Merge branch 'misc_devel_3.4' of git://git.pwsan.com/linux-2.6 into fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / gfs2 / aops.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37
38
39 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 unsigned int from, unsigned int to)
41 {
42 struct buffer_head *head = page_buffers(page);
43 unsigned int bsize = head->b_size;
44 struct buffer_head *bh;
45 unsigned int start, end;
46
47 for (bh = head, start = 0; bh != head || !start;
48 bh = bh->b_this_page, start = end) {
49 end = start + bsize;
50 if (end <= from || start >= to)
51 continue;
52 if (gfs2_is_jdata(ip))
53 set_buffer_uptodate(bh);
54 gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 }
56 }
57
58 /**
59 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60 * @inode: The inode
61 * @lblock: The block number to look up
62 * @bh_result: The buffer head to return the result in
63 * @create: Non-zero if we may add block to the file
64 *
65 * Returns: errno
66 */
67
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 struct buffer_head *bh_result, int create)
70 {
71 int error;
72
73 error = gfs2_block_map(inode, lblock, bh_result, 0);
74 if (error)
75 return error;
76 if (!buffer_mapped(bh_result))
77 return -EIO;
78 return 0;
79 }
80
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 struct buffer_head *bh_result, int create)
83 {
84 return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86
87 /**
88 * gfs2_writepage_common - Common bits of writepage
89 * @page: The page to be written
90 * @wbc: The writeback control
91 *
92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93 */
94
95 static int gfs2_writepage_common(struct page *page,
96 struct writeback_control *wbc)
97 {
98 struct inode *inode = page->mapping->host;
99 struct gfs2_inode *ip = GFS2_I(inode);
100 struct gfs2_sbd *sdp = GFS2_SB(inode);
101 loff_t i_size = i_size_read(inode);
102 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 unsigned offset;
104
105 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 goto out;
107 if (current->journal_info)
108 goto redirty;
109 /* Is the page fully outside i_size? (truncate in progress) */
110 offset = i_size & (PAGE_CACHE_SIZE-1);
111 if (page->index > end_index || (page->index == end_index && !offset)) {
112 page->mapping->a_ops->invalidatepage(page, 0);
113 goto out;
114 }
115 return 1;
116 redirty:
117 redirty_page_for_writepage(wbc, page);
118 out:
119 unlock_page(page);
120 return 0;
121 }
122
123 /**
124 * gfs2_writeback_writepage - Write page for writeback mappings
125 * @page: The page
126 * @wbc: The writeback control
127 *
128 */
129
130 static int gfs2_writeback_writepage(struct page *page,
131 struct writeback_control *wbc)
132 {
133 int ret;
134
135 ret = gfs2_writepage_common(page, wbc);
136 if (ret <= 0)
137 return ret;
138
139 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
140 }
141
142 /**
143 * gfs2_ordered_writepage - Write page for ordered data files
144 * @page: The page to write
145 * @wbc: The writeback control
146 *
147 */
148
149 static int gfs2_ordered_writepage(struct page *page,
150 struct writeback_control *wbc)
151 {
152 struct inode *inode = page->mapping->host;
153 struct gfs2_inode *ip = GFS2_I(inode);
154 int ret;
155
156 ret = gfs2_writepage_common(page, wbc);
157 if (ret <= 0)
158 return ret;
159
160 if (!page_has_buffers(page)) {
161 create_empty_buffers(page, inode->i_sb->s_blocksize,
162 (1 << BH_Dirty)|(1 << BH_Uptodate));
163 }
164 gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
165 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
166 }
167
168 /**
169 * __gfs2_jdata_writepage - The core of jdata writepage
170 * @page: The page to write
171 * @wbc: The writeback control
172 *
173 * This is shared between writepage and writepages and implements the
174 * core of the writepage operation. If a transaction is required then
175 * PageChecked will have been set and the transaction will have
176 * already been started before this is called.
177 */
178
179 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
180 {
181 struct inode *inode = page->mapping->host;
182 struct gfs2_inode *ip = GFS2_I(inode);
183 struct gfs2_sbd *sdp = GFS2_SB(inode);
184
185 if (PageChecked(page)) {
186 ClearPageChecked(page);
187 if (!page_has_buffers(page)) {
188 create_empty_buffers(page, inode->i_sb->s_blocksize,
189 (1 << BH_Dirty)|(1 << BH_Uptodate));
190 }
191 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
192 }
193 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
194 }
195
196 /**
197 * gfs2_jdata_writepage - Write complete page
198 * @page: Page to write
199 *
200 * Returns: errno
201 *
202 */
203
204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
205 {
206 struct inode *inode = page->mapping->host;
207 struct gfs2_sbd *sdp = GFS2_SB(inode);
208 int ret;
209 int done_trans = 0;
210
211 if (PageChecked(page)) {
212 if (wbc->sync_mode != WB_SYNC_ALL)
213 goto out_ignore;
214 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
215 if (ret)
216 goto out_ignore;
217 done_trans = 1;
218 }
219 ret = gfs2_writepage_common(page, wbc);
220 if (ret > 0)
221 ret = __gfs2_jdata_writepage(page, wbc);
222 if (done_trans)
223 gfs2_trans_end(sdp);
224 return ret;
225
226 out_ignore:
227 redirty_page_for_writepage(wbc, page);
228 unlock_page(page);
229 return 0;
230 }
231
232 /**
233 * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
234 * @mapping: The mapping to write
235 * @wbc: Write-back control
236 *
237 * For the data=writeback case we can already ignore buffer heads
238 * and write whole extents at once. This is a big reduction in the
239 * number of I/O requests we send and the bmap calls we make in this case.
240 */
241 static int gfs2_writeback_writepages(struct address_space *mapping,
242 struct writeback_control *wbc)
243 {
244 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
245 }
246
247 /**
248 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
249 * @mapping: The mapping
250 * @wbc: The writeback control
251 * @writepage: The writepage function to call for each page
252 * @pvec: The vector of pages
253 * @nr_pages: The number of pages to write
254 *
255 * Returns: non-zero if loop should terminate, zero otherwise
256 */
257
258 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
259 struct writeback_control *wbc,
260 struct pagevec *pvec,
261 int nr_pages, pgoff_t end)
262 {
263 struct inode *inode = mapping->host;
264 struct gfs2_sbd *sdp = GFS2_SB(inode);
265 loff_t i_size = i_size_read(inode);
266 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
267 unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
268 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
269 int i;
270 int ret;
271
272 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
273 if (ret < 0)
274 return ret;
275
276 for(i = 0; i < nr_pages; i++) {
277 struct page *page = pvec->pages[i];
278
279 lock_page(page);
280
281 if (unlikely(page->mapping != mapping)) {
282 unlock_page(page);
283 continue;
284 }
285
286 if (!wbc->range_cyclic && page->index > end) {
287 ret = 1;
288 unlock_page(page);
289 continue;
290 }
291
292 if (wbc->sync_mode != WB_SYNC_NONE)
293 wait_on_page_writeback(page);
294
295 if (PageWriteback(page) ||
296 !clear_page_dirty_for_io(page)) {
297 unlock_page(page);
298 continue;
299 }
300
301 /* Is the page fully outside i_size? (truncate in progress) */
302 if (page->index > end_index || (page->index == end_index && !offset)) {
303 page->mapping->a_ops->invalidatepage(page, 0);
304 unlock_page(page);
305 continue;
306 }
307
308 ret = __gfs2_jdata_writepage(page, wbc);
309
310 if (ret || (--(wbc->nr_to_write) <= 0))
311 ret = 1;
312 }
313 gfs2_trans_end(sdp);
314 return ret;
315 }
316
317 /**
318 * gfs2_write_cache_jdata - Like write_cache_pages but different
319 * @mapping: The mapping to write
320 * @wbc: The writeback control
321 * @writepage: The writepage function to call
322 * @data: The data to pass to writepage
323 *
324 * The reason that we use our own function here is that we need to
325 * start transactions before we grab page locks. This allows us
326 * to get the ordering right.
327 */
328
329 static int gfs2_write_cache_jdata(struct address_space *mapping,
330 struct writeback_control *wbc)
331 {
332 int ret = 0;
333 int done = 0;
334 struct pagevec pvec;
335 int nr_pages;
336 pgoff_t index;
337 pgoff_t end;
338 int scanned = 0;
339 int range_whole = 0;
340
341 pagevec_init(&pvec, 0);
342 if (wbc->range_cyclic) {
343 index = mapping->writeback_index; /* Start from prev offset */
344 end = -1;
345 } else {
346 index = wbc->range_start >> PAGE_CACHE_SHIFT;
347 end = wbc->range_end >> PAGE_CACHE_SHIFT;
348 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
349 range_whole = 1;
350 scanned = 1;
351 }
352
353 retry:
354 while (!done && (index <= end) &&
355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 PAGECACHE_TAG_DIRTY,
357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
358 scanned = 1;
359 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
360 if (ret)
361 done = 1;
362 if (ret > 0)
363 ret = 0;
364
365 pagevec_release(&pvec);
366 cond_resched();
367 }
368
369 if (!scanned && !done) {
370 /*
371 * We hit the last page and there is more work to be done: wrap
372 * back to the start of the file
373 */
374 scanned = 1;
375 index = 0;
376 goto retry;
377 }
378
379 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
380 mapping->writeback_index = index;
381 return ret;
382 }
383
384
385 /**
386 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
387 * @mapping: The mapping to write
388 * @wbc: The writeback control
389 *
390 */
391
392 static int gfs2_jdata_writepages(struct address_space *mapping,
393 struct writeback_control *wbc)
394 {
395 struct gfs2_inode *ip = GFS2_I(mapping->host);
396 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
397 int ret;
398
399 ret = gfs2_write_cache_jdata(mapping, wbc);
400 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
401 gfs2_log_flush(sdp, ip->i_gl);
402 ret = gfs2_write_cache_jdata(mapping, wbc);
403 }
404 return ret;
405 }
406
407 /**
408 * stuffed_readpage - Fill in a Linux page with stuffed file data
409 * @ip: the inode
410 * @page: the page
411 *
412 * Returns: errno
413 */
414
415 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
416 {
417 struct buffer_head *dibh;
418 u64 dsize = i_size_read(&ip->i_inode);
419 void *kaddr;
420 int error;
421
422 /*
423 * Due to the order of unstuffing files and ->fault(), we can be
424 * asked for a zero page in the case of a stuffed file being extended,
425 * so we need to supply one here. It doesn't happen often.
426 */
427 if (unlikely(page->index)) {
428 zero_user(page, 0, PAGE_CACHE_SIZE);
429 SetPageUptodate(page);
430 return 0;
431 }
432
433 error = gfs2_meta_inode_buffer(ip, &dibh);
434 if (error)
435 return error;
436
437 kaddr = kmap_atomic(page);
438 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
439 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
440 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
441 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
442 kunmap_atomic(kaddr);
443 flush_dcache_page(page);
444 brelse(dibh);
445 SetPageUptodate(page);
446
447 return 0;
448 }
449
450
451 /**
452 * __gfs2_readpage - readpage
453 * @file: The file to read a page for
454 * @page: The page to read
455 *
456 * This is the core of gfs2's readpage. Its used by the internal file
457 * reading code as in that case we already hold the glock. Also its
458 * called by gfs2_readpage() once the required lock has been granted.
459 *
460 */
461
462 static int __gfs2_readpage(void *file, struct page *page)
463 {
464 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
465 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
466 int error;
467
468 if (gfs2_is_stuffed(ip)) {
469 error = stuffed_readpage(ip, page);
470 unlock_page(page);
471 } else {
472 error = mpage_readpage(page, gfs2_block_map);
473 }
474
475 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
476 return -EIO;
477
478 return error;
479 }
480
481 /**
482 * gfs2_readpage - read a page of a file
483 * @file: The file to read
484 * @page: The page of the file
485 *
486 * This deals with the locking required. We have to unlock and
487 * relock the page in order to get the locking in the right
488 * order.
489 */
490
491 static int gfs2_readpage(struct file *file, struct page *page)
492 {
493 struct address_space *mapping = page->mapping;
494 struct gfs2_inode *ip = GFS2_I(mapping->host);
495 struct gfs2_holder gh;
496 int error;
497
498 unlock_page(page);
499 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
500 error = gfs2_glock_nq(&gh);
501 if (unlikely(error))
502 goto out;
503 error = AOP_TRUNCATED_PAGE;
504 lock_page(page);
505 if (page->mapping == mapping && !PageUptodate(page))
506 error = __gfs2_readpage(file, page);
507 else
508 unlock_page(page);
509 gfs2_glock_dq(&gh);
510 out:
511 gfs2_holder_uninit(&gh);
512 if (error && error != AOP_TRUNCATED_PAGE)
513 lock_page(page);
514 return error;
515 }
516
517 /**
518 * gfs2_internal_read - read an internal file
519 * @ip: The gfs2 inode
520 * @ra_state: The readahead state (or NULL for no readahead)
521 * @buf: The buffer to fill
522 * @pos: The file position
523 * @size: The amount to read
524 *
525 */
526
527 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
528 char *buf, loff_t *pos, unsigned size)
529 {
530 struct address_space *mapping = ip->i_inode.i_mapping;
531 unsigned long index = *pos / PAGE_CACHE_SIZE;
532 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
533 unsigned copied = 0;
534 unsigned amt;
535 struct page *page;
536 void *p;
537
538 do {
539 amt = size - copied;
540 if (offset + size > PAGE_CACHE_SIZE)
541 amt = PAGE_CACHE_SIZE - offset;
542 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
543 if (IS_ERR(page))
544 return PTR_ERR(page);
545 p = kmap_atomic(page);
546 memcpy(buf + copied, p + offset, amt);
547 kunmap_atomic(p);
548 mark_page_accessed(page);
549 page_cache_release(page);
550 copied += amt;
551 index++;
552 offset = 0;
553 } while(copied < size);
554 (*pos) += size;
555 return size;
556 }
557
558 /**
559 * gfs2_readpages - Read a bunch of pages at once
560 *
561 * Some notes:
562 * 1. This is only for readahead, so we can simply ignore any things
563 * which are slightly inconvenient (such as locking conflicts between
564 * the page lock and the glock) and return having done no I/O. Its
565 * obviously not something we'd want to do on too regular a basis.
566 * Any I/O we ignore at this time will be done via readpage later.
567 * 2. We don't handle stuffed files here we let readpage do the honours.
568 * 3. mpage_readpages() does most of the heavy lifting in the common case.
569 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
570 */
571
572 static int gfs2_readpages(struct file *file, struct address_space *mapping,
573 struct list_head *pages, unsigned nr_pages)
574 {
575 struct inode *inode = mapping->host;
576 struct gfs2_inode *ip = GFS2_I(inode);
577 struct gfs2_sbd *sdp = GFS2_SB(inode);
578 struct gfs2_holder gh;
579 int ret;
580
581 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
582 ret = gfs2_glock_nq(&gh);
583 if (unlikely(ret))
584 goto out_uninit;
585 if (!gfs2_is_stuffed(ip))
586 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
587 gfs2_glock_dq(&gh);
588 out_uninit:
589 gfs2_holder_uninit(&gh);
590 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
591 ret = -EIO;
592 return ret;
593 }
594
595 /**
596 * gfs2_write_begin - Begin to write to a file
597 * @file: The file to write to
598 * @mapping: The mapping in which to write
599 * @pos: The file offset at which to start writing
600 * @len: Length of the write
601 * @flags: Various flags
602 * @pagep: Pointer to return the page
603 * @fsdata: Pointer to return fs data (unused by GFS2)
604 *
605 * Returns: errno
606 */
607
608 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
609 loff_t pos, unsigned len, unsigned flags,
610 struct page **pagep, void **fsdata)
611 {
612 struct gfs2_inode *ip = GFS2_I(mapping->host);
613 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
614 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
615 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
616 int alloc_required;
617 int error = 0;
618 struct gfs2_qadata *qa = NULL;
619 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
620 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
621 struct page *page;
622
623 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
624 error = gfs2_glock_nq(&ip->i_gh);
625 if (unlikely(error))
626 goto out_uninit;
627 if (&ip->i_inode == sdp->sd_rindex) {
628 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
629 GL_NOCACHE, &m_ip->i_gh);
630 if (unlikely(error)) {
631 gfs2_glock_dq(&ip->i_gh);
632 goto out_uninit;
633 }
634 }
635
636 alloc_required = gfs2_write_alloc_required(ip, pos, len);
637
638 if (alloc_required || gfs2_is_jdata(ip))
639 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
640
641 if (alloc_required) {
642 qa = gfs2_qadata_get(ip);
643 if (!qa) {
644 error = -ENOMEM;
645 goto out_unlock;
646 }
647
648 error = gfs2_quota_lock_check(ip);
649 if (error)
650 goto out_alloc_put;
651
652 error = gfs2_inplace_reserve(ip, data_blocks + ind_blocks);
653 if (error)
654 goto out_qunlock;
655 }
656
657 rblocks = RES_DINODE + ind_blocks;
658 if (gfs2_is_jdata(ip))
659 rblocks += data_blocks ? data_blocks : 1;
660 if (ind_blocks || data_blocks)
661 rblocks += RES_STATFS + RES_QUOTA;
662 if (&ip->i_inode == sdp->sd_rindex)
663 rblocks += 2 * RES_STATFS;
664 if (alloc_required)
665 rblocks += gfs2_rg_blocks(ip);
666
667 error = gfs2_trans_begin(sdp, rblocks,
668 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
669 if (error)
670 goto out_trans_fail;
671
672 error = -ENOMEM;
673 flags |= AOP_FLAG_NOFS;
674 page = grab_cache_page_write_begin(mapping, index, flags);
675 *pagep = page;
676 if (unlikely(!page))
677 goto out_endtrans;
678
679 if (gfs2_is_stuffed(ip)) {
680 error = 0;
681 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
682 error = gfs2_unstuff_dinode(ip, page);
683 if (error == 0)
684 goto prepare_write;
685 } else if (!PageUptodate(page)) {
686 error = stuffed_readpage(ip, page);
687 }
688 goto out;
689 }
690
691 prepare_write:
692 error = __block_write_begin(page, from, len, gfs2_block_map);
693 out:
694 if (error == 0)
695 return 0;
696
697 unlock_page(page);
698 page_cache_release(page);
699
700 gfs2_trans_end(sdp);
701 if (pos + len > ip->i_inode.i_size)
702 gfs2_trim_blocks(&ip->i_inode);
703 goto out_trans_fail;
704
705 out_endtrans:
706 gfs2_trans_end(sdp);
707 out_trans_fail:
708 if (alloc_required) {
709 gfs2_inplace_release(ip);
710 out_qunlock:
711 gfs2_quota_unlock(ip);
712 out_alloc_put:
713 gfs2_qadata_put(ip);
714 }
715 out_unlock:
716 if (&ip->i_inode == sdp->sd_rindex) {
717 gfs2_glock_dq(&m_ip->i_gh);
718 gfs2_holder_uninit(&m_ip->i_gh);
719 }
720 gfs2_glock_dq(&ip->i_gh);
721 out_uninit:
722 gfs2_holder_uninit(&ip->i_gh);
723 return error;
724 }
725
726 /**
727 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
728 * @inode: the rindex inode
729 */
730 static void adjust_fs_space(struct inode *inode)
731 {
732 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
733 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
734 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
735 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
736 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
737 struct buffer_head *m_bh, *l_bh;
738 u64 fs_total, new_free;
739
740 /* Total up the file system space, according to the latest rindex. */
741 fs_total = gfs2_ri_total(sdp);
742 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
743 return;
744
745 spin_lock(&sdp->sd_statfs_spin);
746 gfs2_statfs_change_in(m_sc, m_bh->b_data +
747 sizeof(struct gfs2_dinode));
748 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
749 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
750 else
751 new_free = 0;
752 spin_unlock(&sdp->sd_statfs_spin);
753 fs_warn(sdp, "File system extended by %llu blocks.\n",
754 (unsigned long long)new_free);
755 gfs2_statfs_change(sdp, new_free, new_free, 0);
756
757 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
758 goto out;
759 update_statfs(sdp, m_bh, l_bh);
760 brelse(l_bh);
761 out:
762 brelse(m_bh);
763 }
764
765 /**
766 * gfs2_stuffed_write_end - Write end for stuffed files
767 * @inode: The inode
768 * @dibh: The buffer_head containing the on-disk inode
769 * @pos: The file position
770 * @len: The length of the write
771 * @copied: How much was actually copied by the VFS
772 * @page: The page
773 *
774 * This copies the data from the page into the inode block after
775 * the inode data structure itself.
776 *
777 * Returns: errno
778 */
779 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
780 loff_t pos, unsigned len, unsigned copied,
781 struct page *page)
782 {
783 struct gfs2_inode *ip = GFS2_I(inode);
784 struct gfs2_sbd *sdp = GFS2_SB(inode);
785 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
786 u64 to = pos + copied;
787 void *kaddr;
788 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
789
790 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
791 kaddr = kmap_atomic(page);
792 memcpy(buf + pos, kaddr + pos, copied);
793 memset(kaddr + pos + copied, 0, len - copied);
794 flush_dcache_page(page);
795 kunmap_atomic(kaddr);
796
797 if (!PageUptodate(page))
798 SetPageUptodate(page);
799 unlock_page(page);
800 page_cache_release(page);
801
802 if (copied) {
803 if (inode->i_size < to)
804 i_size_write(inode, to);
805 mark_inode_dirty(inode);
806 }
807
808 if (inode == sdp->sd_rindex) {
809 adjust_fs_space(inode);
810 ip->i_gh.gh_flags |= GL_NOCACHE;
811 }
812
813 brelse(dibh);
814 gfs2_trans_end(sdp);
815 if (inode == sdp->sd_rindex) {
816 gfs2_glock_dq(&m_ip->i_gh);
817 gfs2_holder_uninit(&m_ip->i_gh);
818 }
819 gfs2_glock_dq(&ip->i_gh);
820 gfs2_holder_uninit(&ip->i_gh);
821 return copied;
822 }
823
824 /**
825 * gfs2_write_end
826 * @file: The file to write to
827 * @mapping: The address space to write to
828 * @pos: The file position
829 * @len: The length of the data
830 * @copied:
831 * @page: The page that has been written
832 * @fsdata: The fsdata (unused in GFS2)
833 *
834 * The main write_end function for GFS2. We have a separate one for
835 * stuffed files as they are slightly different, otherwise we just
836 * put our locking around the VFS provided functions.
837 *
838 * Returns: errno
839 */
840
841 static int gfs2_write_end(struct file *file, struct address_space *mapping,
842 loff_t pos, unsigned len, unsigned copied,
843 struct page *page, void *fsdata)
844 {
845 struct inode *inode = page->mapping->host;
846 struct gfs2_inode *ip = GFS2_I(inode);
847 struct gfs2_sbd *sdp = GFS2_SB(inode);
848 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
849 struct buffer_head *dibh;
850 struct gfs2_qadata *qa = ip->i_qadata;
851 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
852 unsigned int to = from + len;
853 int ret;
854
855 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
856
857 ret = gfs2_meta_inode_buffer(ip, &dibh);
858 if (unlikely(ret)) {
859 unlock_page(page);
860 page_cache_release(page);
861 goto failed;
862 }
863
864 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
865
866 if (gfs2_is_stuffed(ip))
867 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
868
869 if (!gfs2_is_writeback(ip))
870 gfs2_page_add_databufs(ip, page, from, to);
871
872 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
873
874 if (inode == sdp->sd_rindex) {
875 adjust_fs_space(inode);
876 ip->i_gh.gh_flags |= GL_NOCACHE;
877 }
878
879 brelse(dibh);
880 failed:
881 gfs2_trans_end(sdp);
882 if (ip->i_res)
883 gfs2_inplace_release(ip);
884 if (qa) {
885 gfs2_quota_unlock(ip);
886 gfs2_qadata_put(ip);
887 }
888 if (inode == sdp->sd_rindex) {
889 gfs2_glock_dq(&m_ip->i_gh);
890 gfs2_holder_uninit(&m_ip->i_gh);
891 }
892 gfs2_glock_dq(&ip->i_gh);
893 gfs2_holder_uninit(&ip->i_gh);
894 return ret;
895 }
896
897 /**
898 * gfs2_set_page_dirty - Page dirtying function
899 * @page: The page to dirty
900 *
901 * Returns: 1 if it dirtyed the page, or 0 otherwise
902 */
903
904 static int gfs2_set_page_dirty(struct page *page)
905 {
906 SetPageChecked(page);
907 return __set_page_dirty_buffers(page);
908 }
909
910 /**
911 * gfs2_bmap - Block map function
912 * @mapping: Address space info
913 * @lblock: The block to map
914 *
915 * Returns: The disk address for the block or 0 on hole or error
916 */
917
918 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
919 {
920 struct gfs2_inode *ip = GFS2_I(mapping->host);
921 struct gfs2_holder i_gh;
922 sector_t dblock = 0;
923 int error;
924
925 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
926 if (error)
927 return 0;
928
929 if (!gfs2_is_stuffed(ip))
930 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
931
932 gfs2_glock_dq_uninit(&i_gh);
933
934 return dblock;
935 }
936
937 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
938 {
939 struct gfs2_bufdata *bd;
940
941 lock_buffer(bh);
942 gfs2_log_lock(sdp);
943 clear_buffer_dirty(bh);
944 bd = bh->b_private;
945 if (bd) {
946 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
947 list_del_init(&bd->bd_le.le_list);
948 else
949 gfs2_remove_from_journal(bh, current->journal_info, 0);
950 }
951 bh->b_bdev = NULL;
952 clear_buffer_mapped(bh);
953 clear_buffer_req(bh);
954 clear_buffer_new(bh);
955 gfs2_log_unlock(sdp);
956 unlock_buffer(bh);
957 }
958
959 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
960 {
961 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
962 struct buffer_head *bh, *head;
963 unsigned long pos = 0;
964
965 BUG_ON(!PageLocked(page));
966 if (offset == 0)
967 ClearPageChecked(page);
968 if (!page_has_buffers(page))
969 goto out;
970
971 bh = head = page_buffers(page);
972 do {
973 if (offset <= pos)
974 gfs2_discard(sdp, bh);
975 pos += bh->b_size;
976 bh = bh->b_this_page;
977 } while (bh != head);
978 out:
979 if (offset == 0)
980 try_to_release_page(page, 0);
981 }
982
983 /**
984 * gfs2_ok_for_dio - check that dio is valid on this file
985 * @ip: The inode
986 * @rw: READ or WRITE
987 * @offset: The offset at which we are reading or writing
988 *
989 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
990 * 1 (to accept the i/o request)
991 */
992 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
993 {
994 /*
995 * Should we return an error here? I can't see that O_DIRECT for
996 * a stuffed file makes any sense. For now we'll silently fall
997 * back to buffered I/O
998 */
999 if (gfs2_is_stuffed(ip))
1000 return 0;
1001
1002 if (offset >= i_size_read(&ip->i_inode))
1003 return 0;
1004 return 1;
1005 }
1006
1007
1008
1009 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1010 const struct iovec *iov, loff_t offset,
1011 unsigned long nr_segs)
1012 {
1013 struct file *file = iocb->ki_filp;
1014 struct inode *inode = file->f_mapping->host;
1015 struct gfs2_inode *ip = GFS2_I(inode);
1016 struct gfs2_holder gh;
1017 int rv;
1018
1019 /*
1020 * Deferred lock, even if its a write, since we do no allocation
1021 * on this path. All we need change is atime, and this lock mode
1022 * ensures that other nodes have flushed their buffered read caches
1023 * (i.e. their page cache entries for this inode). We do not,
1024 * unfortunately have the option of only flushing a range like
1025 * the VFS does.
1026 */
1027 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1028 rv = gfs2_glock_nq(&gh);
1029 if (rv)
1030 return rv;
1031 rv = gfs2_ok_for_dio(ip, rw, offset);
1032 if (rv != 1)
1033 goto out; /* dio not valid, fall back to buffered i/o */
1034
1035 rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1036 offset, nr_segs, gfs2_get_block_direct,
1037 NULL, NULL, 0);
1038 out:
1039 gfs2_glock_dq_m(1, &gh);
1040 gfs2_holder_uninit(&gh);
1041 return rv;
1042 }
1043
1044 /**
1045 * gfs2_releasepage - free the metadata associated with a page
1046 * @page: the page that's being released
1047 * @gfp_mask: passed from Linux VFS, ignored by us
1048 *
1049 * Call try_to_free_buffers() if the buffers in this page can be
1050 * released.
1051 *
1052 * Returns: 0
1053 */
1054
1055 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1056 {
1057 struct address_space *mapping = page->mapping;
1058 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1059 struct buffer_head *bh, *head;
1060 struct gfs2_bufdata *bd;
1061
1062 if (!page_has_buffers(page))
1063 return 0;
1064
1065 gfs2_log_lock(sdp);
1066 spin_lock(&sdp->sd_ail_lock);
1067 head = bh = page_buffers(page);
1068 do {
1069 if (atomic_read(&bh->b_count))
1070 goto cannot_release;
1071 bd = bh->b_private;
1072 if (bd && bd->bd_ail)
1073 goto cannot_release;
1074 if (buffer_pinned(bh) || buffer_dirty(bh))
1075 goto not_possible;
1076 bh = bh->b_this_page;
1077 } while(bh != head);
1078 spin_unlock(&sdp->sd_ail_lock);
1079 gfs2_log_unlock(sdp);
1080
1081 head = bh = page_buffers(page);
1082 do {
1083 gfs2_log_lock(sdp);
1084 bd = bh->b_private;
1085 if (bd) {
1086 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1087 gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1088 if (!list_empty(&bd->bd_le.le_list)) {
1089 if (!buffer_pinned(bh))
1090 list_del_init(&bd->bd_le.le_list);
1091 else
1092 bd = NULL;
1093 }
1094 if (bd)
1095 bd->bd_bh = NULL;
1096 bh->b_private = NULL;
1097 }
1098 gfs2_log_unlock(sdp);
1099 if (bd)
1100 kmem_cache_free(gfs2_bufdata_cachep, bd);
1101
1102 bh = bh->b_this_page;
1103 } while (bh != head);
1104
1105 return try_to_free_buffers(page);
1106
1107 not_possible: /* Should never happen */
1108 WARN_ON(buffer_dirty(bh));
1109 WARN_ON(buffer_pinned(bh));
1110 cannot_release:
1111 spin_unlock(&sdp->sd_ail_lock);
1112 gfs2_log_unlock(sdp);
1113 return 0;
1114 }
1115
1116 static const struct address_space_operations gfs2_writeback_aops = {
1117 .writepage = gfs2_writeback_writepage,
1118 .writepages = gfs2_writeback_writepages,
1119 .readpage = gfs2_readpage,
1120 .readpages = gfs2_readpages,
1121 .write_begin = gfs2_write_begin,
1122 .write_end = gfs2_write_end,
1123 .bmap = gfs2_bmap,
1124 .invalidatepage = gfs2_invalidatepage,
1125 .releasepage = gfs2_releasepage,
1126 .direct_IO = gfs2_direct_IO,
1127 .migratepage = buffer_migrate_page,
1128 .is_partially_uptodate = block_is_partially_uptodate,
1129 .error_remove_page = generic_error_remove_page,
1130 };
1131
1132 static const struct address_space_operations gfs2_ordered_aops = {
1133 .writepage = gfs2_ordered_writepage,
1134 .readpage = gfs2_readpage,
1135 .readpages = gfs2_readpages,
1136 .write_begin = gfs2_write_begin,
1137 .write_end = gfs2_write_end,
1138 .set_page_dirty = gfs2_set_page_dirty,
1139 .bmap = gfs2_bmap,
1140 .invalidatepage = gfs2_invalidatepage,
1141 .releasepage = gfs2_releasepage,
1142 .direct_IO = gfs2_direct_IO,
1143 .migratepage = buffer_migrate_page,
1144 .is_partially_uptodate = block_is_partially_uptodate,
1145 .error_remove_page = generic_error_remove_page,
1146 };
1147
1148 static const struct address_space_operations gfs2_jdata_aops = {
1149 .writepage = gfs2_jdata_writepage,
1150 .writepages = gfs2_jdata_writepages,
1151 .readpage = gfs2_readpage,
1152 .readpages = gfs2_readpages,
1153 .write_begin = gfs2_write_begin,
1154 .write_end = gfs2_write_end,
1155 .set_page_dirty = gfs2_set_page_dirty,
1156 .bmap = gfs2_bmap,
1157 .invalidatepage = gfs2_invalidatepage,
1158 .releasepage = gfs2_releasepage,
1159 .is_partially_uptodate = block_is_partially_uptodate,
1160 .error_remove_page = generic_error_remove_page,
1161 };
1162
1163 void gfs2_set_aops(struct inode *inode)
1164 {
1165 struct gfs2_inode *ip = GFS2_I(inode);
1166
1167 if (gfs2_is_writeback(ip))
1168 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1169 else if (gfs2_is_ordered(ip))
1170 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1171 else if (gfs2_is_jdata(ip))
1172 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1173 else
1174 BUG();
1175 }
1176