Merge 4.4.93 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 trace_writeback_queue(wb, work);
180
181 spin_lock_bh(&wb->work_lock);
182 if (!test_bit(WB_registered, &wb->state))
183 goto out_unlock;
184 if (work->done)
185 atomic_inc(&work->done->cnt);
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205 {
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227 static struct workqueue_struct *isw_wq;
228
229 void __inode_attach_wb(struct inode *inode, struct page *page)
230 {
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257 }
258
259 /**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267 static struct bdi_writeback *
268 locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271 {
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
284
285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
286 if (likely(wb == inode->i_wb)) {
287 wb_put(wb); /* @inode already has ref */
288 return wb;
289 }
290
291 spin_unlock(&wb->list_lock);
292 wb_put(wb);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296 }
297
298 /**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307 {
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
327 struct bdi_writeback *new_wb = isw->new_wb;
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
341 */
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
349 spin_lock(&inode->i_lock);
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_io_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_io_list)) {
394 struct inode *pos;
395
396 inode_io_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
406
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
411 switched = true;
412 skip_switch:
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419 spin_unlock_irq(&mapping->tree_lock);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
423
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
428 wb_put(new_wb);
429
430 iput(inode);
431 kfree(isw);
432
433 atomic_dec(&isw_nr_in_flight);
434 }
435
436 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437 {
438 struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 struct inode_switch_wbs_context, rcu_head);
440
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443 queue_work(isw_wq, &isw->work);
444 }
445
446 /**
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
450 *
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
453 */
454 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455 {
456 struct backing_dev_info *bdi = inode_to_bdi(inode);
457 struct cgroup_subsys_state *memcg_css;
458 struct inode_switch_wbs_context *isw;
459
460 /* noop if seems to be already in progress */
461 if (inode->i_state & I_WB_SWITCH)
462 return;
463
464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 if (!isw)
466 return;
467
468 /* find and pin the new wb */
469 rcu_read_lock();
470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 if (memcg_css)
472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 rcu_read_unlock();
474 if (!isw->new_wb)
475 goto out_free;
476
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode->i_lock);
479 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 inode_to_wb(inode) == isw->new_wb) {
482 spin_unlock(&inode->i_lock);
483 goto out_free;
484 }
485 inode->i_state |= I_WB_SWITCH;
486 spin_unlock(&inode->i_lock);
487
488 ihold(inode);
489 isw->inode = inode;
490
491 atomic_inc(&isw_nr_in_flight);
492
493 /*
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 */
499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 return;
501
502 out_free:
503 if (isw->new_wb)
504 wb_put(isw->new_wb);
505 kfree(isw);
506 }
507
508 /**
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
512 *
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
517 */
518 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 struct inode *inode)
520 {
521 if (!inode_cgwb_enabled(inode)) {
522 spin_unlock(&inode->i_lock);
523 return;
524 }
525
526 wbc->wb = inode_to_wb(inode);
527 wbc->inode = inode;
528
529 wbc->wb_id = wbc->wb->memcg_css->id;
530 wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 wbc->wb_tcand_id = 0;
532 wbc->wb_bytes = 0;
533 wbc->wb_lcand_bytes = 0;
534 wbc->wb_tcand_bytes = 0;
535
536 wb_get(wbc->wb);
537 spin_unlock(&inode->i_lock);
538
539 /*
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
542 */
543 if (unlikely(wb_dying(wbc->wb)))
544 inode_switch_wbs(inode, wbc->wb_id);
545 }
546
547 /**
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
550 *
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
553 *
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
563 *
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
569 *
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
577 * absolute majority.
578 *
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
583 */
584 void wbc_detach_inode(struct writeback_control *wbc)
585 {
586 struct bdi_writeback *wb = wbc->wb;
587 struct inode *inode = wbc->inode;
588 unsigned long avg_time, max_bytes, max_time;
589 u16 history;
590 int max_id;
591
592 if (!wb)
593 return;
594
595 history = inode->i_wb_frn_history;
596 avg_time = inode->i_wb_frn_avg_time;
597
598 /* pick the winner of this round */
599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_id;
602 max_bytes = wbc->wb_bytes;
603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 max_id = wbc->wb_lcand_id;
605 max_bytes = wbc->wb_lcand_bytes;
606 } else {
607 max_id = wbc->wb_tcand_id;
608 max_bytes = wbc->wb_tcand_bytes;
609 }
610
611 /*
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
617 */
618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 wb->avg_write_bandwidth);
620 if (avg_time)
621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 else
624 avg_time = max_time; /* immediate catch up on first run */
625
626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 int slots;
628
629 /*
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
636 */
637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 history <<= slots;
640 if (wbc->wb_id != max_id)
641 history |= (1U << slots) - 1;
642
643 /*
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
649 */
650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 inode_switch_wbs(inode, max_id);
652 }
653
654 /*
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
657 */
658 inode->i_wb_frn_winner = max_id;
659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 inode->i_wb_frn_history = history;
661
662 wb_put(wbc->wb);
663 wbc->wb = NULL;
664 }
665
666 /**
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
671 *
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
675 */
676 void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 size_t bytes)
678 {
679 int id;
680
681 /*
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
686 */
687 if (!wbc->wb)
688 return;
689
690 rcu_read_lock();
691 id = mem_cgroup_css_from_page(page)->id;
692 rcu_read_unlock();
693
694 if (id == wbc->wb_id) {
695 wbc->wb_bytes += bytes;
696 return;
697 }
698
699 if (id == wbc->wb_lcand_id)
700 wbc->wb_lcand_bytes += bytes;
701
702 /* Boyer-Moore majority vote algorithm */
703 if (!wbc->wb_tcand_bytes)
704 wbc->wb_tcand_id = id;
705 if (id == wbc->wb_tcand_id)
706 wbc->wb_tcand_bytes += bytes;
707 else
708 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
709 }
710 EXPORT_SYMBOL_GPL(wbc_account_io);
711
712 /**
713 * inode_congested - test whether an inode is congested
714 * @inode: inode to test for congestion (may be NULL)
715 * @cong_bits: mask of WB_[a]sync_congested bits to test
716 *
717 * Tests whether @inode is congested. @cong_bits is the mask of congestion
718 * bits to test and the return value is the mask of set bits.
719 *
720 * If cgroup writeback is enabled for @inode, the congestion state is
721 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
722 * associated with @inode is congested; otherwise, the root wb's congestion
723 * state is used.
724 *
725 * @inode is allowed to be NULL as this function is often called on
726 * mapping->host which is NULL for the swapper space.
727 */
728 int inode_congested(struct inode *inode, int cong_bits)
729 {
730 /*
731 * Once set, ->i_wb never becomes NULL while the inode is alive.
732 * Start transaction iff ->i_wb is visible.
733 */
734 if (inode && inode_to_wb_is_valid(inode)) {
735 struct bdi_writeback *wb;
736 bool locked, congested;
737
738 wb = unlocked_inode_to_wb_begin(inode, &locked);
739 congested = wb_congested(wb, cong_bits);
740 unlocked_inode_to_wb_end(inode, locked);
741 return congested;
742 }
743
744 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
745 }
746 EXPORT_SYMBOL_GPL(inode_congested);
747
748 /**
749 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
750 * @wb: target bdi_writeback to split @nr_pages to
751 * @nr_pages: number of pages to write for the whole bdi
752 *
753 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
754 * relation to the total write bandwidth of all wb's w/ dirty inodes on
755 * @wb->bdi.
756 */
757 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
758 {
759 unsigned long this_bw = wb->avg_write_bandwidth;
760 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
761
762 if (nr_pages == LONG_MAX)
763 return LONG_MAX;
764
765 /*
766 * This may be called on clean wb's and proportional distribution
767 * may not make sense, just use the original @nr_pages in those
768 * cases. In general, we wanna err on the side of writing more.
769 */
770 if (!tot_bw || this_bw >= tot_bw)
771 return nr_pages;
772 else
773 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
774 }
775
776 /**
777 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
778 * @bdi: target backing_dev_info
779 * @base_work: wb_writeback_work to issue
780 * @skip_if_busy: skip wb's which already have writeback in progress
781 *
782 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
783 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
784 * distributed to the busy wbs according to each wb's proportion in the
785 * total active write bandwidth of @bdi.
786 */
787 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
788 struct wb_writeback_work *base_work,
789 bool skip_if_busy)
790 {
791 struct bdi_writeback *last_wb = NULL;
792 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
793 struct bdi_writeback, bdi_node);
794
795 might_sleep();
796 restart:
797 rcu_read_lock();
798 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
799 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
800 struct wb_writeback_work fallback_work;
801 struct wb_writeback_work *work;
802 long nr_pages;
803
804 if (last_wb) {
805 wb_put(last_wb);
806 last_wb = NULL;
807 }
808
809 /* SYNC_ALL writes out I_DIRTY_TIME too */
810 if (!wb_has_dirty_io(wb) &&
811 (base_work->sync_mode == WB_SYNC_NONE ||
812 list_empty(&wb->b_dirty_time)))
813 continue;
814 if (skip_if_busy && writeback_in_progress(wb))
815 continue;
816
817 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
818
819 work = kmalloc(sizeof(*work), GFP_ATOMIC);
820 if (work) {
821 *work = *base_work;
822 work->nr_pages = nr_pages;
823 work->auto_free = 1;
824 wb_queue_work(wb, work);
825 continue;
826 }
827
828 /* alloc failed, execute synchronously using on-stack fallback */
829 work = &fallback_work;
830 *work = *base_work;
831 work->nr_pages = nr_pages;
832 work->auto_free = 0;
833 work->done = &fallback_work_done;
834
835 wb_queue_work(wb, work);
836
837 /*
838 * Pin @wb so that it stays on @bdi->wb_list. This allows
839 * continuing iteration from @wb after dropping and
840 * regrabbing rcu read lock.
841 */
842 wb_get(wb);
843 last_wb = wb;
844
845 rcu_read_unlock();
846 wb_wait_for_completion(bdi, &fallback_work_done);
847 goto restart;
848 }
849 rcu_read_unlock();
850
851 if (last_wb)
852 wb_put(last_wb);
853 }
854
855 /**
856 * cgroup_writeback_umount - flush inode wb switches for umount
857 *
858 * This function is called when a super_block is about to be destroyed and
859 * flushes in-flight inode wb switches. An inode wb switch goes through
860 * RCU and then workqueue, so the two need to be flushed in order to ensure
861 * that all previously scheduled switches are finished. As wb switches are
862 * rare occurrences and synchronize_rcu() can take a while, perform
863 * flushing iff wb switches are in flight.
864 */
865 void cgroup_writeback_umount(void)
866 {
867 if (atomic_read(&isw_nr_in_flight)) {
868 synchronize_rcu();
869 flush_workqueue(isw_wq);
870 }
871 }
872
873 static int __init cgroup_writeback_init(void)
874 {
875 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
876 if (!isw_wq)
877 return -ENOMEM;
878 return 0;
879 }
880 fs_initcall(cgroup_writeback_init);
881
882 #else /* CONFIG_CGROUP_WRITEBACK */
883
884 static struct bdi_writeback *
885 locked_inode_to_wb_and_lock_list(struct inode *inode)
886 __releases(&inode->i_lock)
887 __acquires(&wb->list_lock)
888 {
889 struct bdi_writeback *wb = inode_to_wb(inode);
890
891 spin_unlock(&inode->i_lock);
892 spin_lock(&wb->list_lock);
893 return wb;
894 }
895
896 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
897 __acquires(&wb->list_lock)
898 {
899 struct bdi_writeback *wb = inode_to_wb(inode);
900
901 spin_lock(&wb->list_lock);
902 return wb;
903 }
904
905 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
906 {
907 return nr_pages;
908 }
909
910 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
911 struct wb_writeback_work *base_work,
912 bool skip_if_busy)
913 {
914 might_sleep();
915
916 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
917 base_work->auto_free = 0;
918 wb_queue_work(&bdi->wb, base_work);
919 }
920 }
921
922 #endif /* CONFIG_CGROUP_WRITEBACK */
923
924 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
925 bool range_cyclic, enum wb_reason reason)
926 {
927 struct wb_writeback_work *work;
928
929 if (!wb_has_dirty_io(wb))
930 return;
931
932 /*
933 * This is WB_SYNC_NONE writeback, so if allocation fails just
934 * wakeup the thread for old dirty data writeback
935 */
936 work = kzalloc(sizeof(*work), GFP_ATOMIC);
937 if (!work) {
938 trace_writeback_nowork(wb);
939 wb_wakeup(wb);
940 return;
941 }
942
943 work->sync_mode = WB_SYNC_NONE;
944 work->nr_pages = nr_pages;
945 work->range_cyclic = range_cyclic;
946 work->reason = reason;
947 work->auto_free = 1;
948
949 wb_queue_work(wb, work);
950 }
951
952 /**
953 * wb_start_background_writeback - start background writeback
954 * @wb: bdi_writback to write from
955 *
956 * Description:
957 * This makes sure WB_SYNC_NONE background writeback happens. When
958 * this function returns, it is only guaranteed that for given wb
959 * some IO is happening if we are over background dirty threshold.
960 * Caller need not hold sb s_umount semaphore.
961 */
962 void wb_start_background_writeback(struct bdi_writeback *wb)
963 {
964 /*
965 * We just wake up the flusher thread. It will perform background
966 * writeback as soon as there is no other work to do.
967 */
968 trace_writeback_wake_background(wb);
969 wb_wakeup(wb);
970 }
971
972 /*
973 * Remove the inode from the writeback list it is on.
974 */
975 void inode_io_list_del(struct inode *inode)
976 {
977 struct bdi_writeback *wb;
978
979 wb = inode_to_wb_and_lock_list(inode);
980 inode_io_list_del_locked(inode, wb);
981 spin_unlock(&wb->list_lock);
982 }
983
984 /*
985 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
986 * furthest end of its superblock's dirty-inode list.
987 *
988 * Before stamping the inode's ->dirtied_when, we check to see whether it is
989 * already the most-recently-dirtied inode on the b_dirty list. If that is
990 * the case then the inode must have been redirtied while it was being written
991 * out and we don't reset its dirtied_when.
992 */
993 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
994 {
995 if (!list_empty(&wb->b_dirty)) {
996 struct inode *tail;
997
998 tail = wb_inode(wb->b_dirty.next);
999 if (time_before(inode->dirtied_when, tail->dirtied_when))
1000 inode->dirtied_when = jiffies;
1001 }
1002 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1003 }
1004
1005 /*
1006 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1007 */
1008 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1009 {
1010 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1011 }
1012
1013 static void inode_sync_complete(struct inode *inode)
1014 {
1015 inode->i_state &= ~I_SYNC;
1016 /* If inode is clean an unused, put it into LRU now... */
1017 inode_add_lru(inode);
1018 /* Waiters must see I_SYNC cleared before being woken up */
1019 smp_mb();
1020 wake_up_bit(&inode->i_state, __I_SYNC);
1021 }
1022
1023 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1024 {
1025 bool ret = time_after(inode->dirtied_when, t);
1026 #ifndef CONFIG_64BIT
1027 /*
1028 * For inodes being constantly redirtied, dirtied_when can get stuck.
1029 * It _appears_ to be in the future, but is actually in distant past.
1030 * This test is necessary to prevent such wrapped-around relative times
1031 * from permanently stopping the whole bdi writeback.
1032 */
1033 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1034 #endif
1035 return ret;
1036 }
1037
1038 #define EXPIRE_DIRTY_ATIME 0x0001
1039
1040 /*
1041 * Move expired (dirtied before work->older_than_this) dirty inodes from
1042 * @delaying_queue to @dispatch_queue.
1043 */
1044 static int move_expired_inodes(struct list_head *delaying_queue,
1045 struct list_head *dispatch_queue,
1046 int flags,
1047 struct wb_writeback_work *work)
1048 {
1049 unsigned long *older_than_this = NULL;
1050 unsigned long expire_time;
1051 LIST_HEAD(tmp);
1052 struct list_head *pos, *node;
1053 struct super_block *sb = NULL;
1054 struct inode *inode;
1055 int do_sb_sort = 0;
1056 int moved = 0;
1057
1058 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1059 older_than_this = work->older_than_this;
1060 else if (!work->for_sync) {
1061 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1062 older_than_this = &expire_time;
1063 }
1064 while (!list_empty(delaying_queue)) {
1065 inode = wb_inode(delaying_queue->prev);
1066 if (older_than_this &&
1067 inode_dirtied_after(inode, *older_than_this))
1068 break;
1069 list_move(&inode->i_io_list, &tmp);
1070 moved++;
1071 if (flags & EXPIRE_DIRTY_ATIME)
1072 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1073 if (sb_is_blkdev_sb(inode->i_sb))
1074 continue;
1075 if (sb && sb != inode->i_sb)
1076 do_sb_sort = 1;
1077 sb = inode->i_sb;
1078 }
1079
1080 /* just one sb in list, splice to dispatch_queue and we're done */
1081 if (!do_sb_sort) {
1082 list_splice(&tmp, dispatch_queue);
1083 goto out;
1084 }
1085
1086 /* Move inodes from one superblock together */
1087 while (!list_empty(&tmp)) {
1088 sb = wb_inode(tmp.prev)->i_sb;
1089 list_for_each_prev_safe(pos, node, &tmp) {
1090 inode = wb_inode(pos);
1091 if (inode->i_sb == sb)
1092 list_move(&inode->i_io_list, dispatch_queue);
1093 }
1094 }
1095 out:
1096 return moved;
1097 }
1098
1099 /*
1100 * Queue all expired dirty inodes for io, eldest first.
1101 * Before
1102 * newly dirtied b_dirty b_io b_more_io
1103 * =============> gf edc BA
1104 * After
1105 * newly dirtied b_dirty b_io b_more_io
1106 * =============> g fBAedc
1107 * |
1108 * +--> dequeue for IO
1109 */
1110 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1111 {
1112 int moved;
1113
1114 assert_spin_locked(&wb->list_lock);
1115 list_splice_init(&wb->b_more_io, &wb->b_io);
1116 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1117 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1118 EXPIRE_DIRTY_ATIME, work);
1119 if (moved)
1120 wb_io_lists_populated(wb);
1121 trace_writeback_queue_io(wb, work, moved);
1122 }
1123
1124 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1125 {
1126 int ret;
1127
1128 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1129 trace_writeback_write_inode_start(inode, wbc);
1130 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1131 trace_writeback_write_inode(inode, wbc);
1132 return ret;
1133 }
1134 return 0;
1135 }
1136
1137 /*
1138 * Wait for writeback on an inode to complete. Called with i_lock held.
1139 * Caller must make sure inode cannot go away when we drop i_lock.
1140 */
1141 static void __inode_wait_for_writeback(struct inode *inode)
1142 __releases(inode->i_lock)
1143 __acquires(inode->i_lock)
1144 {
1145 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1146 wait_queue_head_t *wqh;
1147
1148 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1149 while (inode->i_state & I_SYNC) {
1150 spin_unlock(&inode->i_lock);
1151 __wait_on_bit(wqh, &wq, bit_wait,
1152 TASK_UNINTERRUPTIBLE);
1153 spin_lock(&inode->i_lock);
1154 }
1155 }
1156
1157 /*
1158 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1159 */
1160 void inode_wait_for_writeback(struct inode *inode)
1161 {
1162 spin_lock(&inode->i_lock);
1163 __inode_wait_for_writeback(inode);
1164 spin_unlock(&inode->i_lock);
1165 }
1166
1167 /*
1168 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1169 * held and drops it. It is aimed for callers not holding any inode reference
1170 * so once i_lock is dropped, inode can go away.
1171 */
1172 static void inode_sleep_on_writeback(struct inode *inode)
1173 __releases(inode->i_lock)
1174 {
1175 DEFINE_WAIT(wait);
1176 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1177 int sleep;
1178
1179 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1180 sleep = inode->i_state & I_SYNC;
1181 spin_unlock(&inode->i_lock);
1182 if (sleep)
1183 schedule();
1184 finish_wait(wqh, &wait);
1185 }
1186
1187 /*
1188 * Find proper writeback list for the inode depending on its current state and
1189 * possibly also change of its state while we were doing writeback. Here we
1190 * handle things such as livelock prevention or fairness of writeback among
1191 * inodes. This function can be called only by flusher thread - noone else
1192 * processes all inodes in writeback lists and requeueing inodes behind flusher
1193 * thread's back can have unexpected consequences.
1194 */
1195 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1196 struct writeback_control *wbc)
1197 {
1198 if (inode->i_state & I_FREEING)
1199 return;
1200
1201 /*
1202 * Sync livelock prevention. Each inode is tagged and synced in one
1203 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1204 * the dirty time to prevent enqueue and sync it again.
1205 */
1206 if ((inode->i_state & I_DIRTY) &&
1207 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1208 inode->dirtied_when = jiffies;
1209
1210 if (wbc->pages_skipped) {
1211 /*
1212 * writeback is not making progress due to locked
1213 * buffers. Skip this inode for now.
1214 */
1215 redirty_tail(inode, wb);
1216 return;
1217 }
1218
1219 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1220 /*
1221 * We didn't write back all the pages. nfs_writepages()
1222 * sometimes bales out without doing anything.
1223 */
1224 if (wbc->nr_to_write <= 0) {
1225 /* Slice used up. Queue for next turn. */
1226 requeue_io(inode, wb);
1227 } else {
1228 /*
1229 * Writeback blocked by something other than
1230 * congestion. Delay the inode for some time to
1231 * avoid spinning on the CPU (100% iowait)
1232 * retrying writeback of the dirty page/inode
1233 * that cannot be performed immediately.
1234 */
1235 redirty_tail(inode, wb);
1236 }
1237 } else if (inode->i_state & I_DIRTY) {
1238 /*
1239 * Filesystems can dirty the inode during writeback operations,
1240 * such as delayed allocation during submission or metadata
1241 * updates after data IO completion.
1242 */
1243 redirty_tail(inode, wb);
1244 } else if (inode->i_state & I_DIRTY_TIME) {
1245 inode->dirtied_when = jiffies;
1246 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1247 } else {
1248 /* The inode is clean. Remove from writeback lists. */
1249 inode_io_list_del_locked(inode, wb);
1250 }
1251 }
1252
1253 /*
1254 * Write out an inode and its dirty pages. Do not update the writeback list
1255 * linkage. That is left to the caller. The caller is also responsible for
1256 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1257 */
1258 static int
1259 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1260 {
1261 struct address_space *mapping = inode->i_mapping;
1262 long nr_to_write = wbc->nr_to_write;
1263 unsigned dirty;
1264 int ret;
1265
1266 WARN_ON(!(inode->i_state & I_SYNC));
1267
1268 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1269
1270 ret = do_writepages(mapping, wbc);
1271
1272 /*
1273 * Make sure to wait on the data before writing out the metadata.
1274 * This is important for filesystems that modify metadata on data
1275 * I/O completion. We don't do it for sync(2) writeback because it has a
1276 * separate, external IO completion path and ->sync_fs for guaranteeing
1277 * inode metadata is written back correctly.
1278 */
1279 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1280 int err = filemap_fdatawait(mapping);
1281 if (ret == 0)
1282 ret = err;
1283 }
1284
1285 /*
1286 * Some filesystems may redirty the inode during the writeback
1287 * due to delalloc, clear dirty metadata flags right before
1288 * write_inode()
1289 */
1290 spin_lock(&inode->i_lock);
1291
1292 dirty = inode->i_state & I_DIRTY;
1293 if (inode->i_state & I_DIRTY_TIME) {
1294 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1295 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1296 unlikely(time_after(jiffies,
1297 (inode->dirtied_time_when +
1298 dirtytime_expire_interval * HZ)))) {
1299 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1300 trace_writeback_lazytime(inode);
1301 }
1302 } else
1303 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1304 inode->i_state &= ~dirty;
1305
1306 /*
1307 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1308 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1309 * either they see the I_DIRTY bits cleared or we see the dirtied
1310 * inode.
1311 *
1312 * I_DIRTY_PAGES is always cleared together above even if @mapping
1313 * still has dirty pages. The flag is reinstated after smp_mb() if
1314 * necessary. This guarantees that either __mark_inode_dirty()
1315 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1316 */
1317 smp_mb();
1318
1319 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1320 inode->i_state |= I_DIRTY_PAGES;
1321
1322 spin_unlock(&inode->i_lock);
1323
1324 if (dirty & I_DIRTY_TIME)
1325 mark_inode_dirty_sync(inode);
1326 /* Don't write the inode if only I_DIRTY_PAGES was set */
1327 if (dirty & ~I_DIRTY_PAGES) {
1328 int err = write_inode(inode, wbc);
1329 if (ret == 0)
1330 ret = err;
1331 }
1332 trace_writeback_single_inode(inode, wbc, nr_to_write);
1333 return ret;
1334 }
1335
1336 /*
1337 * Write out an inode's dirty pages. Either the caller has an active reference
1338 * on the inode or the inode has I_WILL_FREE set.
1339 *
1340 * This function is designed to be called for writing back one inode which
1341 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1342 * and does more profound writeback list handling in writeback_sb_inodes().
1343 */
1344 static int writeback_single_inode(struct inode *inode,
1345 struct writeback_control *wbc)
1346 {
1347 struct bdi_writeback *wb;
1348 int ret = 0;
1349
1350 spin_lock(&inode->i_lock);
1351 if (!atomic_read(&inode->i_count))
1352 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1353 else
1354 WARN_ON(inode->i_state & I_WILL_FREE);
1355
1356 if (inode->i_state & I_SYNC) {
1357 if (wbc->sync_mode != WB_SYNC_ALL)
1358 goto out;
1359 /*
1360 * It's a data-integrity sync. We must wait. Since callers hold
1361 * inode reference or inode has I_WILL_FREE set, it cannot go
1362 * away under us.
1363 */
1364 __inode_wait_for_writeback(inode);
1365 }
1366 WARN_ON(inode->i_state & I_SYNC);
1367 /*
1368 * Skip inode if it is clean and we have no outstanding writeback in
1369 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1370 * function since flusher thread may be doing for example sync in
1371 * parallel and if we move the inode, it could get skipped. So here we
1372 * make sure inode is on some writeback list and leave it there unless
1373 * we have completely cleaned the inode.
1374 */
1375 if (!(inode->i_state & I_DIRTY_ALL) &&
1376 (wbc->sync_mode != WB_SYNC_ALL ||
1377 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1378 goto out;
1379 inode->i_state |= I_SYNC;
1380 wbc_attach_and_unlock_inode(wbc, inode);
1381
1382 ret = __writeback_single_inode(inode, wbc);
1383
1384 wbc_detach_inode(wbc);
1385
1386 wb = inode_to_wb_and_lock_list(inode);
1387 spin_lock(&inode->i_lock);
1388 /*
1389 * If inode is clean, remove it from writeback lists. Otherwise don't
1390 * touch it. See comment above for explanation.
1391 */
1392 if (!(inode->i_state & I_DIRTY_ALL))
1393 inode_io_list_del_locked(inode, wb);
1394 spin_unlock(&wb->list_lock);
1395 inode_sync_complete(inode);
1396 out:
1397 spin_unlock(&inode->i_lock);
1398 return ret;
1399 }
1400
1401 static long writeback_chunk_size(struct bdi_writeback *wb,
1402 struct wb_writeback_work *work)
1403 {
1404 long pages;
1405
1406 /*
1407 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1408 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1409 * here avoids calling into writeback_inodes_wb() more than once.
1410 *
1411 * The intended call sequence for WB_SYNC_ALL writeback is:
1412 *
1413 * wb_writeback()
1414 * writeback_sb_inodes() <== called only once
1415 * write_cache_pages() <== called once for each inode
1416 * (quickly) tag currently dirty pages
1417 * (maybe slowly) sync all tagged pages
1418 */
1419 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1420 pages = LONG_MAX;
1421 else {
1422 pages = min(wb->avg_write_bandwidth / 2,
1423 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1424 pages = min(pages, work->nr_pages);
1425 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1426 MIN_WRITEBACK_PAGES);
1427 }
1428
1429 return pages;
1430 }
1431
1432 /*
1433 * Write a portion of b_io inodes which belong to @sb.
1434 *
1435 * Return the number of pages and/or inodes written.
1436 *
1437 * NOTE! This is called with wb->list_lock held, and will
1438 * unlock and relock that for each inode it ends up doing
1439 * IO for.
1440 */
1441 static long writeback_sb_inodes(struct super_block *sb,
1442 struct bdi_writeback *wb,
1443 struct wb_writeback_work *work)
1444 {
1445 struct writeback_control wbc = {
1446 .sync_mode = work->sync_mode,
1447 .tagged_writepages = work->tagged_writepages,
1448 .for_kupdate = work->for_kupdate,
1449 .for_background = work->for_background,
1450 .for_sync = work->for_sync,
1451 .range_cyclic = work->range_cyclic,
1452 .range_start = 0,
1453 .range_end = LLONG_MAX,
1454 };
1455 unsigned long start_time = jiffies;
1456 long write_chunk;
1457 long wrote = 0; /* count both pages and inodes */
1458
1459 while (!list_empty(&wb->b_io)) {
1460 struct inode *inode = wb_inode(wb->b_io.prev);
1461 struct bdi_writeback *tmp_wb;
1462
1463 if (inode->i_sb != sb) {
1464 if (work->sb) {
1465 /*
1466 * We only want to write back data for this
1467 * superblock, move all inodes not belonging
1468 * to it back onto the dirty list.
1469 */
1470 redirty_tail(inode, wb);
1471 continue;
1472 }
1473
1474 /*
1475 * The inode belongs to a different superblock.
1476 * Bounce back to the caller to unpin this and
1477 * pin the next superblock.
1478 */
1479 break;
1480 }
1481
1482 /*
1483 * Don't bother with new inodes or inodes being freed, first
1484 * kind does not need periodic writeout yet, and for the latter
1485 * kind writeout is handled by the freer.
1486 */
1487 spin_lock(&inode->i_lock);
1488 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1489 spin_unlock(&inode->i_lock);
1490 redirty_tail(inode, wb);
1491 continue;
1492 }
1493 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1494 /*
1495 * If this inode is locked for writeback and we are not
1496 * doing writeback-for-data-integrity, move it to
1497 * b_more_io so that writeback can proceed with the
1498 * other inodes on s_io.
1499 *
1500 * We'll have another go at writing back this inode
1501 * when we completed a full scan of b_io.
1502 */
1503 spin_unlock(&inode->i_lock);
1504 requeue_io(inode, wb);
1505 trace_writeback_sb_inodes_requeue(inode);
1506 continue;
1507 }
1508 spin_unlock(&wb->list_lock);
1509
1510 /*
1511 * We already requeued the inode if it had I_SYNC set and we
1512 * are doing WB_SYNC_NONE writeback. So this catches only the
1513 * WB_SYNC_ALL case.
1514 */
1515 if (inode->i_state & I_SYNC) {
1516 /* Wait for I_SYNC. This function drops i_lock... */
1517 inode_sleep_on_writeback(inode);
1518 /* Inode may be gone, start again */
1519 spin_lock(&wb->list_lock);
1520 continue;
1521 }
1522 inode->i_state |= I_SYNC;
1523 wbc_attach_and_unlock_inode(&wbc, inode);
1524
1525 write_chunk = writeback_chunk_size(wb, work);
1526 wbc.nr_to_write = write_chunk;
1527 wbc.pages_skipped = 0;
1528
1529 /*
1530 * We use I_SYNC to pin the inode in memory. While it is set
1531 * evict_inode() will wait so the inode cannot be freed.
1532 */
1533 __writeback_single_inode(inode, &wbc);
1534
1535 wbc_detach_inode(&wbc);
1536 work->nr_pages -= write_chunk - wbc.nr_to_write;
1537 wrote += write_chunk - wbc.nr_to_write;
1538
1539 if (need_resched()) {
1540 /*
1541 * We're trying to balance between building up a nice
1542 * long list of IOs to improve our merge rate, and
1543 * getting those IOs out quickly for anyone throttling
1544 * in balance_dirty_pages(). cond_resched() doesn't
1545 * unplug, so get our IOs out the door before we
1546 * give up the CPU.
1547 */
1548 blk_flush_plug(current);
1549 cond_resched();
1550 }
1551
1552 /*
1553 * Requeue @inode if still dirty. Be careful as @inode may
1554 * have been switched to another wb in the meantime.
1555 */
1556 tmp_wb = inode_to_wb_and_lock_list(inode);
1557 spin_lock(&inode->i_lock);
1558 if (!(inode->i_state & I_DIRTY_ALL))
1559 wrote++;
1560 requeue_inode(inode, tmp_wb, &wbc);
1561 inode_sync_complete(inode);
1562 spin_unlock(&inode->i_lock);
1563
1564 if (unlikely(tmp_wb != wb)) {
1565 spin_unlock(&tmp_wb->list_lock);
1566 spin_lock(&wb->list_lock);
1567 }
1568
1569 /*
1570 * bail out to wb_writeback() often enough to check
1571 * background threshold and other termination conditions.
1572 */
1573 if (wrote) {
1574 if (time_is_before_jiffies(start_time + HZ / 10UL))
1575 break;
1576 if (work->nr_pages <= 0)
1577 break;
1578 }
1579 }
1580 return wrote;
1581 }
1582
1583 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1584 struct wb_writeback_work *work)
1585 {
1586 unsigned long start_time = jiffies;
1587 long wrote = 0;
1588
1589 while (!list_empty(&wb->b_io)) {
1590 struct inode *inode = wb_inode(wb->b_io.prev);
1591 struct super_block *sb = inode->i_sb;
1592
1593 if (!trylock_super(sb)) {
1594 /*
1595 * trylock_super() may fail consistently due to
1596 * s_umount being grabbed by someone else. Don't use
1597 * requeue_io() to avoid busy retrying the inode/sb.
1598 */
1599 redirty_tail(inode, wb);
1600 continue;
1601 }
1602 wrote += writeback_sb_inodes(sb, wb, work);
1603 up_read(&sb->s_umount);
1604
1605 /* refer to the same tests at the end of writeback_sb_inodes */
1606 if (wrote) {
1607 if (time_is_before_jiffies(start_time + HZ / 10UL))
1608 break;
1609 if (work->nr_pages <= 0)
1610 break;
1611 }
1612 }
1613 /* Leave any unwritten inodes on b_io */
1614 return wrote;
1615 }
1616
1617 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1618 enum wb_reason reason)
1619 {
1620 struct wb_writeback_work work = {
1621 .nr_pages = nr_pages,
1622 .sync_mode = WB_SYNC_NONE,
1623 .range_cyclic = 1,
1624 .reason = reason,
1625 };
1626 struct blk_plug plug;
1627
1628 blk_start_plug(&plug);
1629 spin_lock(&wb->list_lock);
1630 if (list_empty(&wb->b_io))
1631 queue_io(wb, &work);
1632 __writeback_inodes_wb(wb, &work);
1633 spin_unlock(&wb->list_lock);
1634 blk_finish_plug(&plug);
1635
1636 return nr_pages - work.nr_pages;
1637 }
1638
1639 /*
1640 * Explicit flushing or periodic writeback of "old" data.
1641 *
1642 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1643 * dirtying-time in the inode's address_space. So this periodic writeback code
1644 * just walks the superblock inode list, writing back any inodes which are
1645 * older than a specific point in time.
1646 *
1647 * Try to run once per dirty_writeback_interval. But if a writeback event
1648 * takes longer than a dirty_writeback_interval interval, then leave a
1649 * one-second gap.
1650 *
1651 * older_than_this takes precedence over nr_to_write. So we'll only write back
1652 * all dirty pages if they are all attached to "old" mappings.
1653 */
1654 static long wb_writeback(struct bdi_writeback *wb,
1655 struct wb_writeback_work *work)
1656 {
1657 unsigned long wb_start = jiffies;
1658 long nr_pages = work->nr_pages;
1659 unsigned long oldest_jif;
1660 struct inode *inode;
1661 long progress;
1662 struct blk_plug plug;
1663
1664 oldest_jif = jiffies;
1665 work->older_than_this = &oldest_jif;
1666
1667 blk_start_plug(&plug);
1668 spin_lock(&wb->list_lock);
1669 for (;;) {
1670 /*
1671 * Stop writeback when nr_pages has been consumed
1672 */
1673 if (work->nr_pages <= 0)
1674 break;
1675
1676 /*
1677 * Background writeout and kupdate-style writeback may
1678 * run forever. Stop them if there is other work to do
1679 * so that e.g. sync can proceed. They'll be restarted
1680 * after the other works are all done.
1681 */
1682 if ((work->for_background || work->for_kupdate) &&
1683 !list_empty(&wb->work_list))
1684 break;
1685
1686 /*
1687 * For background writeout, stop when we are below the
1688 * background dirty threshold
1689 */
1690 if (work->for_background && !wb_over_bg_thresh(wb))
1691 break;
1692
1693 /*
1694 * Kupdate and background works are special and we want to
1695 * include all inodes that need writing. Livelock avoidance is
1696 * handled by these works yielding to any other work so we are
1697 * safe.
1698 */
1699 if (work->for_kupdate) {
1700 oldest_jif = jiffies -
1701 msecs_to_jiffies(dirty_expire_interval * 10);
1702 } else if (work->for_background)
1703 oldest_jif = jiffies;
1704
1705 trace_writeback_start(wb, work);
1706 if (list_empty(&wb->b_io))
1707 queue_io(wb, work);
1708 if (work->sb)
1709 progress = writeback_sb_inodes(work->sb, wb, work);
1710 else
1711 progress = __writeback_inodes_wb(wb, work);
1712 trace_writeback_written(wb, work);
1713
1714 wb_update_bandwidth(wb, wb_start);
1715
1716 /*
1717 * Did we write something? Try for more
1718 *
1719 * Dirty inodes are moved to b_io for writeback in batches.
1720 * The completion of the current batch does not necessarily
1721 * mean the overall work is done. So we keep looping as long
1722 * as made some progress on cleaning pages or inodes.
1723 */
1724 if (progress)
1725 continue;
1726 /*
1727 * No more inodes for IO, bail
1728 */
1729 if (list_empty(&wb->b_more_io))
1730 break;
1731 /*
1732 * Nothing written. Wait for some inode to
1733 * become available for writeback. Otherwise
1734 * we'll just busyloop.
1735 */
1736 if (!list_empty(&wb->b_more_io)) {
1737 trace_writeback_wait(wb, work);
1738 inode = wb_inode(wb->b_more_io.prev);
1739 spin_lock(&inode->i_lock);
1740 spin_unlock(&wb->list_lock);
1741 /* This function drops i_lock... */
1742 inode_sleep_on_writeback(inode);
1743 spin_lock(&wb->list_lock);
1744 }
1745 }
1746 spin_unlock(&wb->list_lock);
1747 blk_finish_plug(&plug);
1748
1749 return nr_pages - work->nr_pages;
1750 }
1751
1752 /*
1753 * Return the next wb_writeback_work struct that hasn't been processed yet.
1754 */
1755 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1756 {
1757 struct wb_writeback_work *work = NULL;
1758
1759 spin_lock_bh(&wb->work_lock);
1760 if (!list_empty(&wb->work_list)) {
1761 work = list_entry(wb->work_list.next,
1762 struct wb_writeback_work, list);
1763 list_del_init(&work->list);
1764 }
1765 spin_unlock_bh(&wb->work_lock);
1766 return work;
1767 }
1768
1769 /*
1770 * Add in the number of potentially dirty inodes, because each inode
1771 * write can dirty pagecache in the underlying blockdev.
1772 */
1773 static unsigned long get_nr_dirty_pages(void)
1774 {
1775 return global_page_state(NR_FILE_DIRTY) +
1776 global_page_state(NR_UNSTABLE_NFS) +
1777 get_nr_dirty_inodes();
1778 }
1779
1780 static long wb_check_background_flush(struct bdi_writeback *wb)
1781 {
1782 if (wb_over_bg_thresh(wb)) {
1783
1784 struct wb_writeback_work work = {
1785 .nr_pages = LONG_MAX,
1786 .sync_mode = WB_SYNC_NONE,
1787 .for_background = 1,
1788 .range_cyclic = 1,
1789 .reason = WB_REASON_BACKGROUND,
1790 };
1791
1792 return wb_writeback(wb, &work);
1793 }
1794
1795 return 0;
1796 }
1797
1798 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1799 {
1800 unsigned long expired;
1801 long nr_pages;
1802
1803 /*
1804 * When set to zero, disable periodic writeback
1805 */
1806 if (!dirty_writeback_interval)
1807 return 0;
1808
1809 expired = wb->last_old_flush +
1810 msecs_to_jiffies(dirty_writeback_interval * 10);
1811 if (time_before(jiffies, expired))
1812 return 0;
1813
1814 wb->last_old_flush = jiffies;
1815 nr_pages = get_nr_dirty_pages();
1816
1817 if (nr_pages) {
1818 struct wb_writeback_work work = {
1819 .nr_pages = nr_pages,
1820 .sync_mode = WB_SYNC_NONE,
1821 .for_kupdate = 1,
1822 .range_cyclic = 1,
1823 .reason = WB_REASON_PERIODIC,
1824 };
1825
1826 return wb_writeback(wb, &work);
1827 }
1828
1829 return 0;
1830 }
1831
1832 /*
1833 * Retrieve work items and do the writeback they describe
1834 */
1835 static long wb_do_writeback(struct bdi_writeback *wb)
1836 {
1837 struct wb_writeback_work *work;
1838 long wrote = 0;
1839
1840 set_bit(WB_writeback_running, &wb->state);
1841 while ((work = get_next_work_item(wb)) != NULL) {
1842 struct wb_completion *done = work->done;
1843
1844 trace_writeback_exec(wb, work);
1845
1846 wrote += wb_writeback(wb, work);
1847
1848 if (work->auto_free)
1849 kfree(work);
1850 if (done && atomic_dec_and_test(&done->cnt))
1851 wake_up_all(&wb->bdi->wb_waitq);
1852 }
1853
1854 /*
1855 * Check for periodic writeback, kupdated() style
1856 */
1857 wrote += wb_check_old_data_flush(wb);
1858 wrote += wb_check_background_flush(wb);
1859 clear_bit(WB_writeback_running, &wb->state);
1860
1861 return wrote;
1862 }
1863
1864 /*
1865 * Handle writeback of dirty data for the device backed by this bdi. Also
1866 * reschedules periodically and does kupdated style flushing.
1867 */
1868 void wb_workfn(struct work_struct *work)
1869 {
1870 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1871 struct bdi_writeback, dwork);
1872 long pages_written;
1873
1874 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1875 current->flags |= PF_SWAPWRITE;
1876
1877 if (likely(!current_is_workqueue_rescuer() ||
1878 !test_bit(WB_registered, &wb->state))) {
1879 /*
1880 * The normal path. Keep writing back @wb until its
1881 * work_list is empty. Note that this path is also taken
1882 * if @wb is shutting down even when we're running off the
1883 * rescuer as work_list needs to be drained.
1884 */
1885 do {
1886 pages_written = wb_do_writeback(wb);
1887 trace_writeback_pages_written(pages_written);
1888 } while (!list_empty(&wb->work_list));
1889 } else {
1890 /*
1891 * bdi_wq can't get enough workers and we're running off
1892 * the emergency worker. Don't hog it. Hopefully, 1024 is
1893 * enough for efficient IO.
1894 */
1895 pages_written = writeback_inodes_wb(wb, 1024,
1896 WB_REASON_FORKER_THREAD);
1897 trace_writeback_pages_written(pages_written);
1898 }
1899
1900 if (!list_empty(&wb->work_list))
1901 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1902 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1903 wb_wakeup_delayed(wb);
1904
1905 current->flags &= ~PF_SWAPWRITE;
1906 }
1907
1908 /*
1909 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1910 * the whole world.
1911 */
1912 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1913 {
1914 struct backing_dev_info *bdi;
1915
1916 if (!nr_pages)
1917 nr_pages = get_nr_dirty_pages();
1918
1919 rcu_read_lock();
1920 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1921 struct bdi_writeback *wb;
1922
1923 if (!bdi_has_dirty_io(bdi))
1924 continue;
1925
1926 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1927 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1928 false, reason);
1929 }
1930 rcu_read_unlock();
1931 }
1932
1933 /*
1934 * Wake up bdi's periodically to make sure dirtytime inodes gets
1935 * written back periodically. We deliberately do *not* check the
1936 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1937 * kernel to be constantly waking up once there are any dirtytime
1938 * inodes on the system. So instead we define a separate delayed work
1939 * function which gets called much more rarely. (By default, only
1940 * once every 12 hours.)
1941 *
1942 * If there is any other write activity going on in the file system,
1943 * this function won't be necessary. But if the only thing that has
1944 * happened on the file system is a dirtytime inode caused by an atime
1945 * update, we need this infrastructure below to make sure that inode
1946 * eventually gets pushed out to disk.
1947 */
1948 static void wakeup_dirtytime_writeback(struct work_struct *w);
1949 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1950
1951 static void wakeup_dirtytime_writeback(struct work_struct *w)
1952 {
1953 struct backing_dev_info *bdi;
1954
1955 rcu_read_lock();
1956 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1957 struct bdi_writeback *wb;
1958
1959 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1960 if (!list_empty(&wb->b_dirty_time))
1961 wb_wakeup(wb);
1962 }
1963 rcu_read_unlock();
1964 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1965 }
1966
1967 static int __init start_dirtytime_writeback(void)
1968 {
1969 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1970 return 0;
1971 }
1972 __initcall(start_dirtytime_writeback);
1973
1974 int dirtytime_interval_handler(struct ctl_table *table, int write,
1975 void __user *buffer, size_t *lenp, loff_t *ppos)
1976 {
1977 int ret;
1978
1979 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1980 if (ret == 0 && write)
1981 mod_delayed_work(system_wq, &dirtytime_work, 0);
1982 return ret;
1983 }
1984
1985 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1986 {
1987 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1988 struct dentry *dentry;
1989 const char *name = "?";
1990
1991 dentry = d_find_alias(inode);
1992 if (dentry) {
1993 spin_lock(&dentry->d_lock);
1994 name = (const char *) dentry->d_name.name;
1995 }
1996 printk(KERN_DEBUG
1997 "%s(%d): dirtied inode %lu (%s) on %s\n",
1998 current->comm, task_pid_nr(current), inode->i_ino,
1999 name, inode->i_sb->s_id);
2000 if (dentry) {
2001 spin_unlock(&dentry->d_lock);
2002 dput(dentry);
2003 }
2004 }
2005 }
2006
2007 /**
2008 * __mark_inode_dirty - internal function
2009 * @inode: inode to mark
2010 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2011 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2012 * mark_inode_dirty_sync.
2013 *
2014 * Put the inode on the super block's dirty list.
2015 *
2016 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2017 * dirty list only if it is hashed or if it refers to a blockdev.
2018 * If it was not hashed, it will never be added to the dirty list
2019 * even if it is later hashed, as it will have been marked dirty already.
2020 *
2021 * In short, make sure you hash any inodes _before_ you start marking
2022 * them dirty.
2023 *
2024 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2025 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2026 * the kernel-internal blockdev inode represents the dirtying time of the
2027 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2028 * page->mapping->host, so the page-dirtying time is recorded in the internal
2029 * blockdev inode.
2030 */
2031 void __mark_inode_dirty(struct inode *inode, int flags)
2032 {
2033 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2034 struct super_block *sb = inode->i_sb;
2035 int dirtytime;
2036
2037 trace_writeback_mark_inode_dirty(inode, flags);
2038
2039 /*
2040 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2041 * dirty the inode itself
2042 */
2043 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2044 trace_writeback_dirty_inode_start(inode, flags);
2045
2046 if (sb->s_op->dirty_inode)
2047 sb->s_op->dirty_inode(inode, flags);
2048
2049 trace_writeback_dirty_inode(inode, flags);
2050 }
2051 if (flags & I_DIRTY_INODE)
2052 flags &= ~I_DIRTY_TIME;
2053 dirtytime = flags & I_DIRTY_TIME;
2054
2055 /*
2056 * Paired with smp_mb() in __writeback_single_inode() for the
2057 * following lockless i_state test. See there for details.
2058 */
2059 smp_mb();
2060
2061 if (((inode->i_state & flags) == flags) ||
2062 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2063 return;
2064
2065 if (unlikely(block_dump > 1))
2066 block_dump___mark_inode_dirty(inode);
2067
2068 spin_lock(&inode->i_lock);
2069 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2070 goto out_unlock_inode;
2071 if ((inode->i_state & flags) != flags) {
2072 const int was_dirty = inode->i_state & I_DIRTY;
2073
2074 inode_attach_wb(inode, NULL);
2075
2076 if (flags & I_DIRTY_INODE)
2077 inode->i_state &= ~I_DIRTY_TIME;
2078 inode->i_state |= flags;
2079
2080 /*
2081 * If the inode is being synced, just update its dirty state.
2082 * The unlocker will place the inode on the appropriate
2083 * superblock list, based upon its state.
2084 */
2085 if (inode->i_state & I_SYNC)
2086 goto out_unlock_inode;
2087
2088 /*
2089 * Only add valid (hashed) inodes to the superblock's
2090 * dirty list. Add blockdev inodes as well.
2091 */
2092 if (!S_ISBLK(inode->i_mode)) {
2093 if (inode_unhashed(inode))
2094 goto out_unlock_inode;
2095 }
2096 if (inode->i_state & I_FREEING)
2097 goto out_unlock_inode;
2098
2099 /*
2100 * If the inode was already on b_dirty/b_io/b_more_io, don't
2101 * reposition it (that would break b_dirty time-ordering).
2102 */
2103 if (!was_dirty) {
2104 struct bdi_writeback *wb;
2105 struct list_head *dirty_list;
2106 bool wakeup_bdi = false;
2107
2108 wb = locked_inode_to_wb_and_lock_list(inode);
2109
2110 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2111 !test_bit(WB_registered, &wb->state),
2112 "bdi-%s not registered\n", wb->bdi->name);
2113
2114 inode->dirtied_when = jiffies;
2115 if (dirtytime)
2116 inode->dirtied_time_when = jiffies;
2117
2118 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2119 dirty_list = &wb->b_dirty;
2120 else
2121 dirty_list = &wb->b_dirty_time;
2122
2123 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2124 dirty_list);
2125
2126 spin_unlock(&wb->list_lock);
2127 trace_writeback_dirty_inode_enqueue(inode);
2128
2129 /*
2130 * If this is the first dirty inode for this bdi,
2131 * we have to wake-up the corresponding bdi thread
2132 * to make sure background write-back happens
2133 * later.
2134 */
2135 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2136 wb_wakeup_delayed(wb);
2137 return;
2138 }
2139 }
2140 out_unlock_inode:
2141 spin_unlock(&inode->i_lock);
2142
2143 #undef I_DIRTY_INODE
2144 }
2145 EXPORT_SYMBOL(__mark_inode_dirty);
2146
2147 /*
2148 * The @s_sync_lock is used to serialise concurrent sync operations
2149 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2150 * Concurrent callers will block on the s_sync_lock rather than doing contending
2151 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2152 * has been issued up to the time this function is enter is guaranteed to be
2153 * completed by the time we have gained the lock and waited for all IO that is
2154 * in progress regardless of the order callers are granted the lock.
2155 */
2156 static void wait_sb_inodes(struct super_block *sb)
2157 {
2158 struct inode *inode, *old_inode = NULL;
2159
2160 /*
2161 * We need to be protected against the filesystem going from
2162 * r/o to r/w or vice versa.
2163 */
2164 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2165
2166 mutex_lock(&sb->s_sync_lock);
2167 spin_lock(&sb->s_inode_list_lock);
2168
2169 /*
2170 * Data integrity sync. Must wait for all pages under writeback,
2171 * because there may have been pages dirtied before our sync
2172 * call, but which had writeout started before we write it out.
2173 * In which case, the inode may not be on the dirty list, but
2174 * we still have to wait for that writeout.
2175 */
2176 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2177 struct address_space *mapping = inode->i_mapping;
2178
2179 spin_lock(&inode->i_lock);
2180 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2181 (mapping->nrpages == 0)) {
2182 spin_unlock(&inode->i_lock);
2183 continue;
2184 }
2185 __iget(inode);
2186 spin_unlock(&inode->i_lock);
2187 spin_unlock(&sb->s_inode_list_lock);
2188
2189 /*
2190 * We hold a reference to 'inode' so it couldn't have been
2191 * removed from s_inodes list while we dropped the
2192 * s_inode_list_lock. We cannot iput the inode now as we can
2193 * be holding the last reference and we cannot iput it under
2194 * s_inode_list_lock. So we keep the reference and iput it
2195 * later.
2196 */
2197 iput(old_inode);
2198 old_inode = inode;
2199
2200 /*
2201 * We keep the error status of individual mapping so that
2202 * applications can catch the writeback error using fsync(2).
2203 * See filemap_fdatawait_keep_errors() for details.
2204 */
2205 filemap_fdatawait_keep_errors(mapping);
2206
2207 cond_resched();
2208
2209 spin_lock(&sb->s_inode_list_lock);
2210 }
2211 spin_unlock(&sb->s_inode_list_lock);
2212 iput(old_inode);
2213 mutex_unlock(&sb->s_sync_lock);
2214 }
2215
2216 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2217 enum wb_reason reason, bool skip_if_busy)
2218 {
2219 DEFINE_WB_COMPLETION_ONSTACK(done);
2220 struct wb_writeback_work work = {
2221 .sb = sb,
2222 .sync_mode = WB_SYNC_NONE,
2223 .tagged_writepages = 1,
2224 .done = &done,
2225 .nr_pages = nr,
2226 .reason = reason,
2227 };
2228 struct backing_dev_info *bdi = sb->s_bdi;
2229
2230 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2231 return;
2232 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2233
2234 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2235 wb_wait_for_completion(bdi, &done);
2236 }
2237
2238 /**
2239 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2240 * @sb: the superblock
2241 * @nr: the number of pages to write
2242 * @reason: reason why some writeback work initiated
2243 *
2244 * Start writeback on some inodes on this super_block. No guarantees are made
2245 * on how many (if any) will be written, and this function does not wait
2246 * for IO completion of submitted IO.
2247 */
2248 void writeback_inodes_sb_nr(struct super_block *sb,
2249 unsigned long nr,
2250 enum wb_reason reason)
2251 {
2252 __writeback_inodes_sb_nr(sb, nr, reason, false);
2253 }
2254 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2255
2256 /**
2257 * writeback_inodes_sb - writeback dirty inodes from given super_block
2258 * @sb: the superblock
2259 * @reason: reason why some writeback work was initiated
2260 *
2261 * Start writeback on some inodes on this super_block. No guarantees are made
2262 * on how many (if any) will be written, and this function does not wait
2263 * for IO completion of submitted IO.
2264 */
2265 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2266 {
2267 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2268 }
2269 EXPORT_SYMBOL(writeback_inodes_sb);
2270
2271 /**
2272 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2273 * @sb: the superblock
2274 * @nr: the number of pages to write
2275 * @reason: the reason of writeback
2276 *
2277 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2278 * Returns 1 if writeback was started, 0 if not.
2279 */
2280 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2281 enum wb_reason reason)
2282 {
2283 if (!down_read_trylock(&sb->s_umount))
2284 return false;
2285
2286 __writeback_inodes_sb_nr(sb, nr, reason, true);
2287 up_read(&sb->s_umount);
2288 return true;
2289 }
2290 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2291
2292 /**
2293 * try_to_writeback_inodes_sb - try to start writeback if none underway
2294 * @sb: the superblock
2295 * @reason: reason why some writeback work was initiated
2296 *
2297 * Implement by try_to_writeback_inodes_sb_nr()
2298 * Returns 1 if writeback was started, 0 if not.
2299 */
2300 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2301 {
2302 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2303 }
2304 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2305
2306 /**
2307 * sync_inodes_sb - sync sb inode pages
2308 * @sb: the superblock
2309 *
2310 * This function writes and waits on any dirty inode belonging to this
2311 * super_block.
2312 */
2313 void sync_inodes_sb(struct super_block *sb)
2314 {
2315 DEFINE_WB_COMPLETION_ONSTACK(done);
2316 struct wb_writeback_work work = {
2317 .sb = sb,
2318 .sync_mode = WB_SYNC_ALL,
2319 .nr_pages = LONG_MAX,
2320 .range_cyclic = 0,
2321 .done = &done,
2322 .reason = WB_REASON_SYNC,
2323 .for_sync = 1,
2324 };
2325 struct backing_dev_info *bdi = sb->s_bdi;
2326
2327 /*
2328 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2329 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2330 * bdi_has_dirty() need to be written out too.
2331 */
2332 if (bdi == &noop_backing_dev_info)
2333 return;
2334 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2335
2336 bdi_split_work_to_wbs(bdi, &work, false);
2337 wb_wait_for_completion(bdi, &done);
2338
2339 wait_sb_inodes(sb);
2340 }
2341 EXPORT_SYMBOL(sync_inodes_sb);
2342
2343 /**
2344 * write_inode_now - write an inode to disk
2345 * @inode: inode to write to disk
2346 * @sync: whether the write should be synchronous or not
2347 *
2348 * This function commits an inode to disk immediately if it is dirty. This is
2349 * primarily needed by knfsd.
2350 *
2351 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2352 */
2353 int write_inode_now(struct inode *inode, int sync)
2354 {
2355 struct writeback_control wbc = {
2356 .nr_to_write = LONG_MAX,
2357 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2358 .range_start = 0,
2359 .range_end = LLONG_MAX,
2360 };
2361
2362 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2363 wbc.nr_to_write = 0;
2364
2365 might_sleep();
2366 return writeback_single_inode(inode, &wbc);
2367 }
2368 EXPORT_SYMBOL(write_inode_now);
2369
2370 /**
2371 * sync_inode - write an inode and its pages to disk.
2372 * @inode: the inode to sync
2373 * @wbc: controls the writeback mode
2374 *
2375 * sync_inode() will write an inode and its pages to disk. It will also
2376 * correctly update the inode on its superblock's dirty inode lists and will
2377 * update inode->i_state.
2378 *
2379 * The caller must have a ref on the inode.
2380 */
2381 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2382 {
2383 return writeback_single_inode(inode, wbc);
2384 }
2385 EXPORT_SYMBOL(sync_inode);
2386
2387 /**
2388 * sync_inode_metadata - write an inode to disk
2389 * @inode: the inode to sync
2390 * @wait: wait for I/O to complete.
2391 *
2392 * Write an inode to disk and adjust its dirty state after completion.
2393 *
2394 * Note: only writes the actual inode, no associated data or other metadata.
2395 */
2396 int sync_inode_metadata(struct inode *inode, int wait)
2397 {
2398 struct writeback_control wbc = {
2399 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2400 .nr_to_write = 0, /* metadata-only */
2401 };
2402
2403 return sync_inode(inode, &wbc);
2404 }
2405 EXPORT_SYMBOL(sync_inode_metadata);