORT_SYMBOL(drop_nlink);
296
297 /**
298 * clear_nlink - directly zero an inode's link count
299 * @inode: inode
300 *
301 * This is a low-level filesystem helper to replace any
302 * direct filesystem manipulation of i_nlink. See
303 * drop_nlink() for why we care about i_nlink hitting zero.
304 */
305 void clear_nlink(struct inode *inode)
306 {
307 if (inode->i_nlink) {
308 inode->__i_nlink = 0;
309 atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 }
312 EXPORT_SYMBOL(clear_nlink);
313
314 /**
315 * set_nlink - directly set an inode's link count
316 * @inode: inode
317 * @nlink: new nlink (should be non-zero)
318 *
319 * This is a low-level filesystem helper to replace any
320 * direct filesystem manipulation of i_nlink.
321 */
322 void set_nlink(struct inode *inode, unsigned int nlink)
323 {
324 if (!nlink) {
325 clear_nlink(inode);
326 } else {
327 /* Yes, some filesystems do change nlink from zero to one */
328 if (inode->i_nlink == 0)
329 atomic_long_dec(&inode->i_sb->s_remove_count);
330
331 inode->__i_nlink = nlink;
332 }
333 }
334 EXPORT_SYMBOL(set_nlink);
335
336 /**
337 * inc_nlink - directly increment an inode's link count
338 * @inode: inode
339 *
340 * This is a low-level filesystem helper to replace any
341 * direct filesystem manipulation of i_nlink. Currently,
342 * it is only here for parity with dec_nlink().
343 */
344 void inc_nlink(struct inode *inode)
345 {
346 if (WARN_ON(inode->i_nlink == 0))
347 atomic_long_dec(&inode->i_sb->s_remove_count);
348
349 inode->__i_nlink++;
350 }
351 EXPORT_SYMBOL(inc_nlink);
352
353 void address_space_init_once(struct address_space *mapping)
354 {
355 memset(mapping, 0, sizeof(*mapping));
356 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
357 spin_lock_init(&mapping->tree_lock);
358 mutex_init(&mapping->i_mmap_mutex);
359 INIT_LIST_HEAD(&mapping->private_list);
360 spin_lock_init(&mapping->private_lock);
361 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
362 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
363 }
364 EXPORT_SYMBOL(address_space_init_once);
365
366 /*
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
370 */
371 void inode_init_once(struct inode *inode)
372 {
373 memset(inode, 0, sizeof(*inode));
374 INIT_HLIST_NODE(&inode->i_hash);
375 INIT_LIST_HEAD(&inode->i_devices);
376 INIT_LIST_HEAD(&inode->i_wb_list);
377 INIT_LIST_HEAD(&inode->i_lru);
378 address_space_init_once(&inode->i_data);
379 i_size_ordered_init(inode);
380 #ifdef CONFIG_FSNOTIFY
381 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
382 #endif
383 }
384 EXPORT_SYMBOL(inode_init_once);
385
386 static void init_once(void *foo)
387 {
388 struct inode *inode = (struct inode *) foo;
389
390 inode_init_once(inode);
391 }
392
393 /*
394 * inode->i_lock must be held
395 */
396 void __iget(struct inode *inode)
397 {
398 atomic_inc(&inode->i_count);
399 }
400
401 /*
402 * get additional reference to inode; caller must already hold one.
403 */
404 void ihold(struct inode *inode)
405 {
406 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
407 }
408 EXPORT_SYMBOL(ihold);
409
410 static void inode_lru_list_add(struct inode *inode)
411 {
412 spin_lock(&inode->i_sb->s_inode_lru_lock);
413 if (list_empty(&inode->i_lru)) {
414 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
415 inode->i_sb->s_nr_inodes_unused++;
416 this_cpu_inc(nr_unused);
417 }
418 spin_unlock(&inode->i_sb->s_inode_lru_lock);
419 }
420
421 static void inode_lru_list_del(struct inode *inode)
422 {
423 spin_lock(&inode->i_sb->s_inode_lru_lock);
424 if (!list_empty(&inode->i_lru)) {
425 list_del_init(&inode->i_lru);
426 inode->i_sb->s_nr_inodes_unused--;
427 this_cpu_dec(nr_unused);
428 }
429 spin_unlock(&inode->i_sb->s_inode_lru_lock);
430 }
431
432 /**
433 * inode_sb_list_add - add inode to the superblock list of inodes
434 * @inode: inode to add
435 */
436 void inode_sb_list_add(struct inode *inode)
437 {
438 spin_lock(&inode_sb_list_lock);
439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 spin_unlock(&inode_sb_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443
444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 if (!list_empty(&inode->i_sb_list)) {
447 spin_lock(&inode_sb_list_lock);
448 list_del_init(&inode->i_sb_list);
449 spin_unlock(&inode_sb_list_lock);
450 }
451 }
452
453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 unsigned long tmp;
456
457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 L1_CACHE_BYTES;
459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 return tmp & i_hash_mask;
461 }
462
463 /**
464 * __insert_inode_hash - hash an inode
465 * @inode: unhashed inode
466 * @hashval: unsigned long value used to locate this object in the
467 * inode_hashtable.
468 *
469 * Add an inode to the inode hash for this superblock.
470 */
471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474
475 spin_lock(&inode_hash_lock);
476 spin_lock(&inode->i_lock);
477 hlist_add_head(&inode->i_hash, b);
478 spin_unlock(&inode->i_lock);
479 spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482
483 /**
484 * __remove_inode_hash - remove an inode from the hash
485 * @inode: inode to unhash
486 *
487 * Remove an inode from the superblock.
488 */
489 void __remove_inode_hash(struct inode *inode)
490 {
491 spin_lock(&inode_hash_lock);
492 spin_lock(&inode->i_lock);
493 hlist_del_init(&inode->i_hash);
494 spin_unlock(&inode->i_lock);
495 spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498
499 void end_writeback(struct inode *inode)
500 {
501 might_sleep();
502 /*
503 * We have to cycle tree_lock here because reclaim can be still in the
504 * process of removing the last page (in __delete_from_page_cache())
505 * and we must not free mapping under it.
506 */
507 spin_lock_irq(&inode->i_data.tree_lock);
508 BUG_ON(inode->i_data.nrpages);
509 spin_unlock_irq(&inode->i_data.tree_lock);
510 BUG_ON(!list_empty(&inode->i_data.private_list));
511 BUG_ON(!(inode->i_state & I_FREEING));
512 BUG_ON(inode->i_state & I_CLEAR);
513 inode_sync_wait(inode);
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(end_writeback);
518
519 /*
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
523 *
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
527 *
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
531 */
532 static void evict(struct inode *inode)
533 {
534 const struct super_operations *op = inode->i_sb->s_op;
535
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
538
539 if (!list_empty(&inode->i_wb_list))
540 inode_wb_list_del(inode);
541
542 inode_sb_list_del(inode);
543
544 if (op->evict_inode) {
545 op->evict_inode(inode);
546 } else {
547 if (inode->i_data.nrpages)
548 truncate_inode_pages(&inode->i_data, 0);
549 end_writeback(inode);
550 }
551 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
552 bd_forget(inode);
553 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
554 cd_forget(inode);
555
556 remove_inode_hash(inode);
557
558 spin_lock(&inode->i_lock);
559 wake_up_bit(&inode->i_state, __I_NEW);
560 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
561 spin_unlock(&inode->i_lock);
562
563 destroy_inode(inode);
564 }
565
566 /*
567 * dispose_list - dispose of the contents of a local list
568 * @head: the head of the list to free
569 *
570 * Dispose-list gets a local list with local inodes in it, so it doesn't
571 * need to worry about list corruption and SMP locks.
572 */
573 static void dispose_list(struct list_head *head)
574 {
575 while (!list_empty(head)) {
576 struct inode *inode;
577
578 inode = list_first_entry(head, struct inode, i_lru);
579 list_del_init(&inode->i_lru);
580
581 evict(inode);
582 }
583 }
584
585 /**
586 * evict_inodes - evict all evictable inodes for a superblock
587 * @sb: superblock to operate on
588 *
589 * Make sure that no inodes with zero refcount are retained. This is
590 * called by superblock shutdown after having MS_ACTIVE flag removed,
591 * so any inode reaching zero refcount during or after that call will
592 * be immediately evicted.
593 */
594 void evict_inodes(struct super_block *sb)
595 {
596 struct inode *inode, *next;
597 LIST_HEAD(dispose);
598
599 spin_lock(&inode_sb_list_lock);
600 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
601 if (atomic_read(&inode->i_count))
602 continue;
603
604 spin_lock(&inode->i_lock);
605 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
606 spin_unlock(&inode->i_lock);
607 continue;
608 }
609
610 inode->i_state |= I_FREEING;
611 inode_lru_list_del(inode);
612 spin_unlock(&inode->i_lock);
613 list_add(&inode->i_lru, &dispose);
614 }
615 spin_unlock(&inode_sb_list_lock);
616
617 dispose_list(&dispose);
618 }
619
620 /**
621 * invalidate_inodes - attempt to free all inodes on a superblock
622 * @sb: superblock to operate on
623 * @kill_dirty: flag to guide handling of dirty inodes
624 *
625 * Attempts to free all inodes for a given superblock. If there were any
626 * busy inodes return a non-zero value, else zero.
627 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
628 * them as busy.
629 */
630 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
631 {
632 int busy = 0;
633 struct inode *inode, *next;
634 LIST_HEAD(dispose);
635
636 spin_lock(&inode_sb_list_lock);
637 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
638 spin_lock(&inode->i_lock);
639 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
640 spin_unlock(&inode->i_lock);
641 continue;
642 }
643 if (inode->i_state & I_DIRTY && !kill_dirty) {
644 spin_unlock(&inode->i_lock);
645 busy = 1;
646 continue;
647 }
648 if (atomic_read(&inode->i_count)) {
649 spin_unlock(&inode->i_lock);
650 busy = 1;
651 continue;
652 }
653
654 inode->i_state |= I_FREEING;
655 inode_lru_list_del(inode);
656 spin_unlock(&inode->i_lock);
657 list_add(&inode->i_lru, &dispose);
658 }
659 spin_unlock(&inode_sb_list_lock);
660
661 dispose_list(&dispose);
662
663 return busy;
664 }
665
666 static int can_unuse(struct inode *inode)
667 {
668 if (inode->i_state & ~I_REFERENCED)
669 return 0;
670 if (inode_has_buffers(inode))
671 return 0;
672 if (atomic_read(&inode->i_count))
673 return 0;
674 if (inode->i_data.nrpages)
675 return 0;
676 return 1;
677 }
678
679 /*
680 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
681 * This is called from the superblock shrinker function with a number of inodes
682 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
683 * then are freed outside inode_lock by dispose_list().
684 *
685 * Any inodes which are pinned purely because of attached pagecache have their
686 * pagecache removed. If the inode has metadata buffers attached to
687 * mapping->private_list then try to remove them.
688 *
689 * If the inode has the I_REFERENCED flag set, then it means that it has been
690 * used recently - the flag is set in iput_final(). When we encounter such an
691 * inode, clear the flag and move it to the back of the LRU so it gets another
692 * pass through the LRU before it gets reclaimed. This is necessary because of
693 * the fact we are doing lazy LRU updates to minimise lock contention so the
694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
695 * with this flag set because they are the inodes that are out of order.
696 */
697 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
698 {
699 LIST_HEAD(freeable);
700 int nr_scanned;
701 unsigned long reap = 0;
702
703 spin_lock(&sb->s_inode_lru_lock);
704 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
705 struct inode *inode;
706
707 if (list_empty(&sb->s_inode_lru))
708 break;
709
710 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
711
712 /*
713 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
714 * so use a trylock. If we fail to get the lock, just move the
715 * inode to the back of the list so we don't spin on it.
716 */
717 if (!spin_trylock(&inode->i_lock)) {
718 list_move_tail(&inode->i_lru, &sb->s_inode_lru);
719 continue;
720 }
721
722 /*
723 * Referenced or dirty inodes are still in use. Give them
724 * another pass through the LRU as we canot reclaim them now.
725 */
726 if (atomic_read(&inode->i_count) ||
727 (inode->i_state & ~I_REFERENCED)) {
728 list_del_init(&inode->i_lru);
729 spin_unlock(&inode->i_lock);
730 sb->s_nr_inodes_unused--;
731 this_cpu_dec(nr_unused);
732 continue;
733 }
734
735 /* recently referenced inodes get one more pass */
736 if (inode->i_state & I_REFERENCED) {
737 inode->i_state &= ~I_REFERENCED;
738 list_move(&inode->i_lru, &sb->s_inode_lru);
739 spin_unlock(&inode->i_lock);
740 continue;
741 }
742 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
743 __iget(inode);
744 spin_unlock(&inode->i_lock);
745 spin_unlock(&sb->s_inode_lru_lock);
746 if (remove_inode_buffers(inode))
747 reap += invalidate_mapping_pages(&inode->i_data,
748 0, -1);
749 iput(inode);
750 spin_lock(&sb->s_inode_lru_lock);
751
752 if (inode != list_entry(sb->s_inode_lru.next,
753 struct inode, i_lru))
754 continue; /* wrong inode or list_empty */
755 /* avoid lock inversions with trylock */
756 if (!spin_trylock(&inode->i_lock))
757 continue;
758 if (!can_unuse(inode)) {
759 spin_unlock(&inode->i_lock);
760 continue;
761 }
762 }
763 WARN_ON(inode->i_state & I_NEW);
764 inode->i_state |= I_FREEING;
765 spin_unlock(&inode->i_lock);
766
767 list_move(&inode->i_lru, &freeable);
768 sb->s_nr_inodes_unused--;
769 this_cpu_dec(nr_unused);
770 }
771 if (current_is_kswapd())
772 __count_vm_events(KSWAPD_INODESTEAL, reap);
773 else
774 __count_vm_events(PGINODESTEAL, reap);
775 spin_unlock(&sb->s_inode_lru_lock);
776 if (current->reclaim_state)
777 current->reclaim_state->reclaimed_slab += reap;
778
779 dispose_list(&freeable);
780 }
781
782 static void __wait_on_freeing_inode(struct inode *inode);
783 /*
784 * Called with the inode lock held.
785 */
786 static struct inode *find_inode(struct super_block *sb,
787 struct hlist_head *head,
788 int (*test)(struct inode *, void *),
789 void *data)
790 {
791 struct hlist_node *node;
792 struct inode *inode = NULL;
793
794 repeat:
795 hlist_for_each_entry(inode, node, head, i_hash) {
796 spin_lock(&inode->i_lock);
797 if (inode->i_sb != sb) {
798 spin_unlock(&inode->i_lock);
799 continue;
800 }
801 if (!test(inode, data)) {
802 spin_unlock(&inode->i_lock);
803 continue;
804 }
805 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
806 __wait_on_freeing_inode(inode);
807 goto repeat;
808 }
809 __iget(inode);
810 spin_unlock(&inode->i_lock);
811 return inode;
812 }
813 return NULL;
814 }
815
816 /*
817 * find_inode_fast is the fast path version of find_inode, see the comment at
818 * iget_locked for details.
819 */
820 static struct inode *find_inode_fast(struct super_block *sb,
821 struct hlist_head *head, unsigned long ino)
822 {
823 struct hlist_node *node;
824 struct inode *inode = NULL;
825
826 repeat:
827 hlist_for_each_entry(inode, node, head, i_hash) {
828 spin_lock(&inode->i_lock);
829 if (inode->i_ino != ino) {
830 spin_unlock(&inode->i_lock);
831 continue;
832 }
833 if (inode->i_sb != sb) {
834 spin_unlock(&inode->i_lock);
835 continue;
836 }
837 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
838 __wait_on_freeing_inode(inode);
839 goto repeat;
840 }
841 __iget(inode);
842 spin_unlock(&inode->i_lock);
843 return inode;
844 }
845 return NULL;
846 }
847
848 /*
849 * Each cpu owns a range of LAST_INO_BATCH numbers.
850 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
851 * to renew the exhausted range.
852 *
853 * This does not significantly increase overflow rate because every CPU can
854 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
855 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
856 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
857 * overflow rate by 2x, which does not seem too significant.
858 *
859 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
860 * error if st_ino won't fit in target struct field. Use 32bit counter
861 * here to attempt to avoid that.
862 */
863 #define LAST_INO_BATCH 1024
864 static DEFINE_PER_CPU(unsigned int, last_ino);
865
866 unsigned int get_next_ino(void)
867 {
868 unsigned int *p = &get_cpu_var(last_ino);
869 unsigned int res = *p;
870
871 #ifdef CONFIG_SMP
872 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
873 static atomic_t shared_last_ino;
874 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
875
876 res = next - LAST_INO_BATCH;
877 }
878 #endif
879
880 *p = ++res;
881 put_cpu_var(last_ino);
882 return res;
883 }
884 EXPORT_SYMBOL(get_next_ino);
885
886 /**
887 * new_inode_pseudo - obtain an inode
888 * @sb: superblock
889 *
890 * Allocates a new inode for given superblock.
891 * Inode wont be chained in superblock s_inodes list
892 * This means :
893 * - fs can't be unmount
894 * - quotas, fsnotify, writeback can't work
895 */
896 struct inode *new_inode_pseudo(struct super_block *sb)
897 {
898 struct inode *inode = alloc_inode(sb);
899
900 if (inode) {
901 spin_lock(&inode->i_lock);
902 inode->i_state = 0;
903 spin_unlock(&inode->i_lock);
904 INIT_LIST_HEAD(&inode->i_sb_list);
905 }
906 return inode;
907 }
908
909 /**
910 * new_inode - obtain an inode
911 * @sb: superblock
912 *
913 * Allocates a new inode for given superblock. The default gfp_mask
914 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
915 * If HIGHMEM pages are unsuitable or it is known that pages allocated
916 * for the page cache are not reclaimable or migratable,
917 * mapping_set_gfp_mask() must be called with suitable flags on the
918 * newly created inode's mapping
919 *
920 */
921 struct inode *new_inode(struct super_block *sb)
922 {
923 struct inode *inode;
924
925 spin_lock_prefetch(&inode_sb_list_lock);
926
927 inode = new_inode_pseudo(sb);
928 if (inode)
929 inode_sb_list_add(inode);
930 return inode;
931 }
932 EXPORT_SYMBOL(new_inode);
933
934 #ifdef CONFIG_DEBUG_LOCK_ALLOC
935 void lockdep_annotate_inode_mutex_key(struct inode *inode)
936 {
937 if (S_ISDIR(inode->i_mode)) {
938 struct file_system_type *type = inode->i_sb->s_type;
939
940 /* Set new key only if filesystem hasn't already changed it */
941 if (!lockdep_match_class(&inode->i_mutex,
942 &type->i_mutex_key)) {
943 /*
944 * ensure nobody is actually holding i_mutex
945 */
946 mutex_destroy(&inode->i_mutex);
947 mutex_init(&inode->i_mutex);
948 lockdep_set_class(&inode->i_mutex,
949 &type->i_mutex_dir_key);
950 }
951 }
952 }
953 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
954 #endif
955
956 /**
957 * unlock_new_inode - clear the I_NEW state and wake up any waiters
958 * @inode: new inode to unlock
959 *
960 * Called when the inode is fully initialised to clear the new state of the
961 * inode and wake up anyone waiting for the inode to finish initialisation.
962 */
963 void unlock_new_inode(struct inode *inode)
964 {
965 lockdep_annotate_inode_mutex_key(inode);
966 spin_lock(&inode->i_lock);
967 WARN_ON(!(inode->i_state & I_NEW));
968 inode->i_state &= ~I_NEW;
969 wake_up_bit(&inode->i_state, __I_NEW);
970 spin_unlock(&inode->i_lock);
971 }
972 EXPORT_SYMBOL(unlock_new_inode);
973
974 /**
975 * iget5_locked - obtain an inode from a mounted file system
976 * @sb: super block of file system
977 * @hashval: hash value (usually inode number) to get
978 * @test: callback used for comparisons between inodes
979 * @set: callback used to initialize a new struct inode
980 * @data: opaque data pointer to pass to @test and @set
981 *
982 * Search for the inode specified by @hashval and @data in the inode cache,
983 * and if present it is return it with an increased reference count. This is
984 * a generalized version of iget_locked() for file systems where the inode
985 * number is not sufficient for unique identification of an inode.
986 *
987 * If the inode is not in cache, allocate a new inode and return it locked,
988 * hashed, and with the I_NEW flag set. The file system gets to fill it in
989 * before unlocking it via unlock_new_inode().
990 *
991 * Note both @test and @set are called with the inode_hash_lock held, so can't
992 * sleep.
993 */
994 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
995 int (*test)(struct inode *, void *),
996 int (*set)(struct inode *, void *), void *data)
997 {
998 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
999 struct inode *inode;
1000
1001 spin_lock(&inode_hash_lock);
1002 inode = find_inode(sb, head, test, data);
1003 spin_unlock(&inode_hash_lock);
1004
1005 if (inode) {
1006 wait_on_inode(inode);
1007 return inode;
1008 }
1009
1010 inode = alloc_inode(sb);
1011 if (inode) {
1012 struct inode *old;
1013
1014 spin_lock(&inode_hash_lock);
1015 /* We released the lock, so.. */
1016 old = find_inode(sb, head, test, data);
1017 if (!old) {
1018 if (set(inode, data))
1019 goto set_failed;
1020
1021 spin_lock(&inode->i_lock);
1022 inode->i_state = I_NEW;
1023 hlist_add_head(&inode->i_hash, head);
1024 spin_unlock(&inode->i_lock);
1025 inode_sb_list_add(inode);
1026 spin_unlock(&inode_hash_lock);
1027
1028 /* Return the locked inode with I_NEW set, the
1029 * caller is responsible for filling in the contents
1030 */
1031 return inode;
1032 }
1033
1034 /*
1035 * Uhhuh, somebody else created the same inode under
1036 * us. Use the old inode instead of the one we just
1037 * allocated.
1038 */
1039 spin_unlock(&inode_hash_lock);
1040 destroy_inode(inode);
1041 inode = old;
1042 wait_on_inode(inode);
1043 }
1044 return inode;
1045
1046 set_failed:
1047 spin_unlock(&inode_hash_lock);
1048 destroy_inode(inode);
1049 return NULL;
1050 }
1051 EXPORT_SYMBOL(iget5_locked);
1052
1053 /**
1054 * iget_locked - obtain an inode from a mounted file system
1055 * @sb: super block of file system
1056 * @ino: inode number to get
1057 *
1058 * Search for the inode specified by @ino in the inode cache and if present
1059 * return it with an increased reference count. This is for file systems
1060 * where the inode number is sufficient for unique identification of an inode.
1061 *
1062 * If the inode is not in cache, allocate a new inode and return it locked,
1063 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1064 * before unlocking it via unlock_new_inode().
1065 */
1066 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1067 {
1068 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1069 struct inode *inode;
1070
1071 spin_lock(&inode_hash_lock);
1072 inode = find_inode_fast(sb, head, ino);
1073 spin_unlock(&inode_hash_lock);
1074 if (inode) {
1075 wait_on_inode(inode);
1076 return inode;
1077 }
1078
1079 inode = alloc_inode(sb);
1080 if (inode) {
1081 struct inode *old;
1082
1083 spin_lock(&inode_hash_lock);
1084 /* We released the lock, so.. */
1085 old = find_inode_fast(sb, head, ino);
1086 if (!old) {
1087 inode->i_ino = ino;
1088 spin_lock(&inode->i_lock);
1089 inode->i_state = I_NEW;
1090 hlist_add_head(&inode->i_hash, head);
1091 spin_unlock(&inode->i_lock);
1092 inode_sb_list_add(inode);
1093 spin_unlock(&inode_hash_lock);
1094
1095 /* Return the locked inode with I_NEW set, the
1096 * caller is responsible for filling in the contents
1097 */
1098 return inode;
1099 }
1100
1101 /*
1102 * Uhhuh, somebody else created the same inode under
1103 * us. Use the old inode instead of the one we just
1104 * allocated.
1105 */
1106 spin_unlock(&inode_hash_lock);
1107 destroy_inode(inode);
1108 inode = old;
1109 wait_on_inode(inode);
1110 }
1111 return inode;
1112 }
1113 EXPORT_SYMBOL(iget_locked);
1114
1115 /*
1116 * search the inode cache for a matching inode number.
1117 * If we find one, then the inode number we are trying to
1118 * allocate is not unique and so we should not use it.
1119 *
1120 * Returns 1 if the inode number is unique, 0 if it is not.
1121 */
1122 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1123 {
1124 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1125 struct hlist_node *node;
1126 struct inode *inode;
1127
1128 spin_lock(&inode_hash_lock);
1129 hlist_for_each_entry(inode, node, b, i_hash) {
1130 if (inode->i_ino == ino && inode->i_sb == sb) {
1131 spin_unlock(&inode_hash_lock);
1132 return 0;
1133 }
1134 }
1135 spin_unlock(&inode_hash_lock);
1136
1137 return 1;
1138 }
1139
1140 /**
1141 * iunique - get a unique inode number
1142 * @sb: superblock
1143 * @max_reserved: highest reserved inode number
1144 *
1145 * Obtain an inode number that is unique on the system for a given
1146 * superblock. This is used by file systems that have no natural
1147 * permanent inode numbering system. An inode number is returned that
1148 * is higher than the reserved limit but unique.
1149 *
1150 * BUGS:
1151 * With a large number of inodes live on the file system this function
1152 * currently becomes quite slow.
1153 */
1154 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1155 {
1156 /*
1157 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1158 * error if st_ino won't fit in target struct field. Use 32bit counter
1159 * here to attempt to avoid that.
1160 */
1161 static DEFINE_SPINLOCK(iunique_lock);
1162 static unsigned int counter;
1163 ino_t res;
1164
1165 spin_lock(&iunique_lock);
1166 do {
1167 if (counter <= max_reserved)
1168 counter = max_reserved + 1;
1169 res = counter++;
1170 } while (!test_inode_iunique(sb, res));
1171 spin_unlock(&iunique_lock);
1172
1173 return res;
1174 }
1175 EXPORT_SYMBOL(iunique);
1176
1177 struct inode *igrab(struct inode *inode)
1178 {
1179 spin_lock(&inode->i_lock);
1180 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1181 __iget(inode);
1182 spin_unlock(&inode->i_lock);
1183 } else {
1184 spin_unlock(&inode->i_lock);
1185 /*
1186 * Handle the case where s_op->clear_inode is not been
1187 * called yet, and somebody is calling igrab
1188 * while the inode is getting freed.
1189 */
1190 inode = NULL;
1191 }
1192 return inode;
1193 }
1194 EXPORT_SYMBOL(igrab);
1195
1196 /**
1197 * ilookup5_nowait - search for an inode in the inode cache
1198 * @sb: super block of file system to search
1199 * @hashval: hash value (usually inode number) to search for
1200 * @test: callback used for comparisons between inodes
1201 * @data: opaque data pointer to pass to @test
1202 *
1203 * Search for the inode specified by @hashval and @data in the inode cache.
1204 * If the inode is in the cache, the inode is returned with an incremented
1205 * reference count.
1206 *
1207 * Note: I_NEW is not waited upon so you have to be very careful what you do
1208 * with the returned inode. You probably should be using ilookup5() instead.
1209 *
1210 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1211 */
1212 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1213 int (*test)(struct inode *, void *), void *data)
1214 {
1215 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1216 struct inode *inode;
1217
1218 spin_lock(&inode_hash_lock);
1219 inode = find_inode(sb, head, test, data);
1220 spin_unlock(&inode_hash_lock);
1221
1222 return inode;
1223 }
1224 EXPORT_SYMBOL(ilookup5_nowait);
1225
1226 /**
1227 * ilookup5 - search for an inode in the inode cache
1228 * @sb: super block of file system to search
1229 * @hashval: hash value (usually inode number) to search for
1230 * @test: callback used for comparisons between inodes
1231 * @data: opaque data pointer to pass to @test
1232 *
1233 * Search for the inode specified by @hashval and @data in the inode cache,
1234 * and if the inode is in the cache, return the inode with an incremented
1235 * reference count. Waits on I_NEW before returning the inode.
1236 * returned with an incremented reference count.
1237 *
1238 * This is a generalized version of ilookup() for file systems where the
1239 * inode number is not sufficient for unique identification of an inode.
1240 *
1241 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1242 */
1243 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1244 int (*test)(struct inode *, void *), void *data)
1245 {
1246 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1247
1248 if (inode)
1249 wait_on_inode(inode);
1250 return inode;
1251 }
1252 EXPORT_SYMBOL(ilookup5);
1253
1254 /**
1255 * ilookup - search for an inode in the inode cache
1256 * @sb: super block of file system to search
1257 * @ino: inode number to search for
1258 *
1259 * Search for the inode @ino in the inode cache, and if the inode is in the
1260 * cache, the inode is returned with an incremented reference count.
1261 */
1262 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1263 {
1264 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1265 struct inode *inode;
1266
1267 spin_lock(&inode_hash_lock);
1268 inode = find_inode_fast(sb, head, ino);
1269 spin_unlock(&inode_hash_lock);
1270
1271 if (inode)
1272 wait_on_inode(inode);
1273 return inode;
1274 }
1275 EXPORT_SYMBOL(ilookup);
1276
1277 int insert_inode_locked(struct inode *inode)
1278 {
1279 struct super_block *sb = inode->i_sb;
1280 ino_t ino = inode->i_ino;
1281 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1282
1283 while (1) {
1284 struct hlist_node *node;
1285 struct inode *old = NULL;
1286 spin_lock(&inode_hash_lock);
1287 hlist_for_each_entry(old, node, head, i_hash) {
1288 if (old->i_ino != ino)
1289 continue;
1290 if (old->i_sb != sb)
1291 continue;
1292 spin_lock(&old->i_lock);
1293 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1294 spin_unlock(&old->i_lock);
1295 continue;
1296 }
1297 break;
1298 }
1299 if (likely(!node)) {
1300 spin_lock(&inode->i_lock);
1301 inode->i_state |= I_NEW;
1302 hlist_add_head(&inode->i_hash, head);
1303 spin_unlock(&inode->i_lock);
1304 spin_unlock(&inode_hash_lock);
1305 return 0;
1306 }
1307 __iget(old);
1308 spin_unlock(&old->i_lock);
1309 spin_unlock(&inode_hash_lock);
1310 wait_on_inode(old);
1311 if (unlikely(!inode_unhashed(old))) {
1312 iput(old);
1313 return -EBUSY;
1314 }
1315 iput(old);
1316 }
1317 }
1318 EXPORT_SYMBOL(insert_inode_locked);
1319
1320 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1321 int (*test)(struct inode *, void *), void *data)
1322 {
1323 struct super_block *sb = inode->i_sb;
1324 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1325
1326 while (1) {
1327 struct hlist_node *node;
1328 struct inode *old = NULL;
1329
1330 spin_lock(&inode_hash_lock);
1331 hlist_for_each_entry(old, node, head, i_hash) {
1332 if (old->i_sb != sb)
1333 continue;
1334 if (!test(old, data))
1335 continue;
1336 spin_lock(&old->i_lock);
1337 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1338 spin_unlock(&old->i_lock);
1339 continue;
1340 }
1341 break;
1342 }
1343 if (likely(!node)) {
1344 spin_lock(&inode->i_lock);
1345 inode->i_state |= I_NEW;
1346 hlist_add_head(&inode->i_hash, head);
1347 spin_unlock(&inode->i_lock);
1348 spin_unlock(&inode_hash_lock);
1349 return 0;
1350 }
1351 __iget(old);
1352 spin_unlock(&old->i_lock);
1353 spin_unlock(&inode_hash_lock);
1354 wait_on_inode(old);
1355 if (unlikely(!inode_unhashed(old))) {
1356 iput(old);
1357 return -EBUSY;
1358 }
1359 iput(old);
1360 }
1361 }
1362 EXPORT_SYMBOL(insert_inode_locked4);
1363
1364
1365 int generic_delete_inode(struct inode *inode)
1366 {
1367 return 1;
1368 }
1369 EXPORT_SYMBOL(generic_delete_inode);
1370
1371 /*
1372 * Normal UNIX filesystem behaviour: delete the
1373 * inode when the usage count drops to zero, and
1374 * i_nlink is zero.
1375 */
1376 int generic_drop_inode(struct inode *inode)
1377 {
1378 return !inode->i_nlink || inode_unhashed(inode);
1379 }
1380 EXPORT_SYMBOL_GPL(generic_drop_inode);
1381
1382 /*
1383 * Called when we're dropping the last reference
1384 * to an inode.
1385 *
1386 * Call the FS "drop_inode()" function, defaulting to
1387 * the legacy UNIX filesystem behaviour. If it tells
1388 * us to evict inode, do so. Otherwise, retain inode
1389 * in cache if fs is alive, sync and evict if fs is
1390 * shutting down.
1391 */
1392 static void iput_final(struct inode *inode)
1393 {
1394 struct super_block *sb = inode->i_sb;
1395 const struct super_operations *op = inode->i_sb->s_op;
1396 int drop;
1397
1398 WARN_ON(inode->i_state & I_NEW);
1399
1400 if (op->drop_inode)
1401 drop = op->drop_inode(inode);
1402 else
1403 drop = generic_drop_inode(inode);
1404
1405 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1406 inode->i_state |= I_REFERENCED;
1407 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1408 inode_lru_list_add(inode);
1409 spin_unlock(&inode->i_lock);
1410 return;
1411 }
1412
1413 if (!drop) {
1414 inode->i_state |= I_WILL_FREE;
1415 spin_unlock(&inode->i_lock);
1416 write_inode_now(inode, 1);
1417 spin_lock(&inode->i_lock);
1418 WARN_ON(inode->i_state & I_NEW);
1419 inode->i_state &= ~I_WILL_FREE;
1420 }
1421
1422 inode->i_state |= I_FREEING;
1423 if (!list_empty(&inode->i_lru))
1424 inode_lru_list_del(inode);
1425 spin_unlock(&inode->i_lock);
1426
1427 evict(inode);
1428 }
1429
1430 /**
1431 * iput - put an inode
1432 * @inode: inode to put
1433 *
1434 * Puts an inode, dropping its usage count. If the inode use count hits
1435 * zero, the inode is then freed and may also be destroyed.
1436 *
1437 * Consequently, iput() can sleep.
1438 */
1439 void iput(struct inode *inode)
1440 {
1441 if (inode) {
1442 BUG_ON(inode->i_state & I_CLEAR);
1443
1444 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1445 iput_final(inode);
1446 }
1447 }
1448 EXPORT_SYMBOL(iput);
1449
1450 /**
1451 * bmap - find a block number in a file
1452 * @inode: inode of file
1453 * @block: block to find
1454 *
1455 * Returns the block number on the device holding the inode that
1456 * is the disk block number for the block of the file requested.
1457 * That is, asked for block 4 of inode 1 the function will return the
1458 * disk block relative to the disk start that holds that block of the
1459 * file.
1460 */
1461 sector_t bmap(struct inode *inode, sector_t block)
1462 {
1463 sector_t res = 0;
1464 if (inode->i_mapping->a_ops->bmap)
1465 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1466 return res;
1467 }
1468 EXPORT_SYMBOL(bmap);
1469
1470 /*
1471 * With relative atime, only update atime if the previous atime is
1472 * earlier than either the ctime or mtime or if at least a day has
1473 * passed since the last atime update.
1474 */
1475 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1476 struct timespec now)
1477 {
1478
1479 if (!(mnt->mnt_flags & MNT_RELATIME))
1480 return 1;
1481 /*
1482 * Is mtime younger than atime? If yes, update atime:
1483 */
1484 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1485 return 1;
1486 /*
1487 * Is ctime younger than atime? If yes, update atime:
1488 */
1489 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1490 return 1;
1491
1492 /*
1493 * Is the previous atime value older than a day? If yes,
1494 * update atime:
1495 */
1496 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1497 return 1;
1498 /*
1499 * Good, we can skip the atime update:
1500 */
1501 return 0;
1502 }
1503
1504 /**
1505 * touch_atime - update the access time
1506 * @mnt: mount the inode is accessed on
1507 * @dentry: dentry accessed
1508 *
1509 * Update the accessed time on an inode and mark it for writeback.
1510 * This function automatically handles read only file systems and media,
1511 * as well as the "noatime" flag and inode specific "noatime" markers.
1512 */
1513 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1514 {
1515 struct inode *inode = dentry->d_inode;
1516 struct timespec now;
1517
1518 if (inode->i_flags & S_NOATIME)
1519 return;
1520 if (IS_NOATIME(inode))
1521 return;
1522 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1523 return;
1524
1525 if (mnt->mnt_flags & MNT_NOATIME)
1526 return;
1527 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1528 return;
1529
1530 now = current_fs_time(inode->i_sb);
1531
1532 if (!relatime_need_update(mnt, inode, now))
1533 return;
1534
1535 if (timespec_equal(&inode->i_atime, &now))
1536 return;
1537
1538 if (mnt_want_write(mnt))
1539 return;
1540
1541 inode->i_atime = now;
1542 mark_inode_dirty_sync(inode);
1543 mnt_drop_write(mnt);
1544 }
1545 EXPORT_SYMBOL(touch_atime);
1546
1547 /**
1548 * file_update_time - update mtime and ctime time
1549 * @file: file accessed
1550 *
1551 * Update the mtime and ctime members of an inode and mark the inode
1552 * for writeback. Note that this function is meant exclusively for
1553 * usage in the file write path of filesystems, and filesystems may
1554 * choose to explicitly ignore update via this function with the
1555 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1556 * timestamps are handled by the server.
1557 */
1558
1559 void file_update_time(struct file *file)
1560 {
1561 struct inode *inode = file->f_path.dentry->d_inode;
1562 struct timespec now;
1563 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1564
1565 /* First try to exhaust all avenues to not sync */
1566 if (IS_NOCMTIME(inode))
1567 return;
1568
1569 now = current_fs_time(inode->i_sb);
1570 if (!timespec_equal(&inode->i_mtime, &now))
1571 sync_it = S_MTIME;
1572
1573 if (!timespec_equal(&inode->i_ctime, &now))
1574 sync_it |= S_CTIME;
1575
1576 if (IS_I_VERSION(inode))
1577 sync_it |= S_VERSION;
1578
1579 if (!sync_it)
1580 return;
1581
1582 /* Finally allowed to write? Takes lock. */
1583 if (mnt_want_write_file(file))
1584 return;
1585
1586 /* Only change inode inside the lock region */
1587 if (sync_it & S_VERSION)
1588 inode_inc_iversion(inode);
1589 if (sync_it & S_CTIME)
1590 inode->i_ctime = now;
1591 if (sync_it & S_MTIME)
1592 inode->i_mtime = now;
1593 mark_inode_dirty_sync(inode);
1594 mnt_drop_write_file(file);
1595 }
1596 EXPORT_SYMBOL(file_update_time);
1597
1598 int inode_needs_sync(struct inode *inode)
1599 {
1600 if (IS_SYNC(inode))
1601 return 1;
1602 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1603 return 1;
1604 return 0;
1605 }
1606 EXPORT_SYMBOL(inode_needs_sync);
1607
1608 int inode_wait(void *word)
1609 {
1610 schedule();
1611 return 0;
1612 }
1613 EXPORT_SYMBOL(inode_wait);
1614
1615 /*
1616 * If we try to find an inode in the inode hash while it is being
1617 * deleted, we have to wait until the filesystem completes its
1618 * deletion before reporting that it isn't found. This function waits
1619 * until the deletion _might_ have completed. Callers are responsible
1620 * to recheck inode state.
1621 *
1622 * It doesn't matter if I_NEW is not set initially, a call to
1623 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1624 * will DTRT.
1625 */
1626 static void __wait_on_freeing_inode(struct inode *inode)
1627 {
1628 wait_queue_head_t *wq;
1629 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1630 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1631 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1632 spin_unlock(&inode->i_lock);
1633 spin_unlock(&inode_hash_lock);
1634 schedule();
1635 finish_wait(wq, &wait.wait);
1636 spin_lock(&inode_hash_lock);
1637 }
1638
1639 static __initdata unsigned long ihash_entries;
1640 static int __init set_ihash_entries(char *str)
1641 {
1642 if (!str)
1643 return 0;
1644 ihash_entries = simple_strtoul(str, &str, 0);
1645 return 1;
1646 }
1647 __setup("ihash_entries=", set_ihash_entries);
1648
1649 /*
1650 * Initialize the waitqueues and inode hash table.
1651 */
1652 void __init inode_init_early(void)
1653 {
1654 int loop;
1655
1656 /* If hashes are distributed across NUMA nodes, defer
1657 * hash allocation until vmalloc space is available.
1658 */
1659 if (hashdist)
1660 return;
1661
1662 inode_hashtable =
1663 alloc_large_system_hash("Inode-cache",
1664 sizeof(struct hlist_head),
1665 ihash_entries,
1666 14,
1667 HASH_EARLY,
1668 &i_hash_shift,
1669 &i_hash_mask,
1670 0);
1671
1672 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1673 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1674 }
1675
1676 void __init inode_init(void)
1677 {
1678 int loop;
1679
1680 /* inode slab cache */
1681 inode_cachep = kmem_cache_create("inode_cache",
1682 sizeof(struct inode),
1683 0,
1684 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1685 SLAB_MEM_SPREAD),
1686 init_once);
1687
1688 /* Hash may have been set up in inode_init_early */
1689 if (!hashdist)
1690 return;
1691
1692 inode_hashtable =
1693 alloc_large_system_hash("Inode-cache",
1694 sizeof(struct hlist_head),
1695 ihash_entries,
1696 14,
1697 0,
1698 &i_hash_shift,
1699 &i_hash_mask,
1700 0);
1701
1702 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1703 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1704 }
1705
1706 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1707 {
1708 inode->i_mode = mode;
1709 if (S_ISCHR(mode)) {
1710 inode->i_fop = &def_chr_fops;
1711 inode->i_rdev = rdev;
1712 } else if (S_ISBLK(mode)) {
1713 inode->i_fop = &def_blk_fops;
1714 inode->i_rdev = rdev;
1715 } else if (S_ISFIFO(mode))
1716 inode->i_fop = &def_fifo_fops;
1717 else if (S_ISSOCK(mode))
1718 inode->i_fop = &bad_sock_fops;
1719 else
1720 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1721 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1722 inode->i_ino);
1723 }
1724 EXPORT_SYMBOL(init_special_inode);
1725
1726 /**
1727 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1728 * @inode: New inode
1729 * @dir: Directory inode
1730 * @mode: mode of the new inode
1731 */
1732 void inode_init_owner(struct inode *inode, const struct inode *dir,
1733 umode_t mode)
1734 {
1735 inode->i_uid = current_fsuid();
1736 if (dir && dir->i_mode & S_ISGID) {
1737 inode->i_gid = dir->i_gid;
1738 if (S_ISDIR(mode))
1739 mode |= S_ISGID;
1740 } else
1741 inode->i_gid = current_fsgid();
1742 inode->i_mode = mode;
1743 }
1744 EXPORT_SYMBOL(inode_init_owner);
1745
1746 /**
1747 * inode_owner_or_capable - check current task permissions to inode
1748 * @inode: inode being checked
1749 *
1750 * Return true if current either has CAP_FOWNER to the inode, or
1751 * owns the file.
1752 */
1753 bool inode_owner_or_capable(const struct inode *inode)
1754 {
1755 struct user_namespace *ns = inode_userns(inode);
1756
1757 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1758 return true;
1759 if (ns_capable(ns, CAP_FOWNER))
1760 return true;
1761 return false;
1762 }
1763 EXPORT_SYMBOL(inode_owner_or_capable);