Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / fuse / file.c
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
17 #include <linux/swap.h>
18 #include <linux/aio.h>
19 #include <linux/falloc.h>
20
21 static const struct file_operations fuse_direct_io_file_operations;
22
23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
24 int opcode, struct fuse_open_out *outargp)
25 {
26 struct fuse_open_in inarg;
27 FUSE_ARGS(args);
28
29 memset(&inarg, 0, sizeof(inarg));
30 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
31 if (!fc->atomic_o_trunc)
32 inarg.flags &= ~O_TRUNC;
33 args.in.h.opcode = opcode;
34 args.in.h.nodeid = nodeid;
35 args.in.numargs = 1;
36 args.in.args[0].size = sizeof(inarg);
37 args.in.args[0].value = &inarg;
38 args.out.numargs = 1;
39 args.out.args[0].size = sizeof(*outargp);
40 args.out.args[0].value = outargp;
41
42 return fuse_simple_request(fc, &args);
43 }
44
45 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
46 {
47 struct fuse_file *ff;
48
49 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
50 if (unlikely(!ff))
51 return NULL;
52
53 ff->fc = fc;
54 ff->reserved_req = fuse_request_alloc(0);
55 if (unlikely(!ff->reserved_req)) {
56 kfree(ff);
57 return NULL;
58 }
59
60 INIT_LIST_HEAD(&ff->write_entry);
61 atomic_set(&ff->count, 0);
62 RB_CLEAR_NODE(&ff->polled_node);
63 init_waitqueue_head(&ff->poll_wait);
64
65 spin_lock(&fc->lock);
66 ff->kh = ++fc->khctr;
67 spin_unlock(&fc->lock);
68
69 return ff;
70 }
71
72 void fuse_file_free(struct fuse_file *ff)
73 {
74 fuse_request_free(ff->reserved_req);
75 kfree(ff);
76 }
77
78 struct fuse_file *fuse_file_get(struct fuse_file *ff)
79 {
80 atomic_inc(&ff->count);
81 return ff;
82 }
83
84 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
85 {
86 iput(req->misc.release.inode);
87 }
88
89 static void fuse_file_put(struct fuse_file *ff, bool sync)
90 {
91 if (atomic_dec_and_test(&ff->count)) {
92 struct fuse_req *req = ff->reserved_req;
93
94 if (ff->fc->no_open) {
95 /*
96 * Drop the release request when client does not
97 * implement 'open'
98 */
99 req->background = 0;
100 iput(req->misc.release.inode);
101 fuse_put_request(ff->fc, req);
102 } else if (sync) {
103 req->background = 0;
104 fuse_request_send(ff->fc, req);
105 iput(req->misc.release.inode);
106 fuse_put_request(ff->fc, req);
107 } else {
108 req->end = fuse_release_end;
109 req->background = 1;
110 fuse_request_send_background(ff->fc, req);
111 }
112 kfree(ff);
113 }
114 }
115
116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
117 bool isdir)
118 {
119 struct fuse_file *ff;
120 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
121
122 ff = fuse_file_alloc(fc);
123 if (!ff)
124 return -ENOMEM;
125
126 ff->fh = 0;
127 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
128 if (!fc->no_open || isdir) {
129 struct fuse_open_out outarg;
130 int err;
131
132 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
133 if (!err) {
134 ff->fh = outarg.fh;
135 ff->open_flags = outarg.open_flags;
136
137 } else if (err != -ENOSYS || isdir) {
138 fuse_file_free(ff);
139 return err;
140 } else {
141 fc->no_open = 1;
142 }
143 }
144
145 if (isdir)
146 ff->open_flags &= ~FOPEN_DIRECT_IO;
147
148 ff->nodeid = nodeid;
149 file->private_data = fuse_file_get(ff);
150
151 return 0;
152 }
153 EXPORT_SYMBOL_GPL(fuse_do_open);
154
155 static void fuse_link_write_file(struct file *file)
156 {
157 struct inode *inode = file_inode(file);
158 struct fuse_conn *fc = get_fuse_conn(inode);
159 struct fuse_inode *fi = get_fuse_inode(inode);
160 struct fuse_file *ff = file->private_data;
161 /*
162 * file may be written through mmap, so chain it onto the
163 * inodes's write_file list
164 */
165 spin_lock(&fc->lock);
166 if (list_empty(&ff->write_entry))
167 list_add(&ff->write_entry, &fi->write_files);
168 spin_unlock(&fc->lock);
169 }
170
171 void fuse_finish_open(struct inode *inode, struct file *file)
172 {
173 struct fuse_file *ff = file->private_data;
174 struct fuse_conn *fc = get_fuse_conn(inode);
175
176 if (ff->open_flags & FOPEN_DIRECT_IO)
177 file->f_op = &fuse_direct_io_file_operations;
178 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
179 invalidate_inode_pages2(inode->i_mapping);
180 if (ff->open_flags & FOPEN_NONSEEKABLE)
181 nonseekable_open(inode, file);
182 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
183 struct fuse_inode *fi = get_fuse_inode(inode);
184
185 spin_lock(&fc->lock);
186 fi->attr_version = ++fc->attr_version;
187 i_size_write(inode, 0);
188 spin_unlock(&fc->lock);
189 fuse_invalidate_attr(inode);
190 if (fc->writeback_cache)
191 file_update_time(file);
192 }
193 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
194 fuse_link_write_file(file);
195 }
196
197 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
198 {
199 struct fuse_conn *fc = get_fuse_conn(inode);
200 int err;
201 bool lock_inode = (file->f_flags & O_TRUNC) &&
202 fc->atomic_o_trunc &&
203 fc->writeback_cache;
204
205 err = generic_file_open(inode, file);
206 if (err)
207 return err;
208
209 if (lock_inode)
210 mutex_lock(&inode->i_mutex);
211
212 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
213
214 if (!err)
215 fuse_finish_open(inode, file);
216
217 if (lock_inode)
218 mutex_unlock(&inode->i_mutex);
219
220 return err;
221 }
222
223 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
224 {
225 struct fuse_conn *fc = ff->fc;
226 struct fuse_req *req = ff->reserved_req;
227 struct fuse_release_in *inarg = &req->misc.release.in;
228
229 spin_lock(&fc->lock);
230 list_del(&ff->write_entry);
231 if (!RB_EMPTY_NODE(&ff->polled_node))
232 rb_erase(&ff->polled_node, &fc->polled_files);
233 spin_unlock(&fc->lock);
234
235 wake_up_interruptible_all(&ff->poll_wait);
236
237 inarg->fh = ff->fh;
238 inarg->flags = flags;
239 req->in.h.opcode = opcode;
240 req->in.h.nodeid = ff->nodeid;
241 req->in.numargs = 1;
242 req->in.args[0].size = sizeof(struct fuse_release_in);
243 req->in.args[0].value = inarg;
244 }
245
246 void fuse_release_common(struct file *file, int opcode)
247 {
248 struct fuse_file *ff;
249 struct fuse_req *req;
250
251 ff = file->private_data;
252 if (unlikely(!ff))
253 return;
254
255 req = ff->reserved_req;
256 fuse_prepare_release(ff, file->f_flags, opcode);
257
258 if (ff->flock) {
259 struct fuse_release_in *inarg = &req->misc.release.in;
260 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
261 inarg->lock_owner = fuse_lock_owner_id(ff->fc,
262 (fl_owner_t) file);
263 }
264 /* Hold inode until release is finished */
265 req->misc.release.inode = igrab(file_inode(file));
266
267 /*
268 * Normally this will send the RELEASE request, however if
269 * some asynchronous READ or WRITE requests are outstanding,
270 * the sending will be delayed.
271 *
272 * Make the release synchronous if this is a fuseblk mount,
273 * synchronous RELEASE is allowed (and desirable) in this case
274 * because the server can be trusted not to screw up.
275 */
276 fuse_file_put(ff, ff->fc->destroy_req != NULL);
277 }
278
279 static int fuse_open(struct inode *inode, struct file *file)
280 {
281 return fuse_open_common(inode, file, false);
282 }
283
284 static int fuse_release(struct inode *inode, struct file *file)
285 {
286 struct fuse_conn *fc = get_fuse_conn(inode);
287
288 /* see fuse_vma_close() for !writeback_cache case */
289 if (fc->writeback_cache)
290 write_inode_now(inode, 1);
291
292 fuse_release_common(file, FUSE_RELEASE);
293
294 /* return value is ignored by VFS */
295 return 0;
296 }
297
298 void fuse_sync_release(struct fuse_file *ff, int flags)
299 {
300 WARN_ON(atomic_read(&ff->count) > 1);
301 fuse_prepare_release(ff, flags, FUSE_RELEASE);
302 ff->reserved_req->force = 1;
303 ff->reserved_req->background = 0;
304 fuse_request_send(ff->fc, ff->reserved_req);
305 fuse_put_request(ff->fc, ff->reserved_req);
306 kfree(ff);
307 }
308 EXPORT_SYMBOL_GPL(fuse_sync_release);
309
310 /*
311 * Scramble the ID space with XTEA, so that the value of the files_struct
312 * pointer is not exposed to userspace.
313 */
314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
315 {
316 u32 *k = fc->scramble_key;
317 u64 v = (unsigned long) id;
318 u32 v0 = v;
319 u32 v1 = v >> 32;
320 u32 sum = 0;
321 int i;
322
323 for (i = 0; i < 32; i++) {
324 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
325 sum += 0x9E3779B9;
326 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
327 }
328
329 return (u64) v0 + ((u64) v1 << 32);
330 }
331
332 /*
333 * Check if any page in a range is under writeback
334 *
335 * This is currently done by walking the list of writepage requests
336 * for the inode, which can be pretty inefficient.
337 */
338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
339 pgoff_t idx_to)
340 {
341 struct fuse_conn *fc = get_fuse_conn(inode);
342 struct fuse_inode *fi = get_fuse_inode(inode);
343 struct fuse_req *req;
344 bool found = false;
345
346 spin_lock(&fc->lock);
347 list_for_each_entry(req, &fi->writepages, writepages_entry) {
348 pgoff_t curr_index;
349
350 BUG_ON(req->inode != inode);
351 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
352 if (idx_from < curr_index + req->num_pages &&
353 curr_index <= idx_to) {
354 found = true;
355 break;
356 }
357 }
358 spin_unlock(&fc->lock);
359
360 return found;
361 }
362
363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
364 {
365 return fuse_range_is_writeback(inode, index, index);
366 }
367
368 /*
369 * Wait for page writeback to be completed.
370 *
371 * Since fuse doesn't rely on the VM writeback tracking, this has to
372 * use some other means.
373 */
374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
375 {
376 struct fuse_inode *fi = get_fuse_inode(inode);
377
378 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
379 return 0;
380 }
381
382 /*
383 * Wait for all pending writepages on the inode to finish.
384 *
385 * This is currently done by blocking further writes with FUSE_NOWRITE
386 * and waiting for all sent writes to complete.
387 *
388 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
389 * could conflict with truncation.
390 */
391 static void fuse_sync_writes(struct inode *inode)
392 {
393 fuse_set_nowrite(inode);
394 fuse_release_nowrite(inode);
395 }
396
397 static int fuse_flush(struct file *file, fl_owner_t id)
398 {
399 struct inode *inode = file_inode(file);
400 struct fuse_conn *fc = get_fuse_conn(inode);
401 struct fuse_file *ff = file->private_data;
402 struct fuse_req *req;
403 struct fuse_flush_in inarg;
404 int err;
405
406 if (is_bad_inode(inode))
407 return -EIO;
408
409 if (fc->no_flush)
410 return 0;
411
412 err = write_inode_now(inode, 1);
413 if (err)
414 return err;
415
416 mutex_lock(&inode->i_mutex);
417 fuse_sync_writes(inode);
418 mutex_unlock(&inode->i_mutex);
419
420 req = fuse_get_req_nofail_nopages(fc, file);
421 memset(&inarg, 0, sizeof(inarg));
422 inarg.fh = ff->fh;
423 inarg.lock_owner = fuse_lock_owner_id(fc, id);
424 req->in.h.opcode = FUSE_FLUSH;
425 req->in.h.nodeid = get_node_id(inode);
426 req->in.numargs = 1;
427 req->in.args[0].size = sizeof(inarg);
428 req->in.args[0].value = &inarg;
429 req->force = 1;
430 fuse_request_send(fc, req);
431 err = req->out.h.error;
432 fuse_put_request(fc, req);
433 if (err == -ENOSYS) {
434 fc->no_flush = 1;
435 err = 0;
436 }
437 return err;
438 }
439
440 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
441 int datasync, int isdir)
442 {
443 struct inode *inode = file->f_mapping->host;
444 struct fuse_conn *fc = get_fuse_conn(inode);
445 struct fuse_file *ff = file->private_data;
446 FUSE_ARGS(args);
447 struct fuse_fsync_in inarg;
448 int err;
449
450 if (is_bad_inode(inode))
451 return -EIO;
452
453 mutex_lock(&inode->i_mutex);
454
455 /*
456 * Start writeback against all dirty pages of the inode, then
457 * wait for all outstanding writes, before sending the FSYNC
458 * request.
459 */
460 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
461 if (err)
462 goto out;
463
464 fuse_sync_writes(inode);
465 err = sync_inode_metadata(inode, 1);
466 if (err)
467 goto out;
468
469 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
470 goto out;
471
472 memset(&inarg, 0, sizeof(inarg));
473 inarg.fh = ff->fh;
474 inarg.fsync_flags = datasync ? 1 : 0;
475 args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
476 args.in.h.nodeid = get_node_id(inode);
477 args.in.numargs = 1;
478 args.in.args[0].size = sizeof(inarg);
479 args.in.args[0].value = &inarg;
480 err = fuse_simple_request(fc, &args);
481 if (err == -ENOSYS) {
482 if (isdir)
483 fc->no_fsyncdir = 1;
484 else
485 fc->no_fsync = 1;
486 err = 0;
487 }
488 out:
489 mutex_unlock(&inode->i_mutex);
490 return err;
491 }
492
493 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
494 int datasync)
495 {
496 return fuse_fsync_common(file, start, end, datasync, 0);
497 }
498
499 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
500 size_t count, int opcode)
501 {
502 struct fuse_read_in *inarg = &req->misc.read.in;
503 struct fuse_file *ff = file->private_data;
504
505 inarg->fh = ff->fh;
506 inarg->offset = pos;
507 inarg->size = count;
508 inarg->flags = file->f_flags;
509 req->in.h.opcode = opcode;
510 req->in.h.nodeid = ff->nodeid;
511 req->in.numargs = 1;
512 req->in.args[0].size = sizeof(struct fuse_read_in);
513 req->in.args[0].value = inarg;
514 req->out.argvar = 1;
515 req->out.numargs = 1;
516 req->out.args[0].size = count;
517 }
518
519 static void fuse_release_user_pages(struct fuse_req *req, int write)
520 {
521 unsigned i;
522
523 for (i = 0; i < req->num_pages; i++) {
524 struct page *page = req->pages[i];
525 if (write)
526 set_page_dirty_lock(page);
527 put_page(page);
528 }
529 }
530
531 /**
532 * In case of short read, the caller sets 'pos' to the position of
533 * actual end of fuse request in IO request. Otherwise, if bytes_requested
534 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
535 *
536 * An example:
537 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
538 * both submitted asynchronously. The first of them was ACKed by userspace as
539 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
540 * second request was ACKed as short, e.g. only 1K was read, resulting in
541 * pos == 33K.
542 *
543 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
544 * will be equal to the length of the longest contiguous fragment of
545 * transferred data starting from the beginning of IO request.
546 */
547 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
548 {
549 int left;
550
551 spin_lock(&io->lock);
552 if (err)
553 io->err = io->err ? : err;
554 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
555 io->bytes = pos;
556
557 left = --io->reqs;
558 spin_unlock(&io->lock);
559
560 if (!left) {
561 long res;
562
563 if (io->err)
564 res = io->err;
565 else if (io->bytes >= 0 && io->write)
566 res = -EIO;
567 else {
568 res = io->bytes < 0 ? io->size : io->bytes;
569
570 if (!is_sync_kiocb(io->iocb)) {
571 struct inode *inode = file_inode(io->iocb->ki_filp);
572 struct fuse_conn *fc = get_fuse_conn(inode);
573 struct fuse_inode *fi = get_fuse_inode(inode);
574
575 spin_lock(&fc->lock);
576 fi->attr_version = ++fc->attr_version;
577 spin_unlock(&fc->lock);
578 }
579 }
580
581 aio_complete(io->iocb, res, 0);
582 kfree(io);
583 }
584 }
585
586 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
587 {
588 struct fuse_io_priv *io = req->io;
589 ssize_t pos = -1;
590
591 fuse_release_user_pages(req, !io->write);
592
593 if (io->write) {
594 if (req->misc.write.in.size != req->misc.write.out.size)
595 pos = req->misc.write.in.offset - io->offset +
596 req->misc.write.out.size;
597 } else {
598 if (req->misc.read.in.size != req->out.args[0].size)
599 pos = req->misc.read.in.offset - io->offset +
600 req->out.args[0].size;
601 }
602
603 fuse_aio_complete(io, req->out.h.error, pos);
604 }
605
606 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
607 size_t num_bytes, struct fuse_io_priv *io)
608 {
609 spin_lock(&io->lock);
610 io->size += num_bytes;
611 io->reqs++;
612 spin_unlock(&io->lock);
613
614 req->io = io;
615 req->end = fuse_aio_complete_req;
616
617 __fuse_get_request(req);
618 fuse_request_send_background(fc, req);
619
620 return num_bytes;
621 }
622
623 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
624 loff_t pos, size_t count, fl_owner_t owner)
625 {
626 struct file *file = io->file;
627 struct fuse_file *ff = file->private_data;
628 struct fuse_conn *fc = ff->fc;
629
630 fuse_read_fill(req, file, pos, count, FUSE_READ);
631 if (owner != NULL) {
632 struct fuse_read_in *inarg = &req->misc.read.in;
633
634 inarg->read_flags |= FUSE_READ_LOCKOWNER;
635 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
636 }
637
638 if (io->async)
639 return fuse_async_req_send(fc, req, count, io);
640
641 fuse_request_send(fc, req);
642 return req->out.args[0].size;
643 }
644
645 static void fuse_read_update_size(struct inode *inode, loff_t size,
646 u64 attr_ver)
647 {
648 struct fuse_conn *fc = get_fuse_conn(inode);
649 struct fuse_inode *fi = get_fuse_inode(inode);
650
651 spin_lock(&fc->lock);
652 if (attr_ver == fi->attr_version && size < inode->i_size &&
653 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
654 fi->attr_version = ++fc->attr_version;
655 i_size_write(inode, size);
656 }
657 spin_unlock(&fc->lock);
658 }
659
660 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
661 u64 attr_ver)
662 {
663 size_t num_read = req->out.args[0].size;
664 struct fuse_conn *fc = get_fuse_conn(inode);
665
666 if (fc->writeback_cache) {
667 /*
668 * A hole in a file. Some data after the hole are in page cache,
669 * but have not reached the client fs yet. So, the hole is not
670 * present there.
671 */
672 int i;
673 int start_idx = num_read >> PAGE_CACHE_SHIFT;
674 size_t off = num_read & (PAGE_CACHE_SIZE - 1);
675
676 for (i = start_idx; i < req->num_pages; i++) {
677 zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE);
678 off = 0;
679 }
680 } else {
681 loff_t pos = page_offset(req->pages[0]) + num_read;
682 fuse_read_update_size(inode, pos, attr_ver);
683 }
684 }
685
686 static int fuse_do_readpage(struct file *file, struct page *page)
687 {
688 struct fuse_io_priv io = { .async = 0, .file = file };
689 struct inode *inode = page->mapping->host;
690 struct fuse_conn *fc = get_fuse_conn(inode);
691 struct fuse_req *req;
692 size_t num_read;
693 loff_t pos = page_offset(page);
694 size_t count = PAGE_CACHE_SIZE;
695 u64 attr_ver;
696 int err;
697
698 /*
699 * Page writeback can extend beyond the lifetime of the
700 * page-cache page, so make sure we read a properly synced
701 * page.
702 */
703 fuse_wait_on_page_writeback(inode, page->index);
704
705 req = fuse_get_req(fc, 1);
706 if (IS_ERR(req))
707 return PTR_ERR(req);
708
709 attr_ver = fuse_get_attr_version(fc);
710
711 req->out.page_zeroing = 1;
712 req->out.argpages = 1;
713 req->num_pages = 1;
714 req->pages[0] = page;
715 req->page_descs[0].length = count;
716 num_read = fuse_send_read(req, &io, pos, count, NULL);
717 err = req->out.h.error;
718
719 if (!err) {
720 /*
721 * Short read means EOF. If file size is larger, truncate it
722 */
723 if (num_read < count)
724 fuse_short_read(req, inode, attr_ver);
725
726 SetPageUptodate(page);
727 }
728
729 fuse_put_request(fc, req);
730
731 return err;
732 }
733
734 static int fuse_readpage(struct file *file, struct page *page)
735 {
736 struct inode *inode = page->mapping->host;
737 int err;
738
739 err = -EIO;
740 if (is_bad_inode(inode))
741 goto out;
742
743 err = fuse_do_readpage(file, page);
744 fuse_invalidate_atime(inode);
745 out:
746 unlock_page(page);
747 return err;
748 }
749
750 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
751 {
752 int i;
753 size_t count = req->misc.read.in.size;
754 size_t num_read = req->out.args[0].size;
755 struct address_space *mapping = NULL;
756
757 for (i = 0; mapping == NULL && i < req->num_pages; i++)
758 mapping = req->pages[i]->mapping;
759
760 if (mapping) {
761 struct inode *inode = mapping->host;
762
763 /*
764 * Short read means EOF. If file size is larger, truncate it
765 */
766 if (!req->out.h.error && num_read < count)
767 fuse_short_read(req, inode, req->misc.read.attr_ver);
768
769 fuse_invalidate_atime(inode);
770 }
771
772 for (i = 0; i < req->num_pages; i++) {
773 struct page *page = req->pages[i];
774 if (!req->out.h.error)
775 SetPageUptodate(page);
776 else
777 SetPageError(page);
778 unlock_page(page);
779 page_cache_release(page);
780 }
781 if (req->ff)
782 fuse_file_put(req->ff, false);
783 }
784
785 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
786 {
787 struct fuse_file *ff = file->private_data;
788 struct fuse_conn *fc = ff->fc;
789 loff_t pos = page_offset(req->pages[0]);
790 size_t count = req->num_pages << PAGE_CACHE_SHIFT;
791
792 req->out.argpages = 1;
793 req->out.page_zeroing = 1;
794 req->out.page_replace = 1;
795 fuse_read_fill(req, file, pos, count, FUSE_READ);
796 req->misc.read.attr_ver = fuse_get_attr_version(fc);
797 if (fc->async_read) {
798 req->ff = fuse_file_get(ff);
799 req->end = fuse_readpages_end;
800 fuse_request_send_background(fc, req);
801 } else {
802 fuse_request_send(fc, req);
803 fuse_readpages_end(fc, req);
804 fuse_put_request(fc, req);
805 }
806 }
807
808 struct fuse_fill_data {
809 struct fuse_req *req;
810 struct file *file;
811 struct inode *inode;
812 unsigned nr_pages;
813 };
814
815 static int fuse_readpages_fill(void *_data, struct page *page)
816 {
817 struct fuse_fill_data *data = _data;
818 struct fuse_req *req = data->req;
819 struct inode *inode = data->inode;
820 struct fuse_conn *fc = get_fuse_conn(inode);
821
822 fuse_wait_on_page_writeback(inode, page->index);
823
824 if (req->num_pages &&
825 (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
826 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
827 req->pages[req->num_pages - 1]->index + 1 != page->index)) {
828 int nr_alloc = min_t(unsigned, data->nr_pages,
829 FUSE_MAX_PAGES_PER_REQ);
830 fuse_send_readpages(req, data->file);
831 if (fc->async_read)
832 req = fuse_get_req_for_background(fc, nr_alloc);
833 else
834 req = fuse_get_req(fc, nr_alloc);
835
836 data->req = req;
837 if (IS_ERR(req)) {
838 unlock_page(page);
839 return PTR_ERR(req);
840 }
841 }
842
843 if (WARN_ON(req->num_pages >= req->max_pages)) {
844 fuse_put_request(fc, req);
845 return -EIO;
846 }
847
848 page_cache_get(page);
849 req->pages[req->num_pages] = page;
850 req->page_descs[req->num_pages].length = PAGE_SIZE;
851 req->num_pages++;
852 data->nr_pages--;
853 return 0;
854 }
855
856 static int fuse_readpages(struct file *file, struct address_space *mapping,
857 struct list_head *pages, unsigned nr_pages)
858 {
859 struct inode *inode = mapping->host;
860 struct fuse_conn *fc = get_fuse_conn(inode);
861 struct fuse_fill_data data;
862 int err;
863 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ);
864
865 err = -EIO;
866 if (is_bad_inode(inode))
867 goto out;
868
869 data.file = file;
870 data.inode = inode;
871 if (fc->async_read)
872 data.req = fuse_get_req_for_background(fc, nr_alloc);
873 else
874 data.req = fuse_get_req(fc, nr_alloc);
875 data.nr_pages = nr_pages;
876 err = PTR_ERR(data.req);
877 if (IS_ERR(data.req))
878 goto out;
879
880 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
881 if (!err) {
882 if (data.req->num_pages)
883 fuse_send_readpages(data.req, file);
884 else
885 fuse_put_request(fc, data.req);
886 }
887 out:
888 return err;
889 }
890
891 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
892 {
893 struct inode *inode = iocb->ki_filp->f_mapping->host;
894 struct fuse_conn *fc = get_fuse_conn(inode);
895
896 /*
897 * In auto invalidate mode, always update attributes on read.
898 * Otherwise, only update if we attempt to read past EOF (to ensure
899 * i_size is up to date).
900 */
901 if (fc->auto_inval_data ||
902 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
903 int err;
904 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
905 if (err)
906 return err;
907 }
908
909 return generic_file_read_iter(iocb, to);
910 }
911
912 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
913 loff_t pos, size_t count)
914 {
915 struct fuse_write_in *inarg = &req->misc.write.in;
916 struct fuse_write_out *outarg = &req->misc.write.out;
917
918 inarg->fh = ff->fh;
919 inarg->offset = pos;
920 inarg->size = count;
921 req->in.h.opcode = FUSE_WRITE;
922 req->in.h.nodeid = ff->nodeid;
923 req->in.numargs = 2;
924 if (ff->fc->minor < 9)
925 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
926 else
927 req->in.args[0].size = sizeof(struct fuse_write_in);
928 req->in.args[0].value = inarg;
929 req->in.args[1].size = count;
930 req->out.numargs = 1;
931 req->out.args[0].size = sizeof(struct fuse_write_out);
932 req->out.args[0].value = outarg;
933 }
934
935 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
936 loff_t pos, size_t count, fl_owner_t owner)
937 {
938 struct file *file = io->file;
939 struct fuse_file *ff = file->private_data;
940 struct fuse_conn *fc = ff->fc;
941 struct fuse_write_in *inarg = &req->misc.write.in;
942
943 fuse_write_fill(req, ff, pos, count);
944 inarg->flags = file->f_flags;
945 if (owner != NULL) {
946 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
947 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
948 }
949
950 if (io->async)
951 return fuse_async_req_send(fc, req, count, io);
952
953 fuse_request_send(fc, req);
954 return req->misc.write.out.size;
955 }
956
957 bool fuse_write_update_size(struct inode *inode, loff_t pos)
958 {
959 struct fuse_conn *fc = get_fuse_conn(inode);
960 struct fuse_inode *fi = get_fuse_inode(inode);
961 bool ret = false;
962
963 spin_lock(&fc->lock);
964 fi->attr_version = ++fc->attr_version;
965 if (pos > inode->i_size) {
966 i_size_write(inode, pos);
967 ret = true;
968 }
969 spin_unlock(&fc->lock);
970
971 return ret;
972 }
973
974 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
975 struct inode *inode, loff_t pos,
976 size_t count)
977 {
978 size_t res;
979 unsigned offset;
980 unsigned i;
981 struct fuse_io_priv io = { .async = 0, .file = file };
982
983 for (i = 0; i < req->num_pages; i++)
984 fuse_wait_on_page_writeback(inode, req->pages[i]->index);
985
986 res = fuse_send_write(req, &io, pos, count, NULL);
987
988 offset = req->page_descs[0].offset;
989 count = res;
990 for (i = 0; i < req->num_pages; i++) {
991 struct page *page = req->pages[i];
992
993 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
994 SetPageUptodate(page);
995
996 if (count > PAGE_CACHE_SIZE - offset)
997 count -= PAGE_CACHE_SIZE - offset;
998 else
999 count = 0;
1000 offset = 0;
1001
1002 unlock_page(page);
1003 page_cache_release(page);
1004 }
1005
1006 return res;
1007 }
1008
1009 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1010 struct address_space *mapping,
1011 struct iov_iter *ii, loff_t pos)
1012 {
1013 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1014 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1015 size_t count = 0;
1016 int err;
1017
1018 req->in.argpages = 1;
1019 req->page_descs[0].offset = offset;
1020
1021 do {
1022 size_t tmp;
1023 struct page *page;
1024 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1025 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
1026 iov_iter_count(ii));
1027
1028 bytes = min_t(size_t, bytes, fc->max_write - count);
1029
1030 again:
1031 err = -EFAULT;
1032 if (iov_iter_fault_in_readable(ii, bytes))
1033 break;
1034
1035 err = -ENOMEM;
1036 page = grab_cache_page_write_begin(mapping, index, 0);
1037 if (!page)
1038 break;
1039
1040 if (mapping_writably_mapped(mapping))
1041 flush_dcache_page(page);
1042
1043 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1044 flush_dcache_page(page);
1045
1046 if (!tmp) {
1047 unlock_page(page);
1048 page_cache_release(page);
1049 bytes = min(bytes, iov_iter_single_seg_count(ii));
1050 goto again;
1051 }
1052
1053 err = 0;
1054 req->pages[req->num_pages] = page;
1055 req->page_descs[req->num_pages].length = tmp;
1056 req->num_pages++;
1057
1058 iov_iter_advance(ii, tmp);
1059 count += tmp;
1060 pos += tmp;
1061 offset += tmp;
1062 if (offset == PAGE_CACHE_SIZE)
1063 offset = 0;
1064
1065 if (!fc->big_writes)
1066 break;
1067 } while (iov_iter_count(ii) && count < fc->max_write &&
1068 req->num_pages < req->max_pages && offset == 0);
1069
1070 return count > 0 ? count : err;
1071 }
1072
1073 static inline unsigned fuse_wr_pages(loff_t pos, size_t len)
1074 {
1075 return min_t(unsigned,
1076 ((pos + len - 1) >> PAGE_CACHE_SHIFT) -
1077 (pos >> PAGE_CACHE_SHIFT) + 1,
1078 FUSE_MAX_PAGES_PER_REQ);
1079 }
1080
1081 static ssize_t fuse_perform_write(struct file *file,
1082 struct address_space *mapping,
1083 struct iov_iter *ii, loff_t pos)
1084 {
1085 struct inode *inode = mapping->host;
1086 struct fuse_conn *fc = get_fuse_conn(inode);
1087 struct fuse_inode *fi = get_fuse_inode(inode);
1088 int err = 0;
1089 ssize_t res = 0;
1090
1091 if (is_bad_inode(inode))
1092 return -EIO;
1093
1094 if (inode->i_size < pos + iov_iter_count(ii))
1095 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1096
1097 do {
1098 struct fuse_req *req;
1099 ssize_t count;
1100 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii));
1101
1102 req = fuse_get_req(fc, nr_pages);
1103 if (IS_ERR(req)) {
1104 err = PTR_ERR(req);
1105 break;
1106 }
1107
1108 count = fuse_fill_write_pages(req, mapping, ii, pos);
1109 if (count <= 0) {
1110 err = count;
1111 } else {
1112 size_t num_written;
1113
1114 num_written = fuse_send_write_pages(req, file, inode,
1115 pos, count);
1116 err = req->out.h.error;
1117 if (!err) {
1118 res += num_written;
1119 pos += num_written;
1120
1121 /* break out of the loop on short write */
1122 if (num_written != count)
1123 err = -EIO;
1124 }
1125 }
1126 fuse_put_request(fc, req);
1127 } while (!err && iov_iter_count(ii));
1128
1129 if (res > 0)
1130 fuse_write_update_size(inode, pos);
1131
1132 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1133 fuse_invalidate_attr(inode);
1134
1135 return res > 0 ? res : err;
1136 }
1137
1138 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1139 {
1140 struct file *file = iocb->ki_filp;
1141 struct address_space *mapping = file->f_mapping;
1142 size_t count = iov_iter_count(from);
1143 ssize_t written = 0;
1144 ssize_t written_buffered = 0;
1145 struct inode *inode = mapping->host;
1146 ssize_t err;
1147 loff_t endbyte = 0;
1148 loff_t pos = iocb->ki_pos;
1149
1150 if (get_fuse_conn(inode)->writeback_cache) {
1151 /* Update size (EOF optimization) and mode (SUID clearing) */
1152 err = fuse_update_attributes(mapping->host, NULL, file, NULL);
1153 if (err)
1154 return err;
1155
1156 return generic_file_write_iter(iocb, from);
1157 }
1158
1159 mutex_lock(&inode->i_mutex);
1160
1161 /* We can write back this queue in page reclaim */
1162 current->backing_dev_info = inode_to_bdi(inode);
1163
1164 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1165 if (err)
1166 goto out;
1167
1168 if (count == 0)
1169 goto out;
1170
1171 iov_iter_truncate(from, count);
1172 err = file_remove_suid(file);
1173 if (err)
1174 goto out;
1175
1176 err = file_update_time(file);
1177 if (err)
1178 goto out;
1179
1180 if (file->f_flags & O_DIRECT) {
1181 written = generic_file_direct_write(iocb, from, pos);
1182 if (written < 0 || !iov_iter_count(from))
1183 goto out;
1184
1185 pos += written;
1186
1187 written_buffered = fuse_perform_write(file, mapping, from, pos);
1188 if (written_buffered < 0) {
1189 err = written_buffered;
1190 goto out;
1191 }
1192 endbyte = pos + written_buffered - 1;
1193
1194 err = filemap_write_and_wait_range(file->f_mapping, pos,
1195 endbyte);
1196 if (err)
1197 goto out;
1198
1199 invalidate_mapping_pages(file->f_mapping,
1200 pos >> PAGE_CACHE_SHIFT,
1201 endbyte >> PAGE_CACHE_SHIFT);
1202
1203 written += written_buffered;
1204 iocb->ki_pos = pos + written_buffered;
1205 } else {
1206 written = fuse_perform_write(file, mapping, from, pos);
1207 if (written >= 0)
1208 iocb->ki_pos = pos + written;
1209 }
1210 out:
1211 current->backing_dev_info = NULL;
1212 mutex_unlock(&inode->i_mutex);
1213
1214 return written ? written : err;
1215 }
1216
1217 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1218 unsigned index, unsigned nr_pages)
1219 {
1220 int i;
1221
1222 for (i = index; i < index + nr_pages; i++)
1223 req->page_descs[i].length = PAGE_SIZE -
1224 req->page_descs[i].offset;
1225 }
1226
1227 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1228 {
1229 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1230 }
1231
1232 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1233 size_t max_size)
1234 {
1235 return min(iov_iter_single_seg_count(ii), max_size);
1236 }
1237
1238 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1239 size_t *nbytesp, int write)
1240 {
1241 size_t nbytes = 0; /* # bytes already packed in req */
1242
1243 /* Special case for kernel I/O: can copy directly into the buffer */
1244 if (ii->type & ITER_KVEC) {
1245 unsigned long user_addr = fuse_get_user_addr(ii);
1246 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1247
1248 if (write)
1249 req->in.args[1].value = (void *) user_addr;
1250 else
1251 req->out.args[0].value = (void *) user_addr;
1252
1253 iov_iter_advance(ii, frag_size);
1254 *nbytesp = frag_size;
1255 return 0;
1256 }
1257
1258 while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1259 unsigned npages;
1260 size_t start;
1261 ssize_t ret = iov_iter_get_pages(ii,
1262 &req->pages[req->num_pages],
1263 *nbytesp - nbytes,
1264 req->max_pages - req->num_pages,
1265 &start);
1266 if (ret < 0)
1267 return ret;
1268
1269 iov_iter_advance(ii, ret);
1270 nbytes += ret;
1271
1272 ret += start;
1273 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1274
1275 req->page_descs[req->num_pages].offset = start;
1276 fuse_page_descs_length_init(req, req->num_pages, npages);
1277
1278 req->num_pages += npages;
1279 req->page_descs[req->num_pages - 1].length -=
1280 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1281 }
1282
1283 if (write)
1284 req->in.argpages = 1;
1285 else
1286 req->out.argpages = 1;
1287
1288 *nbytesp = nbytes;
1289
1290 return 0;
1291 }
1292
1293 static inline int fuse_iter_npages(const struct iov_iter *ii_p)
1294 {
1295 return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ);
1296 }
1297
1298 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1299 loff_t *ppos, int flags)
1300 {
1301 int write = flags & FUSE_DIO_WRITE;
1302 int cuse = flags & FUSE_DIO_CUSE;
1303 struct file *file = io->file;
1304 struct inode *inode = file->f_mapping->host;
1305 struct fuse_file *ff = file->private_data;
1306 struct fuse_conn *fc = ff->fc;
1307 size_t nmax = write ? fc->max_write : fc->max_read;
1308 loff_t pos = *ppos;
1309 size_t count = iov_iter_count(iter);
1310 pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT;
1311 pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1312 ssize_t res = 0;
1313 struct fuse_req *req;
1314
1315 if (io->async)
1316 req = fuse_get_req_for_background(fc, fuse_iter_npages(iter));
1317 else
1318 req = fuse_get_req(fc, fuse_iter_npages(iter));
1319 if (IS_ERR(req))
1320 return PTR_ERR(req);
1321
1322 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1323 if (!write)
1324 mutex_lock(&inode->i_mutex);
1325 fuse_sync_writes(inode);
1326 if (!write)
1327 mutex_unlock(&inode->i_mutex);
1328 }
1329
1330 while (count) {
1331 size_t nres;
1332 fl_owner_t owner = current->files;
1333 size_t nbytes = min(count, nmax);
1334 int err = fuse_get_user_pages(req, iter, &nbytes, write);
1335 if (err) {
1336 res = err;
1337 break;
1338 }
1339
1340 if (write)
1341 nres = fuse_send_write(req, io, pos, nbytes, owner);
1342 else
1343 nres = fuse_send_read(req, io, pos, nbytes, owner);
1344
1345 if (!io->async)
1346 fuse_release_user_pages(req, !write);
1347 if (req->out.h.error) {
1348 if (!res)
1349 res = req->out.h.error;
1350 break;
1351 } else if (nres > nbytes) {
1352 res = -EIO;
1353 break;
1354 }
1355 count -= nres;
1356 res += nres;
1357 pos += nres;
1358 if (nres != nbytes)
1359 break;
1360 if (count) {
1361 fuse_put_request(fc, req);
1362 if (io->async)
1363 req = fuse_get_req_for_background(fc,
1364 fuse_iter_npages(iter));
1365 else
1366 req = fuse_get_req(fc, fuse_iter_npages(iter));
1367 if (IS_ERR(req))
1368 break;
1369 }
1370 }
1371 if (!IS_ERR(req))
1372 fuse_put_request(fc, req);
1373 if (res > 0)
1374 *ppos = pos;
1375
1376 return res;
1377 }
1378 EXPORT_SYMBOL_GPL(fuse_direct_io);
1379
1380 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1381 struct iov_iter *iter,
1382 loff_t *ppos)
1383 {
1384 ssize_t res;
1385 struct file *file = io->file;
1386 struct inode *inode = file_inode(file);
1387
1388 if (is_bad_inode(inode))
1389 return -EIO;
1390
1391 res = fuse_direct_io(io, iter, ppos, 0);
1392
1393 fuse_invalidate_attr(inode);
1394
1395 return res;
1396 }
1397
1398 static ssize_t fuse_direct_read(struct file *file, char __user *buf,
1399 size_t count, loff_t *ppos)
1400 {
1401 struct fuse_io_priv io = { .async = 0, .file = file };
1402 struct iovec iov = { .iov_base = buf, .iov_len = count };
1403 struct iov_iter ii;
1404 iov_iter_init(&ii, READ, &iov, 1, count);
1405 return __fuse_direct_read(&io, &ii, ppos);
1406 }
1407
1408 static ssize_t __fuse_direct_write(struct fuse_io_priv *io,
1409 struct iov_iter *iter,
1410 loff_t *ppos)
1411 {
1412 struct file *file = io->file;
1413 struct inode *inode = file_inode(file);
1414 size_t count = iov_iter_count(iter);
1415 ssize_t res;
1416
1417
1418 res = generic_write_checks(file, ppos, &count, 0);
1419 if (!res) {
1420 iov_iter_truncate(iter, count);
1421 res = fuse_direct_io(io, iter, ppos, FUSE_DIO_WRITE);
1422 }
1423
1424 fuse_invalidate_attr(inode);
1425
1426 return res;
1427 }
1428
1429 static ssize_t fuse_direct_write(struct file *file, const char __user *buf,
1430 size_t count, loff_t *ppos)
1431 {
1432 struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count };
1433 struct inode *inode = file_inode(file);
1434 ssize_t res;
1435 struct fuse_io_priv io = { .async = 0, .file = file };
1436 struct iov_iter ii;
1437 iov_iter_init(&ii, WRITE, &iov, 1, count);
1438
1439 if (is_bad_inode(inode))
1440 return -EIO;
1441
1442 /* Don't allow parallel writes to the same file */
1443 mutex_lock(&inode->i_mutex);
1444 res = __fuse_direct_write(&io, &ii, ppos);
1445 if (res > 0)
1446 fuse_write_update_size(inode, *ppos);
1447 mutex_unlock(&inode->i_mutex);
1448
1449 return res;
1450 }
1451
1452 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1453 {
1454 int i;
1455
1456 for (i = 0; i < req->num_pages; i++)
1457 __free_page(req->pages[i]);
1458
1459 if (req->ff)
1460 fuse_file_put(req->ff, false);
1461 }
1462
1463 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1464 {
1465 struct inode *inode = req->inode;
1466 struct fuse_inode *fi = get_fuse_inode(inode);
1467 struct backing_dev_info *bdi = inode_to_bdi(inode);
1468 int i;
1469
1470 list_del(&req->writepages_entry);
1471 for (i = 0; i < req->num_pages; i++) {
1472 dec_bdi_stat(bdi, BDI_WRITEBACK);
1473 dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1474 bdi_writeout_inc(bdi);
1475 }
1476 wake_up(&fi->page_waitq);
1477 }
1478
1479 /* Called under fc->lock, may release and reacquire it */
1480 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1481 loff_t size)
1482 __releases(fc->lock)
1483 __acquires(fc->lock)
1484 {
1485 struct fuse_inode *fi = get_fuse_inode(req->inode);
1486 struct fuse_write_in *inarg = &req->misc.write.in;
1487 __u64 data_size = req->num_pages * PAGE_CACHE_SIZE;
1488
1489 if (!fc->connected)
1490 goto out_free;
1491
1492 if (inarg->offset + data_size <= size) {
1493 inarg->size = data_size;
1494 } else if (inarg->offset < size) {
1495 inarg->size = size - inarg->offset;
1496 } else {
1497 /* Got truncated off completely */
1498 goto out_free;
1499 }
1500
1501 req->in.args[1].size = inarg->size;
1502 fi->writectr++;
1503 fuse_request_send_background_locked(fc, req);
1504 return;
1505
1506 out_free:
1507 fuse_writepage_finish(fc, req);
1508 spin_unlock(&fc->lock);
1509 fuse_writepage_free(fc, req);
1510 fuse_put_request(fc, req);
1511 spin_lock(&fc->lock);
1512 }
1513
1514 /*
1515 * If fi->writectr is positive (no truncate or fsync going on) send
1516 * all queued writepage requests.
1517 *
1518 * Called with fc->lock
1519 */
1520 void fuse_flush_writepages(struct inode *inode)
1521 __releases(fc->lock)
1522 __acquires(fc->lock)
1523 {
1524 struct fuse_conn *fc = get_fuse_conn(inode);
1525 struct fuse_inode *fi = get_fuse_inode(inode);
1526 size_t crop = i_size_read(inode);
1527 struct fuse_req *req;
1528
1529 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1530 req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1531 list_del_init(&req->list);
1532 fuse_send_writepage(fc, req, crop);
1533 }
1534 }
1535
1536 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1537 {
1538 struct inode *inode = req->inode;
1539 struct fuse_inode *fi = get_fuse_inode(inode);
1540
1541 mapping_set_error(inode->i_mapping, req->out.h.error);
1542 spin_lock(&fc->lock);
1543 while (req->misc.write.next) {
1544 struct fuse_conn *fc = get_fuse_conn(inode);
1545 struct fuse_write_in *inarg = &req->misc.write.in;
1546 struct fuse_req *next = req->misc.write.next;
1547 req->misc.write.next = next->misc.write.next;
1548 next->misc.write.next = NULL;
1549 next->ff = fuse_file_get(req->ff);
1550 list_add(&next->writepages_entry, &fi->writepages);
1551
1552 /*
1553 * Skip fuse_flush_writepages() to make it easy to crop requests
1554 * based on primary request size.
1555 *
1556 * 1st case (trivial): there are no concurrent activities using
1557 * fuse_set/release_nowrite. Then we're on safe side because
1558 * fuse_flush_writepages() would call fuse_send_writepage()
1559 * anyway.
1560 *
1561 * 2nd case: someone called fuse_set_nowrite and it is waiting
1562 * now for completion of all in-flight requests. This happens
1563 * rarely and no more than once per page, so this should be
1564 * okay.
1565 *
1566 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1567 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1568 * that fuse_set_nowrite returned implies that all in-flight
1569 * requests were completed along with all of their secondary
1570 * requests. Further primary requests are blocked by negative
1571 * writectr. Hence there cannot be any in-flight requests and
1572 * no invocations of fuse_writepage_end() while we're in
1573 * fuse_set_nowrite..fuse_release_nowrite section.
1574 */
1575 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1576 }
1577 fi->writectr--;
1578 fuse_writepage_finish(fc, req);
1579 spin_unlock(&fc->lock);
1580 fuse_writepage_free(fc, req);
1581 }
1582
1583 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1584 struct fuse_inode *fi)
1585 {
1586 struct fuse_file *ff = NULL;
1587
1588 spin_lock(&fc->lock);
1589 if (!list_empty(&fi->write_files)) {
1590 ff = list_entry(fi->write_files.next, struct fuse_file,
1591 write_entry);
1592 fuse_file_get(ff);
1593 }
1594 spin_unlock(&fc->lock);
1595
1596 return ff;
1597 }
1598
1599 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1600 struct fuse_inode *fi)
1601 {
1602 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1603 WARN_ON(!ff);
1604 return ff;
1605 }
1606
1607 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1608 {
1609 struct fuse_conn *fc = get_fuse_conn(inode);
1610 struct fuse_inode *fi = get_fuse_inode(inode);
1611 struct fuse_file *ff;
1612 int err;
1613
1614 ff = __fuse_write_file_get(fc, fi);
1615 err = fuse_flush_times(inode, ff);
1616 if (ff)
1617 fuse_file_put(ff, 0);
1618
1619 return err;
1620 }
1621
1622 static int fuse_writepage_locked(struct page *page)
1623 {
1624 struct address_space *mapping = page->mapping;
1625 struct inode *inode = mapping->host;
1626 struct fuse_conn *fc = get_fuse_conn(inode);
1627 struct fuse_inode *fi = get_fuse_inode(inode);
1628 struct fuse_req *req;
1629 struct page *tmp_page;
1630 int error = -ENOMEM;
1631
1632 set_page_writeback(page);
1633
1634 req = fuse_request_alloc_nofs(1);
1635 if (!req)
1636 goto err;
1637
1638 req->background = 1; /* writeback always goes to bg_queue */
1639 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1640 if (!tmp_page)
1641 goto err_free;
1642
1643 error = -EIO;
1644 req->ff = fuse_write_file_get(fc, fi);
1645 if (!req->ff)
1646 goto err_nofile;
1647
1648 fuse_write_fill(req, req->ff, page_offset(page), 0);
1649
1650 copy_highpage(tmp_page, page);
1651 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1652 req->misc.write.next = NULL;
1653 req->in.argpages = 1;
1654 req->num_pages = 1;
1655 req->pages[0] = tmp_page;
1656 req->page_descs[0].offset = 0;
1657 req->page_descs[0].length = PAGE_SIZE;
1658 req->end = fuse_writepage_end;
1659 req->inode = inode;
1660
1661 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK);
1662 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1663
1664 spin_lock(&fc->lock);
1665 list_add(&req->writepages_entry, &fi->writepages);
1666 list_add_tail(&req->list, &fi->queued_writes);
1667 fuse_flush_writepages(inode);
1668 spin_unlock(&fc->lock);
1669
1670 end_page_writeback(page);
1671
1672 return 0;
1673
1674 err_nofile:
1675 __free_page(tmp_page);
1676 err_free:
1677 fuse_request_free(req);
1678 err:
1679 end_page_writeback(page);
1680 return error;
1681 }
1682
1683 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1684 {
1685 int err;
1686
1687 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1688 /*
1689 * ->writepages() should be called for sync() and friends. We
1690 * should only get here on direct reclaim and then we are
1691 * allowed to skip a page which is already in flight
1692 */
1693 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1694
1695 redirty_page_for_writepage(wbc, page);
1696 return 0;
1697 }
1698
1699 err = fuse_writepage_locked(page);
1700 unlock_page(page);
1701
1702 return err;
1703 }
1704
1705 struct fuse_fill_wb_data {
1706 struct fuse_req *req;
1707 struct fuse_file *ff;
1708 struct inode *inode;
1709 struct page **orig_pages;
1710 };
1711
1712 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1713 {
1714 struct fuse_req *req = data->req;
1715 struct inode *inode = data->inode;
1716 struct fuse_conn *fc = get_fuse_conn(inode);
1717 struct fuse_inode *fi = get_fuse_inode(inode);
1718 int num_pages = req->num_pages;
1719 int i;
1720
1721 req->ff = fuse_file_get(data->ff);
1722 spin_lock(&fc->lock);
1723 list_add_tail(&req->list, &fi->queued_writes);
1724 fuse_flush_writepages(inode);
1725 spin_unlock(&fc->lock);
1726
1727 for (i = 0; i < num_pages; i++)
1728 end_page_writeback(data->orig_pages[i]);
1729 }
1730
1731 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1732 struct page *page)
1733 {
1734 struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1735 struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1736 struct fuse_req *tmp;
1737 struct fuse_req *old_req;
1738 bool found = false;
1739 pgoff_t curr_index;
1740
1741 BUG_ON(new_req->num_pages != 0);
1742
1743 spin_lock(&fc->lock);
1744 list_del(&new_req->writepages_entry);
1745 list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1746 BUG_ON(old_req->inode != new_req->inode);
1747 curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1748 if (curr_index <= page->index &&
1749 page->index < curr_index + old_req->num_pages) {
1750 found = true;
1751 break;
1752 }
1753 }
1754 if (!found) {
1755 list_add(&new_req->writepages_entry, &fi->writepages);
1756 goto out_unlock;
1757 }
1758
1759 new_req->num_pages = 1;
1760 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1761 BUG_ON(tmp->inode != new_req->inode);
1762 curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1763 if (tmp->num_pages == 1 &&
1764 curr_index == page->index) {
1765 old_req = tmp;
1766 }
1767 }
1768
1769 if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT ||
1770 old_req->state == FUSE_REQ_PENDING)) {
1771 struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host);
1772
1773 copy_highpage(old_req->pages[0], page);
1774 spin_unlock(&fc->lock);
1775
1776 dec_bdi_stat(bdi, BDI_WRITEBACK);
1777 dec_zone_page_state(page, NR_WRITEBACK_TEMP);
1778 bdi_writeout_inc(bdi);
1779 fuse_writepage_free(fc, new_req);
1780 fuse_request_free(new_req);
1781 goto out;
1782 } else {
1783 new_req->misc.write.next = old_req->misc.write.next;
1784 old_req->misc.write.next = new_req;
1785 }
1786 out_unlock:
1787 spin_unlock(&fc->lock);
1788 out:
1789 return found;
1790 }
1791
1792 static int fuse_writepages_fill(struct page *page,
1793 struct writeback_control *wbc, void *_data)
1794 {
1795 struct fuse_fill_wb_data *data = _data;
1796 struct fuse_req *req = data->req;
1797 struct inode *inode = data->inode;
1798 struct fuse_conn *fc = get_fuse_conn(inode);
1799 struct page *tmp_page;
1800 bool is_writeback;
1801 int err;
1802
1803 if (!data->ff) {
1804 err = -EIO;
1805 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1806 if (!data->ff)
1807 goto out_unlock;
1808 }
1809
1810 /*
1811 * Being under writeback is unlikely but possible. For example direct
1812 * read to an mmaped fuse file will set the page dirty twice; once when
1813 * the pages are faulted with get_user_pages(), and then after the read
1814 * completed.
1815 */
1816 is_writeback = fuse_page_is_writeback(inode, page->index);
1817
1818 if (req && req->num_pages &&
1819 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
1820 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write ||
1821 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1822 fuse_writepages_send(data);
1823 data->req = NULL;
1824 }
1825 err = -ENOMEM;
1826 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1827 if (!tmp_page)
1828 goto out_unlock;
1829
1830 /*
1831 * The page must not be redirtied until the writeout is completed
1832 * (i.e. userspace has sent a reply to the write request). Otherwise
1833 * there could be more than one temporary page instance for each real
1834 * page.
1835 *
1836 * This is ensured by holding the page lock in page_mkwrite() while
1837 * checking fuse_page_is_writeback(). We already hold the page lock
1838 * since clear_page_dirty_for_io() and keep it held until we add the
1839 * request to the fi->writepages list and increment req->num_pages.
1840 * After this fuse_page_is_writeback() will indicate that the page is
1841 * under writeback, so we can release the page lock.
1842 */
1843 if (data->req == NULL) {
1844 struct fuse_inode *fi = get_fuse_inode(inode);
1845
1846 err = -ENOMEM;
1847 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ);
1848 if (!req) {
1849 __free_page(tmp_page);
1850 goto out_unlock;
1851 }
1852
1853 fuse_write_fill(req, data->ff, page_offset(page), 0);
1854 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1855 req->misc.write.next = NULL;
1856 req->in.argpages = 1;
1857 req->background = 1;
1858 req->num_pages = 0;
1859 req->end = fuse_writepage_end;
1860 req->inode = inode;
1861
1862 spin_lock(&fc->lock);
1863 list_add(&req->writepages_entry, &fi->writepages);
1864 spin_unlock(&fc->lock);
1865
1866 data->req = req;
1867 }
1868 set_page_writeback(page);
1869
1870 copy_highpage(tmp_page, page);
1871 req->pages[req->num_pages] = tmp_page;
1872 req->page_descs[req->num_pages].offset = 0;
1873 req->page_descs[req->num_pages].length = PAGE_SIZE;
1874
1875 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK);
1876 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1877
1878 err = 0;
1879 if (is_writeback && fuse_writepage_in_flight(req, page)) {
1880 end_page_writeback(page);
1881 data->req = NULL;
1882 goto out_unlock;
1883 }
1884 data->orig_pages[req->num_pages] = page;
1885
1886 /*
1887 * Protected by fc->lock against concurrent access by
1888 * fuse_page_is_writeback().
1889 */
1890 spin_lock(&fc->lock);
1891 req->num_pages++;
1892 spin_unlock(&fc->lock);
1893
1894 out_unlock:
1895 unlock_page(page);
1896
1897 return err;
1898 }
1899
1900 static int fuse_writepages(struct address_space *mapping,
1901 struct writeback_control *wbc)
1902 {
1903 struct inode *inode = mapping->host;
1904 struct fuse_fill_wb_data data;
1905 int err;
1906
1907 err = -EIO;
1908 if (is_bad_inode(inode))
1909 goto out;
1910
1911 data.inode = inode;
1912 data.req = NULL;
1913 data.ff = NULL;
1914
1915 err = -ENOMEM;
1916 data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ,
1917 sizeof(struct page *),
1918 GFP_NOFS);
1919 if (!data.orig_pages)
1920 goto out;
1921
1922 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1923 if (data.req) {
1924 /* Ignore errors if we can write at least one page */
1925 BUG_ON(!data.req->num_pages);
1926 fuse_writepages_send(&data);
1927 err = 0;
1928 }
1929 if (data.ff)
1930 fuse_file_put(data.ff, false);
1931
1932 kfree(data.orig_pages);
1933 out:
1934 return err;
1935 }
1936
1937 /*
1938 * It's worthy to make sure that space is reserved on disk for the write,
1939 * but how to implement it without killing performance need more thinking.
1940 */
1941 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1942 loff_t pos, unsigned len, unsigned flags,
1943 struct page **pagep, void **fsdata)
1944 {
1945 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1946 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1947 struct page *page;
1948 loff_t fsize;
1949 int err = -ENOMEM;
1950
1951 WARN_ON(!fc->writeback_cache);
1952
1953 page = grab_cache_page_write_begin(mapping, index, flags);
1954 if (!page)
1955 goto error;
1956
1957 fuse_wait_on_page_writeback(mapping->host, page->index);
1958
1959 if (PageUptodate(page) || len == PAGE_CACHE_SIZE)
1960 goto success;
1961 /*
1962 * Check if the start this page comes after the end of file, in which
1963 * case the readpage can be optimized away.
1964 */
1965 fsize = i_size_read(mapping->host);
1966 if (fsize <= (pos & PAGE_CACHE_MASK)) {
1967 size_t off = pos & ~PAGE_CACHE_MASK;
1968 if (off)
1969 zero_user_segment(page, 0, off);
1970 goto success;
1971 }
1972 err = fuse_do_readpage(file, page);
1973 if (err)
1974 goto cleanup;
1975 success:
1976 *pagep = page;
1977 return 0;
1978
1979 cleanup:
1980 unlock_page(page);
1981 page_cache_release(page);
1982 error:
1983 return err;
1984 }
1985
1986 static int fuse_write_end(struct file *file, struct address_space *mapping,
1987 loff_t pos, unsigned len, unsigned copied,
1988 struct page *page, void *fsdata)
1989 {
1990 struct inode *inode = page->mapping->host;
1991
1992 if (!PageUptodate(page)) {
1993 /* Zero any unwritten bytes at the end of the page */
1994 size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK;
1995 if (endoff)
1996 zero_user_segment(page, endoff, PAGE_CACHE_SIZE);
1997 SetPageUptodate(page);
1998 }
1999
2000 fuse_write_update_size(inode, pos + copied);
2001 set_page_dirty(page);
2002 unlock_page(page);
2003 page_cache_release(page);
2004
2005 return copied;
2006 }
2007
2008 static int fuse_launder_page(struct page *page)
2009 {
2010 int err = 0;
2011 if (clear_page_dirty_for_io(page)) {
2012 struct inode *inode = page->mapping->host;
2013 err = fuse_writepage_locked(page);
2014 if (!err)
2015 fuse_wait_on_page_writeback(inode, page->index);
2016 }
2017 return err;
2018 }
2019
2020 /*
2021 * Write back dirty pages now, because there may not be any suitable
2022 * open files later
2023 */
2024 static void fuse_vma_close(struct vm_area_struct *vma)
2025 {
2026 filemap_write_and_wait(vma->vm_file->f_mapping);
2027 }
2028
2029 /*
2030 * Wait for writeback against this page to complete before allowing it
2031 * to be marked dirty again, and hence written back again, possibly
2032 * before the previous writepage completed.
2033 *
2034 * Block here, instead of in ->writepage(), so that the userspace fs
2035 * can only block processes actually operating on the filesystem.
2036 *
2037 * Otherwise unprivileged userspace fs would be able to block
2038 * unrelated:
2039 *
2040 * - page migration
2041 * - sync(2)
2042 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2043 */
2044 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2045 {
2046 struct page *page = vmf->page;
2047 struct inode *inode = file_inode(vma->vm_file);
2048
2049 file_update_time(vma->vm_file);
2050 lock_page(page);
2051 if (page->mapping != inode->i_mapping) {
2052 unlock_page(page);
2053 return VM_FAULT_NOPAGE;
2054 }
2055
2056 fuse_wait_on_page_writeback(inode, page->index);
2057 return VM_FAULT_LOCKED;
2058 }
2059
2060 static const struct vm_operations_struct fuse_file_vm_ops = {
2061 .close = fuse_vma_close,
2062 .fault = filemap_fault,
2063 .map_pages = filemap_map_pages,
2064 .page_mkwrite = fuse_page_mkwrite,
2065 };
2066
2067 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2068 {
2069 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2070 fuse_link_write_file(file);
2071
2072 file_accessed(file);
2073 vma->vm_ops = &fuse_file_vm_ops;
2074 return 0;
2075 }
2076
2077 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2078 {
2079 /* Can't provide the coherency needed for MAP_SHARED */
2080 if (vma->vm_flags & VM_MAYSHARE)
2081 return -ENODEV;
2082
2083 invalidate_inode_pages2(file->f_mapping);
2084
2085 return generic_file_mmap(file, vma);
2086 }
2087
2088 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
2089 struct file_lock *fl)
2090 {
2091 switch (ffl->type) {
2092 case F_UNLCK:
2093 break;
2094
2095 case F_RDLCK:
2096 case F_WRLCK:
2097 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2098 ffl->end < ffl->start)
2099 return -EIO;
2100
2101 fl->fl_start = ffl->start;
2102 fl->fl_end = ffl->end;
2103 fl->fl_pid = ffl->pid;
2104 break;
2105
2106 default:
2107 return -EIO;
2108 }
2109 fl->fl_type = ffl->type;
2110 return 0;
2111 }
2112
2113 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2114 const struct file_lock *fl, int opcode, pid_t pid,
2115 int flock, struct fuse_lk_in *inarg)
2116 {
2117 struct inode *inode = file_inode(file);
2118 struct fuse_conn *fc = get_fuse_conn(inode);
2119 struct fuse_file *ff = file->private_data;
2120
2121 memset(inarg, 0, sizeof(*inarg));
2122 inarg->fh = ff->fh;
2123 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2124 inarg->lk.start = fl->fl_start;
2125 inarg->lk.end = fl->fl_end;
2126 inarg->lk.type = fl->fl_type;
2127 inarg->lk.pid = pid;
2128 if (flock)
2129 inarg->lk_flags |= FUSE_LK_FLOCK;
2130 args->in.h.opcode = opcode;
2131 args->in.h.nodeid = get_node_id(inode);
2132 args->in.numargs = 1;
2133 args->in.args[0].size = sizeof(*inarg);
2134 args->in.args[0].value = inarg;
2135 }
2136
2137 static int fuse_getlk(struct file *file, struct file_lock *fl)
2138 {
2139 struct inode *inode = file_inode(file);
2140 struct fuse_conn *fc = get_fuse_conn(inode);
2141 FUSE_ARGS(args);
2142 struct fuse_lk_in inarg;
2143 struct fuse_lk_out outarg;
2144 int err;
2145
2146 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2147 args.out.numargs = 1;
2148 args.out.args[0].size = sizeof(outarg);
2149 args.out.args[0].value = &outarg;
2150 err = fuse_simple_request(fc, &args);
2151 if (!err)
2152 err = convert_fuse_file_lock(&outarg.lk, fl);
2153
2154 return err;
2155 }
2156
2157 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2158 {
2159 struct inode *inode = file_inode(file);
2160 struct fuse_conn *fc = get_fuse_conn(inode);
2161 FUSE_ARGS(args);
2162 struct fuse_lk_in inarg;
2163 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2164 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
2165 int err;
2166
2167 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2168 /* NLM needs asynchronous locks, which we don't support yet */
2169 return -ENOLCK;
2170 }
2171
2172 /* Unlock on close is handled by the flush method */
2173 if (fl->fl_flags & FL_CLOSE)
2174 return 0;
2175
2176 fuse_lk_fill(&args, file, fl, opcode, pid, flock, &inarg);
2177 err = fuse_simple_request(fc, &args);
2178
2179 /* locking is restartable */
2180 if (err == -EINTR)
2181 err = -ERESTARTSYS;
2182
2183 return err;
2184 }
2185
2186 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2187 {
2188 struct inode *inode = file_inode(file);
2189 struct fuse_conn *fc = get_fuse_conn(inode);
2190 int err;
2191
2192 if (cmd == F_CANCELLK) {
2193 err = 0;
2194 } else if (cmd == F_GETLK) {
2195 if (fc->no_lock) {
2196 posix_test_lock(file, fl);
2197 err = 0;
2198 } else
2199 err = fuse_getlk(file, fl);
2200 } else {
2201 if (fc->no_lock)
2202 err = posix_lock_file(file, fl, NULL);
2203 else
2204 err = fuse_setlk(file, fl, 0);
2205 }
2206 return err;
2207 }
2208
2209 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2210 {
2211 struct inode *inode = file_inode(file);
2212 struct fuse_conn *fc = get_fuse_conn(inode);
2213 int err;
2214
2215 if (fc->no_flock) {
2216 err = flock_lock_file_wait(file, fl);
2217 } else {
2218 struct fuse_file *ff = file->private_data;
2219
2220 /* emulate flock with POSIX locks */
2221 ff->flock = true;
2222 err = fuse_setlk(file, fl, 1);
2223 }
2224
2225 return err;
2226 }
2227
2228 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2229 {
2230 struct inode *inode = mapping->host;
2231 struct fuse_conn *fc = get_fuse_conn(inode);
2232 FUSE_ARGS(args);
2233 struct fuse_bmap_in inarg;
2234 struct fuse_bmap_out outarg;
2235 int err;
2236
2237 if (!inode->i_sb->s_bdev || fc->no_bmap)
2238 return 0;
2239
2240 memset(&inarg, 0, sizeof(inarg));
2241 inarg.block = block;
2242 inarg.blocksize = inode->i_sb->s_blocksize;
2243 args.in.h.opcode = FUSE_BMAP;
2244 args.in.h.nodeid = get_node_id(inode);
2245 args.in.numargs = 1;
2246 args.in.args[0].size = sizeof(inarg);
2247 args.in.args[0].value = &inarg;
2248 args.out.numargs = 1;
2249 args.out.args[0].size = sizeof(outarg);
2250 args.out.args[0].value = &outarg;
2251 err = fuse_simple_request(fc, &args);
2252 if (err == -ENOSYS)
2253 fc->no_bmap = 1;
2254
2255 return err ? 0 : outarg.block;
2256 }
2257
2258 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2259 {
2260 loff_t retval;
2261 struct inode *inode = file_inode(file);
2262
2263 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2264 if (whence == SEEK_CUR || whence == SEEK_SET)
2265 return generic_file_llseek(file, offset, whence);
2266
2267 mutex_lock(&inode->i_mutex);
2268 retval = fuse_update_attributes(inode, NULL, file, NULL);
2269 if (!retval)
2270 retval = generic_file_llseek(file, offset, whence);
2271 mutex_unlock(&inode->i_mutex);
2272
2273 return retval;
2274 }
2275
2276 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
2277 unsigned int nr_segs, size_t bytes, bool to_user)
2278 {
2279 struct iov_iter ii;
2280 int page_idx = 0;
2281
2282 if (!bytes)
2283 return 0;
2284
2285 iov_iter_init(&ii, to_user ? READ : WRITE, iov, nr_segs, bytes);
2286
2287 while (iov_iter_count(&ii)) {
2288 struct page *page = pages[page_idx++];
2289 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
2290 void *kaddr;
2291
2292 kaddr = kmap(page);
2293
2294 while (todo) {
2295 char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
2296 size_t iov_len = ii.iov->iov_len - ii.iov_offset;
2297 size_t copy = min(todo, iov_len);
2298 size_t left;
2299
2300 if (!to_user)
2301 left = copy_from_user(kaddr, uaddr, copy);
2302 else
2303 left = copy_to_user(uaddr, kaddr, copy);
2304
2305 if (unlikely(left))
2306 return -EFAULT;
2307
2308 iov_iter_advance(&ii, copy);
2309 todo -= copy;
2310 kaddr += copy;
2311 }
2312
2313 kunmap(page);
2314 }
2315
2316 return 0;
2317 }
2318
2319 /*
2320 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2321 * ABI was defined to be 'struct iovec' which is different on 32bit
2322 * and 64bit. Fortunately we can determine which structure the server
2323 * used from the size of the reply.
2324 */
2325 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2326 size_t transferred, unsigned count,
2327 bool is_compat)
2328 {
2329 #ifdef CONFIG_COMPAT
2330 if (count * sizeof(struct compat_iovec) == transferred) {
2331 struct compat_iovec *ciov = src;
2332 unsigned i;
2333
2334 /*
2335 * With this interface a 32bit server cannot support
2336 * non-compat (i.e. ones coming from 64bit apps) ioctl
2337 * requests
2338 */
2339 if (!is_compat)
2340 return -EINVAL;
2341
2342 for (i = 0; i < count; i++) {
2343 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2344 dst[i].iov_len = ciov[i].iov_len;
2345 }
2346 return 0;
2347 }
2348 #endif
2349
2350 if (count * sizeof(struct iovec) != transferred)
2351 return -EIO;
2352
2353 memcpy(dst, src, transferred);
2354 return 0;
2355 }
2356
2357 /* Make sure iov_length() won't overflow */
2358 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
2359 {
2360 size_t n;
2361 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
2362
2363 for (n = 0; n < count; n++, iov++) {
2364 if (iov->iov_len > (size_t) max)
2365 return -ENOMEM;
2366 max -= iov->iov_len;
2367 }
2368 return 0;
2369 }
2370
2371 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2372 void *src, size_t transferred, unsigned count,
2373 bool is_compat)
2374 {
2375 unsigned i;
2376 struct fuse_ioctl_iovec *fiov = src;
2377
2378 if (fc->minor < 16) {
2379 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2380 count, is_compat);
2381 }
2382
2383 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2384 return -EIO;
2385
2386 for (i = 0; i < count; i++) {
2387 /* Did the server supply an inappropriate value? */
2388 if (fiov[i].base != (unsigned long) fiov[i].base ||
2389 fiov[i].len != (unsigned long) fiov[i].len)
2390 return -EIO;
2391
2392 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2393 dst[i].iov_len = (size_t) fiov[i].len;
2394
2395 #ifdef CONFIG_COMPAT
2396 if (is_compat &&
2397 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2398 (compat_size_t) dst[i].iov_len != fiov[i].len))
2399 return -EIO;
2400 #endif
2401 }
2402
2403 return 0;
2404 }
2405
2406
2407 /*
2408 * For ioctls, there is no generic way to determine how much memory
2409 * needs to be read and/or written. Furthermore, ioctls are allowed
2410 * to dereference the passed pointer, so the parameter requires deep
2411 * copying but FUSE has no idea whatsoever about what to copy in or
2412 * out.
2413 *
2414 * This is solved by allowing FUSE server to retry ioctl with
2415 * necessary in/out iovecs. Let's assume the ioctl implementation
2416 * needs to read in the following structure.
2417 *
2418 * struct a {
2419 * char *buf;
2420 * size_t buflen;
2421 * }
2422 *
2423 * On the first callout to FUSE server, inarg->in_size and
2424 * inarg->out_size will be NULL; then, the server completes the ioctl
2425 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2426 * the actual iov array to
2427 *
2428 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2429 *
2430 * which tells FUSE to copy in the requested area and retry the ioctl.
2431 * On the second round, the server has access to the structure and
2432 * from that it can tell what to look for next, so on the invocation,
2433 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2434 *
2435 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2436 * { .iov_base = a.buf, .iov_len = a.buflen } }
2437 *
2438 * FUSE will copy both struct a and the pointed buffer from the
2439 * process doing the ioctl and retry ioctl with both struct a and the
2440 * buffer.
2441 *
2442 * This time, FUSE server has everything it needs and completes ioctl
2443 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2444 *
2445 * Copying data out works the same way.
2446 *
2447 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2448 * automatically initializes in and out iovs by decoding @cmd with
2449 * _IOC_* macros and the server is not allowed to request RETRY. This
2450 * limits ioctl data transfers to well-formed ioctls and is the forced
2451 * behavior for all FUSE servers.
2452 */
2453 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2454 unsigned int flags)
2455 {
2456 struct fuse_file *ff = file->private_data;
2457 struct fuse_conn *fc = ff->fc;
2458 struct fuse_ioctl_in inarg = {
2459 .fh = ff->fh,
2460 .cmd = cmd,
2461 .arg = arg,
2462 .flags = flags
2463 };
2464 struct fuse_ioctl_out outarg;
2465 struct fuse_req *req = NULL;
2466 struct page **pages = NULL;
2467 struct iovec *iov_page = NULL;
2468 struct iovec *in_iov = NULL, *out_iov = NULL;
2469 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2470 size_t in_size, out_size, transferred;
2471 int err;
2472
2473 #if BITS_PER_LONG == 32
2474 inarg.flags |= FUSE_IOCTL_32BIT;
2475 #else
2476 if (flags & FUSE_IOCTL_COMPAT)
2477 inarg.flags |= FUSE_IOCTL_32BIT;
2478 #endif
2479
2480 /* assume all the iovs returned by client always fits in a page */
2481 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2482
2483 err = -ENOMEM;
2484 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL);
2485 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2486 if (!pages || !iov_page)
2487 goto out;
2488
2489 /*
2490 * If restricted, initialize IO parameters as encoded in @cmd.
2491 * RETRY from server is not allowed.
2492 */
2493 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2494 struct iovec *iov = iov_page;
2495
2496 iov->iov_base = (void __user *)arg;
2497 iov->iov_len = _IOC_SIZE(cmd);
2498
2499 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2500 in_iov = iov;
2501 in_iovs = 1;
2502 }
2503
2504 if (_IOC_DIR(cmd) & _IOC_READ) {
2505 out_iov = iov;
2506 out_iovs = 1;
2507 }
2508 }
2509
2510 retry:
2511 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2512 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2513
2514 /*
2515 * Out data can be used either for actual out data or iovs,
2516 * make sure there always is at least one page.
2517 */
2518 out_size = max_t(size_t, out_size, PAGE_SIZE);
2519 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2520
2521 /* make sure there are enough buffer pages and init request with them */
2522 err = -ENOMEM;
2523 if (max_pages > FUSE_MAX_PAGES_PER_REQ)
2524 goto out;
2525 while (num_pages < max_pages) {
2526 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2527 if (!pages[num_pages])
2528 goto out;
2529 num_pages++;
2530 }
2531
2532 req = fuse_get_req(fc, num_pages);
2533 if (IS_ERR(req)) {
2534 err = PTR_ERR(req);
2535 req = NULL;
2536 goto out;
2537 }
2538 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2539 req->num_pages = num_pages;
2540 fuse_page_descs_length_init(req, 0, req->num_pages);
2541
2542 /* okay, let's send it to the client */
2543 req->in.h.opcode = FUSE_IOCTL;
2544 req->in.h.nodeid = ff->nodeid;
2545 req->in.numargs = 1;
2546 req->in.args[0].size = sizeof(inarg);
2547 req->in.args[0].value = &inarg;
2548 if (in_size) {
2549 req->in.numargs++;
2550 req->in.args[1].size = in_size;
2551 req->in.argpages = 1;
2552
2553 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
2554 false);
2555 if (err)
2556 goto out;
2557 }
2558
2559 req->out.numargs = 2;
2560 req->out.args[0].size = sizeof(outarg);
2561 req->out.args[0].value = &outarg;
2562 req->out.args[1].size = out_size;
2563 req->out.argpages = 1;
2564 req->out.argvar = 1;
2565
2566 fuse_request_send(fc, req);
2567 err = req->out.h.error;
2568 transferred = req->out.args[1].size;
2569 fuse_put_request(fc, req);
2570 req = NULL;
2571 if (err)
2572 goto out;
2573
2574 /* did it ask for retry? */
2575 if (outarg.flags & FUSE_IOCTL_RETRY) {
2576 void *vaddr;
2577
2578 /* no retry if in restricted mode */
2579 err = -EIO;
2580 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2581 goto out;
2582
2583 in_iovs = outarg.in_iovs;
2584 out_iovs = outarg.out_iovs;
2585
2586 /*
2587 * Make sure things are in boundary, separate checks
2588 * are to protect against overflow.
2589 */
2590 err = -ENOMEM;
2591 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2592 out_iovs > FUSE_IOCTL_MAX_IOV ||
2593 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2594 goto out;
2595
2596 vaddr = kmap_atomic(pages[0]);
2597 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2598 transferred, in_iovs + out_iovs,
2599 (flags & FUSE_IOCTL_COMPAT) != 0);
2600 kunmap_atomic(vaddr);
2601 if (err)
2602 goto out;
2603
2604 in_iov = iov_page;
2605 out_iov = in_iov + in_iovs;
2606
2607 err = fuse_verify_ioctl_iov(in_iov, in_iovs);
2608 if (err)
2609 goto out;
2610
2611 err = fuse_verify_ioctl_iov(out_iov, out_iovs);
2612 if (err)
2613 goto out;
2614
2615 goto retry;
2616 }
2617
2618 err = -EIO;
2619 if (transferred > inarg.out_size)
2620 goto out;
2621
2622 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
2623 out:
2624 if (req)
2625 fuse_put_request(fc, req);
2626 free_page((unsigned long) iov_page);
2627 while (num_pages)
2628 __free_page(pages[--num_pages]);
2629 kfree(pages);
2630
2631 return err ? err : outarg.result;
2632 }
2633 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2634
2635 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2636 unsigned long arg, unsigned int flags)
2637 {
2638 struct inode *inode = file_inode(file);
2639 struct fuse_conn *fc = get_fuse_conn(inode);
2640
2641 if (!fuse_allow_current_process(fc))
2642 return -EACCES;
2643
2644 if (is_bad_inode(inode))
2645 return -EIO;
2646
2647 return fuse_do_ioctl(file, cmd, arg, flags);
2648 }
2649
2650 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2651 unsigned long arg)
2652 {
2653 return fuse_ioctl_common(file, cmd, arg, 0);
2654 }
2655
2656 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2657 unsigned long arg)
2658 {
2659 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2660 }
2661
2662 /*
2663 * All files which have been polled are linked to RB tree
2664 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2665 * find the matching one.
2666 */
2667 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2668 struct rb_node **parent_out)
2669 {
2670 struct rb_node **link = &fc->polled_files.rb_node;
2671 struct rb_node *last = NULL;
2672
2673 while (*link) {
2674 struct fuse_file *ff;
2675
2676 last = *link;
2677 ff = rb_entry(last, struct fuse_file, polled_node);
2678
2679 if (kh < ff->kh)
2680 link = &last->rb_left;
2681 else if (kh > ff->kh)
2682 link = &last->rb_right;
2683 else
2684 return link;
2685 }
2686
2687 if (parent_out)
2688 *parent_out = last;
2689 return link;
2690 }
2691
2692 /*
2693 * The file is about to be polled. Make sure it's on the polled_files
2694 * RB tree. Note that files once added to the polled_files tree are
2695 * not removed before the file is released. This is because a file
2696 * polled once is likely to be polled again.
2697 */
2698 static void fuse_register_polled_file(struct fuse_conn *fc,
2699 struct fuse_file *ff)
2700 {
2701 spin_lock(&fc->lock);
2702 if (RB_EMPTY_NODE(&ff->polled_node)) {
2703 struct rb_node **link, *uninitialized_var(parent);
2704
2705 link = fuse_find_polled_node(fc, ff->kh, &parent);
2706 BUG_ON(*link);
2707 rb_link_node(&ff->polled_node, parent, link);
2708 rb_insert_color(&ff->polled_node, &fc->polled_files);
2709 }
2710 spin_unlock(&fc->lock);
2711 }
2712
2713 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2714 {
2715 struct fuse_file *ff = file->private_data;
2716 struct fuse_conn *fc = ff->fc;
2717 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2718 struct fuse_poll_out outarg;
2719 FUSE_ARGS(args);
2720 int err;
2721
2722 if (fc->no_poll)
2723 return DEFAULT_POLLMASK;
2724
2725 poll_wait(file, &ff->poll_wait, wait);
2726 inarg.events = (__u32)poll_requested_events(wait);
2727
2728 /*
2729 * Ask for notification iff there's someone waiting for it.
2730 * The client may ignore the flag and always notify.
2731 */
2732 if (waitqueue_active(&ff->poll_wait)) {
2733 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2734 fuse_register_polled_file(fc, ff);
2735 }
2736
2737 args.in.h.opcode = FUSE_POLL;
2738 args.in.h.nodeid = ff->nodeid;
2739 args.in.numargs = 1;
2740 args.in.args[0].size = sizeof(inarg);
2741 args.in.args[0].value = &inarg;
2742 args.out.numargs = 1;
2743 args.out.args[0].size = sizeof(outarg);
2744 args.out.args[0].value = &outarg;
2745 err = fuse_simple_request(fc, &args);
2746
2747 if (!err)
2748 return outarg.revents;
2749 if (err == -ENOSYS) {
2750 fc->no_poll = 1;
2751 return DEFAULT_POLLMASK;
2752 }
2753 return POLLERR;
2754 }
2755 EXPORT_SYMBOL_GPL(fuse_file_poll);
2756
2757 /*
2758 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2759 * wakes up the poll waiters.
2760 */
2761 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2762 struct fuse_notify_poll_wakeup_out *outarg)
2763 {
2764 u64 kh = outarg->kh;
2765 struct rb_node **link;
2766
2767 spin_lock(&fc->lock);
2768
2769 link = fuse_find_polled_node(fc, kh, NULL);
2770 if (*link) {
2771 struct fuse_file *ff;
2772
2773 ff = rb_entry(*link, struct fuse_file, polled_node);
2774 wake_up_interruptible_sync(&ff->poll_wait);
2775 }
2776
2777 spin_unlock(&fc->lock);
2778 return 0;
2779 }
2780
2781 static void fuse_do_truncate(struct file *file)
2782 {
2783 struct inode *inode = file->f_mapping->host;
2784 struct iattr attr;
2785
2786 attr.ia_valid = ATTR_SIZE;
2787 attr.ia_size = i_size_read(inode);
2788
2789 attr.ia_file = file;
2790 attr.ia_valid |= ATTR_FILE;
2791
2792 fuse_do_setattr(inode, &attr, file);
2793 }
2794
2795 static inline loff_t fuse_round_up(loff_t off)
2796 {
2797 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
2798 }
2799
2800 static ssize_t
2801 fuse_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
2802 loff_t offset)
2803 {
2804 ssize_t ret = 0;
2805 struct file *file = iocb->ki_filp;
2806 struct fuse_file *ff = file->private_data;
2807 bool async_dio = ff->fc->async_dio;
2808 loff_t pos = 0;
2809 struct inode *inode;
2810 loff_t i_size;
2811 size_t count = iov_iter_count(iter);
2812 struct fuse_io_priv *io;
2813
2814 pos = offset;
2815 inode = file->f_mapping->host;
2816 i_size = i_size_read(inode);
2817
2818 if ((rw == READ) && (offset > i_size))
2819 return 0;
2820
2821 /* optimization for short read */
2822 if (async_dio && rw != WRITE && offset + count > i_size) {
2823 if (offset >= i_size)
2824 return 0;
2825 count = min_t(loff_t, count, fuse_round_up(i_size - offset));
2826 iov_iter_truncate(iter, count);
2827 }
2828
2829 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2830 if (!io)
2831 return -ENOMEM;
2832 spin_lock_init(&io->lock);
2833 io->reqs = 1;
2834 io->bytes = -1;
2835 io->size = 0;
2836 io->offset = offset;
2837 io->write = (rw == WRITE);
2838 io->err = 0;
2839 io->file = file;
2840 /*
2841 * By default, we want to optimize all I/Os with async request
2842 * submission to the client filesystem if supported.
2843 */
2844 io->async = async_dio;
2845 io->iocb = iocb;
2846
2847 /*
2848 * We cannot asynchronously extend the size of a file. We have no method
2849 * to wait on real async I/O requests, so we must submit this request
2850 * synchronously.
2851 */
2852 if (!is_sync_kiocb(iocb) && (offset + count > i_size) && rw == WRITE)
2853 io->async = false;
2854
2855 if (rw == WRITE)
2856 ret = __fuse_direct_write(io, iter, &pos);
2857 else
2858 ret = __fuse_direct_read(io, iter, &pos);
2859
2860 if (io->async) {
2861 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2862
2863 /* we have a non-extending, async request, so return */
2864 if (!is_sync_kiocb(iocb))
2865 return -EIOCBQUEUED;
2866
2867 ret = wait_on_sync_kiocb(iocb);
2868 } else {
2869 kfree(io);
2870 }
2871
2872 if (rw == WRITE) {
2873 if (ret > 0)
2874 fuse_write_update_size(inode, pos);
2875 else if (ret < 0 && offset + count > i_size)
2876 fuse_do_truncate(file);
2877 }
2878
2879 return ret;
2880 }
2881
2882 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2883 loff_t length)
2884 {
2885 struct fuse_file *ff = file->private_data;
2886 struct inode *inode = file_inode(file);
2887 struct fuse_inode *fi = get_fuse_inode(inode);
2888 struct fuse_conn *fc = ff->fc;
2889 FUSE_ARGS(args);
2890 struct fuse_fallocate_in inarg = {
2891 .fh = ff->fh,
2892 .offset = offset,
2893 .length = length,
2894 .mode = mode
2895 };
2896 int err;
2897 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2898 (mode & FALLOC_FL_PUNCH_HOLE);
2899
2900 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2901 return -EOPNOTSUPP;
2902
2903 if (fc->no_fallocate)
2904 return -EOPNOTSUPP;
2905
2906 if (lock_inode) {
2907 mutex_lock(&inode->i_mutex);
2908 if (mode & FALLOC_FL_PUNCH_HOLE) {
2909 loff_t endbyte = offset + length - 1;
2910 err = filemap_write_and_wait_range(inode->i_mapping,
2911 offset, endbyte);
2912 if (err)
2913 goto out;
2914
2915 fuse_sync_writes(inode);
2916 }
2917 }
2918
2919 if (!(mode & FALLOC_FL_KEEP_SIZE))
2920 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2921
2922 args.in.h.opcode = FUSE_FALLOCATE;
2923 args.in.h.nodeid = ff->nodeid;
2924 args.in.numargs = 1;
2925 args.in.args[0].size = sizeof(inarg);
2926 args.in.args[0].value = &inarg;
2927 err = fuse_simple_request(fc, &args);
2928 if (err == -ENOSYS) {
2929 fc->no_fallocate = 1;
2930 err = -EOPNOTSUPP;
2931 }
2932 if (err)
2933 goto out;
2934
2935 /* we could have extended the file */
2936 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2937 bool changed = fuse_write_update_size(inode, offset + length);
2938
2939 if (changed && fc->writeback_cache)
2940 file_update_time(file);
2941 }
2942
2943 if (mode & FALLOC_FL_PUNCH_HOLE)
2944 truncate_pagecache_range(inode, offset, offset + length - 1);
2945
2946 fuse_invalidate_attr(inode);
2947
2948 out:
2949 if (!(mode & FALLOC_FL_KEEP_SIZE))
2950 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2951
2952 if (lock_inode)
2953 mutex_unlock(&inode->i_mutex);
2954
2955 return err;
2956 }
2957
2958 static const struct file_operations fuse_file_operations = {
2959 .llseek = fuse_file_llseek,
2960 .read = new_sync_read,
2961 .read_iter = fuse_file_read_iter,
2962 .write = new_sync_write,
2963 .write_iter = fuse_file_write_iter,
2964 .mmap = fuse_file_mmap,
2965 .open = fuse_open,
2966 .flush = fuse_flush,
2967 .release = fuse_release,
2968 .fsync = fuse_fsync,
2969 .lock = fuse_file_lock,
2970 .flock = fuse_file_flock,
2971 .splice_read = generic_file_splice_read,
2972 .unlocked_ioctl = fuse_file_ioctl,
2973 .compat_ioctl = fuse_file_compat_ioctl,
2974 .poll = fuse_file_poll,
2975 .fallocate = fuse_file_fallocate,
2976 };
2977
2978 static const struct file_operations fuse_direct_io_file_operations = {
2979 .llseek = fuse_file_llseek,
2980 .read = fuse_direct_read,
2981 .write = fuse_direct_write,
2982 .mmap = fuse_direct_mmap,
2983 .open = fuse_open,
2984 .flush = fuse_flush,
2985 .release = fuse_release,
2986 .fsync = fuse_fsync,
2987 .lock = fuse_file_lock,
2988 .flock = fuse_file_flock,
2989 .unlocked_ioctl = fuse_file_ioctl,
2990 .compat_ioctl = fuse_file_compat_ioctl,
2991 .poll = fuse_file_poll,
2992 .fallocate = fuse_file_fallocate,
2993 /* no splice_read */
2994 };
2995
2996 static const struct address_space_operations fuse_file_aops = {
2997 .readpage = fuse_readpage,
2998 .writepage = fuse_writepage,
2999 .writepages = fuse_writepages,
3000 .launder_page = fuse_launder_page,
3001 .readpages = fuse_readpages,
3002 .set_page_dirty = __set_page_dirty_nobuffers,
3003 .bmap = fuse_bmap,
3004 .direct_IO = fuse_direct_IO,
3005 .write_begin = fuse_write_begin,
3006 .write_end = fuse_write_end,
3007 };
3008
3009 void fuse_init_file_inode(struct inode *inode)
3010 {
3011 inode->i_fop = &fuse_file_operations;
3012 inode->i_data.a_ops = &fuse_file_aops;
3013 }