Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/apm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58 int nr_pdflush_threads;
59
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 struct super_block *sb = inode->i_sb;
75
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
78
79 return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 return list_entry(head, struct inode, i_wb_list);
85 }
86
87 /*
88 * Include the creation of the trace points after defining the
89 * wb_writeback_work structure and inline functions so that the definition
90 * remains local to this file.
91 */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98 if (bdi->wb.task) {
99 wake_up_process(bdi->wb.task);
100 } else {
101 /*
102 * The bdi thread isn't there, wake up the forker thread which
103 * will create and run it.
104 */
105 wake_up_process(default_backing_dev_info.wb.task);
106 }
107 }
108
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 struct wb_writeback_work *work)
111 {
112 trace_writeback_queue(bdi, work);
113
114 spin_lock_bh(&bdi->wb_lock);
115 list_add_tail(&work->list, &bdi->work_list);
116 if (!bdi->wb.task)
117 trace_writeback_nothread(bdi, work);
118 bdi_wakeup_flusher(bdi);
119 spin_unlock_bh(&bdi->wb_lock);
120 }
121
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 bool range_cyclic, enum wb_reason reason)
125 {
126 struct wb_writeback_work *work;
127
128 /*
129 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 * wakeup the thread for old dirty data writeback
131 */
132 work = kzalloc(sizeof(*work), GFP_ATOMIC);
133 if (!work) {
134 if (bdi->wb.task) {
135 trace_writeback_nowork(bdi);
136 wake_up_process(bdi->wb.task);
137 }
138 return;
139 }
140
141 work->sync_mode = WB_SYNC_NONE;
142 work->nr_pages = nr_pages;
143 work->range_cyclic = range_cyclic;
144 work->reason = reason;
145
146 bdi_queue_work(bdi, work);
147 }
148
149 /**
150 * bdi_start_writeback - start writeback
151 * @bdi: the backing device to write from
152 * @nr_pages: the number of pages to write
153 * @reason: reason why some writeback work was initiated
154 *
155 * Description:
156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
157 * started when this function returns, we make no guarantees on
158 * completion. Caller need not hold sb s_umount semaphore.
159 *
160 */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 enum wb_reason reason)
163 {
164 __bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166
167 /**
168 * bdi_start_background_writeback - start background writeback
169 * @bdi: the backing device to write from
170 *
171 * Description:
172 * This makes sure WB_SYNC_NONE background writeback happens. When
173 * this function returns, it is only guaranteed that for given BDI
174 * some IO is happening if we are over background dirty threshold.
175 * Caller need not hold sb s_umount semaphore.
176 */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 /*
180 * We just wake up the flusher thread. It will perform background
181 * writeback as soon as there is no other work to do.
182 */
183 trace_writeback_wake_background(bdi);
184 spin_lock_bh(&bdi->wb_lock);
185 bdi_wakeup_flusher(bdi);
186 spin_unlock_bh(&bdi->wb_lock);
187 }
188
189 /*
190 * Remove the inode from the writeback list it is on.
191 */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 struct backing_dev_info *bdi = inode_to_bdi(inode);
195
196 spin_lock(&bdi->wb.list_lock);
197 list_del_init(&inode->i_wb_list);
198 spin_unlock(&bdi->wb.list_lock);
199 }
200
201 /*
202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203 * furthest end of its superblock's dirty-inode list.
204 *
205 * Before stamping the inode's ->dirtied_when, we check to see whether it is
206 * already the most-recently-dirtied inode on the b_dirty list. If that is
207 * the case then the inode must have been redirtied while it was being written
208 * out and we don't reset its dirtied_when.
209 */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 assert_spin_locked(&wb->list_lock);
213 if (!list_empty(&wb->b_dirty)) {
214 struct inode *tail;
215
216 tail = wb_inode(wb->b_dirty.next);
217 if (time_before(inode->dirtied_when, tail->dirtied_when))
218 inode->dirtied_when = jiffies;
219 }
220 list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222
223 /*
224 * requeue inode for re-scanning after bdi->b_io list is exhausted.
225 */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 assert_spin_locked(&wb->list_lock);
229 list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231
232 static void inode_sync_complete(struct inode *inode)
233 {
234 /*
235 * Prevent speculative execution through
236 * spin_unlock(&wb->list_lock);
237 */
238
239 smp_mb();
240 wake_up_bit(&inode->i_state, __I_SYNC);
241 }
242
243 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
244 {
245 bool ret = time_after(inode->dirtied_when, t);
246 #ifndef CONFIG_64BIT
247 /*
248 * For inodes being constantly redirtied, dirtied_when can get stuck.
249 * It _appears_ to be in the future, but is actually in distant past.
250 * This test is necessary to prevent such wrapped-around relative times
251 * from permanently stopping the whole bdi writeback.
252 */
253 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
254 #endif
255 return ret;
256 }
257
258 /*
259 * Move expired (dirtied after work->older_than_this) dirty inodes from
260 * @delaying_queue to @dispatch_queue.
261 */
262 static int move_expired_inodes(struct list_head *delaying_queue,
263 struct list_head *dispatch_queue,
264 struct wb_writeback_work *work)
265 {
266 LIST_HEAD(tmp);
267 struct list_head *pos, *node;
268 struct super_block *sb = NULL;
269 struct inode *inode;
270 int do_sb_sort = 0;
271 int moved = 0;
272
273 while (!list_empty(delaying_queue)) {
274 inode = wb_inode(delaying_queue->prev);
275 if (work->older_than_this &&
276 inode_dirtied_after(inode, *work->older_than_this))
277 break;
278 if (sb && sb != inode->i_sb)
279 do_sb_sort = 1;
280 sb = inode->i_sb;
281 list_move(&inode->i_wb_list, &tmp);
282 moved++;
283 }
284
285 /* just one sb in list, splice to dispatch_queue and we're done */
286 if (!do_sb_sort) {
287 list_splice(&tmp, dispatch_queue);
288 goto out;
289 }
290
291 /* Move inodes from one superblock together */
292 while (!list_empty(&tmp)) {
293 sb = wb_inode(tmp.prev)->i_sb;
294 list_for_each_prev_safe(pos, node, &tmp) {
295 inode = wb_inode(pos);
296 if (inode->i_sb == sb)
297 list_move(&inode->i_wb_list, dispatch_queue);
298 }
299 }
300 out:
301 return moved;
302 }
303
304 /*
305 * Queue all expired dirty inodes for io, eldest first.
306 * Before
307 * newly dirtied b_dirty b_io b_more_io
308 * =============> gf edc BA
309 * After
310 * newly dirtied b_dirty b_io b_more_io
311 * =============> g fBAedc
312 * |
313 * +--> dequeue for IO
314 */
315 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
316 {
317 int moved;
318 assert_spin_locked(&wb->list_lock);
319 list_splice_init(&wb->b_more_io, &wb->b_io);
320 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
321 trace_writeback_queue_io(wb, work, moved);
322 }
323
324 static int write_inode(struct inode *inode, struct writeback_control *wbc)
325 {
326 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
327 return inode->i_sb->s_op->write_inode(inode, wbc);
328 return 0;
329 }
330
331 /*
332 * Wait for writeback on an inode to complete.
333 */
334 static void inode_wait_for_writeback(struct inode *inode,
335 struct bdi_writeback *wb)
336 {
337 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
338 wait_queue_head_t *wqh;
339
340 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
341 while (inode->i_state & I_SYNC) {
342 spin_unlock(&inode->i_lock);
343 spin_unlock(&wb->list_lock);
344 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
345 spin_lock(&wb->list_lock);
346 spin_lock(&inode->i_lock);
347 }
348 }
349
350 /*
351 * Write out an inode's dirty pages. Called under wb->list_lock and
352 * inode->i_lock. Either the caller has an active reference on the inode or
353 * the inode has I_WILL_FREE set.
354 *
355 * If `wait' is set, wait on the writeout.
356 *
357 * The whole writeout design is quite complex and fragile. We want to avoid
358 * starvation of particular inodes when others are being redirtied, prevent
359 * livelocks, etc.
360 */
361 static int
362 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
363 struct writeback_control *wbc)
364 {
365 struct address_space *mapping = inode->i_mapping;
366 long nr_to_write = wbc->nr_to_write;
367 unsigned dirty;
368 int ret;
369
370 assert_spin_locked(&wb->list_lock);
371 assert_spin_locked(&inode->i_lock);
372
373 if (!atomic_read(&inode->i_count))
374 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
375 else
376 WARN_ON(inode->i_state & I_WILL_FREE);
377
378 if (inode->i_state & I_SYNC) {
379 /*
380 * If this inode is locked for writeback and we are not doing
381 * writeback-for-data-integrity, move it to b_more_io so that
382 * writeback can proceed with the other inodes on s_io.
383 *
384 * We'll have another go at writing back this inode when we
385 * completed a full scan of b_io.
386 */
387 if (wbc->sync_mode != WB_SYNC_ALL) {
388 requeue_io(inode, wb);
389 trace_writeback_single_inode_requeue(inode, wbc,
390 nr_to_write);
391 return 0;
392 }
393
394 /*
395 * It's a data-integrity sync. We must wait.
396 */
397 inode_wait_for_writeback(inode, wb);
398 }
399
400 BUG_ON(inode->i_state & I_SYNC);
401
402 /* Set I_SYNC, reset I_DIRTY_PAGES */
403 inode->i_state |= I_SYNC;
404 inode->i_state &= ~I_DIRTY_PAGES;
405 spin_unlock(&inode->i_lock);
406 spin_unlock(&wb->list_lock);
407
408 ret = do_writepages(mapping, wbc);
409
410 /*
411 * Make sure to wait on the data before writing out the metadata.
412 * This is important for filesystems that modify metadata on data
413 * I/O completion.
414 */
415 if (wbc->sync_mode == WB_SYNC_ALL) {
416 int err = filemap_fdatawait(mapping);
417 if (ret == 0)
418 ret = err;
419 }
420
421 /*
422 * Some filesystems may redirty the inode during the writeback
423 * due to delalloc, clear dirty metadata flags right before
424 * write_inode()
425 */
426 spin_lock(&inode->i_lock);
427 dirty = inode->i_state & I_DIRTY;
428 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
429 spin_unlock(&inode->i_lock);
430 /* Don't write the inode if only I_DIRTY_PAGES was set */
431 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
432 int err = write_inode(inode, wbc);
433 if (ret == 0)
434 ret = err;
435 }
436
437 spin_lock(&wb->list_lock);
438 spin_lock(&inode->i_lock);
439 inode->i_state &= ~I_SYNC;
440 if (!(inode->i_state & I_FREEING)) {
441 /*
442 * Sync livelock prevention. Each inode is tagged and synced in
443 * one shot. If still dirty, it will be redirty_tail()'ed below.
444 * Update the dirty time to prevent enqueue and sync it again.
445 */
446 if ((inode->i_state & I_DIRTY) &&
447 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
448 inode->dirtied_when = jiffies;
449
450 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
451 /*
452 * We didn't write back all the pages. nfs_writepages()
453 * sometimes bales out without doing anything.
454 */
455 inode->i_state |= I_DIRTY_PAGES;
456 if (wbc->nr_to_write <= 0) {
457 /*
458 * slice used up: queue for next turn
459 */
460 requeue_io(inode, wb);
461 } else {
462 /*
463 * Writeback blocked by something other than
464 * congestion. Delay the inode for some time to
465 * avoid spinning on the CPU (100% iowait)
466 * retrying writeback of the dirty page/inode
467 * that cannot be performed immediately.
468 */
469 redirty_tail(inode, wb);
470 }
471 } else if (inode->i_state & I_DIRTY) {
472 /*
473 * Filesystems can dirty the inode during writeback
474 * operations, such as delayed allocation during
475 * submission or metadata updates after data IO
476 * completion.
477 */
478 redirty_tail(inode, wb);
479 } else {
480 /*
481 * The inode is clean. At this point we either have
482 * a reference to the inode or it's on it's way out.
483 * No need to add it back to the LRU.
484 */
485 list_del_init(&inode->i_wb_list);
486 }
487 }
488 inode_sync_complete(inode);
489 trace_writeback_single_inode(inode, wbc, nr_to_write);
490 return ret;
491 }
492
493 static long writeback_chunk_size(struct backing_dev_info *bdi,
494 struct wb_writeback_work *work)
495 {
496 long pages;
497
498 /*
499 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
500 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
501 * here avoids calling into writeback_inodes_wb() more than once.
502 *
503 * The intended call sequence for WB_SYNC_ALL writeback is:
504 *
505 * wb_writeback()
506 * writeback_sb_inodes() <== called only once
507 * write_cache_pages() <== called once for each inode
508 * (quickly) tag currently dirty pages
509 * (maybe slowly) sync all tagged pages
510 */
511 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
512 pages = LONG_MAX;
513 else {
514 pages = min(bdi->avg_write_bandwidth / 2,
515 global_dirty_limit / DIRTY_SCOPE);
516 pages = min(pages, work->nr_pages);
517 pages = round_down(pages + MIN_WRITEBACK_PAGES,
518 MIN_WRITEBACK_PAGES);
519 }
520
521 return pages;
522 }
523
524 /*
525 * Write a portion of b_io inodes which belong to @sb.
526 *
527 * If @only_this_sb is true, then find and write all such
528 * inodes. Otherwise write only ones which go sequentially
529 * in reverse order.
530 *
531 * Return the number of pages and/or inodes written.
532 */
533 static long writeback_sb_inodes(struct super_block *sb,
534 struct bdi_writeback *wb,
535 struct wb_writeback_work *work)
536 {
537 struct writeback_control wbc = {
538 .sync_mode = work->sync_mode,
539 .tagged_writepages = work->tagged_writepages,
540 .for_kupdate = work->for_kupdate,
541 .for_background = work->for_background,
542 .range_cyclic = work->range_cyclic,
543 .range_start = 0,
544 .range_end = LLONG_MAX,
545 };
546 unsigned long start_time = jiffies;
547 long write_chunk;
548 long wrote = 0; /* count both pages and inodes */
549
550 while (!list_empty(&wb->b_io)) {
551 struct inode *inode = wb_inode(wb->b_io.prev);
552
553 if (inode->i_sb != sb) {
554 if (work->sb) {
555 /*
556 * We only want to write back data for this
557 * superblock, move all inodes not belonging
558 * to it back onto the dirty list.
559 */
560 redirty_tail(inode, wb);
561 continue;
562 }
563
564 /*
565 * The inode belongs to a different superblock.
566 * Bounce back to the caller to unpin this and
567 * pin the next superblock.
568 */
569 break;
570 }
571
572 /*
573 * Don't bother with new inodes or inodes beeing freed, first
574 * kind does not need peridic writeout yet, and for the latter
575 * kind writeout is handled by the freer.
576 */
577 spin_lock(&inode->i_lock);
578 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
579 spin_unlock(&inode->i_lock);
580 redirty_tail(inode, wb);
581 continue;
582 }
583 __iget(inode);
584 write_chunk = writeback_chunk_size(wb->bdi, work);
585 wbc.nr_to_write = write_chunk;
586 wbc.pages_skipped = 0;
587
588 writeback_single_inode(inode, wb, &wbc);
589
590 work->nr_pages -= write_chunk - wbc.nr_to_write;
591 wrote += write_chunk - wbc.nr_to_write;
592 if (!(inode->i_state & I_DIRTY))
593 wrote++;
594 if (wbc.pages_skipped) {
595 /*
596 * writeback is not making progress due to locked
597 * buffers. Skip this inode for now.
598 */
599 redirty_tail(inode, wb);
600 }
601 spin_unlock(&inode->i_lock);
602 spin_unlock(&wb->list_lock);
603 iput(inode);
604 cond_resched();
605 spin_lock(&wb->list_lock);
606 /*
607 * bail out to wb_writeback() often enough to check
608 * background threshold and other termination conditions.
609 */
610 if (wrote) {
611 if (time_is_before_jiffies(start_time + HZ / 10UL))
612 break;
613 if (work->nr_pages <= 0)
614 break;
615 }
616 }
617 return wrote;
618 }
619
620 static long __writeback_inodes_wb(struct bdi_writeback *wb,
621 struct wb_writeback_work *work)
622 {
623 unsigned long start_time = jiffies;
624 long wrote = 0;
625
626 while (!list_empty(&wb->b_io)) {
627 struct inode *inode = wb_inode(wb->b_io.prev);
628 struct super_block *sb = inode->i_sb;
629
630 if (!grab_super_passive(sb)) {
631 /*
632 * grab_super_passive() may fail consistently due to
633 * s_umount being grabbed by someone else. Don't use
634 * requeue_io() to avoid busy retrying the inode/sb.
635 */
636 redirty_tail(inode, wb);
637 continue;
638 }
639 wrote += writeback_sb_inodes(sb, wb, work);
640 drop_super(sb);
641
642 /* refer to the same tests at the end of writeback_sb_inodes */
643 if (wrote) {
644 if (time_is_before_jiffies(start_time + HZ / 10UL))
645 break;
646 if (work->nr_pages <= 0)
647 break;
648 }
649 }
650 /* Leave any unwritten inodes on b_io */
651 return wrote;
652 }
653
654 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
655 enum wb_reason reason)
656 {
657 struct wb_writeback_work work = {
658 .nr_pages = nr_pages,
659 .sync_mode = WB_SYNC_NONE,
660 .range_cyclic = 1,
661 .reason = reason,
662 };
663
664 spin_lock(&wb->list_lock);
665 if (list_empty(&wb->b_io))
666 queue_io(wb, &work);
667 __writeback_inodes_wb(wb, &work);
668 spin_unlock(&wb->list_lock);
669
670 return nr_pages - work.nr_pages;
671 }
672
673 static bool over_bground_thresh(struct backing_dev_info *bdi)
674 {
675 unsigned long background_thresh, dirty_thresh;
676
677 global_dirty_limits(&background_thresh, &dirty_thresh);
678
679 if (global_page_state(NR_FILE_DIRTY) +
680 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
681 return true;
682
683 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
684 bdi_dirty_limit(bdi, background_thresh))
685 return true;
686
687 return false;
688 }
689
690 /*
691 * Called under wb->list_lock. If there are multiple wb per bdi,
692 * only the flusher working on the first wb should do it.
693 */
694 static void wb_update_bandwidth(struct bdi_writeback *wb,
695 unsigned long start_time)
696 {
697 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
698 }
699
700 /*
701 * Explicit flushing or periodic writeback of "old" data.
702 *
703 * Define "old": the first time one of an inode's pages is dirtied, we mark the
704 * dirtying-time in the inode's address_space. So this periodic writeback code
705 * just walks the superblock inode list, writing back any inodes which are
706 * older than a specific point in time.
707 *
708 * Try to run once per dirty_writeback_interval. But if a writeback event
709 * takes longer than a dirty_writeback_interval interval, then leave a
710 * one-second gap.
711 *
712 * older_than_this takes precedence over nr_to_write. So we'll only write back
713 * all dirty pages if they are all attached to "old" mappings.
714 */
715 static long wb_writeback(struct bdi_writeback *wb,
716 struct wb_writeback_work *work)
717 {
718 unsigned long wb_start = jiffies;
719 long nr_pages = work->nr_pages;
720 unsigned long oldest_jif;
721 struct inode *inode;
722 long progress;
723
724 oldest_jif = jiffies;
725 work->older_than_this = &oldest_jif;
726
727 spin_lock(&wb->list_lock);
728 for (;;) {
729 /*
730 * Stop writeback when nr_pages has been consumed
731 */
732 if (work->nr_pages <= 0)
733 break;
734
735 /*
736 * Background writeout and kupdate-style writeback may
737 * run forever. Stop them if there is other work to do
738 * so that e.g. sync can proceed. They'll be restarted
739 * after the other works are all done.
740 */
741 if ((work->for_background || work->for_kupdate) &&
742 !list_empty(&wb->bdi->work_list))
743 break;
744
745 /*
746 * For background writeout, stop when we are below the
747 * background dirty threshold
748 */
749 if (work->for_background && !over_bground_thresh(wb->bdi))
750 break;
751
752 /*
753 * Kupdate and background works are special and we want to
754 * include all inodes that need writing. Livelock avoidance is
755 * handled by these works yielding to any other work so we are
756 * safe.
757 */
758 if (work->for_kupdate) {
759 oldest_jif = jiffies -
760 msecs_to_jiffies(dirty_expire_interval * 10);
761 } else if (work->for_background)
762 oldest_jif = jiffies;
763
764 trace_writeback_start(wb->bdi, work);
765 if (list_empty(&wb->b_io))
766 queue_io(wb, work);
767 if (work->sb)
768 progress = writeback_sb_inodes(work->sb, wb, work);
769 else
770 progress = __writeback_inodes_wb(wb, work);
771 trace_writeback_written(wb->bdi, work);
772
773 wb_update_bandwidth(wb, wb_start);
774
775 /*
776 * Did we write something? Try for more
777 *
778 * Dirty inodes are moved to b_io for writeback in batches.
779 * The completion of the current batch does not necessarily
780 * mean the overall work is done. So we keep looping as long
781 * as made some progress on cleaning pages or inodes.
782 */
783 if (progress)
784 continue;
785 /*
786 * No more inodes for IO, bail
787 */
788 if (list_empty(&wb->b_more_io))
789 break;
790 /*
791 * Nothing written. Wait for some inode to
792 * become available for writeback. Otherwise
793 * we'll just busyloop.
794 */
795 if (!list_empty(&wb->b_more_io)) {
796 trace_writeback_wait(wb->bdi, work);
797 inode = wb_inode(wb->b_more_io.prev);
798 spin_lock(&inode->i_lock);
799 inode_wait_for_writeback(inode, wb);
800 spin_unlock(&inode->i_lock);
801 }
802 }
803 spin_unlock(&wb->list_lock);
804
805 return nr_pages - work->nr_pages;
806 }
807
808 /*
809 * Return the next wb_writeback_work struct that hasn't been processed yet.
810 */
811 static struct wb_writeback_work *
812 get_next_work_item(struct backing_dev_info *bdi)
813 {
814 struct wb_writeback_work *work = NULL;
815
816 spin_lock_bh(&bdi->wb_lock);
817 if (!list_empty(&bdi->work_list)) {
818 work = list_entry(bdi->work_list.next,
819 struct wb_writeback_work, list);
820 list_del_init(&work->list);
821 }
822 spin_unlock_bh(&bdi->wb_lock);
823 return work;
824 }
825
826 /*
827 * Add in the number of potentially dirty inodes, because each inode
828 * write can dirty pagecache in the underlying blockdev.
829 */
830 static unsigned long get_nr_dirty_pages(void)
831 {
832 return global_page_state(NR_FILE_DIRTY) +
833 global_page_state(NR_UNSTABLE_NFS) +
834 get_nr_dirty_inodes();
835 }
836
837 static long wb_check_background_flush(struct bdi_writeback *wb)
838 {
839 if (over_bground_thresh(wb->bdi)) {
840
841 struct wb_writeback_work work = {
842 .nr_pages = LONG_MAX,
843 .sync_mode = WB_SYNC_NONE,
844 .for_background = 1,
845 .range_cyclic = 1,
846 .reason = WB_REASON_BACKGROUND,
847 };
848
849 return wb_writeback(wb, &work);
850 }
851
852 return 0;
853 }
854
855 static long wb_check_old_data_flush(struct bdi_writeback *wb)
856 {
857 unsigned long expired;
858 long nr_pages;
859
860 /*
861 * When set to zero, disable periodic writeback
862 */
863 if (!dirty_writeback_interval)
864 return 0;
865
866 expired = wb->last_old_flush +
867 msecs_to_jiffies(dirty_writeback_interval * 10);
868 if (time_before(jiffies, expired))
869 return 0;
870
871 wb->last_old_flush = jiffies;
872 nr_pages = get_nr_dirty_pages();
873
874 if (nr_pages) {
875 struct wb_writeback_work work = {
876 .nr_pages = nr_pages,
877 .sync_mode = WB_SYNC_NONE,
878 .for_kupdate = 1,
879 .range_cyclic = 1,
880 .reason = WB_REASON_PERIODIC,
881 };
882
883 return wb_writeback(wb, &work);
884 }
885
886 return 0;
887 }
888
889 /*
890 * Retrieve work items and do the writeback they describe
891 */
892 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
893 {
894 struct backing_dev_info *bdi = wb->bdi;
895 struct wb_writeback_work *work;
896 long wrote = 0;
897
898 set_bit(BDI_writeback_running, &wb->bdi->state);
899 while ((work = get_next_work_item(bdi)) != NULL) {
900 /*
901 * Override sync mode, in case we must wait for completion
902 * because this thread is exiting now.
903 */
904 if (force_wait)
905 work->sync_mode = WB_SYNC_ALL;
906
907 trace_writeback_exec(bdi, work);
908
909 wrote += wb_writeback(wb, work);
910
911 /*
912 * Notify the caller of completion if this is a synchronous
913 * work item, otherwise just free it.
914 */
915 if (work->done)
916 complete(work->done);
917 else
918 kfree(work);
919 }
920
921 /*
922 * Check for periodic writeback, kupdated() style
923 */
924 wrote += wb_check_old_data_flush(wb);
925 wrote += wb_check_background_flush(wb);
926 clear_bit(BDI_writeback_running, &wb->bdi->state);
927
928 return wrote;
929 }
930
931 /*
932 * Handle writeback of dirty data for the device backed by this bdi. Also
933 * wakes up periodically and does kupdated style flushing.
934 */
935 int bdi_writeback_thread(void *data)
936 {
937 struct bdi_writeback *wb = data;
938 struct backing_dev_info *bdi = wb->bdi;
939 long pages_written;
940
941 current->flags |= PF_SWAPWRITE;
942 set_freezable();
943 wb->last_active = jiffies;
944
945 /*
946 * Our parent may run at a different priority, just set us to normal
947 */
948 set_user_nice(current, 0);
949
950 trace_writeback_thread_start(bdi);
951
952 while (!kthread_freezable_should_stop(NULL)) {
953 /*
954 * Remove own delayed wake-up timer, since we are already awake
955 * and we'll take care of the preriodic write-back.
956 */
957 del_timer(&wb->wakeup_timer);
958
959 pages_written = wb_do_writeback(wb, 0);
960
961 trace_writeback_pages_written(pages_written);
962
963 if (pages_written)
964 wb->last_active = jiffies;
965
966 set_current_state(TASK_INTERRUPTIBLE);
967 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
968 __set_current_state(TASK_RUNNING);
969 continue;
970 }
971
972 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
973 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
974 else {
975 /*
976 * We have nothing to do, so can go sleep without any
977 * timeout and save power. When a work is queued or
978 * something is made dirty - we will be woken up.
979 */
980 schedule();
981 }
982 }
983
984 /* Flush any work that raced with us exiting */
985 if (!list_empty(&bdi->work_list))
986 wb_do_writeback(wb, 1);
987
988 trace_writeback_thread_stop(bdi);
989 return 0;
990 }
991
992
993 /*
994 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
995 * the whole world.
996 */
997 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
998 {
999 struct backing_dev_info *bdi;
1000
1001 if (!nr_pages) {
1002 nr_pages = global_page_state(NR_FILE_DIRTY) +
1003 global_page_state(NR_UNSTABLE_NFS);
1004 }
1005
1006 rcu_read_lock();
1007 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1008 if (!bdi_has_dirty_io(bdi))
1009 continue;
1010 __bdi_start_writeback(bdi, nr_pages, false, reason);
1011 }
1012 rcu_read_unlock();
1013 }
1014
1015 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1016 {
1017 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1018 struct dentry *dentry;
1019 const char *name = "?";
1020
1021 dentry = d_find_alias(inode);
1022 if (dentry) {
1023 spin_lock(&dentry->d_lock);
1024 name = (const char *) dentry->d_name.name;
1025 }
1026 printk(KERN_DEBUG
1027 "%s(%d): dirtied inode %lu (%s) on %s\n",
1028 current->comm, task_pid_nr(current), inode->i_ino,
1029 name, inode->i_sb->s_id);
1030 if (dentry) {
1031 spin_unlock(&dentry->d_lock);
1032 dput(dentry);
1033 }
1034 }
1035 }
1036
1037 /**
1038 * __mark_inode_dirty - internal function
1039 * @inode: inode to mark
1040 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1041 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1042 * mark_inode_dirty_sync.
1043 *
1044 * Put the inode on the super block's dirty list.
1045 *
1046 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1047 * dirty list only if it is hashed or if it refers to a blockdev.
1048 * If it was not hashed, it will never be added to the dirty list
1049 * even if it is later hashed, as it will have been marked dirty already.
1050 *
1051 * In short, make sure you hash any inodes _before_ you start marking
1052 * them dirty.
1053 *
1054 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1055 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1056 * the kernel-internal blockdev inode represents the dirtying time of the
1057 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1058 * page->mapping->host, so the page-dirtying time is recorded in the internal
1059 * blockdev inode.
1060 */
1061 void __mark_inode_dirty(struct inode *inode, int flags)
1062 {
1063 struct super_block *sb = inode->i_sb;
1064 struct backing_dev_info *bdi = NULL;
1065
1066 /*
1067 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1068 * dirty the inode itself
1069 */
1070 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1071 if (sb->s_op->dirty_inode)
1072 sb->s_op->dirty_inode(inode, flags);
1073 }
1074
1075 /*
1076 * make sure that changes are seen by all cpus before we test i_state
1077 * -- mikulas
1078 */
1079 smp_mb();
1080
1081 /* avoid the locking if we can */
1082 if ((inode->i_state & flags) == flags)
1083 return;
1084
1085 if (unlikely(block_dump))
1086 block_dump___mark_inode_dirty(inode);
1087
1088 spin_lock(&inode->i_lock);
1089 if ((inode->i_state & flags) != flags) {
1090 const int was_dirty = inode->i_state & I_DIRTY;
1091
1092 inode->i_state |= flags;
1093
1094 /*
1095 * If the inode is being synced, just update its dirty state.
1096 * The unlocker will place the inode on the appropriate
1097 * superblock list, based upon its state.
1098 */
1099 if (inode->i_state & I_SYNC)
1100 goto out_unlock_inode;
1101
1102 /*
1103 * Only add valid (hashed) inodes to the superblock's
1104 * dirty list. Add blockdev inodes as well.
1105 */
1106 if (!S_ISBLK(inode->i_mode)) {
1107 if (inode_unhashed(inode))
1108 goto out_unlock_inode;
1109 }
1110 if (inode->i_state & I_FREEING)
1111 goto out_unlock_inode;
1112
1113 /*
1114 * If the inode was already on b_dirty/b_io/b_more_io, don't
1115 * reposition it (that would break b_dirty time-ordering).
1116 */
1117 if (!was_dirty) {
1118 bool wakeup_bdi = false;
1119 bdi = inode_to_bdi(inode);
1120
1121 if (bdi_cap_writeback_dirty(bdi)) {
1122 WARN(!test_bit(BDI_registered, &bdi->state),
1123 "bdi-%s not registered\n", bdi->name);
1124
1125 /*
1126 * If this is the first dirty inode for this
1127 * bdi, we have to wake-up the corresponding
1128 * bdi thread to make sure background
1129 * write-back happens later.
1130 */
1131 if (!wb_has_dirty_io(&bdi->wb))
1132 wakeup_bdi = true;
1133 }
1134
1135 spin_unlock(&inode->i_lock);
1136 spin_lock(&bdi->wb.list_lock);
1137 inode->dirtied_when = jiffies;
1138 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1139 spin_unlock(&bdi->wb.list_lock);
1140
1141 if (wakeup_bdi)
1142 bdi_wakeup_thread_delayed(bdi);
1143 return;
1144 }
1145 }
1146 out_unlock_inode:
1147 spin_unlock(&inode->i_lock);
1148
1149 }
1150 EXPORT_SYMBOL(__mark_inode_dirty);
1151
1152 static void wait_sb_inodes(struct super_block *sb)
1153 {
1154 struct inode *inode, *old_inode = NULL;
1155
1156 /*
1157 * We need to be protected against the filesystem going from
1158 * r/o to r/w or vice versa.
1159 */
1160 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1161
1162 spin_lock(&inode_sb_list_lock);
1163
1164 /*
1165 * Data integrity sync. Must wait for all pages under writeback,
1166 * because there may have been pages dirtied before our sync
1167 * call, but which had writeout started before we write it out.
1168 * In which case, the inode may not be on the dirty list, but
1169 * we still have to wait for that writeout.
1170 */
1171 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1172 struct address_space *mapping = inode->i_mapping;
1173
1174 spin_lock(&inode->i_lock);
1175 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1176 (mapping->nrpages == 0)) {
1177 spin_unlock(&inode->i_lock);
1178 continue;
1179 }
1180 __iget(inode);
1181 spin_unlock(&inode->i_lock);
1182 spin_unlock(&inode_sb_list_lock);
1183
1184 /*
1185 * We hold a reference to 'inode' so it couldn't have been
1186 * removed from s_inodes list while we dropped the
1187 * inode_sb_list_lock. We cannot iput the inode now as we can
1188 * be holding the last reference and we cannot iput it under
1189 * inode_sb_list_lock. So we keep the reference and iput it
1190 * later.
1191 */
1192 iput(old_inode);
1193 old_inode = inode;
1194
1195 filemap_fdatawait(mapping);
1196
1197 cond_resched();
1198
1199 spin_lock(&inode_sb_list_lock);
1200 }
1201 spin_unlock(&inode_sb_list_lock);
1202 iput(old_inode);
1203 }
1204
1205 /**
1206 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1207 * @sb: the superblock
1208 * @nr: the number of pages to write
1209 * @reason: reason why some writeback work initiated
1210 *
1211 * Start writeback on some inodes on this super_block. No guarantees are made
1212 * on how many (if any) will be written, and this function does not wait
1213 * for IO completion of submitted IO.
1214 */
1215 void writeback_inodes_sb_nr(struct super_block *sb,
1216 unsigned long nr,
1217 enum wb_reason reason)
1218 {
1219 DECLARE_COMPLETION_ONSTACK(done);
1220 struct wb_writeback_work work = {
1221 .sb = sb,
1222 .sync_mode = WB_SYNC_NONE,
1223 .tagged_writepages = 1,
1224 .done = &done,
1225 .nr_pages = nr,
1226 .reason = reason,
1227 };
1228
1229 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1230 bdi_queue_work(sb->s_bdi, &work);
1231 wait_for_completion(&done);
1232 }
1233 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1234
1235 /**
1236 * writeback_inodes_sb - writeback dirty inodes from given super_block
1237 * @sb: the superblock
1238 * @reason: reason why some writeback work was initiated
1239 *
1240 * Start writeback on some inodes on this super_block. No guarantees are made
1241 * on how many (if any) will be written, and this function does not wait
1242 * for IO completion of submitted IO.
1243 */
1244 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1245 {
1246 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1247 }
1248 EXPORT_SYMBOL(writeback_inodes_sb);
1249
1250 /**
1251 * writeback_inodes_sb_if_idle - start writeback if none underway
1252 * @sb: the superblock
1253 * @reason: reason why some writeback work was initiated
1254 *
1255 * Invoke writeback_inodes_sb if no writeback is currently underway.
1256 * Returns 1 if writeback was started, 0 if not.
1257 */
1258 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1259 {
1260 if (!writeback_in_progress(sb->s_bdi)) {
1261 down_read(&sb->s_umount);
1262 writeback_inodes_sb(sb, reason);
1263 up_read(&sb->s_umount);
1264 return 1;
1265 } else
1266 return 0;
1267 }
1268 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1269
1270 /**
1271 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1272 * @sb: the superblock
1273 * @nr: the number of pages to write
1274 * @reason: reason why some writeback work was initiated
1275 *
1276 * Invoke writeback_inodes_sb if no writeback is currently underway.
1277 * Returns 1 if writeback was started, 0 if not.
1278 */
1279 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1280 unsigned long nr,
1281 enum wb_reason reason)
1282 {
1283 if (!writeback_in_progress(sb->s_bdi)) {
1284 down_read(&sb->s_umount);
1285 writeback_inodes_sb_nr(sb, nr, reason);
1286 up_read(&sb->s_umount);
1287 return 1;
1288 } else
1289 return 0;
1290 }
1291 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1292
1293 /**
1294 * sync_inodes_sb - sync sb inode pages
1295 * @sb: the superblock
1296 *
1297 * This function writes and waits on any dirty inode belonging to this
1298 * super_block.
1299 */
1300 void sync_inodes_sb(struct super_block *sb)
1301 {
1302 DECLARE_COMPLETION_ONSTACK(done);
1303 struct wb_writeback_work work = {
1304 .sb = sb,
1305 .sync_mode = WB_SYNC_ALL,
1306 .nr_pages = LONG_MAX,
1307 .range_cyclic = 0,
1308 .done = &done,
1309 .reason = WB_REASON_SYNC,
1310 };
1311
1312 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1313
1314 bdi_queue_work(sb->s_bdi, &work);
1315 wait_for_completion(&done);
1316
1317 wait_sb_inodes(sb);
1318 }
1319 EXPORT_SYMBOL(sync_inodes_sb);
1320
1321 /**
1322 * write_inode_now - write an inode to disk
1323 * @inode: inode to write to disk
1324 * @sync: whether the write should be synchronous or not
1325 *
1326 * This function commits an inode to disk immediately if it is dirty. This is
1327 * primarily needed by knfsd.
1328 *
1329 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1330 */
1331 int write_inode_now(struct inode *inode, int sync)
1332 {
1333 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1334 int ret;
1335 struct writeback_control wbc = {
1336 .nr_to_write = LONG_MAX,
1337 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1338 .range_start = 0,
1339 .range_end = LLONG_MAX,
1340 };
1341
1342 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1343 wbc.nr_to_write = 0;
1344
1345 might_sleep();
1346 spin_lock(&wb->list_lock);
1347 spin_lock(&inode->i_lock);
1348 ret = writeback_single_inode(inode, wb, &wbc);
1349 spin_unlock(&inode->i_lock);
1350 spin_unlock(&wb->list_lock);
1351 return ret;
1352 }
1353 EXPORT_SYMBOL(write_inode_now);
1354
1355 /**
1356 * sync_inode - write an inode and its pages to disk.
1357 * @inode: the inode to sync
1358 * @wbc: controls the writeback mode
1359 *
1360 * sync_inode() will write an inode and its pages to disk. It will also
1361 * correctly update the inode on its superblock's dirty inode lists and will
1362 * update inode->i_state.
1363 *
1364 * The caller must have a ref on the inode.
1365 */
1366 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1367 {
1368 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1369 int ret;
1370
1371 spin_lock(&wb->list_lock);
1372 spin_lock(&inode->i_lock);
1373 ret = writeback_single_inode(inode, wb, wbc);
1374 spin_unlock(&inode->i_lock);
1375 spin_unlock(&wb->list_lock);
1376 return ret;
1377 }
1378 EXPORT_SYMBOL(sync_inode);
1379
1380 /**
1381 * sync_inode_metadata - write an inode to disk
1382 * @inode: the inode to sync
1383 * @wait: wait for I/O to complete.
1384 *
1385 * Write an inode to disk and adjust its dirty state after completion.
1386 *
1387 * Note: only writes the actual inode, no associated data or other metadata.
1388 */
1389 int sync_inode_metadata(struct inode *inode, int wait)
1390 {
1391 struct writeback_control wbc = {
1392 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1393 .nr_to_write = 0, /* metadata-only */
1394 };
1395
1396 return sync_inode(inode, &wbc);
1397 }
1398 EXPORT_SYMBOL(sync_inode_metadata);