Merge create_session decoding fix into for-2.6.39
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fuse / file.c
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
17
18 static const struct file_operations fuse_direct_io_file_operations;
19
20 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
21 int opcode, struct fuse_open_out *outargp)
22 {
23 struct fuse_open_in inarg;
24 struct fuse_req *req;
25 int err;
26
27 req = fuse_get_req(fc);
28 if (IS_ERR(req))
29 return PTR_ERR(req);
30
31 memset(&inarg, 0, sizeof(inarg));
32 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
33 if (!fc->atomic_o_trunc)
34 inarg.flags &= ~O_TRUNC;
35 req->in.h.opcode = opcode;
36 req->in.h.nodeid = nodeid;
37 req->in.numargs = 1;
38 req->in.args[0].size = sizeof(inarg);
39 req->in.args[0].value = &inarg;
40 req->out.numargs = 1;
41 req->out.args[0].size = sizeof(*outargp);
42 req->out.args[0].value = outargp;
43 fuse_request_send(fc, req);
44 err = req->out.h.error;
45 fuse_put_request(fc, req);
46
47 return err;
48 }
49
50 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
51 {
52 struct fuse_file *ff;
53
54 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
55 if (unlikely(!ff))
56 return NULL;
57
58 ff->fc = fc;
59 ff->reserved_req = fuse_request_alloc();
60 if (unlikely(!ff->reserved_req)) {
61 kfree(ff);
62 return NULL;
63 }
64
65 INIT_LIST_HEAD(&ff->write_entry);
66 atomic_set(&ff->count, 0);
67 RB_CLEAR_NODE(&ff->polled_node);
68 init_waitqueue_head(&ff->poll_wait);
69
70 spin_lock(&fc->lock);
71 ff->kh = ++fc->khctr;
72 spin_unlock(&fc->lock);
73
74 return ff;
75 }
76
77 void fuse_file_free(struct fuse_file *ff)
78 {
79 fuse_request_free(ff->reserved_req);
80 kfree(ff);
81 }
82
83 struct fuse_file *fuse_file_get(struct fuse_file *ff)
84 {
85 atomic_inc(&ff->count);
86 return ff;
87 }
88
89 static void fuse_release_async(struct work_struct *work)
90 {
91 struct fuse_req *req;
92 struct fuse_conn *fc;
93 struct path path;
94
95 req = container_of(work, struct fuse_req, misc.release.work);
96 path = req->misc.release.path;
97 fc = get_fuse_conn(path.dentry->d_inode);
98
99 fuse_put_request(fc, req);
100 path_put(&path);
101 }
102
103 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
104 {
105 if (fc->destroy_req) {
106 /*
107 * If this is a fuseblk mount, then it's possible that
108 * releasing the path will result in releasing the
109 * super block and sending the DESTROY request. If
110 * the server is single threaded, this would hang.
111 * For this reason do the path_put() in a separate
112 * thread.
113 */
114 atomic_inc(&req->count);
115 INIT_WORK(&req->misc.release.work, fuse_release_async);
116 schedule_work(&req->misc.release.work);
117 } else {
118 path_put(&req->misc.release.path);
119 }
120 }
121
122 static void fuse_file_put(struct fuse_file *ff, bool sync)
123 {
124 if (atomic_dec_and_test(&ff->count)) {
125 struct fuse_req *req = ff->reserved_req;
126
127 if (sync) {
128 fuse_request_send(ff->fc, req);
129 path_put(&req->misc.release.path);
130 fuse_put_request(ff->fc, req);
131 } else {
132 req->end = fuse_release_end;
133 fuse_request_send_background(ff->fc, req);
134 }
135 kfree(ff);
136 }
137 }
138
139 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
140 bool isdir)
141 {
142 struct fuse_open_out outarg;
143 struct fuse_file *ff;
144 int err;
145 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
146
147 ff = fuse_file_alloc(fc);
148 if (!ff)
149 return -ENOMEM;
150
151 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
152 if (err) {
153 fuse_file_free(ff);
154 return err;
155 }
156
157 if (isdir)
158 outarg.open_flags &= ~FOPEN_DIRECT_IO;
159
160 ff->fh = outarg.fh;
161 ff->nodeid = nodeid;
162 ff->open_flags = outarg.open_flags;
163 file->private_data = fuse_file_get(ff);
164
165 return 0;
166 }
167 EXPORT_SYMBOL_GPL(fuse_do_open);
168
169 void fuse_finish_open(struct inode *inode, struct file *file)
170 {
171 struct fuse_file *ff = file->private_data;
172 struct fuse_conn *fc = get_fuse_conn(inode);
173
174 if (ff->open_flags & FOPEN_DIRECT_IO)
175 file->f_op = &fuse_direct_io_file_operations;
176 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
177 invalidate_inode_pages2(inode->i_mapping);
178 if (ff->open_flags & FOPEN_NONSEEKABLE)
179 nonseekable_open(inode, file);
180 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
181 struct fuse_inode *fi = get_fuse_inode(inode);
182
183 spin_lock(&fc->lock);
184 fi->attr_version = ++fc->attr_version;
185 i_size_write(inode, 0);
186 spin_unlock(&fc->lock);
187 fuse_invalidate_attr(inode);
188 }
189 }
190
191 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
192 {
193 struct fuse_conn *fc = get_fuse_conn(inode);
194 int err;
195
196 /* VFS checks this, but only _after_ ->open() */
197 if (file->f_flags & O_DIRECT)
198 return -EINVAL;
199
200 err = generic_file_open(inode, file);
201 if (err)
202 return err;
203
204 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
205 if (err)
206 return err;
207
208 fuse_finish_open(inode, file);
209
210 return 0;
211 }
212
213 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
214 {
215 struct fuse_conn *fc = ff->fc;
216 struct fuse_req *req = ff->reserved_req;
217 struct fuse_release_in *inarg = &req->misc.release.in;
218
219 spin_lock(&fc->lock);
220 list_del(&ff->write_entry);
221 if (!RB_EMPTY_NODE(&ff->polled_node))
222 rb_erase(&ff->polled_node, &fc->polled_files);
223 spin_unlock(&fc->lock);
224
225 wake_up_interruptible_sync(&ff->poll_wait);
226
227 inarg->fh = ff->fh;
228 inarg->flags = flags;
229 req->in.h.opcode = opcode;
230 req->in.h.nodeid = ff->nodeid;
231 req->in.numargs = 1;
232 req->in.args[0].size = sizeof(struct fuse_release_in);
233 req->in.args[0].value = inarg;
234 }
235
236 void fuse_release_common(struct file *file, int opcode)
237 {
238 struct fuse_file *ff;
239 struct fuse_req *req;
240
241 ff = file->private_data;
242 if (unlikely(!ff))
243 return;
244
245 req = ff->reserved_req;
246 fuse_prepare_release(ff, file->f_flags, opcode);
247
248 /* Hold vfsmount and dentry until release is finished */
249 path_get(&file->f_path);
250 req->misc.release.path = file->f_path;
251
252 /*
253 * Normally this will send the RELEASE request, however if
254 * some asynchronous READ or WRITE requests are outstanding,
255 * the sending will be delayed.
256 *
257 * Make the release synchronous if this is a fuseblk mount,
258 * synchronous RELEASE is allowed (and desirable) in this case
259 * because the server can be trusted not to screw up.
260 */
261 fuse_file_put(ff, ff->fc->destroy_req != NULL);
262 }
263
264 static int fuse_open(struct inode *inode, struct file *file)
265 {
266 return fuse_open_common(inode, file, false);
267 }
268
269 static int fuse_release(struct inode *inode, struct file *file)
270 {
271 fuse_release_common(file, FUSE_RELEASE);
272
273 /* return value is ignored by VFS */
274 return 0;
275 }
276
277 void fuse_sync_release(struct fuse_file *ff, int flags)
278 {
279 WARN_ON(atomic_read(&ff->count) > 1);
280 fuse_prepare_release(ff, flags, FUSE_RELEASE);
281 ff->reserved_req->force = 1;
282 fuse_request_send(ff->fc, ff->reserved_req);
283 fuse_put_request(ff->fc, ff->reserved_req);
284 kfree(ff);
285 }
286 EXPORT_SYMBOL_GPL(fuse_sync_release);
287
288 /*
289 * Scramble the ID space with XTEA, so that the value of the files_struct
290 * pointer is not exposed to userspace.
291 */
292 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
293 {
294 u32 *k = fc->scramble_key;
295 u64 v = (unsigned long) id;
296 u32 v0 = v;
297 u32 v1 = v >> 32;
298 u32 sum = 0;
299 int i;
300
301 for (i = 0; i < 32; i++) {
302 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
303 sum += 0x9E3779B9;
304 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
305 }
306
307 return (u64) v0 + ((u64) v1 << 32);
308 }
309
310 /*
311 * Check if page is under writeback
312 *
313 * This is currently done by walking the list of writepage requests
314 * for the inode, which can be pretty inefficient.
315 */
316 static bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
317 {
318 struct fuse_conn *fc = get_fuse_conn(inode);
319 struct fuse_inode *fi = get_fuse_inode(inode);
320 struct fuse_req *req;
321 bool found = false;
322
323 spin_lock(&fc->lock);
324 list_for_each_entry(req, &fi->writepages, writepages_entry) {
325 pgoff_t curr_index;
326
327 BUG_ON(req->inode != inode);
328 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
329 if (curr_index == index) {
330 found = true;
331 break;
332 }
333 }
334 spin_unlock(&fc->lock);
335
336 return found;
337 }
338
339 /*
340 * Wait for page writeback to be completed.
341 *
342 * Since fuse doesn't rely on the VM writeback tracking, this has to
343 * use some other means.
344 */
345 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
346 {
347 struct fuse_inode *fi = get_fuse_inode(inode);
348
349 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
350 return 0;
351 }
352
353 static int fuse_flush(struct file *file, fl_owner_t id)
354 {
355 struct inode *inode = file->f_path.dentry->d_inode;
356 struct fuse_conn *fc = get_fuse_conn(inode);
357 struct fuse_file *ff = file->private_data;
358 struct fuse_req *req;
359 struct fuse_flush_in inarg;
360 int err;
361
362 if (is_bad_inode(inode))
363 return -EIO;
364
365 if (fc->no_flush)
366 return 0;
367
368 req = fuse_get_req_nofail(fc, file);
369 memset(&inarg, 0, sizeof(inarg));
370 inarg.fh = ff->fh;
371 inarg.lock_owner = fuse_lock_owner_id(fc, id);
372 req->in.h.opcode = FUSE_FLUSH;
373 req->in.h.nodeid = get_node_id(inode);
374 req->in.numargs = 1;
375 req->in.args[0].size = sizeof(inarg);
376 req->in.args[0].value = &inarg;
377 req->force = 1;
378 fuse_request_send(fc, req);
379 err = req->out.h.error;
380 fuse_put_request(fc, req);
381 if (err == -ENOSYS) {
382 fc->no_flush = 1;
383 err = 0;
384 }
385 return err;
386 }
387
388 /*
389 * Wait for all pending writepages on the inode to finish.
390 *
391 * This is currently done by blocking further writes with FUSE_NOWRITE
392 * and waiting for all sent writes to complete.
393 *
394 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
395 * could conflict with truncation.
396 */
397 static void fuse_sync_writes(struct inode *inode)
398 {
399 fuse_set_nowrite(inode);
400 fuse_release_nowrite(inode);
401 }
402
403 int fuse_fsync_common(struct file *file, int datasync, int isdir)
404 {
405 struct inode *inode = file->f_mapping->host;
406 struct fuse_conn *fc = get_fuse_conn(inode);
407 struct fuse_file *ff = file->private_data;
408 struct fuse_req *req;
409 struct fuse_fsync_in inarg;
410 int err;
411
412 if (is_bad_inode(inode))
413 return -EIO;
414
415 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
416 return 0;
417
418 /*
419 * Start writeback against all dirty pages of the inode, then
420 * wait for all outstanding writes, before sending the FSYNC
421 * request.
422 */
423 err = write_inode_now(inode, 0);
424 if (err)
425 return err;
426
427 fuse_sync_writes(inode);
428
429 req = fuse_get_req(fc);
430 if (IS_ERR(req))
431 return PTR_ERR(req);
432
433 memset(&inarg, 0, sizeof(inarg));
434 inarg.fh = ff->fh;
435 inarg.fsync_flags = datasync ? 1 : 0;
436 req->in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
437 req->in.h.nodeid = get_node_id(inode);
438 req->in.numargs = 1;
439 req->in.args[0].size = sizeof(inarg);
440 req->in.args[0].value = &inarg;
441 fuse_request_send(fc, req);
442 err = req->out.h.error;
443 fuse_put_request(fc, req);
444 if (err == -ENOSYS) {
445 if (isdir)
446 fc->no_fsyncdir = 1;
447 else
448 fc->no_fsync = 1;
449 err = 0;
450 }
451 return err;
452 }
453
454 static int fuse_fsync(struct file *file, int datasync)
455 {
456 return fuse_fsync_common(file, datasync, 0);
457 }
458
459 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
460 size_t count, int opcode)
461 {
462 struct fuse_read_in *inarg = &req->misc.read.in;
463 struct fuse_file *ff = file->private_data;
464
465 inarg->fh = ff->fh;
466 inarg->offset = pos;
467 inarg->size = count;
468 inarg->flags = file->f_flags;
469 req->in.h.opcode = opcode;
470 req->in.h.nodeid = ff->nodeid;
471 req->in.numargs = 1;
472 req->in.args[0].size = sizeof(struct fuse_read_in);
473 req->in.args[0].value = inarg;
474 req->out.argvar = 1;
475 req->out.numargs = 1;
476 req->out.args[0].size = count;
477 }
478
479 static size_t fuse_send_read(struct fuse_req *req, struct file *file,
480 loff_t pos, size_t count, fl_owner_t owner)
481 {
482 struct fuse_file *ff = file->private_data;
483 struct fuse_conn *fc = ff->fc;
484
485 fuse_read_fill(req, file, pos, count, FUSE_READ);
486 if (owner != NULL) {
487 struct fuse_read_in *inarg = &req->misc.read.in;
488
489 inarg->read_flags |= FUSE_READ_LOCKOWNER;
490 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
491 }
492 fuse_request_send(fc, req);
493 return req->out.args[0].size;
494 }
495
496 static void fuse_read_update_size(struct inode *inode, loff_t size,
497 u64 attr_ver)
498 {
499 struct fuse_conn *fc = get_fuse_conn(inode);
500 struct fuse_inode *fi = get_fuse_inode(inode);
501
502 spin_lock(&fc->lock);
503 if (attr_ver == fi->attr_version && size < inode->i_size) {
504 fi->attr_version = ++fc->attr_version;
505 i_size_write(inode, size);
506 }
507 spin_unlock(&fc->lock);
508 }
509
510 static int fuse_readpage(struct file *file, struct page *page)
511 {
512 struct inode *inode = page->mapping->host;
513 struct fuse_conn *fc = get_fuse_conn(inode);
514 struct fuse_req *req;
515 size_t num_read;
516 loff_t pos = page_offset(page);
517 size_t count = PAGE_CACHE_SIZE;
518 u64 attr_ver;
519 int err;
520
521 err = -EIO;
522 if (is_bad_inode(inode))
523 goto out;
524
525 /*
526 * Page writeback can extend beyond the liftime of the
527 * page-cache page, so make sure we read a properly synced
528 * page.
529 */
530 fuse_wait_on_page_writeback(inode, page->index);
531
532 req = fuse_get_req(fc);
533 err = PTR_ERR(req);
534 if (IS_ERR(req))
535 goto out;
536
537 attr_ver = fuse_get_attr_version(fc);
538
539 req->out.page_zeroing = 1;
540 req->out.argpages = 1;
541 req->num_pages = 1;
542 req->pages[0] = page;
543 num_read = fuse_send_read(req, file, pos, count, NULL);
544 err = req->out.h.error;
545 fuse_put_request(fc, req);
546
547 if (!err) {
548 /*
549 * Short read means EOF. If file size is larger, truncate it
550 */
551 if (num_read < count)
552 fuse_read_update_size(inode, pos + num_read, attr_ver);
553
554 SetPageUptodate(page);
555 }
556
557 fuse_invalidate_attr(inode); /* atime changed */
558 out:
559 unlock_page(page);
560 return err;
561 }
562
563 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
564 {
565 int i;
566 size_t count = req->misc.read.in.size;
567 size_t num_read = req->out.args[0].size;
568 struct address_space *mapping = NULL;
569
570 for (i = 0; mapping == NULL && i < req->num_pages; i++)
571 mapping = req->pages[i]->mapping;
572
573 if (mapping) {
574 struct inode *inode = mapping->host;
575
576 /*
577 * Short read means EOF. If file size is larger, truncate it
578 */
579 if (!req->out.h.error && num_read < count) {
580 loff_t pos;
581
582 pos = page_offset(req->pages[0]) + num_read;
583 fuse_read_update_size(inode, pos,
584 req->misc.read.attr_ver);
585 }
586 fuse_invalidate_attr(inode); /* atime changed */
587 }
588
589 for (i = 0; i < req->num_pages; i++) {
590 struct page *page = req->pages[i];
591 if (!req->out.h.error)
592 SetPageUptodate(page);
593 else
594 SetPageError(page);
595 unlock_page(page);
596 page_cache_release(page);
597 }
598 if (req->ff)
599 fuse_file_put(req->ff, false);
600 }
601
602 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
603 {
604 struct fuse_file *ff = file->private_data;
605 struct fuse_conn *fc = ff->fc;
606 loff_t pos = page_offset(req->pages[0]);
607 size_t count = req->num_pages << PAGE_CACHE_SHIFT;
608
609 req->out.argpages = 1;
610 req->out.page_zeroing = 1;
611 req->out.page_replace = 1;
612 fuse_read_fill(req, file, pos, count, FUSE_READ);
613 req->misc.read.attr_ver = fuse_get_attr_version(fc);
614 if (fc->async_read) {
615 req->ff = fuse_file_get(ff);
616 req->end = fuse_readpages_end;
617 fuse_request_send_background(fc, req);
618 } else {
619 fuse_request_send(fc, req);
620 fuse_readpages_end(fc, req);
621 fuse_put_request(fc, req);
622 }
623 }
624
625 struct fuse_fill_data {
626 struct fuse_req *req;
627 struct file *file;
628 struct inode *inode;
629 };
630
631 static int fuse_readpages_fill(void *_data, struct page *page)
632 {
633 struct fuse_fill_data *data = _data;
634 struct fuse_req *req = data->req;
635 struct inode *inode = data->inode;
636 struct fuse_conn *fc = get_fuse_conn(inode);
637
638 fuse_wait_on_page_writeback(inode, page->index);
639
640 if (req->num_pages &&
641 (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
642 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
643 req->pages[req->num_pages - 1]->index + 1 != page->index)) {
644 fuse_send_readpages(req, data->file);
645 data->req = req = fuse_get_req(fc);
646 if (IS_ERR(req)) {
647 unlock_page(page);
648 return PTR_ERR(req);
649 }
650 }
651 page_cache_get(page);
652 req->pages[req->num_pages] = page;
653 req->num_pages++;
654 return 0;
655 }
656
657 static int fuse_readpages(struct file *file, struct address_space *mapping,
658 struct list_head *pages, unsigned nr_pages)
659 {
660 struct inode *inode = mapping->host;
661 struct fuse_conn *fc = get_fuse_conn(inode);
662 struct fuse_fill_data data;
663 int err;
664
665 err = -EIO;
666 if (is_bad_inode(inode))
667 goto out;
668
669 data.file = file;
670 data.inode = inode;
671 data.req = fuse_get_req(fc);
672 err = PTR_ERR(data.req);
673 if (IS_ERR(data.req))
674 goto out;
675
676 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
677 if (!err) {
678 if (data.req->num_pages)
679 fuse_send_readpages(data.req, file);
680 else
681 fuse_put_request(fc, data.req);
682 }
683 out:
684 return err;
685 }
686
687 static ssize_t fuse_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
688 unsigned long nr_segs, loff_t pos)
689 {
690 struct inode *inode = iocb->ki_filp->f_mapping->host;
691
692 if (pos + iov_length(iov, nr_segs) > i_size_read(inode)) {
693 int err;
694 /*
695 * If trying to read past EOF, make sure the i_size
696 * attribute is up-to-date.
697 */
698 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
699 if (err)
700 return err;
701 }
702
703 return generic_file_aio_read(iocb, iov, nr_segs, pos);
704 }
705
706 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
707 loff_t pos, size_t count)
708 {
709 struct fuse_write_in *inarg = &req->misc.write.in;
710 struct fuse_write_out *outarg = &req->misc.write.out;
711
712 inarg->fh = ff->fh;
713 inarg->offset = pos;
714 inarg->size = count;
715 req->in.h.opcode = FUSE_WRITE;
716 req->in.h.nodeid = ff->nodeid;
717 req->in.numargs = 2;
718 if (ff->fc->minor < 9)
719 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
720 else
721 req->in.args[0].size = sizeof(struct fuse_write_in);
722 req->in.args[0].value = inarg;
723 req->in.args[1].size = count;
724 req->out.numargs = 1;
725 req->out.args[0].size = sizeof(struct fuse_write_out);
726 req->out.args[0].value = outarg;
727 }
728
729 static size_t fuse_send_write(struct fuse_req *req, struct file *file,
730 loff_t pos, size_t count, fl_owner_t owner)
731 {
732 struct fuse_file *ff = file->private_data;
733 struct fuse_conn *fc = ff->fc;
734 struct fuse_write_in *inarg = &req->misc.write.in;
735
736 fuse_write_fill(req, ff, pos, count);
737 inarg->flags = file->f_flags;
738 if (owner != NULL) {
739 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
740 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
741 }
742 fuse_request_send(fc, req);
743 return req->misc.write.out.size;
744 }
745
746 static int fuse_write_begin(struct file *file, struct address_space *mapping,
747 loff_t pos, unsigned len, unsigned flags,
748 struct page **pagep, void **fsdata)
749 {
750 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
751
752 *pagep = grab_cache_page_write_begin(mapping, index, flags);
753 if (!*pagep)
754 return -ENOMEM;
755 return 0;
756 }
757
758 void fuse_write_update_size(struct inode *inode, loff_t pos)
759 {
760 struct fuse_conn *fc = get_fuse_conn(inode);
761 struct fuse_inode *fi = get_fuse_inode(inode);
762
763 spin_lock(&fc->lock);
764 fi->attr_version = ++fc->attr_version;
765 if (pos > inode->i_size)
766 i_size_write(inode, pos);
767 spin_unlock(&fc->lock);
768 }
769
770 static int fuse_buffered_write(struct file *file, struct inode *inode,
771 loff_t pos, unsigned count, struct page *page)
772 {
773 int err;
774 size_t nres;
775 struct fuse_conn *fc = get_fuse_conn(inode);
776 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
777 struct fuse_req *req;
778
779 if (is_bad_inode(inode))
780 return -EIO;
781
782 /*
783 * Make sure writepages on the same page are not mixed up with
784 * plain writes.
785 */
786 fuse_wait_on_page_writeback(inode, page->index);
787
788 req = fuse_get_req(fc);
789 if (IS_ERR(req))
790 return PTR_ERR(req);
791
792 req->in.argpages = 1;
793 req->num_pages = 1;
794 req->pages[0] = page;
795 req->page_offset = offset;
796 nres = fuse_send_write(req, file, pos, count, NULL);
797 err = req->out.h.error;
798 fuse_put_request(fc, req);
799 if (!err && !nres)
800 err = -EIO;
801 if (!err) {
802 pos += nres;
803 fuse_write_update_size(inode, pos);
804 if (count == PAGE_CACHE_SIZE)
805 SetPageUptodate(page);
806 }
807 fuse_invalidate_attr(inode);
808 return err ? err : nres;
809 }
810
811 static int fuse_write_end(struct file *file, struct address_space *mapping,
812 loff_t pos, unsigned len, unsigned copied,
813 struct page *page, void *fsdata)
814 {
815 struct inode *inode = mapping->host;
816 int res = 0;
817
818 if (copied)
819 res = fuse_buffered_write(file, inode, pos, copied, page);
820
821 unlock_page(page);
822 page_cache_release(page);
823 return res;
824 }
825
826 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
827 struct inode *inode, loff_t pos,
828 size_t count)
829 {
830 size_t res;
831 unsigned offset;
832 unsigned i;
833
834 for (i = 0; i < req->num_pages; i++)
835 fuse_wait_on_page_writeback(inode, req->pages[i]->index);
836
837 res = fuse_send_write(req, file, pos, count, NULL);
838
839 offset = req->page_offset;
840 count = res;
841 for (i = 0; i < req->num_pages; i++) {
842 struct page *page = req->pages[i];
843
844 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
845 SetPageUptodate(page);
846
847 if (count > PAGE_CACHE_SIZE - offset)
848 count -= PAGE_CACHE_SIZE - offset;
849 else
850 count = 0;
851 offset = 0;
852
853 unlock_page(page);
854 page_cache_release(page);
855 }
856
857 return res;
858 }
859
860 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
861 struct address_space *mapping,
862 struct iov_iter *ii, loff_t pos)
863 {
864 struct fuse_conn *fc = get_fuse_conn(mapping->host);
865 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
866 size_t count = 0;
867 int err;
868
869 req->in.argpages = 1;
870 req->page_offset = offset;
871
872 do {
873 size_t tmp;
874 struct page *page;
875 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
876 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
877 iov_iter_count(ii));
878
879 bytes = min_t(size_t, bytes, fc->max_write - count);
880
881 again:
882 err = -EFAULT;
883 if (iov_iter_fault_in_readable(ii, bytes))
884 break;
885
886 err = -ENOMEM;
887 page = grab_cache_page_write_begin(mapping, index, 0);
888 if (!page)
889 break;
890
891 if (mapping_writably_mapped(mapping))
892 flush_dcache_page(page);
893
894 pagefault_disable();
895 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
896 pagefault_enable();
897 flush_dcache_page(page);
898
899 if (!tmp) {
900 unlock_page(page);
901 page_cache_release(page);
902 bytes = min(bytes, iov_iter_single_seg_count(ii));
903 goto again;
904 }
905
906 err = 0;
907 req->pages[req->num_pages] = page;
908 req->num_pages++;
909
910 iov_iter_advance(ii, tmp);
911 count += tmp;
912 pos += tmp;
913 offset += tmp;
914 if (offset == PAGE_CACHE_SIZE)
915 offset = 0;
916
917 if (!fc->big_writes)
918 break;
919 } while (iov_iter_count(ii) && count < fc->max_write &&
920 req->num_pages < FUSE_MAX_PAGES_PER_REQ && offset == 0);
921
922 return count > 0 ? count : err;
923 }
924
925 static ssize_t fuse_perform_write(struct file *file,
926 struct address_space *mapping,
927 struct iov_iter *ii, loff_t pos)
928 {
929 struct inode *inode = mapping->host;
930 struct fuse_conn *fc = get_fuse_conn(inode);
931 int err = 0;
932 ssize_t res = 0;
933
934 if (is_bad_inode(inode))
935 return -EIO;
936
937 do {
938 struct fuse_req *req;
939 ssize_t count;
940
941 req = fuse_get_req(fc);
942 if (IS_ERR(req)) {
943 err = PTR_ERR(req);
944 break;
945 }
946
947 count = fuse_fill_write_pages(req, mapping, ii, pos);
948 if (count <= 0) {
949 err = count;
950 } else {
951 size_t num_written;
952
953 num_written = fuse_send_write_pages(req, file, inode,
954 pos, count);
955 err = req->out.h.error;
956 if (!err) {
957 res += num_written;
958 pos += num_written;
959
960 /* break out of the loop on short write */
961 if (num_written != count)
962 err = -EIO;
963 }
964 }
965 fuse_put_request(fc, req);
966 } while (!err && iov_iter_count(ii));
967
968 if (res > 0)
969 fuse_write_update_size(inode, pos);
970
971 fuse_invalidate_attr(inode);
972
973 return res > 0 ? res : err;
974 }
975
976 static ssize_t fuse_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
977 unsigned long nr_segs, loff_t pos)
978 {
979 struct file *file = iocb->ki_filp;
980 struct address_space *mapping = file->f_mapping;
981 size_t count = 0;
982 ssize_t written = 0;
983 struct inode *inode = mapping->host;
984 ssize_t err;
985 struct iov_iter i;
986
987 WARN_ON(iocb->ki_pos != pos);
988
989 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
990 if (err)
991 return err;
992
993 mutex_lock(&inode->i_mutex);
994 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
995
996 /* We can write back this queue in page reclaim */
997 current->backing_dev_info = mapping->backing_dev_info;
998
999 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1000 if (err)
1001 goto out;
1002
1003 if (count == 0)
1004 goto out;
1005
1006 err = file_remove_suid(file);
1007 if (err)
1008 goto out;
1009
1010 file_update_time(file);
1011
1012 iov_iter_init(&i, iov, nr_segs, count, 0);
1013 written = fuse_perform_write(file, mapping, &i, pos);
1014 if (written >= 0)
1015 iocb->ki_pos = pos + written;
1016
1017 out:
1018 current->backing_dev_info = NULL;
1019 mutex_unlock(&inode->i_mutex);
1020
1021 return written ? written : err;
1022 }
1023
1024 static void fuse_release_user_pages(struct fuse_req *req, int write)
1025 {
1026 unsigned i;
1027
1028 for (i = 0; i < req->num_pages; i++) {
1029 struct page *page = req->pages[i];
1030 if (write)
1031 set_page_dirty_lock(page);
1032 put_page(page);
1033 }
1034 }
1035
1036 static int fuse_get_user_pages(struct fuse_req *req, const char __user *buf,
1037 size_t *nbytesp, int write)
1038 {
1039 size_t nbytes = *nbytesp;
1040 unsigned long user_addr = (unsigned long) buf;
1041 unsigned offset = user_addr & ~PAGE_MASK;
1042 int npages;
1043
1044 /* Special case for kernel I/O: can copy directly into the buffer */
1045 if (segment_eq(get_fs(), KERNEL_DS)) {
1046 if (write)
1047 req->in.args[1].value = (void *) user_addr;
1048 else
1049 req->out.args[0].value = (void *) user_addr;
1050
1051 return 0;
1052 }
1053
1054 nbytes = min_t(size_t, nbytes, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
1055 npages = (nbytes + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1056 npages = clamp(npages, 1, FUSE_MAX_PAGES_PER_REQ);
1057 npages = get_user_pages_fast(user_addr, npages, !write, req->pages);
1058 if (npages < 0)
1059 return npages;
1060
1061 req->num_pages = npages;
1062 req->page_offset = offset;
1063
1064 if (write)
1065 req->in.argpages = 1;
1066 else
1067 req->out.argpages = 1;
1068
1069 nbytes = (req->num_pages << PAGE_SHIFT) - req->page_offset;
1070 *nbytesp = min(*nbytesp, nbytes);
1071
1072 return 0;
1073 }
1074
1075 ssize_t fuse_direct_io(struct file *file, const char __user *buf,
1076 size_t count, loff_t *ppos, int write)
1077 {
1078 struct fuse_file *ff = file->private_data;
1079 struct fuse_conn *fc = ff->fc;
1080 size_t nmax = write ? fc->max_write : fc->max_read;
1081 loff_t pos = *ppos;
1082 ssize_t res = 0;
1083 struct fuse_req *req;
1084
1085 req = fuse_get_req(fc);
1086 if (IS_ERR(req))
1087 return PTR_ERR(req);
1088
1089 while (count) {
1090 size_t nres;
1091 fl_owner_t owner = current->files;
1092 size_t nbytes = min(count, nmax);
1093 int err = fuse_get_user_pages(req, buf, &nbytes, write);
1094 if (err) {
1095 res = err;
1096 break;
1097 }
1098
1099 if (write)
1100 nres = fuse_send_write(req, file, pos, nbytes, owner);
1101 else
1102 nres = fuse_send_read(req, file, pos, nbytes, owner);
1103
1104 fuse_release_user_pages(req, !write);
1105 if (req->out.h.error) {
1106 if (!res)
1107 res = req->out.h.error;
1108 break;
1109 } else if (nres > nbytes) {
1110 res = -EIO;
1111 break;
1112 }
1113 count -= nres;
1114 res += nres;
1115 pos += nres;
1116 buf += nres;
1117 if (nres != nbytes)
1118 break;
1119 if (count) {
1120 fuse_put_request(fc, req);
1121 req = fuse_get_req(fc);
1122 if (IS_ERR(req))
1123 break;
1124 }
1125 }
1126 if (!IS_ERR(req))
1127 fuse_put_request(fc, req);
1128 if (res > 0)
1129 *ppos = pos;
1130
1131 return res;
1132 }
1133 EXPORT_SYMBOL_GPL(fuse_direct_io);
1134
1135 static ssize_t fuse_direct_read(struct file *file, char __user *buf,
1136 size_t count, loff_t *ppos)
1137 {
1138 ssize_t res;
1139 struct inode *inode = file->f_path.dentry->d_inode;
1140
1141 if (is_bad_inode(inode))
1142 return -EIO;
1143
1144 res = fuse_direct_io(file, buf, count, ppos, 0);
1145
1146 fuse_invalidate_attr(inode);
1147
1148 return res;
1149 }
1150
1151 static ssize_t fuse_direct_write(struct file *file, const char __user *buf,
1152 size_t count, loff_t *ppos)
1153 {
1154 struct inode *inode = file->f_path.dentry->d_inode;
1155 ssize_t res;
1156
1157 if (is_bad_inode(inode))
1158 return -EIO;
1159
1160 /* Don't allow parallel writes to the same file */
1161 mutex_lock(&inode->i_mutex);
1162 res = generic_write_checks(file, ppos, &count, 0);
1163 if (!res) {
1164 res = fuse_direct_io(file, buf, count, ppos, 1);
1165 if (res > 0)
1166 fuse_write_update_size(inode, *ppos);
1167 }
1168 mutex_unlock(&inode->i_mutex);
1169
1170 fuse_invalidate_attr(inode);
1171
1172 return res;
1173 }
1174
1175 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1176 {
1177 __free_page(req->pages[0]);
1178 fuse_file_put(req->ff, false);
1179 }
1180
1181 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1182 {
1183 struct inode *inode = req->inode;
1184 struct fuse_inode *fi = get_fuse_inode(inode);
1185 struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info;
1186
1187 list_del(&req->writepages_entry);
1188 dec_bdi_stat(bdi, BDI_WRITEBACK);
1189 dec_zone_page_state(req->pages[0], NR_WRITEBACK_TEMP);
1190 bdi_writeout_inc(bdi);
1191 wake_up(&fi->page_waitq);
1192 }
1193
1194 /* Called under fc->lock, may release and reacquire it */
1195 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req)
1196 __releases(fc->lock)
1197 __acquires(fc->lock)
1198 {
1199 struct fuse_inode *fi = get_fuse_inode(req->inode);
1200 loff_t size = i_size_read(req->inode);
1201 struct fuse_write_in *inarg = &req->misc.write.in;
1202
1203 if (!fc->connected)
1204 goto out_free;
1205
1206 if (inarg->offset + PAGE_CACHE_SIZE <= size) {
1207 inarg->size = PAGE_CACHE_SIZE;
1208 } else if (inarg->offset < size) {
1209 inarg->size = size & (PAGE_CACHE_SIZE - 1);
1210 } else {
1211 /* Got truncated off completely */
1212 goto out_free;
1213 }
1214
1215 req->in.args[1].size = inarg->size;
1216 fi->writectr++;
1217 fuse_request_send_background_locked(fc, req);
1218 return;
1219
1220 out_free:
1221 fuse_writepage_finish(fc, req);
1222 spin_unlock(&fc->lock);
1223 fuse_writepage_free(fc, req);
1224 fuse_put_request(fc, req);
1225 spin_lock(&fc->lock);
1226 }
1227
1228 /*
1229 * If fi->writectr is positive (no truncate or fsync going on) send
1230 * all queued writepage requests.
1231 *
1232 * Called with fc->lock
1233 */
1234 void fuse_flush_writepages(struct inode *inode)
1235 __releases(fc->lock)
1236 __acquires(fc->lock)
1237 {
1238 struct fuse_conn *fc = get_fuse_conn(inode);
1239 struct fuse_inode *fi = get_fuse_inode(inode);
1240 struct fuse_req *req;
1241
1242 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1243 req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1244 list_del_init(&req->list);
1245 fuse_send_writepage(fc, req);
1246 }
1247 }
1248
1249 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1250 {
1251 struct inode *inode = req->inode;
1252 struct fuse_inode *fi = get_fuse_inode(inode);
1253
1254 mapping_set_error(inode->i_mapping, req->out.h.error);
1255 spin_lock(&fc->lock);
1256 fi->writectr--;
1257 fuse_writepage_finish(fc, req);
1258 spin_unlock(&fc->lock);
1259 fuse_writepage_free(fc, req);
1260 }
1261
1262 static int fuse_writepage_locked(struct page *page)
1263 {
1264 struct address_space *mapping = page->mapping;
1265 struct inode *inode = mapping->host;
1266 struct fuse_conn *fc = get_fuse_conn(inode);
1267 struct fuse_inode *fi = get_fuse_inode(inode);
1268 struct fuse_req *req;
1269 struct fuse_file *ff;
1270 struct page *tmp_page;
1271
1272 set_page_writeback(page);
1273
1274 req = fuse_request_alloc_nofs();
1275 if (!req)
1276 goto err;
1277
1278 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1279 if (!tmp_page)
1280 goto err_free;
1281
1282 spin_lock(&fc->lock);
1283 BUG_ON(list_empty(&fi->write_files));
1284 ff = list_entry(fi->write_files.next, struct fuse_file, write_entry);
1285 req->ff = fuse_file_get(ff);
1286 spin_unlock(&fc->lock);
1287
1288 fuse_write_fill(req, ff, page_offset(page), 0);
1289
1290 copy_highpage(tmp_page, page);
1291 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1292 req->in.argpages = 1;
1293 req->num_pages = 1;
1294 req->pages[0] = tmp_page;
1295 req->page_offset = 0;
1296 req->end = fuse_writepage_end;
1297 req->inode = inode;
1298
1299 inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK);
1300 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1301 end_page_writeback(page);
1302
1303 spin_lock(&fc->lock);
1304 list_add(&req->writepages_entry, &fi->writepages);
1305 list_add_tail(&req->list, &fi->queued_writes);
1306 fuse_flush_writepages(inode);
1307 spin_unlock(&fc->lock);
1308
1309 return 0;
1310
1311 err_free:
1312 fuse_request_free(req);
1313 err:
1314 end_page_writeback(page);
1315 return -ENOMEM;
1316 }
1317
1318 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1319 {
1320 int err;
1321
1322 err = fuse_writepage_locked(page);
1323 unlock_page(page);
1324
1325 return err;
1326 }
1327
1328 static int fuse_launder_page(struct page *page)
1329 {
1330 int err = 0;
1331 if (clear_page_dirty_for_io(page)) {
1332 struct inode *inode = page->mapping->host;
1333 err = fuse_writepage_locked(page);
1334 if (!err)
1335 fuse_wait_on_page_writeback(inode, page->index);
1336 }
1337 return err;
1338 }
1339
1340 /*
1341 * Write back dirty pages now, because there may not be any suitable
1342 * open files later
1343 */
1344 static void fuse_vma_close(struct vm_area_struct *vma)
1345 {
1346 filemap_write_and_wait(vma->vm_file->f_mapping);
1347 }
1348
1349 /*
1350 * Wait for writeback against this page to complete before allowing it
1351 * to be marked dirty again, and hence written back again, possibly
1352 * before the previous writepage completed.
1353 *
1354 * Block here, instead of in ->writepage(), so that the userspace fs
1355 * can only block processes actually operating on the filesystem.
1356 *
1357 * Otherwise unprivileged userspace fs would be able to block
1358 * unrelated:
1359 *
1360 * - page migration
1361 * - sync(2)
1362 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
1363 */
1364 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1365 {
1366 struct page *page = vmf->page;
1367 /*
1368 * Don't use page->mapping as it may become NULL from a
1369 * concurrent truncate.
1370 */
1371 struct inode *inode = vma->vm_file->f_mapping->host;
1372
1373 fuse_wait_on_page_writeback(inode, page->index);
1374 return 0;
1375 }
1376
1377 static const struct vm_operations_struct fuse_file_vm_ops = {
1378 .close = fuse_vma_close,
1379 .fault = filemap_fault,
1380 .page_mkwrite = fuse_page_mkwrite,
1381 };
1382
1383 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
1384 {
1385 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
1386 struct inode *inode = file->f_dentry->d_inode;
1387 struct fuse_conn *fc = get_fuse_conn(inode);
1388 struct fuse_inode *fi = get_fuse_inode(inode);
1389 struct fuse_file *ff = file->private_data;
1390 /*
1391 * file may be written through mmap, so chain it onto the
1392 * inodes's write_file list
1393 */
1394 spin_lock(&fc->lock);
1395 if (list_empty(&ff->write_entry))
1396 list_add(&ff->write_entry, &fi->write_files);
1397 spin_unlock(&fc->lock);
1398 }
1399 file_accessed(file);
1400 vma->vm_ops = &fuse_file_vm_ops;
1401 return 0;
1402 }
1403
1404 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
1405 {
1406 /* Can't provide the coherency needed for MAP_SHARED */
1407 if (vma->vm_flags & VM_MAYSHARE)
1408 return -ENODEV;
1409
1410 invalidate_inode_pages2(file->f_mapping);
1411
1412 return generic_file_mmap(file, vma);
1413 }
1414
1415 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
1416 struct file_lock *fl)
1417 {
1418 switch (ffl->type) {
1419 case F_UNLCK:
1420 break;
1421
1422 case F_RDLCK:
1423 case F_WRLCK:
1424 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
1425 ffl->end < ffl->start)
1426 return -EIO;
1427
1428 fl->fl_start = ffl->start;
1429 fl->fl_end = ffl->end;
1430 fl->fl_pid = ffl->pid;
1431 break;
1432
1433 default:
1434 return -EIO;
1435 }
1436 fl->fl_type = ffl->type;
1437 return 0;
1438 }
1439
1440 static void fuse_lk_fill(struct fuse_req *req, struct file *file,
1441 const struct file_lock *fl, int opcode, pid_t pid,
1442 int flock)
1443 {
1444 struct inode *inode = file->f_path.dentry->d_inode;
1445 struct fuse_conn *fc = get_fuse_conn(inode);
1446 struct fuse_file *ff = file->private_data;
1447 struct fuse_lk_in *arg = &req->misc.lk_in;
1448
1449 arg->fh = ff->fh;
1450 arg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
1451 arg->lk.start = fl->fl_start;
1452 arg->lk.end = fl->fl_end;
1453 arg->lk.type = fl->fl_type;
1454 arg->lk.pid = pid;
1455 if (flock)
1456 arg->lk_flags |= FUSE_LK_FLOCK;
1457 req->in.h.opcode = opcode;
1458 req->in.h.nodeid = get_node_id(inode);
1459 req->in.numargs = 1;
1460 req->in.args[0].size = sizeof(*arg);
1461 req->in.args[0].value = arg;
1462 }
1463
1464 static int fuse_getlk(struct file *file, struct file_lock *fl)
1465 {
1466 struct inode *inode = file->f_path.dentry->d_inode;
1467 struct fuse_conn *fc = get_fuse_conn(inode);
1468 struct fuse_req *req;
1469 struct fuse_lk_out outarg;
1470 int err;
1471
1472 req = fuse_get_req(fc);
1473 if (IS_ERR(req))
1474 return PTR_ERR(req);
1475
1476 fuse_lk_fill(req, file, fl, FUSE_GETLK, 0, 0);
1477 req->out.numargs = 1;
1478 req->out.args[0].size = sizeof(outarg);
1479 req->out.args[0].value = &outarg;
1480 fuse_request_send(fc, req);
1481 err = req->out.h.error;
1482 fuse_put_request(fc, req);
1483 if (!err)
1484 err = convert_fuse_file_lock(&outarg.lk, fl);
1485
1486 return err;
1487 }
1488
1489 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
1490 {
1491 struct inode *inode = file->f_path.dentry->d_inode;
1492 struct fuse_conn *fc = get_fuse_conn(inode);
1493 struct fuse_req *req;
1494 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
1495 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
1496 int err;
1497
1498 if (fl->fl_lmops && fl->fl_lmops->fl_grant) {
1499 /* NLM needs asynchronous locks, which we don't support yet */
1500 return -ENOLCK;
1501 }
1502
1503 /* Unlock on close is handled by the flush method */
1504 if (fl->fl_flags & FL_CLOSE)
1505 return 0;
1506
1507 req = fuse_get_req(fc);
1508 if (IS_ERR(req))
1509 return PTR_ERR(req);
1510
1511 fuse_lk_fill(req, file, fl, opcode, pid, flock);
1512 fuse_request_send(fc, req);
1513 err = req->out.h.error;
1514 /* locking is restartable */
1515 if (err == -EINTR)
1516 err = -ERESTARTSYS;
1517 fuse_put_request(fc, req);
1518 return err;
1519 }
1520
1521 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
1522 {
1523 struct inode *inode = file->f_path.dentry->d_inode;
1524 struct fuse_conn *fc = get_fuse_conn(inode);
1525 int err;
1526
1527 if (cmd == F_CANCELLK) {
1528 err = 0;
1529 } else if (cmd == F_GETLK) {
1530 if (fc->no_lock) {
1531 posix_test_lock(file, fl);
1532 err = 0;
1533 } else
1534 err = fuse_getlk(file, fl);
1535 } else {
1536 if (fc->no_lock)
1537 err = posix_lock_file(file, fl, NULL);
1538 else
1539 err = fuse_setlk(file, fl, 0);
1540 }
1541 return err;
1542 }
1543
1544 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
1545 {
1546 struct inode *inode = file->f_path.dentry->d_inode;
1547 struct fuse_conn *fc = get_fuse_conn(inode);
1548 int err;
1549
1550 if (fc->no_lock) {
1551 err = flock_lock_file_wait(file, fl);
1552 } else {
1553 /* emulate flock with POSIX locks */
1554 fl->fl_owner = (fl_owner_t) file;
1555 err = fuse_setlk(file, fl, 1);
1556 }
1557
1558 return err;
1559 }
1560
1561 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
1562 {
1563 struct inode *inode = mapping->host;
1564 struct fuse_conn *fc = get_fuse_conn(inode);
1565 struct fuse_req *req;
1566 struct fuse_bmap_in inarg;
1567 struct fuse_bmap_out outarg;
1568 int err;
1569
1570 if (!inode->i_sb->s_bdev || fc->no_bmap)
1571 return 0;
1572
1573 req = fuse_get_req(fc);
1574 if (IS_ERR(req))
1575 return 0;
1576
1577 memset(&inarg, 0, sizeof(inarg));
1578 inarg.block = block;
1579 inarg.blocksize = inode->i_sb->s_blocksize;
1580 req->in.h.opcode = FUSE_BMAP;
1581 req->in.h.nodeid = get_node_id(inode);
1582 req->in.numargs = 1;
1583 req->in.args[0].size = sizeof(inarg);
1584 req->in.args[0].value = &inarg;
1585 req->out.numargs = 1;
1586 req->out.args[0].size = sizeof(outarg);
1587 req->out.args[0].value = &outarg;
1588 fuse_request_send(fc, req);
1589 err = req->out.h.error;
1590 fuse_put_request(fc, req);
1591 if (err == -ENOSYS)
1592 fc->no_bmap = 1;
1593
1594 return err ? 0 : outarg.block;
1595 }
1596
1597 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int origin)
1598 {
1599 loff_t retval;
1600 struct inode *inode = file->f_path.dentry->d_inode;
1601
1602 mutex_lock(&inode->i_mutex);
1603 switch (origin) {
1604 case SEEK_END:
1605 retval = fuse_update_attributes(inode, NULL, file, NULL);
1606 if (retval)
1607 goto exit;
1608 offset += i_size_read(inode);
1609 break;
1610 case SEEK_CUR:
1611 offset += file->f_pos;
1612 }
1613 retval = -EINVAL;
1614 if (offset >= 0 && offset <= inode->i_sb->s_maxbytes) {
1615 if (offset != file->f_pos) {
1616 file->f_pos = offset;
1617 file->f_version = 0;
1618 }
1619 retval = offset;
1620 }
1621 exit:
1622 mutex_unlock(&inode->i_mutex);
1623 return retval;
1624 }
1625
1626 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
1627 unsigned int nr_segs, size_t bytes, bool to_user)
1628 {
1629 struct iov_iter ii;
1630 int page_idx = 0;
1631
1632 if (!bytes)
1633 return 0;
1634
1635 iov_iter_init(&ii, iov, nr_segs, bytes, 0);
1636
1637 while (iov_iter_count(&ii)) {
1638 struct page *page = pages[page_idx++];
1639 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
1640 void *kaddr;
1641
1642 kaddr = kmap(page);
1643
1644 while (todo) {
1645 char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
1646 size_t iov_len = ii.iov->iov_len - ii.iov_offset;
1647 size_t copy = min(todo, iov_len);
1648 size_t left;
1649
1650 if (!to_user)
1651 left = copy_from_user(kaddr, uaddr, copy);
1652 else
1653 left = copy_to_user(uaddr, kaddr, copy);
1654
1655 if (unlikely(left))
1656 return -EFAULT;
1657
1658 iov_iter_advance(&ii, copy);
1659 todo -= copy;
1660 kaddr += copy;
1661 }
1662
1663 kunmap(page);
1664 }
1665
1666 return 0;
1667 }
1668
1669 /*
1670 * CUSE servers compiled on 32bit broke on 64bit kernels because the
1671 * ABI was defined to be 'struct iovec' which is different on 32bit
1672 * and 64bit. Fortunately we can determine which structure the server
1673 * used from the size of the reply.
1674 */
1675 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
1676 size_t transferred, unsigned count,
1677 bool is_compat)
1678 {
1679 #ifdef CONFIG_COMPAT
1680 if (count * sizeof(struct compat_iovec) == transferred) {
1681 struct compat_iovec *ciov = src;
1682 unsigned i;
1683
1684 /*
1685 * With this interface a 32bit server cannot support
1686 * non-compat (i.e. ones coming from 64bit apps) ioctl
1687 * requests
1688 */
1689 if (!is_compat)
1690 return -EINVAL;
1691
1692 for (i = 0; i < count; i++) {
1693 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
1694 dst[i].iov_len = ciov[i].iov_len;
1695 }
1696 return 0;
1697 }
1698 #endif
1699
1700 if (count * sizeof(struct iovec) != transferred)
1701 return -EIO;
1702
1703 memcpy(dst, src, transferred);
1704 return 0;
1705 }
1706
1707 /* Make sure iov_length() won't overflow */
1708 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
1709 {
1710 size_t n;
1711 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
1712
1713 for (n = 0; n < count; n++) {
1714 if (iov->iov_len > (size_t) max)
1715 return -ENOMEM;
1716 max -= iov->iov_len;
1717 }
1718 return 0;
1719 }
1720
1721 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
1722 void *src, size_t transferred, unsigned count,
1723 bool is_compat)
1724 {
1725 unsigned i;
1726 struct fuse_ioctl_iovec *fiov = src;
1727
1728 if (fc->minor < 16) {
1729 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
1730 count, is_compat);
1731 }
1732
1733 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
1734 return -EIO;
1735
1736 for (i = 0; i < count; i++) {
1737 /* Did the server supply an inappropriate value? */
1738 if (fiov[i].base != (unsigned long) fiov[i].base ||
1739 fiov[i].len != (unsigned long) fiov[i].len)
1740 return -EIO;
1741
1742 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
1743 dst[i].iov_len = (size_t) fiov[i].len;
1744
1745 #ifdef CONFIG_COMPAT
1746 if (is_compat &&
1747 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
1748 (compat_size_t) dst[i].iov_len != fiov[i].len))
1749 return -EIO;
1750 #endif
1751 }
1752
1753 return 0;
1754 }
1755
1756
1757 /*
1758 * For ioctls, there is no generic way to determine how much memory
1759 * needs to be read and/or written. Furthermore, ioctls are allowed
1760 * to dereference the passed pointer, so the parameter requires deep
1761 * copying but FUSE has no idea whatsoever about what to copy in or
1762 * out.
1763 *
1764 * This is solved by allowing FUSE server to retry ioctl with
1765 * necessary in/out iovecs. Let's assume the ioctl implementation
1766 * needs to read in the following structure.
1767 *
1768 * struct a {
1769 * char *buf;
1770 * size_t buflen;
1771 * }
1772 *
1773 * On the first callout to FUSE server, inarg->in_size and
1774 * inarg->out_size will be NULL; then, the server completes the ioctl
1775 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
1776 * the actual iov array to
1777 *
1778 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
1779 *
1780 * which tells FUSE to copy in the requested area and retry the ioctl.
1781 * On the second round, the server has access to the structure and
1782 * from that it can tell what to look for next, so on the invocation,
1783 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
1784 *
1785 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
1786 * { .iov_base = a.buf, .iov_len = a.buflen } }
1787 *
1788 * FUSE will copy both struct a and the pointed buffer from the
1789 * process doing the ioctl and retry ioctl with both struct a and the
1790 * buffer.
1791 *
1792 * This time, FUSE server has everything it needs and completes ioctl
1793 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
1794 *
1795 * Copying data out works the same way.
1796 *
1797 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
1798 * automatically initializes in and out iovs by decoding @cmd with
1799 * _IOC_* macros and the server is not allowed to request RETRY. This
1800 * limits ioctl data transfers to well-formed ioctls and is the forced
1801 * behavior for all FUSE servers.
1802 */
1803 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
1804 unsigned int flags)
1805 {
1806 struct fuse_file *ff = file->private_data;
1807 struct fuse_conn *fc = ff->fc;
1808 struct fuse_ioctl_in inarg = {
1809 .fh = ff->fh,
1810 .cmd = cmd,
1811 .arg = arg,
1812 .flags = flags
1813 };
1814 struct fuse_ioctl_out outarg;
1815 struct fuse_req *req = NULL;
1816 struct page **pages = NULL;
1817 struct iovec *iov_page = NULL;
1818 struct iovec *in_iov = NULL, *out_iov = NULL;
1819 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
1820 size_t in_size, out_size, transferred;
1821 int err;
1822
1823 #if BITS_PER_LONG == 32
1824 inarg.flags |= FUSE_IOCTL_32BIT;
1825 #else
1826 if (flags & FUSE_IOCTL_COMPAT)
1827 inarg.flags |= FUSE_IOCTL_32BIT;
1828 #endif
1829
1830 /* assume all the iovs returned by client always fits in a page */
1831 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
1832
1833 err = -ENOMEM;
1834 pages = kzalloc(sizeof(pages[0]) * FUSE_MAX_PAGES_PER_REQ, GFP_KERNEL);
1835 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
1836 if (!pages || !iov_page)
1837 goto out;
1838
1839 /*
1840 * If restricted, initialize IO parameters as encoded in @cmd.
1841 * RETRY from server is not allowed.
1842 */
1843 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
1844 struct iovec *iov = iov_page;
1845
1846 iov->iov_base = (void __user *)arg;
1847 iov->iov_len = _IOC_SIZE(cmd);
1848
1849 if (_IOC_DIR(cmd) & _IOC_WRITE) {
1850 in_iov = iov;
1851 in_iovs = 1;
1852 }
1853
1854 if (_IOC_DIR(cmd) & _IOC_READ) {
1855 out_iov = iov;
1856 out_iovs = 1;
1857 }
1858 }
1859
1860 retry:
1861 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
1862 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
1863
1864 /*
1865 * Out data can be used either for actual out data or iovs,
1866 * make sure there always is at least one page.
1867 */
1868 out_size = max_t(size_t, out_size, PAGE_SIZE);
1869 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
1870
1871 /* make sure there are enough buffer pages and init request with them */
1872 err = -ENOMEM;
1873 if (max_pages > FUSE_MAX_PAGES_PER_REQ)
1874 goto out;
1875 while (num_pages < max_pages) {
1876 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
1877 if (!pages[num_pages])
1878 goto out;
1879 num_pages++;
1880 }
1881
1882 req = fuse_get_req(fc);
1883 if (IS_ERR(req)) {
1884 err = PTR_ERR(req);
1885 req = NULL;
1886 goto out;
1887 }
1888 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
1889 req->num_pages = num_pages;
1890
1891 /* okay, let's send it to the client */
1892 req->in.h.opcode = FUSE_IOCTL;
1893 req->in.h.nodeid = ff->nodeid;
1894 req->in.numargs = 1;
1895 req->in.args[0].size = sizeof(inarg);
1896 req->in.args[0].value = &inarg;
1897 if (in_size) {
1898 req->in.numargs++;
1899 req->in.args[1].size = in_size;
1900 req->in.argpages = 1;
1901
1902 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
1903 false);
1904 if (err)
1905 goto out;
1906 }
1907
1908 req->out.numargs = 2;
1909 req->out.args[0].size = sizeof(outarg);
1910 req->out.args[0].value = &outarg;
1911 req->out.args[1].size = out_size;
1912 req->out.argpages = 1;
1913 req->out.argvar = 1;
1914
1915 fuse_request_send(fc, req);
1916 err = req->out.h.error;
1917 transferred = req->out.args[1].size;
1918 fuse_put_request(fc, req);
1919 req = NULL;
1920 if (err)
1921 goto out;
1922
1923 /* did it ask for retry? */
1924 if (outarg.flags & FUSE_IOCTL_RETRY) {
1925 void *vaddr;
1926
1927 /* no retry if in restricted mode */
1928 err = -EIO;
1929 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
1930 goto out;
1931
1932 in_iovs = outarg.in_iovs;
1933 out_iovs = outarg.out_iovs;
1934
1935 /*
1936 * Make sure things are in boundary, separate checks
1937 * are to protect against overflow.
1938 */
1939 err = -ENOMEM;
1940 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
1941 out_iovs > FUSE_IOCTL_MAX_IOV ||
1942 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
1943 goto out;
1944
1945 vaddr = kmap_atomic(pages[0], KM_USER0);
1946 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
1947 transferred, in_iovs + out_iovs,
1948 (flags & FUSE_IOCTL_COMPAT) != 0);
1949 kunmap_atomic(vaddr, KM_USER0);
1950 if (err)
1951 goto out;
1952
1953 in_iov = iov_page;
1954 out_iov = in_iov + in_iovs;
1955
1956 err = fuse_verify_ioctl_iov(in_iov, in_iovs);
1957 if (err)
1958 goto out;
1959
1960 err = fuse_verify_ioctl_iov(out_iov, out_iovs);
1961 if (err)
1962 goto out;
1963
1964 goto retry;
1965 }
1966
1967 err = -EIO;
1968 if (transferred > inarg.out_size)
1969 goto out;
1970
1971 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
1972 out:
1973 if (req)
1974 fuse_put_request(fc, req);
1975 free_page((unsigned long) iov_page);
1976 while (num_pages)
1977 __free_page(pages[--num_pages]);
1978 kfree(pages);
1979
1980 return err ? err : outarg.result;
1981 }
1982 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
1983
1984 static long fuse_file_ioctl_common(struct file *file, unsigned int cmd,
1985 unsigned long arg, unsigned int flags)
1986 {
1987 struct inode *inode = file->f_dentry->d_inode;
1988 struct fuse_conn *fc = get_fuse_conn(inode);
1989
1990 if (!fuse_allow_task(fc, current))
1991 return -EACCES;
1992
1993 if (is_bad_inode(inode))
1994 return -EIO;
1995
1996 return fuse_do_ioctl(file, cmd, arg, flags);
1997 }
1998
1999 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2000 unsigned long arg)
2001 {
2002 return fuse_file_ioctl_common(file, cmd, arg, 0);
2003 }
2004
2005 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2006 unsigned long arg)
2007 {
2008 return fuse_file_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2009 }
2010
2011 /*
2012 * All files which have been polled are linked to RB tree
2013 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2014 * find the matching one.
2015 */
2016 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2017 struct rb_node **parent_out)
2018 {
2019 struct rb_node **link = &fc->polled_files.rb_node;
2020 struct rb_node *last = NULL;
2021
2022 while (*link) {
2023 struct fuse_file *ff;
2024
2025 last = *link;
2026 ff = rb_entry(last, struct fuse_file, polled_node);
2027
2028 if (kh < ff->kh)
2029 link = &last->rb_left;
2030 else if (kh > ff->kh)
2031 link = &last->rb_right;
2032 else
2033 return link;
2034 }
2035
2036 if (parent_out)
2037 *parent_out = last;
2038 return link;
2039 }
2040
2041 /*
2042 * The file is about to be polled. Make sure it's on the polled_files
2043 * RB tree. Note that files once added to the polled_files tree are
2044 * not removed before the file is released. This is because a file
2045 * polled once is likely to be polled again.
2046 */
2047 static void fuse_register_polled_file(struct fuse_conn *fc,
2048 struct fuse_file *ff)
2049 {
2050 spin_lock(&fc->lock);
2051 if (RB_EMPTY_NODE(&ff->polled_node)) {
2052 struct rb_node **link, *parent;
2053
2054 link = fuse_find_polled_node(fc, ff->kh, &parent);
2055 BUG_ON(*link);
2056 rb_link_node(&ff->polled_node, parent, link);
2057 rb_insert_color(&ff->polled_node, &fc->polled_files);
2058 }
2059 spin_unlock(&fc->lock);
2060 }
2061
2062 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2063 {
2064 struct fuse_file *ff = file->private_data;
2065 struct fuse_conn *fc = ff->fc;
2066 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2067 struct fuse_poll_out outarg;
2068 struct fuse_req *req;
2069 int err;
2070
2071 if (fc->no_poll)
2072 return DEFAULT_POLLMASK;
2073
2074 poll_wait(file, &ff->poll_wait, wait);
2075
2076 /*
2077 * Ask for notification iff there's someone waiting for it.
2078 * The client may ignore the flag and always notify.
2079 */
2080 if (waitqueue_active(&ff->poll_wait)) {
2081 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2082 fuse_register_polled_file(fc, ff);
2083 }
2084
2085 req = fuse_get_req(fc);
2086 if (IS_ERR(req))
2087 return POLLERR;
2088
2089 req->in.h.opcode = FUSE_POLL;
2090 req->in.h.nodeid = ff->nodeid;
2091 req->in.numargs = 1;
2092 req->in.args[0].size = sizeof(inarg);
2093 req->in.args[0].value = &inarg;
2094 req->out.numargs = 1;
2095 req->out.args[0].size = sizeof(outarg);
2096 req->out.args[0].value = &outarg;
2097 fuse_request_send(fc, req);
2098 err = req->out.h.error;
2099 fuse_put_request(fc, req);
2100
2101 if (!err)
2102 return outarg.revents;
2103 if (err == -ENOSYS) {
2104 fc->no_poll = 1;
2105 return DEFAULT_POLLMASK;
2106 }
2107 return POLLERR;
2108 }
2109 EXPORT_SYMBOL_GPL(fuse_file_poll);
2110
2111 /*
2112 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2113 * wakes up the poll waiters.
2114 */
2115 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2116 struct fuse_notify_poll_wakeup_out *outarg)
2117 {
2118 u64 kh = outarg->kh;
2119 struct rb_node **link;
2120
2121 spin_lock(&fc->lock);
2122
2123 link = fuse_find_polled_node(fc, kh, NULL);
2124 if (*link) {
2125 struct fuse_file *ff;
2126
2127 ff = rb_entry(*link, struct fuse_file, polled_node);
2128 wake_up_interruptible_sync(&ff->poll_wait);
2129 }
2130
2131 spin_unlock(&fc->lock);
2132 return 0;
2133 }
2134
2135 static const struct file_operations fuse_file_operations = {
2136 .llseek = fuse_file_llseek,
2137 .read = do_sync_read,
2138 .aio_read = fuse_file_aio_read,
2139 .write = do_sync_write,
2140 .aio_write = fuse_file_aio_write,
2141 .mmap = fuse_file_mmap,
2142 .open = fuse_open,
2143 .flush = fuse_flush,
2144 .release = fuse_release,
2145 .fsync = fuse_fsync,
2146 .lock = fuse_file_lock,
2147 .flock = fuse_file_flock,
2148 .splice_read = generic_file_splice_read,
2149 .unlocked_ioctl = fuse_file_ioctl,
2150 .compat_ioctl = fuse_file_compat_ioctl,
2151 .poll = fuse_file_poll,
2152 };
2153
2154 static const struct file_operations fuse_direct_io_file_operations = {
2155 .llseek = fuse_file_llseek,
2156 .read = fuse_direct_read,
2157 .write = fuse_direct_write,
2158 .mmap = fuse_direct_mmap,
2159 .open = fuse_open,
2160 .flush = fuse_flush,
2161 .release = fuse_release,
2162 .fsync = fuse_fsync,
2163 .lock = fuse_file_lock,
2164 .flock = fuse_file_flock,
2165 .unlocked_ioctl = fuse_file_ioctl,
2166 .compat_ioctl = fuse_file_compat_ioctl,
2167 .poll = fuse_file_poll,
2168 /* no splice_read */
2169 };
2170
2171 static const struct address_space_operations fuse_file_aops = {
2172 .readpage = fuse_readpage,
2173 .writepage = fuse_writepage,
2174 .launder_page = fuse_launder_page,
2175 .write_begin = fuse_write_begin,
2176 .write_end = fuse_write_end,
2177 .readpages = fuse_readpages,
2178 .set_page_dirty = __set_page_dirty_nobuffers,
2179 .bmap = fuse_bmap,
2180 };
2181
2182 void fuse_init_file_inode(struct inode *inode)
2183 {
2184 inode->i_fop = &fuse_file_operations;
2185 inode->i_data.a_ops = &fuse_file_aops;
2186 }