Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / gfs2 / lock_dlm.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22
23 extern struct workqueue_struct *gfs2_control_wq;
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47 {
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52 }
53
54 /**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72 {
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87 }
88
89 /**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
98 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99 {
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113 }
114
115 static void gdlm_ast(void *arg)
116 {
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
120 gfs2_update_reply_times(gl);
121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
123 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
124 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
128 gfs2_glock_free(gl);
129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
134 case -EDEADLK: /* Deadlock detected */
135 goto out;
136 case -ETIMEDOUT: /* Canceled due to timeout */
137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
145 ret = gl->gl_req;
146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
147 if (gl->gl_req == LM_ST_SHARED)
148 ret = LM_ST_DEFERRED;
149 else if (gl->gl_req == LM_ST_DEFERRED)
150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158 out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162 }
163
164 static void gdlm_bast(void *arg, int mode)
165 {
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 printk(KERN_ERR "unknown bast mode %d", mode);
180 BUG();
181 }
182 }
183
184 /* convert gfs lock-state to dlm lock-mode */
185
186 static int make_mode(const unsigned int lmstate)
187 {
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 printk(KERN_ERR "unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201 }
202
203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
204 const int req)
205 {
206 u32 lkf = 0;
207
208 if (gl->gl_lksb.sb_lvbptr)
209 lkf |= DLM_LKF_VALBLK;
210
211 if (gfs_flags & LM_FLAG_TRY)
212 lkf |= DLM_LKF_NOQUEUE;
213
214 if (gfs_flags & LM_FLAG_TRY_1CB) {
215 lkf |= DLM_LKF_NOQUEUE;
216 lkf |= DLM_LKF_NOQUEUEBAST;
217 }
218
219 if (gfs_flags & LM_FLAG_PRIORITY) {
220 lkf |= DLM_LKF_NOORDER;
221 lkf |= DLM_LKF_HEADQUE;
222 }
223
224 if (gfs_flags & LM_FLAG_ANY) {
225 if (req == DLM_LOCK_PR)
226 lkf |= DLM_LKF_ALTCW;
227 else if (req == DLM_LOCK_CW)
228 lkf |= DLM_LKF_ALTPR;
229 else
230 BUG();
231 }
232
233 if (gl->gl_lksb.sb_lkid != 0) {
234 lkf |= DLM_LKF_CONVERT;
235 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
236 lkf |= DLM_LKF_QUECVT;
237 }
238
239 return lkf;
240 }
241
242 static void gfs2_reverse_hex(char *c, u64 value)
243 {
244 *c = '0';
245 while (value) {
246 *c-- = hex_asc[value & 0x0f];
247 value >>= 4;
248 }
249 }
250
251 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
252 unsigned int flags)
253 {
254 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
255 int req;
256 u32 lkf;
257 char strname[GDLM_STRNAME_BYTES] = "";
258
259 req = make_mode(req_state);
260 lkf = make_flags(gl, flags, req);
261 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
262 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
263 if (gl->gl_lksb.sb_lkid) {
264 gfs2_update_request_times(gl);
265 } else {
266 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
267 strname[GDLM_STRNAME_BYTES - 1] = '\0';
268 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
269 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
270 gl->gl_dstamp = ktime_get_real();
271 }
272 /*
273 * Submit the actual lock request.
274 */
275
276 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
277 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
278 }
279
280 static void gdlm_put_lock(struct gfs2_glock *gl)
281 {
282 struct gfs2_sbd *sdp = gl->gl_sbd;
283 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
284 int lvb_needs_unlock = 0;
285 int error;
286
287 if (gl->gl_lksb.sb_lkid == 0) {
288 gfs2_glock_free(gl);
289 return;
290 }
291
292 clear_bit(GLF_BLOCKING, &gl->gl_flags);
293 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
294 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_update_request_times(gl);
296
297 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
298
299 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
300 lvb_needs_unlock = 1;
301
302 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
303 !lvb_needs_unlock) {
304 gfs2_glock_free(gl);
305 return;
306 }
307
308 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
309 NULL, gl);
310 if (error) {
311 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
312 gl->gl_name.ln_type,
313 (unsigned long long)gl->gl_name.ln_number, error);
314 return;
315 }
316 }
317
318 static void gdlm_cancel(struct gfs2_glock *gl)
319 {
320 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
321 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
322 }
323
324 /*
325 * dlm/gfs2 recovery coordination using dlm_recover callbacks
326 *
327 * 1. dlm_controld sees lockspace members change
328 * 2. dlm_controld blocks dlm-kernel locking activity
329 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
330 * 4. dlm_controld starts and finishes its own user level recovery
331 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
332 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
333 * 7. dlm_recoverd does its own lock recovery
334 * 8. dlm_recoverd unblocks dlm-kernel locking activity
335 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
336 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
337 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
338 * 12. gfs2_recover dequeues and recovers journals of failed nodes
339 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
340 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
341 * 15. gfs2_control unblocks normal locking when all journals are recovered
342 *
343 * - failures during recovery
344 *
345 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
346 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
347 * recovering for a prior failure. gfs2_control needs a way to detect
348 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
349 * the recover_block and recover_start values.
350 *
351 * recover_done() provides a new lockspace generation number each time it
352 * is called (step 9). This generation number is saved as recover_start.
353 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
354 * recover_block = recover_start. So, while recover_block is equal to
355 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
356 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357 *
358 * - more specific gfs2 steps in sequence above
359 *
360 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
361 * 6. recover_slot records any failed jids (maybe none)
362 * 9. recover_done sets recover_start = new generation number
363 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
364 * 12. gfs2_recover does journal recoveries for failed jids identified above
365 * 14. gfs2_control clears control_lock lvb bits for recovered jids
366 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
367 * again) then do nothing, otherwise if recover_start > recover_block
368 * then clear BLOCK_LOCKS.
369 *
370 * - parallel recovery steps across all nodes
371 *
372 * All nodes attempt to update the control_lock lvb with the new generation
373 * number and jid bits, but only the first to get the control_lock EX will
374 * do so; others will see that it's already done (lvb already contains new
375 * generation number.)
376 *
377 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
378 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
379 * . One node gets control_lock first and writes the lvb, others see it's done
380 * . All nodes attempt to recover jids for which they see control_lock bits set
381 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
382 * . All nodes will eventually see all lvb bits clear and unblock locks
383 *
384 * - is there a problem with clearing an lvb bit that should be set
385 * and missing a journal recovery?
386 *
387 * 1. jid fails
388 * 2. lvb bit set for step 1
389 * 3. jid recovered for step 1
390 * 4. jid taken again (new mount)
391 * 5. jid fails (for step 4)
392 * 6. lvb bit set for step 5 (will already be set)
393 * 7. lvb bit cleared for step 3
394 *
395 * This is not a problem because the failure in step 5 does not
396 * require recovery, because the mount in step 4 could not have
397 * progressed far enough to unblock locks and access the fs. The
398 * control_mount() function waits for all recoveries to be complete
399 * for the latest lockspace generation before ever unblocking locks
400 * and returning. The mount in step 4 waits until the recovery in
401 * step 1 is done.
402 *
403 * - special case of first mounter: first node to mount the fs
404 *
405 * The first node to mount a gfs2 fs needs to check all the journals
406 * and recover any that need recovery before other nodes are allowed
407 * to mount the fs. (Others may begin mounting, but they must wait
408 * for the first mounter to be done before taking locks on the fs
409 * or accessing the fs.) This has two parts:
410 *
411 * 1. The mounted_lock tells a node it's the first to mount the fs.
412 * Each node holds the mounted_lock in PR while it's mounted.
413 * Each node tries to acquire the mounted_lock in EX when it mounts.
414 * If a node is granted the mounted_lock EX it means there are no
415 * other mounted nodes (no PR locks exist), and it is the first mounter.
416 * The mounted_lock is demoted to PR when first recovery is done, so
417 * others will fail to get an EX lock, but will get a PR lock.
418 *
419 * 2. The control_lock blocks others in control_mount() while the first
420 * mounter is doing first mount recovery of all journals.
421 * A mounting node needs to acquire control_lock in EX mode before
422 * it can proceed. The first mounter holds control_lock in EX while doing
423 * the first mount recovery, blocking mounts from other nodes, then demotes
424 * control_lock to NL when it's done (others_may_mount/first_done),
425 * allowing other nodes to continue mounting.
426 *
427 * first mounter:
428 * control_lock EX/NOQUEUE success
429 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430 * set first=1
431 * do first mounter recovery
432 * mounted_lock EX->PR
433 * control_lock EX->NL, write lvb generation
434 *
435 * other mounter:
436 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
437 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
438 * mounted_lock PR/NOQUEUE success
439 * read lvb generation
440 * control_lock EX->NL
441 * set first=0
442 *
443 * - mount during recovery
444 *
445 * If a node mounts while others are doing recovery (not first mounter),
446 * the mounting node will get its initial recover_done() callback without
447 * having seen any previous failures/callbacks.
448 *
449 * It must wait for all recoveries preceding its mount to be finished
450 * before it unblocks locks. It does this by repeating the "other mounter"
451 * steps above until the lvb generation number is >= its mount generation
452 * number (from initial recover_done) and all lvb bits are clear.
453 *
454 * - control_lock lvb format
455 *
456 * 4 bytes generation number: the latest dlm lockspace generation number
457 * from recover_done callback. Indicates the jid bitmap has been updated
458 * to reflect all slot failures through that generation.
459 * 4 bytes unused.
460 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
461 * that jid N needs recovery.
462 */
463
464 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465
466 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
467 char *lvb_bits)
468 {
469 uint32_t gen;
470 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
471 memcpy(&gen, lvb_bits, sizeof(uint32_t));
472 *lvb_gen = le32_to_cpu(gen);
473 }
474
475 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
476 char *lvb_bits)
477 {
478 uint32_t gen;
479 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
480 gen = cpu_to_le32(lvb_gen);
481 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
482 }
483
484 static int all_jid_bits_clear(char *lvb)
485 {
486 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
487 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
488 }
489
490 static void sync_wait_cb(void *arg)
491 {
492 struct lm_lockstruct *ls = arg;
493 complete(&ls->ls_sync_wait);
494 }
495
496 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
497 {
498 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
499 int error;
500
501 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
502 if (error) {
503 fs_err(sdp, "%s lkid %x error %d\n",
504 name, lksb->sb_lkid, error);
505 return error;
506 }
507
508 wait_for_completion(&ls->ls_sync_wait);
509
510 if (lksb->sb_status != -DLM_EUNLOCK) {
511 fs_err(sdp, "%s lkid %x status %d\n",
512 name, lksb->sb_lkid, lksb->sb_status);
513 return -1;
514 }
515 return 0;
516 }
517
518 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
519 unsigned int num, struct dlm_lksb *lksb, char *name)
520 {
521 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
522 char strname[GDLM_STRNAME_BYTES];
523 int error, status;
524
525 memset(strname, 0, GDLM_STRNAME_BYTES);
526 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
527
528 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
529 strname, GDLM_STRNAME_BYTES - 1,
530 0, sync_wait_cb, ls, NULL);
531 if (error) {
532 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
533 name, lksb->sb_lkid, flags, mode, error);
534 return error;
535 }
536
537 wait_for_completion(&ls->ls_sync_wait);
538
539 status = lksb->sb_status;
540
541 if (status && status != -EAGAIN) {
542 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
543 name, lksb->sb_lkid, flags, mode, status);
544 }
545
546 return status;
547 }
548
549 static int mounted_unlock(struct gfs2_sbd *sdp)
550 {
551 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
552 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
553 }
554
555 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
556 {
557 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
558 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
559 &ls->ls_mounted_lksb, "mounted_lock");
560 }
561
562 static int control_unlock(struct gfs2_sbd *sdp)
563 {
564 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
566 }
567
568 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
569 {
570 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
571 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
572 &ls->ls_control_lksb, "control_lock");
573 }
574
575 static void gfs2_control_func(struct work_struct *work)
576 {
577 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
578 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
579 uint32_t block_gen, start_gen, lvb_gen, flags;
580 int recover_set = 0;
581 int write_lvb = 0;
582 int recover_size;
583 int i, error;
584
585 spin_lock(&ls->ls_recover_spin);
586 /*
587 * No MOUNT_DONE means we're still mounting; control_mount()
588 * will set this flag, after which this thread will take over
589 * all further clearing of BLOCK_LOCKS.
590 *
591 * FIRST_MOUNT means this node is doing first mounter recovery,
592 * for which recovery control is handled by
593 * control_mount()/control_first_done(), not this thread.
594 */
595 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
596 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
597 spin_unlock(&ls->ls_recover_spin);
598 return;
599 }
600 block_gen = ls->ls_recover_block;
601 start_gen = ls->ls_recover_start;
602 spin_unlock(&ls->ls_recover_spin);
603
604 /*
605 * Equal block_gen and start_gen implies we are between
606 * recover_prep and recover_done callbacks, which means
607 * dlm recovery is in progress and dlm locking is blocked.
608 * There's no point trying to do any work until recover_done.
609 */
610
611 if (block_gen == start_gen)
612 return;
613
614 /*
615 * Propagate recover_submit[] and recover_result[] to lvb:
616 * dlm_recoverd adds to recover_submit[] jids needing recovery
617 * gfs2_recover adds to recover_result[] journal recovery results
618 *
619 * set lvb bit for jids in recover_submit[] if the lvb has not
620 * yet been updated for the generation of the failure
621 *
622 * clear lvb bit for jids in recover_result[] if the result of
623 * the journal recovery is SUCCESS
624 */
625
626 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
627 if (error) {
628 fs_err(sdp, "control lock EX error %d\n", error);
629 return;
630 }
631
632 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
633
634 spin_lock(&ls->ls_recover_spin);
635 if (block_gen != ls->ls_recover_block ||
636 start_gen != ls->ls_recover_start) {
637 fs_info(sdp, "recover generation %u block1 %u %u\n",
638 start_gen, block_gen, ls->ls_recover_block);
639 spin_unlock(&ls->ls_recover_spin);
640 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
641 return;
642 }
643
644 recover_size = ls->ls_recover_size;
645
646 if (lvb_gen <= start_gen) {
647 /*
648 * Clear lvb bits for jids we've successfully recovered.
649 * Because all nodes attempt to recover failed journals,
650 * a journal can be recovered multiple times successfully
651 * in succession. Only the first will really do recovery,
652 * the others find it clean, but still report a successful
653 * recovery. So, another node may have already recovered
654 * the jid and cleared the lvb bit for it.
655 */
656 for (i = 0; i < recover_size; i++) {
657 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
658 continue;
659
660 ls->ls_recover_result[i] = 0;
661
662 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
663 continue;
664
665 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
666 write_lvb = 1;
667 }
668 }
669
670 if (lvb_gen == start_gen) {
671 /*
672 * Failed slots before start_gen are already set in lvb.
673 */
674 for (i = 0; i < recover_size; i++) {
675 if (!ls->ls_recover_submit[i])
676 continue;
677 if (ls->ls_recover_submit[i] < lvb_gen)
678 ls->ls_recover_submit[i] = 0;
679 }
680 } else if (lvb_gen < start_gen) {
681 /*
682 * Failed slots before start_gen are not yet set in lvb.
683 */
684 for (i = 0; i < recover_size; i++) {
685 if (!ls->ls_recover_submit[i])
686 continue;
687 if (ls->ls_recover_submit[i] < start_gen) {
688 ls->ls_recover_submit[i] = 0;
689 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
690 }
691 }
692 /* even if there are no bits to set, we need to write the
693 latest generation to the lvb */
694 write_lvb = 1;
695 } else {
696 /*
697 * we should be getting a recover_done() for lvb_gen soon
698 */
699 }
700 spin_unlock(&ls->ls_recover_spin);
701
702 if (write_lvb) {
703 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
704 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
705 } else {
706 flags = DLM_LKF_CONVERT;
707 }
708
709 error = control_lock(sdp, DLM_LOCK_NL, flags);
710 if (error) {
711 fs_err(sdp, "control lock NL error %d\n", error);
712 return;
713 }
714
715 /*
716 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
717 * and clear a jid bit in the lvb if the recovery is a success.
718 * Eventually all journals will be recovered, all jid bits will
719 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
720 */
721
722 for (i = 0; i < recover_size; i++) {
723 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
724 fs_info(sdp, "recover generation %u jid %d\n",
725 start_gen, i);
726 gfs2_recover_set(sdp, i);
727 recover_set++;
728 }
729 }
730 if (recover_set)
731 return;
732
733 /*
734 * No more jid bits set in lvb, all recovery is done, unblock locks
735 * (unless a new recover_prep callback has occured blocking locks
736 * again while working above)
737 */
738
739 spin_lock(&ls->ls_recover_spin);
740 if (ls->ls_recover_block == block_gen &&
741 ls->ls_recover_start == start_gen) {
742 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
743 spin_unlock(&ls->ls_recover_spin);
744 fs_info(sdp, "recover generation %u done\n", start_gen);
745 gfs2_glock_thaw(sdp);
746 } else {
747 fs_info(sdp, "recover generation %u block2 %u %u\n",
748 start_gen, block_gen, ls->ls_recover_block);
749 spin_unlock(&ls->ls_recover_spin);
750 }
751 }
752
753 static int control_mount(struct gfs2_sbd *sdp)
754 {
755 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
756 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
757 int mounted_mode;
758 int retries = 0;
759 int error;
760
761 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
762 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
763 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
764 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
765 init_completion(&ls->ls_sync_wait);
766
767 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
768
769 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
770 if (error) {
771 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
772 return error;
773 }
774
775 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
776 if (error) {
777 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
778 control_unlock(sdp);
779 return error;
780 }
781 mounted_mode = DLM_LOCK_NL;
782
783 restart:
784 if (retries++ && signal_pending(current)) {
785 error = -EINTR;
786 goto fail;
787 }
788
789 /*
790 * We always start with both locks in NL. control_lock is
791 * demoted to NL below so we don't need to do it here.
792 */
793
794 if (mounted_mode != DLM_LOCK_NL) {
795 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
796 if (error)
797 goto fail;
798 mounted_mode = DLM_LOCK_NL;
799 }
800
801 /*
802 * Other nodes need to do some work in dlm recovery and gfs2_control
803 * before the recover_done and control_lock will be ready for us below.
804 * A delay here is not required but often avoids having to retry.
805 */
806
807 msleep_interruptible(500);
808
809 /*
810 * Acquire control_lock in EX and mounted_lock in either EX or PR.
811 * control_lock lvb keeps track of any pending journal recoveries.
812 * mounted_lock indicates if any other nodes have the fs mounted.
813 */
814
815 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
816 if (error == -EAGAIN) {
817 goto restart;
818 } else if (error) {
819 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
820 goto fail;
821 }
822
823 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
824 if (!error) {
825 mounted_mode = DLM_LOCK_EX;
826 goto locks_done;
827 } else if (error != -EAGAIN) {
828 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
829 goto fail;
830 }
831
832 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
833 if (!error) {
834 mounted_mode = DLM_LOCK_PR;
835 goto locks_done;
836 } else {
837 /* not even -EAGAIN should happen here */
838 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
839 goto fail;
840 }
841
842 locks_done:
843 /*
844 * If we got both locks above in EX, then we're the first mounter.
845 * If not, then we need to wait for the control_lock lvb to be
846 * updated by other mounted nodes to reflect our mount generation.
847 *
848 * In simple first mounter cases, first mounter will see zero lvb_gen,
849 * but in cases where all existing nodes leave/fail before mounting
850 * nodes finish control_mount, then all nodes will be mounting and
851 * lvb_gen will be non-zero.
852 */
853
854 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
855
856 if (lvb_gen == 0xFFFFFFFF) {
857 /* special value to force mount attempts to fail */
858 fs_err(sdp, "control_mount control_lock disabled\n");
859 error = -EINVAL;
860 goto fail;
861 }
862
863 if (mounted_mode == DLM_LOCK_EX) {
864 /* first mounter, keep both EX while doing first recovery */
865 spin_lock(&ls->ls_recover_spin);
866 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
867 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
868 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
869 spin_unlock(&ls->ls_recover_spin);
870 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
871 return 0;
872 }
873
874 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
875 if (error)
876 goto fail;
877
878 /*
879 * We are not first mounter, now we need to wait for the control_lock
880 * lvb generation to be >= the generation from our first recover_done
881 * and all lvb bits to be clear (no pending journal recoveries.)
882 */
883
884 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
885 /* journals need recovery, wait until all are clear */
886 fs_info(sdp, "control_mount wait for journal recovery\n");
887 goto restart;
888 }
889
890 spin_lock(&ls->ls_recover_spin);
891 block_gen = ls->ls_recover_block;
892 start_gen = ls->ls_recover_start;
893 mount_gen = ls->ls_recover_mount;
894
895 if (lvb_gen < mount_gen) {
896 /* wait for mounted nodes to update control_lock lvb to our
897 generation, which might include new recovery bits set */
898 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
899 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
900 lvb_gen, ls->ls_recover_flags);
901 spin_unlock(&ls->ls_recover_spin);
902 goto restart;
903 }
904
905 if (lvb_gen != start_gen) {
906 /* wait for mounted nodes to update control_lock lvb to the
907 latest recovery generation */
908 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
909 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
910 lvb_gen, ls->ls_recover_flags);
911 spin_unlock(&ls->ls_recover_spin);
912 goto restart;
913 }
914
915 if (block_gen == start_gen) {
916 /* dlm recovery in progress, wait for it to finish */
917 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
918 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
919 lvb_gen, ls->ls_recover_flags);
920 spin_unlock(&ls->ls_recover_spin);
921 goto restart;
922 }
923
924 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
925 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
926 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
927 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
928 spin_unlock(&ls->ls_recover_spin);
929 return 0;
930
931 fail:
932 mounted_unlock(sdp);
933 control_unlock(sdp);
934 return error;
935 }
936
937 static int dlm_recovery_wait(void *word)
938 {
939 schedule();
940 return 0;
941 }
942
943 static int control_first_done(struct gfs2_sbd *sdp)
944 {
945 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
946 uint32_t start_gen, block_gen;
947 int error;
948
949 restart:
950 spin_lock(&ls->ls_recover_spin);
951 start_gen = ls->ls_recover_start;
952 block_gen = ls->ls_recover_block;
953
954 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
955 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
956 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
957 /* sanity check, should not happen */
958 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
959 start_gen, block_gen, ls->ls_recover_flags);
960 spin_unlock(&ls->ls_recover_spin);
961 control_unlock(sdp);
962 return -1;
963 }
964
965 if (start_gen == block_gen) {
966 /*
967 * Wait for the end of a dlm recovery cycle to switch from
968 * first mounter recovery. We can ignore any recover_slot
969 * callbacks between the recover_prep and next recover_done
970 * because we are still the first mounter and any failed nodes
971 * have not fully mounted, so they don't need recovery.
972 */
973 spin_unlock(&ls->ls_recover_spin);
974 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
975
976 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
977 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
978 goto restart;
979 }
980
981 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
982 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
983 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
984 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
985 spin_unlock(&ls->ls_recover_spin);
986
987 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
988 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
989
990 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
991 if (error)
992 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
993
994 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
995 if (error)
996 fs_err(sdp, "control_first_done control NL error %d\n", error);
997
998 return error;
999 }
1000
1001 /*
1002 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1003 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1004 * gfs2 jids start at 0, so jid = slot - 1)
1005 */
1006
1007 #define RECOVER_SIZE_INC 16
1008
1009 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1010 int num_slots)
1011 {
1012 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1013 uint32_t *submit = NULL;
1014 uint32_t *result = NULL;
1015 uint32_t old_size, new_size;
1016 int i, max_jid;
1017
1018 if (!ls->ls_lvb_bits) {
1019 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1020 if (!ls->ls_lvb_bits)
1021 return -ENOMEM;
1022 }
1023
1024 max_jid = 0;
1025 for (i = 0; i < num_slots; i++) {
1026 if (max_jid < slots[i].slot - 1)
1027 max_jid = slots[i].slot - 1;
1028 }
1029
1030 old_size = ls->ls_recover_size;
1031
1032 if (old_size >= max_jid + 1)
1033 return 0;
1034
1035 new_size = old_size + RECOVER_SIZE_INC;
1036
1037 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1038 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1039 if (!submit || !result) {
1040 kfree(submit);
1041 kfree(result);
1042 return -ENOMEM;
1043 }
1044
1045 spin_lock(&ls->ls_recover_spin);
1046 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1047 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1048 kfree(ls->ls_recover_submit);
1049 kfree(ls->ls_recover_result);
1050 ls->ls_recover_submit = submit;
1051 ls->ls_recover_result = result;
1052 ls->ls_recover_size = new_size;
1053 spin_unlock(&ls->ls_recover_spin);
1054 return 0;
1055 }
1056
1057 static void free_recover_size(struct lm_lockstruct *ls)
1058 {
1059 kfree(ls->ls_lvb_bits);
1060 kfree(ls->ls_recover_submit);
1061 kfree(ls->ls_recover_result);
1062 ls->ls_recover_submit = NULL;
1063 ls->ls_recover_result = NULL;
1064 ls->ls_recover_size = 0;
1065 }
1066
1067 /* dlm calls before it does lock recovery */
1068
1069 static void gdlm_recover_prep(void *arg)
1070 {
1071 struct gfs2_sbd *sdp = arg;
1072 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1073
1074 spin_lock(&ls->ls_recover_spin);
1075 ls->ls_recover_block = ls->ls_recover_start;
1076 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1077
1078 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1079 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1080 spin_unlock(&ls->ls_recover_spin);
1081 return;
1082 }
1083 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1084 spin_unlock(&ls->ls_recover_spin);
1085 }
1086
1087 /* dlm calls after recover_prep has been completed on all lockspace members;
1088 identifies slot/jid of failed member */
1089
1090 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1091 {
1092 struct gfs2_sbd *sdp = arg;
1093 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1094 int jid = slot->slot - 1;
1095
1096 spin_lock(&ls->ls_recover_spin);
1097 if (ls->ls_recover_size < jid + 1) {
1098 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1099 jid, ls->ls_recover_block, ls->ls_recover_size);
1100 spin_unlock(&ls->ls_recover_spin);
1101 return;
1102 }
1103
1104 if (ls->ls_recover_submit[jid]) {
1105 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1106 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1107 }
1108 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1109 spin_unlock(&ls->ls_recover_spin);
1110 }
1111
1112 /* dlm calls after recover_slot and after it completes lock recovery */
1113
1114 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1115 int our_slot, uint32_t generation)
1116 {
1117 struct gfs2_sbd *sdp = arg;
1118 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1119
1120 /* ensure the ls jid arrays are large enough */
1121 set_recover_size(sdp, slots, num_slots);
1122
1123 spin_lock(&ls->ls_recover_spin);
1124 ls->ls_recover_start = generation;
1125
1126 if (!ls->ls_recover_mount) {
1127 ls->ls_recover_mount = generation;
1128 ls->ls_jid = our_slot - 1;
1129 }
1130
1131 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1132 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1133
1134 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1135 smp_mb__after_clear_bit();
1136 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1137 spin_unlock(&ls->ls_recover_spin);
1138 }
1139
1140 /* gfs2_recover thread has a journal recovery result */
1141
1142 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1143 unsigned int result)
1144 {
1145 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1146
1147 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1148 return;
1149
1150 /* don't care about the recovery of own journal during mount */
1151 if (jid == ls->ls_jid)
1152 return;
1153
1154 spin_lock(&ls->ls_recover_spin);
1155 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1156 spin_unlock(&ls->ls_recover_spin);
1157 return;
1158 }
1159 if (ls->ls_recover_size < jid + 1) {
1160 fs_err(sdp, "recovery_result jid %d short size %d",
1161 jid, ls->ls_recover_size);
1162 spin_unlock(&ls->ls_recover_spin);
1163 return;
1164 }
1165
1166 fs_info(sdp, "recover jid %d result %s\n", jid,
1167 result == LM_RD_GAVEUP ? "busy" : "success");
1168
1169 ls->ls_recover_result[jid] = result;
1170
1171 /* GAVEUP means another node is recovering the journal; delay our
1172 next attempt to recover it, to give the other node a chance to
1173 finish before trying again */
1174
1175 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1176 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1177 result == LM_RD_GAVEUP ? HZ : 0);
1178 spin_unlock(&ls->ls_recover_spin);
1179 }
1180
1181 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1182 .recover_prep = gdlm_recover_prep,
1183 .recover_slot = gdlm_recover_slot,
1184 .recover_done = gdlm_recover_done,
1185 };
1186
1187 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1188 {
1189 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1190 char cluster[GFS2_LOCKNAME_LEN];
1191 const char *fsname;
1192 uint32_t flags;
1193 int error, ops_result;
1194
1195 /*
1196 * initialize everything
1197 */
1198
1199 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1200 spin_lock_init(&ls->ls_recover_spin);
1201 ls->ls_recover_flags = 0;
1202 ls->ls_recover_mount = 0;
1203 ls->ls_recover_start = 0;
1204 ls->ls_recover_block = 0;
1205 ls->ls_recover_size = 0;
1206 ls->ls_recover_submit = NULL;
1207 ls->ls_recover_result = NULL;
1208 ls->ls_lvb_bits = NULL;
1209
1210 error = set_recover_size(sdp, NULL, 0);
1211 if (error)
1212 goto fail;
1213
1214 /*
1215 * prepare dlm_new_lockspace args
1216 */
1217
1218 fsname = strchr(table, ':');
1219 if (!fsname) {
1220 fs_info(sdp, "no fsname found\n");
1221 error = -EINVAL;
1222 goto fail_free;
1223 }
1224 memset(cluster, 0, sizeof(cluster));
1225 memcpy(cluster, table, strlen(table) - strlen(fsname));
1226 fsname++;
1227
1228 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1229
1230 /*
1231 * create/join lockspace
1232 */
1233
1234 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1235 &gdlm_lockspace_ops, sdp, &ops_result,
1236 &ls->ls_dlm);
1237 if (error) {
1238 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1239 goto fail_free;
1240 }
1241
1242 if (ops_result < 0) {
1243 /*
1244 * dlm does not support ops callbacks,
1245 * old dlm_controld/gfs_controld are used, try without ops.
1246 */
1247 fs_info(sdp, "dlm lockspace ops not used\n");
1248 free_recover_size(ls);
1249 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1250 return 0;
1251 }
1252
1253 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1254 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1255 error = -EINVAL;
1256 goto fail_release;
1257 }
1258
1259 /*
1260 * control_mount() uses control_lock to determine first mounter,
1261 * and for later mounts, waits for any recoveries to be cleared.
1262 */
1263
1264 error = control_mount(sdp);
1265 if (error) {
1266 fs_err(sdp, "mount control error %d\n", error);
1267 goto fail_release;
1268 }
1269
1270 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1271 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1272 smp_mb__after_clear_bit();
1273 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1274 return 0;
1275
1276 fail_release:
1277 dlm_release_lockspace(ls->ls_dlm, 2);
1278 fail_free:
1279 free_recover_size(ls);
1280 fail:
1281 return error;
1282 }
1283
1284 static void gdlm_first_done(struct gfs2_sbd *sdp)
1285 {
1286 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1287 int error;
1288
1289 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1290 return;
1291
1292 error = control_first_done(sdp);
1293 if (error)
1294 fs_err(sdp, "mount first_done error %d\n", error);
1295 }
1296
1297 static void gdlm_unmount(struct gfs2_sbd *sdp)
1298 {
1299 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1300
1301 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1302 goto release;
1303
1304 /* wait for gfs2_control_wq to be done with this mount */
1305
1306 spin_lock(&ls->ls_recover_spin);
1307 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1308 spin_unlock(&ls->ls_recover_spin);
1309 flush_delayed_work(&sdp->sd_control_work);
1310
1311 /* mounted_lock and control_lock will be purged in dlm recovery */
1312 release:
1313 if (ls->ls_dlm) {
1314 dlm_release_lockspace(ls->ls_dlm, 2);
1315 ls->ls_dlm = NULL;
1316 }
1317
1318 free_recover_size(ls);
1319 }
1320
1321 static const match_table_t dlm_tokens = {
1322 { Opt_jid, "jid=%d"},
1323 { Opt_id, "id=%d"},
1324 { Opt_first, "first=%d"},
1325 { Opt_nodir, "nodir=%d"},
1326 { Opt_err, NULL },
1327 };
1328
1329 const struct lm_lockops gfs2_dlm_ops = {
1330 .lm_proto_name = "lock_dlm",
1331 .lm_mount = gdlm_mount,
1332 .lm_first_done = gdlm_first_done,
1333 .lm_recovery_result = gdlm_recovery_result,
1334 .lm_unmount = gdlm_unmount,
1335 .lm_put_lock = gdlm_put_lock,
1336 .lm_lock = gdlm_lock,
1337 .lm_cancel = gdlm_cancel,
1338 .lm_tokens = &dlm_tokens,
1339 };
1340