mm: change invalidatepage prototype to accept length
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / gfs2 / aops.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/aio.h>
24
25 #include "gfs2.h"
26 #include "incore.h"
27 #include "bmap.h"
28 #include "glock.h"
29 #include "inode.h"
30 #include "log.h"
31 #include "meta_io.h"
32 #include "quota.h"
33 #include "trans.h"
34 #include "rgrp.h"
35 #include "super.h"
36 #include "util.h"
37 #include "glops.h"
38
39
40 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41 unsigned int from, unsigned int to)
42 {
43 struct buffer_head *head = page_buffers(page);
44 unsigned int bsize = head->b_size;
45 struct buffer_head *bh;
46 unsigned int start, end;
47
48 for (bh = head, start = 0; bh != head || !start;
49 bh = bh->b_this_page, start = end) {
50 end = start + bsize;
51 if (end <= from || start >= to)
52 continue;
53 if (gfs2_is_jdata(ip))
54 set_buffer_uptodate(bh);
55 gfs2_trans_add_data(ip->i_gl, bh);
56 }
57 }
58
59 /**
60 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
61 * @inode: The inode
62 * @lblock: The block number to look up
63 * @bh_result: The buffer head to return the result in
64 * @create: Non-zero if we may add block to the file
65 *
66 * Returns: errno
67 */
68
69 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
70 struct buffer_head *bh_result, int create)
71 {
72 int error;
73
74 error = gfs2_block_map(inode, lblock, bh_result, 0);
75 if (error)
76 return error;
77 if (!buffer_mapped(bh_result))
78 return -EIO;
79 return 0;
80 }
81
82 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
83 struct buffer_head *bh_result, int create)
84 {
85 return gfs2_block_map(inode, lblock, bh_result, 0);
86 }
87
88 /**
89 * gfs2_writepage_common - Common bits of writepage
90 * @page: The page to be written
91 * @wbc: The writeback control
92 *
93 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
94 */
95
96 static int gfs2_writepage_common(struct page *page,
97 struct writeback_control *wbc)
98 {
99 struct inode *inode = page->mapping->host;
100 struct gfs2_inode *ip = GFS2_I(inode);
101 struct gfs2_sbd *sdp = GFS2_SB(inode);
102 loff_t i_size = i_size_read(inode);
103 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
104 unsigned offset;
105
106 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
107 goto out;
108 if (current->journal_info)
109 goto redirty;
110 /* Is the page fully outside i_size? (truncate in progress) */
111 offset = i_size & (PAGE_CACHE_SIZE-1);
112 if (page->index > end_index || (page->index == end_index && !offset)) {
113 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
114 goto out;
115 }
116 return 1;
117 redirty:
118 redirty_page_for_writepage(wbc, page);
119 out:
120 unlock_page(page);
121 return 0;
122 }
123
124 /**
125 * gfs2_writeback_writepage - Write page for writeback mappings
126 * @page: The page
127 * @wbc: The writeback control
128 *
129 */
130
131 static int gfs2_writeback_writepage(struct page *page,
132 struct writeback_control *wbc)
133 {
134 int ret;
135
136 ret = gfs2_writepage_common(page, wbc);
137 if (ret <= 0)
138 return ret;
139
140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142
143 /**
144 * gfs2_ordered_writepage - Write page for ordered data files
145 * @page: The page to write
146 * @wbc: The writeback control
147 *
148 */
149
150 static int gfs2_ordered_writepage(struct page *page,
151 struct writeback_control *wbc)
152 {
153 struct inode *inode = page->mapping->host;
154 struct gfs2_inode *ip = GFS2_I(inode);
155 int ret;
156
157 ret = gfs2_writepage_common(page, wbc);
158 if (ret <= 0)
159 return ret;
160
161 if (!page_has_buffers(page)) {
162 create_empty_buffers(page, inode->i_sb->s_blocksize,
163 (1 << BH_Dirty)|(1 << BH_Uptodate));
164 }
165 gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
166 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
167 }
168
169 /**
170 * __gfs2_jdata_writepage - The core of jdata writepage
171 * @page: The page to write
172 * @wbc: The writeback control
173 *
174 * This is shared between writepage and writepages and implements the
175 * core of the writepage operation. If a transaction is required then
176 * PageChecked will have been set and the transaction will have
177 * already been started before this is called.
178 */
179
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 struct inode *inode = page->mapping->host;
183 struct gfs2_inode *ip = GFS2_I(inode);
184 struct gfs2_sbd *sdp = GFS2_SB(inode);
185
186 if (PageChecked(page)) {
187 ClearPageChecked(page);
188 if (!page_has_buffers(page)) {
189 create_empty_buffers(page, inode->i_sb->s_blocksize,
190 (1 << BH_Dirty)|(1 << BH_Uptodate));
191 }
192 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 }
194 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196
197 /**
198 * gfs2_jdata_writepage - Write complete page
199 * @page: Page to write
200 *
201 * Returns: errno
202 *
203 */
204
205 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
206 {
207 struct inode *inode = page->mapping->host;
208 struct gfs2_sbd *sdp = GFS2_SB(inode);
209 int ret;
210 int done_trans = 0;
211
212 if (PageChecked(page)) {
213 if (wbc->sync_mode != WB_SYNC_ALL)
214 goto out_ignore;
215 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
216 if (ret)
217 goto out_ignore;
218 done_trans = 1;
219 }
220 ret = gfs2_writepage_common(page, wbc);
221 if (ret > 0)
222 ret = __gfs2_jdata_writepage(page, wbc);
223 if (done_trans)
224 gfs2_trans_end(sdp);
225 return ret;
226
227 out_ignore:
228 redirty_page_for_writepage(wbc, page);
229 unlock_page(page);
230 return 0;
231 }
232
233 /**
234 * gfs2_writepages - Write a bunch of dirty pages back to disk
235 * @mapping: The mapping to write
236 * @wbc: Write-back control
237 *
238 * Used for both ordered and writeback modes.
239 */
240 static int gfs2_writepages(struct address_space *mapping,
241 struct writeback_control *wbc)
242 {
243 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
244 }
245
246 /**
247 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
248 * @mapping: The mapping
249 * @wbc: The writeback control
250 * @writepage: The writepage function to call for each page
251 * @pvec: The vector of pages
252 * @nr_pages: The number of pages to write
253 *
254 * Returns: non-zero if loop should terminate, zero otherwise
255 */
256
257 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
258 struct writeback_control *wbc,
259 struct pagevec *pvec,
260 int nr_pages, pgoff_t end)
261 {
262 struct inode *inode = mapping->host;
263 struct gfs2_sbd *sdp = GFS2_SB(inode);
264 loff_t i_size = i_size_read(inode);
265 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
266 unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
267 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
268 int i;
269 int ret;
270
271 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
272 if (ret < 0)
273 return ret;
274
275 for(i = 0; i < nr_pages; i++) {
276 struct page *page = pvec->pages[i];
277
278 lock_page(page);
279
280 if (unlikely(page->mapping != mapping)) {
281 unlock_page(page);
282 continue;
283 }
284
285 if (!wbc->range_cyclic && page->index > end) {
286 ret = 1;
287 unlock_page(page);
288 continue;
289 }
290
291 if (wbc->sync_mode != WB_SYNC_NONE)
292 wait_on_page_writeback(page);
293
294 if (PageWriteback(page) ||
295 !clear_page_dirty_for_io(page)) {
296 unlock_page(page);
297 continue;
298 }
299
300 /* Is the page fully outside i_size? (truncate in progress) */
301 if (page->index > end_index || (page->index == end_index && !offset)) {
302 page->mapping->a_ops->invalidatepage(page, 0,
303 PAGE_CACHE_SIZE);
304 unlock_page(page);
305 continue;
306 }
307
308 ret = __gfs2_jdata_writepage(page, wbc);
309
310 if (ret || (--(wbc->nr_to_write) <= 0))
311 ret = 1;
312 }
313 gfs2_trans_end(sdp);
314 return ret;
315 }
316
317 /**
318 * gfs2_write_cache_jdata - Like write_cache_pages but different
319 * @mapping: The mapping to write
320 * @wbc: The writeback control
321 * @writepage: The writepage function to call
322 * @data: The data to pass to writepage
323 *
324 * The reason that we use our own function here is that we need to
325 * start transactions before we grab page locks. This allows us
326 * to get the ordering right.
327 */
328
329 static int gfs2_write_cache_jdata(struct address_space *mapping,
330 struct writeback_control *wbc)
331 {
332 int ret = 0;
333 int done = 0;
334 struct pagevec pvec;
335 int nr_pages;
336 pgoff_t index;
337 pgoff_t end;
338 int scanned = 0;
339 int range_whole = 0;
340
341 pagevec_init(&pvec, 0);
342 if (wbc->range_cyclic) {
343 index = mapping->writeback_index; /* Start from prev offset */
344 end = -1;
345 } else {
346 index = wbc->range_start >> PAGE_CACHE_SHIFT;
347 end = wbc->range_end >> PAGE_CACHE_SHIFT;
348 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
349 range_whole = 1;
350 scanned = 1;
351 }
352
353 retry:
354 while (!done && (index <= end) &&
355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 PAGECACHE_TAG_DIRTY,
357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
358 scanned = 1;
359 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
360 if (ret)
361 done = 1;
362 if (ret > 0)
363 ret = 0;
364
365 pagevec_release(&pvec);
366 cond_resched();
367 }
368
369 if (!scanned && !done) {
370 /*
371 * We hit the last page and there is more work to be done: wrap
372 * back to the start of the file
373 */
374 scanned = 1;
375 index = 0;
376 goto retry;
377 }
378
379 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
380 mapping->writeback_index = index;
381 return ret;
382 }
383
384
385 /**
386 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
387 * @mapping: The mapping to write
388 * @wbc: The writeback control
389 *
390 */
391
392 static int gfs2_jdata_writepages(struct address_space *mapping,
393 struct writeback_control *wbc)
394 {
395 struct gfs2_inode *ip = GFS2_I(mapping->host);
396 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
397 int ret;
398
399 ret = gfs2_write_cache_jdata(mapping, wbc);
400 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
401 gfs2_log_flush(sdp, ip->i_gl);
402 ret = gfs2_write_cache_jdata(mapping, wbc);
403 }
404 return ret;
405 }
406
407 /**
408 * stuffed_readpage - Fill in a Linux page with stuffed file data
409 * @ip: the inode
410 * @page: the page
411 *
412 * Returns: errno
413 */
414
415 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
416 {
417 struct buffer_head *dibh;
418 u64 dsize = i_size_read(&ip->i_inode);
419 void *kaddr;
420 int error;
421
422 /*
423 * Due to the order of unstuffing files and ->fault(), we can be
424 * asked for a zero page in the case of a stuffed file being extended,
425 * so we need to supply one here. It doesn't happen often.
426 */
427 if (unlikely(page->index)) {
428 zero_user(page, 0, PAGE_CACHE_SIZE);
429 SetPageUptodate(page);
430 return 0;
431 }
432
433 error = gfs2_meta_inode_buffer(ip, &dibh);
434 if (error)
435 return error;
436
437 kaddr = kmap_atomic(page);
438 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
439 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
440 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
441 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
442 kunmap_atomic(kaddr);
443 flush_dcache_page(page);
444 brelse(dibh);
445 SetPageUptodate(page);
446
447 return 0;
448 }
449
450
451 /**
452 * __gfs2_readpage - readpage
453 * @file: The file to read a page for
454 * @page: The page to read
455 *
456 * This is the core of gfs2's readpage. Its used by the internal file
457 * reading code as in that case we already hold the glock. Also its
458 * called by gfs2_readpage() once the required lock has been granted.
459 *
460 */
461
462 static int __gfs2_readpage(void *file, struct page *page)
463 {
464 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
465 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
466 int error;
467
468 if (gfs2_is_stuffed(ip)) {
469 error = stuffed_readpage(ip, page);
470 unlock_page(page);
471 } else {
472 error = mpage_readpage(page, gfs2_block_map);
473 }
474
475 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
476 return -EIO;
477
478 return error;
479 }
480
481 /**
482 * gfs2_readpage - read a page of a file
483 * @file: The file to read
484 * @page: The page of the file
485 *
486 * This deals with the locking required. We have to unlock and
487 * relock the page in order to get the locking in the right
488 * order.
489 */
490
491 static int gfs2_readpage(struct file *file, struct page *page)
492 {
493 struct address_space *mapping = page->mapping;
494 struct gfs2_inode *ip = GFS2_I(mapping->host);
495 struct gfs2_holder gh;
496 int error;
497
498 unlock_page(page);
499 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
500 error = gfs2_glock_nq(&gh);
501 if (unlikely(error))
502 goto out;
503 error = AOP_TRUNCATED_PAGE;
504 lock_page(page);
505 if (page->mapping == mapping && !PageUptodate(page))
506 error = __gfs2_readpage(file, page);
507 else
508 unlock_page(page);
509 gfs2_glock_dq(&gh);
510 out:
511 gfs2_holder_uninit(&gh);
512 if (error && error != AOP_TRUNCATED_PAGE)
513 lock_page(page);
514 return error;
515 }
516
517 /**
518 * gfs2_internal_read - read an internal file
519 * @ip: The gfs2 inode
520 * @buf: The buffer to fill
521 * @pos: The file position
522 * @size: The amount to read
523 *
524 */
525
526 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
527 unsigned size)
528 {
529 struct address_space *mapping = ip->i_inode.i_mapping;
530 unsigned long index = *pos / PAGE_CACHE_SIZE;
531 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
532 unsigned copied = 0;
533 unsigned amt;
534 struct page *page;
535 void *p;
536
537 do {
538 amt = size - copied;
539 if (offset + size > PAGE_CACHE_SIZE)
540 amt = PAGE_CACHE_SIZE - offset;
541 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
542 if (IS_ERR(page))
543 return PTR_ERR(page);
544 p = kmap_atomic(page);
545 memcpy(buf + copied, p + offset, amt);
546 kunmap_atomic(p);
547 mark_page_accessed(page);
548 page_cache_release(page);
549 copied += amt;
550 index++;
551 offset = 0;
552 } while(copied < size);
553 (*pos) += size;
554 return size;
555 }
556
557 /**
558 * gfs2_readpages - Read a bunch of pages at once
559 *
560 * Some notes:
561 * 1. This is only for readahead, so we can simply ignore any things
562 * which are slightly inconvenient (such as locking conflicts between
563 * the page lock and the glock) and return having done no I/O. Its
564 * obviously not something we'd want to do on too regular a basis.
565 * Any I/O we ignore at this time will be done via readpage later.
566 * 2. We don't handle stuffed files here we let readpage do the honours.
567 * 3. mpage_readpages() does most of the heavy lifting in the common case.
568 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
569 */
570
571 static int gfs2_readpages(struct file *file, struct address_space *mapping,
572 struct list_head *pages, unsigned nr_pages)
573 {
574 struct inode *inode = mapping->host;
575 struct gfs2_inode *ip = GFS2_I(inode);
576 struct gfs2_sbd *sdp = GFS2_SB(inode);
577 struct gfs2_holder gh;
578 int ret;
579
580 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
581 ret = gfs2_glock_nq(&gh);
582 if (unlikely(ret))
583 goto out_uninit;
584 if (!gfs2_is_stuffed(ip))
585 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
586 gfs2_glock_dq(&gh);
587 out_uninit:
588 gfs2_holder_uninit(&gh);
589 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
590 ret = -EIO;
591 return ret;
592 }
593
594 /**
595 * gfs2_write_begin - Begin to write to a file
596 * @file: The file to write to
597 * @mapping: The mapping in which to write
598 * @pos: The file offset at which to start writing
599 * @len: Length of the write
600 * @flags: Various flags
601 * @pagep: Pointer to return the page
602 * @fsdata: Pointer to return fs data (unused by GFS2)
603 *
604 * Returns: errno
605 */
606
607 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
608 loff_t pos, unsigned len, unsigned flags,
609 struct page **pagep, void **fsdata)
610 {
611 struct gfs2_inode *ip = GFS2_I(mapping->host);
612 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
613 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
614 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
615 unsigned requested = 0;
616 int alloc_required;
617 int error = 0;
618 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
619 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
620 struct page *page;
621
622 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
623 error = gfs2_glock_nq(&ip->i_gh);
624 if (unlikely(error))
625 goto out_uninit;
626 if (&ip->i_inode == sdp->sd_rindex) {
627 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
628 GL_NOCACHE, &m_ip->i_gh);
629 if (unlikely(error)) {
630 gfs2_glock_dq(&ip->i_gh);
631 goto out_uninit;
632 }
633 }
634
635 alloc_required = gfs2_write_alloc_required(ip, pos, len);
636
637 if (alloc_required || gfs2_is_jdata(ip))
638 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
639
640 if (alloc_required) {
641 error = gfs2_quota_lock_check(ip);
642 if (error)
643 goto out_unlock;
644
645 requested = data_blocks + ind_blocks;
646 error = gfs2_inplace_reserve(ip, requested, 0);
647 if (error)
648 goto out_qunlock;
649 }
650
651 rblocks = RES_DINODE + ind_blocks;
652 if (gfs2_is_jdata(ip))
653 rblocks += data_blocks ? data_blocks : 1;
654 if (ind_blocks || data_blocks)
655 rblocks += RES_STATFS + RES_QUOTA;
656 if (&ip->i_inode == sdp->sd_rindex)
657 rblocks += 2 * RES_STATFS;
658 if (alloc_required)
659 rblocks += gfs2_rg_blocks(ip, requested);
660
661 error = gfs2_trans_begin(sdp, rblocks,
662 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
663 if (error)
664 goto out_trans_fail;
665
666 error = -ENOMEM;
667 flags |= AOP_FLAG_NOFS;
668 page = grab_cache_page_write_begin(mapping, index, flags);
669 *pagep = page;
670 if (unlikely(!page))
671 goto out_endtrans;
672
673 if (gfs2_is_stuffed(ip)) {
674 error = 0;
675 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
676 error = gfs2_unstuff_dinode(ip, page);
677 if (error == 0)
678 goto prepare_write;
679 } else if (!PageUptodate(page)) {
680 error = stuffed_readpage(ip, page);
681 }
682 goto out;
683 }
684
685 prepare_write:
686 error = __block_write_begin(page, from, len, gfs2_block_map);
687 out:
688 if (error == 0)
689 return 0;
690
691 unlock_page(page);
692 page_cache_release(page);
693
694 gfs2_trans_end(sdp);
695 if (pos + len > ip->i_inode.i_size)
696 gfs2_trim_blocks(&ip->i_inode);
697 goto out_trans_fail;
698
699 out_endtrans:
700 gfs2_trans_end(sdp);
701 out_trans_fail:
702 if (alloc_required) {
703 gfs2_inplace_release(ip);
704 out_qunlock:
705 gfs2_quota_unlock(ip);
706 }
707 out_unlock:
708 if (&ip->i_inode == sdp->sd_rindex) {
709 gfs2_glock_dq(&m_ip->i_gh);
710 gfs2_holder_uninit(&m_ip->i_gh);
711 }
712 gfs2_glock_dq(&ip->i_gh);
713 out_uninit:
714 gfs2_holder_uninit(&ip->i_gh);
715 return error;
716 }
717
718 /**
719 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
720 * @inode: the rindex inode
721 */
722 static void adjust_fs_space(struct inode *inode)
723 {
724 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
725 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
726 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
727 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
728 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
729 struct buffer_head *m_bh, *l_bh;
730 u64 fs_total, new_free;
731
732 /* Total up the file system space, according to the latest rindex. */
733 fs_total = gfs2_ri_total(sdp);
734 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
735 return;
736
737 spin_lock(&sdp->sd_statfs_spin);
738 gfs2_statfs_change_in(m_sc, m_bh->b_data +
739 sizeof(struct gfs2_dinode));
740 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
741 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
742 else
743 new_free = 0;
744 spin_unlock(&sdp->sd_statfs_spin);
745 fs_warn(sdp, "File system extended by %llu blocks.\n",
746 (unsigned long long)new_free);
747 gfs2_statfs_change(sdp, new_free, new_free, 0);
748
749 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
750 goto out;
751 update_statfs(sdp, m_bh, l_bh);
752 brelse(l_bh);
753 out:
754 brelse(m_bh);
755 }
756
757 /**
758 * gfs2_stuffed_write_end - Write end for stuffed files
759 * @inode: The inode
760 * @dibh: The buffer_head containing the on-disk inode
761 * @pos: The file position
762 * @len: The length of the write
763 * @copied: How much was actually copied by the VFS
764 * @page: The page
765 *
766 * This copies the data from the page into the inode block after
767 * the inode data structure itself.
768 *
769 * Returns: errno
770 */
771 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
772 loff_t pos, unsigned len, unsigned copied,
773 struct page *page)
774 {
775 struct gfs2_inode *ip = GFS2_I(inode);
776 struct gfs2_sbd *sdp = GFS2_SB(inode);
777 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
778 u64 to = pos + copied;
779 void *kaddr;
780 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
781
782 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
783 kaddr = kmap_atomic(page);
784 memcpy(buf + pos, kaddr + pos, copied);
785 memset(kaddr + pos + copied, 0, len - copied);
786 flush_dcache_page(page);
787 kunmap_atomic(kaddr);
788
789 if (!PageUptodate(page))
790 SetPageUptodate(page);
791 unlock_page(page);
792 page_cache_release(page);
793
794 if (copied) {
795 if (inode->i_size < to)
796 i_size_write(inode, to);
797 mark_inode_dirty(inode);
798 }
799
800 if (inode == sdp->sd_rindex) {
801 adjust_fs_space(inode);
802 sdp->sd_rindex_uptodate = 0;
803 }
804
805 brelse(dibh);
806 gfs2_trans_end(sdp);
807 if (inode == sdp->sd_rindex) {
808 gfs2_glock_dq(&m_ip->i_gh);
809 gfs2_holder_uninit(&m_ip->i_gh);
810 }
811 gfs2_glock_dq(&ip->i_gh);
812 gfs2_holder_uninit(&ip->i_gh);
813 return copied;
814 }
815
816 /**
817 * gfs2_write_end
818 * @file: The file to write to
819 * @mapping: The address space to write to
820 * @pos: The file position
821 * @len: The length of the data
822 * @copied:
823 * @page: The page that has been written
824 * @fsdata: The fsdata (unused in GFS2)
825 *
826 * The main write_end function for GFS2. We have a separate one for
827 * stuffed files as they are slightly different, otherwise we just
828 * put our locking around the VFS provided functions.
829 *
830 * Returns: errno
831 */
832
833 static int gfs2_write_end(struct file *file, struct address_space *mapping,
834 loff_t pos, unsigned len, unsigned copied,
835 struct page *page, void *fsdata)
836 {
837 struct inode *inode = page->mapping->host;
838 struct gfs2_inode *ip = GFS2_I(inode);
839 struct gfs2_sbd *sdp = GFS2_SB(inode);
840 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
841 struct buffer_head *dibh;
842 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
843 unsigned int to = from + len;
844 int ret;
845
846 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
847
848 ret = gfs2_meta_inode_buffer(ip, &dibh);
849 if (unlikely(ret)) {
850 unlock_page(page);
851 page_cache_release(page);
852 goto failed;
853 }
854
855 gfs2_trans_add_meta(ip->i_gl, dibh);
856
857 if (gfs2_is_stuffed(ip))
858 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
859
860 if (!gfs2_is_writeback(ip))
861 gfs2_page_add_databufs(ip, page, from, to);
862
863 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
864
865 if (inode == sdp->sd_rindex) {
866 adjust_fs_space(inode);
867 sdp->sd_rindex_uptodate = 0;
868 }
869
870 brelse(dibh);
871 failed:
872 gfs2_trans_end(sdp);
873 gfs2_inplace_release(ip);
874 if (ip->i_res->rs_qa_qd_num)
875 gfs2_quota_unlock(ip);
876 if (inode == sdp->sd_rindex) {
877 gfs2_glock_dq(&m_ip->i_gh);
878 gfs2_holder_uninit(&m_ip->i_gh);
879 }
880 gfs2_glock_dq(&ip->i_gh);
881 gfs2_holder_uninit(&ip->i_gh);
882 return ret;
883 }
884
885 /**
886 * gfs2_set_page_dirty - Page dirtying function
887 * @page: The page to dirty
888 *
889 * Returns: 1 if it dirtyed the page, or 0 otherwise
890 */
891
892 static int gfs2_set_page_dirty(struct page *page)
893 {
894 SetPageChecked(page);
895 return __set_page_dirty_buffers(page);
896 }
897
898 /**
899 * gfs2_bmap - Block map function
900 * @mapping: Address space info
901 * @lblock: The block to map
902 *
903 * Returns: The disk address for the block or 0 on hole or error
904 */
905
906 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
907 {
908 struct gfs2_inode *ip = GFS2_I(mapping->host);
909 struct gfs2_holder i_gh;
910 sector_t dblock = 0;
911 int error;
912
913 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
914 if (error)
915 return 0;
916
917 if (!gfs2_is_stuffed(ip))
918 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
919
920 gfs2_glock_dq_uninit(&i_gh);
921
922 return dblock;
923 }
924
925 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
926 {
927 struct gfs2_bufdata *bd;
928
929 lock_buffer(bh);
930 gfs2_log_lock(sdp);
931 clear_buffer_dirty(bh);
932 bd = bh->b_private;
933 if (bd) {
934 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
935 list_del_init(&bd->bd_list);
936 else
937 gfs2_remove_from_journal(bh, current->journal_info, 0);
938 }
939 bh->b_bdev = NULL;
940 clear_buffer_mapped(bh);
941 clear_buffer_req(bh);
942 clear_buffer_new(bh);
943 gfs2_log_unlock(sdp);
944 unlock_buffer(bh);
945 }
946
947 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
948 unsigned int length)
949 {
950 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
951 struct buffer_head *bh, *head;
952 unsigned long pos = 0;
953
954 BUG_ON(!PageLocked(page));
955 if (offset == 0)
956 ClearPageChecked(page);
957 if (!page_has_buffers(page))
958 goto out;
959
960 bh = head = page_buffers(page);
961 do {
962 if (offset <= pos)
963 gfs2_discard(sdp, bh);
964 pos += bh->b_size;
965 bh = bh->b_this_page;
966 } while (bh != head);
967 out:
968 if (offset == 0)
969 try_to_release_page(page, 0);
970 }
971
972 /**
973 * gfs2_ok_for_dio - check that dio is valid on this file
974 * @ip: The inode
975 * @rw: READ or WRITE
976 * @offset: The offset at which we are reading or writing
977 *
978 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
979 * 1 (to accept the i/o request)
980 */
981 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
982 {
983 /*
984 * Should we return an error here? I can't see that O_DIRECT for
985 * a stuffed file makes any sense. For now we'll silently fall
986 * back to buffered I/O
987 */
988 if (gfs2_is_stuffed(ip))
989 return 0;
990
991 if (offset >= i_size_read(&ip->i_inode))
992 return 0;
993 return 1;
994 }
995
996
997
998 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
999 const struct iovec *iov, loff_t offset,
1000 unsigned long nr_segs)
1001 {
1002 struct file *file = iocb->ki_filp;
1003 struct inode *inode = file->f_mapping->host;
1004 struct gfs2_inode *ip = GFS2_I(inode);
1005 struct gfs2_holder gh;
1006 int rv;
1007
1008 /*
1009 * Deferred lock, even if its a write, since we do no allocation
1010 * on this path. All we need change is atime, and this lock mode
1011 * ensures that other nodes have flushed their buffered read caches
1012 * (i.e. their page cache entries for this inode). We do not,
1013 * unfortunately have the option of only flushing a range like
1014 * the VFS does.
1015 */
1016 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1017 rv = gfs2_glock_nq(&gh);
1018 if (rv)
1019 return rv;
1020 rv = gfs2_ok_for_dio(ip, rw, offset);
1021 if (rv != 1)
1022 goto out; /* dio not valid, fall back to buffered i/o */
1023
1024 rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1025 offset, nr_segs, gfs2_get_block_direct,
1026 NULL, NULL, 0);
1027 out:
1028 gfs2_glock_dq(&gh);
1029 gfs2_holder_uninit(&gh);
1030 return rv;
1031 }
1032
1033 /**
1034 * gfs2_releasepage - free the metadata associated with a page
1035 * @page: the page that's being released
1036 * @gfp_mask: passed from Linux VFS, ignored by us
1037 *
1038 * Call try_to_free_buffers() if the buffers in this page can be
1039 * released.
1040 *
1041 * Returns: 0
1042 */
1043
1044 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1045 {
1046 struct address_space *mapping = page->mapping;
1047 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1048 struct buffer_head *bh, *head;
1049 struct gfs2_bufdata *bd;
1050
1051 if (!page_has_buffers(page))
1052 return 0;
1053
1054 gfs2_log_lock(sdp);
1055 spin_lock(&sdp->sd_ail_lock);
1056 head = bh = page_buffers(page);
1057 do {
1058 if (atomic_read(&bh->b_count))
1059 goto cannot_release;
1060 bd = bh->b_private;
1061 if (bd && bd->bd_tr)
1062 goto cannot_release;
1063 if (buffer_pinned(bh) || buffer_dirty(bh))
1064 goto not_possible;
1065 bh = bh->b_this_page;
1066 } while(bh != head);
1067 spin_unlock(&sdp->sd_ail_lock);
1068 gfs2_log_unlock(sdp);
1069
1070 head = bh = page_buffers(page);
1071 do {
1072 gfs2_log_lock(sdp);
1073 bd = bh->b_private;
1074 if (bd) {
1075 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1076 if (!list_empty(&bd->bd_list)) {
1077 if (!buffer_pinned(bh))
1078 list_del_init(&bd->bd_list);
1079 else
1080 bd = NULL;
1081 }
1082 if (bd)
1083 bd->bd_bh = NULL;
1084 bh->b_private = NULL;
1085 }
1086 gfs2_log_unlock(sdp);
1087 if (bd)
1088 kmem_cache_free(gfs2_bufdata_cachep, bd);
1089
1090 bh = bh->b_this_page;
1091 } while (bh != head);
1092
1093 return try_to_free_buffers(page);
1094
1095 not_possible: /* Should never happen */
1096 WARN_ON(buffer_dirty(bh));
1097 WARN_ON(buffer_pinned(bh));
1098 cannot_release:
1099 spin_unlock(&sdp->sd_ail_lock);
1100 gfs2_log_unlock(sdp);
1101 return 0;
1102 }
1103
1104 static const struct address_space_operations gfs2_writeback_aops = {
1105 .writepage = gfs2_writeback_writepage,
1106 .writepages = gfs2_writepages,
1107 .readpage = gfs2_readpage,
1108 .readpages = gfs2_readpages,
1109 .write_begin = gfs2_write_begin,
1110 .write_end = gfs2_write_end,
1111 .bmap = gfs2_bmap,
1112 .invalidatepage = gfs2_invalidatepage,
1113 .releasepage = gfs2_releasepage,
1114 .direct_IO = gfs2_direct_IO,
1115 .migratepage = buffer_migrate_page,
1116 .is_partially_uptodate = block_is_partially_uptodate,
1117 .error_remove_page = generic_error_remove_page,
1118 };
1119
1120 static const struct address_space_operations gfs2_ordered_aops = {
1121 .writepage = gfs2_ordered_writepage,
1122 .writepages = gfs2_writepages,
1123 .readpage = gfs2_readpage,
1124 .readpages = gfs2_readpages,
1125 .write_begin = gfs2_write_begin,
1126 .write_end = gfs2_write_end,
1127 .set_page_dirty = gfs2_set_page_dirty,
1128 .bmap = gfs2_bmap,
1129 .invalidatepage = gfs2_invalidatepage,
1130 .releasepage = gfs2_releasepage,
1131 .direct_IO = gfs2_direct_IO,
1132 .migratepage = buffer_migrate_page,
1133 .is_partially_uptodate = block_is_partially_uptodate,
1134 .error_remove_page = generic_error_remove_page,
1135 };
1136
1137 static const struct address_space_operations gfs2_jdata_aops = {
1138 .writepage = gfs2_jdata_writepage,
1139 .writepages = gfs2_jdata_writepages,
1140 .readpage = gfs2_readpage,
1141 .readpages = gfs2_readpages,
1142 .write_begin = gfs2_write_begin,
1143 .write_end = gfs2_write_end,
1144 .set_page_dirty = gfs2_set_page_dirty,
1145 .bmap = gfs2_bmap,
1146 .invalidatepage = gfs2_invalidatepage,
1147 .releasepage = gfs2_releasepage,
1148 .is_partially_uptodate = block_is_partially_uptodate,
1149 .error_remove_page = generic_error_remove_page,
1150 };
1151
1152 void gfs2_set_aops(struct inode *inode)
1153 {
1154 struct gfs2_inode *ip = GFS2_I(inode);
1155
1156 if (gfs2_is_writeback(ip))
1157 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1158 else if (gfs2_is_ordered(ip))
1159 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1160 else if (gfs2_is_jdata(ip))
1161 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1162 else
1163 BUG();
1164 }
1165