Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
28 #include "internal.h"
29
30 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
31
32 /*
33 * We don't actually have pdflush, but this one is exported though /proc...
34 */
35 int nr_pdflush_threads;
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_args {
41 long nr_pages;
42 struct super_block *sb;
43 enum writeback_sync_modes sync_mode;
44 int for_kupdate:1;
45 int range_cyclic:1;
46 int for_background:1;
47 };
48
49 /*
50 * Work items for the bdi_writeback threads
51 */
52 struct bdi_work {
53 struct list_head list; /* pending work list */
54 struct rcu_head rcu_head; /* for RCU free/clear of work */
55
56 unsigned long seen; /* threads that have seen this work */
57 atomic_t pending; /* number of threads still to do work */
58
59 struct wb_writeback_args args; /* writeback arguments */
60
61 unsigned long state; /* flag bits, see WS_* */
62 };
63
64 enum {
65 WS_USED_B = 0,
66 WS_ONSTACK_B,
67 };
68
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72 static inline bool bdi_work_on_stack(struct bdi_work *work)
73 {
74 return test_bit(WS_ONSTACK_B, &work->state);
75 }
76
77 static inline void bdi_work_init(struct bdi_work *work,
78 struct wb_writeback_args *args)
79 {
80 INIT_RCU_HEAD(&work->rcu_head);
81 work->args = *args;
82 work->state = WS_USED;
83 }
84
85 /**
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
88 *
89 * Determine whether there is writeback waiting to be handled against a
90 * backing device.
91 */
92 int writeback_in_progress(struct backing_dev_info *bdi)
93 {
94 return !list_empty(&bdi->work_list);
95 }
96
97 static void bdi_work_clear(struct bdi_work *work)
98 {
99 clear_bit(WS_USED_B, &work->state);
100 smp_mb__after_clear_bit();
101 /*
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
105 */
106 wake_up_bit(&work->state, WS_USED_B);
107 }
108
109 static void bdi_work_free(struct rcu_head *head)
110 {
111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
112
113 if (!bdi_work_on_stack(work))
114 kfree(work);
115 else
116 bdi_work_clear(work);
117 }
118
119 static void wb_work_complete(struct bdi_work *work)
120 {
121 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
122 int onstack = bdi_work_on_stack(work);
123
124 /*
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
129 */
130 if (!onstack)
131 bdi_work_clear(work);
132 if (sync_mode == WB_SYNC_NONE || onstack)
133 call_rcu(&work->rcu_head, bdi_work_free);
134 }
135
136 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137 {
138 /*
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
141 */
142 if (atomic_dec_and_test(&work->pending)) {
143 struct backing_dev_info *bdi = wb->bdi;
144
145 spin_lock(&bdi->wb_lock);
146 list_del_rcu(&work->list);
147 spin_unlock(&bdi->wb_lock);
148
149 wb_work_complete(work);
150 }
151 }
152
153 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154 {
155 work->seen = bdi->wb_mask;
156 BUG_ON(!work->seen);
157 atomic_set(&work->pending, bdi->wb_cnt);
158 BUG_ON(!bdi->wb_cnt);
159
160 /*
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
164 */
165 spin_lock(&bdi->wb_lock);
166 list_add_tail_rcu(&work->list, &bdi->work_list);
167 spin_unlock(&bdi->wb_lock);
168
169 /*
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
172 */
173 if (unlikely(list_empty_careful(&bdi->wb_list)))
174 wake_up_process(default_backing_dev_info.wb.task);
175 else {
176 struct bdi_writeback *wb = &bdi->wb;
177
178 if (wb->task)
179 wake_up_process(wb->task);
180 }
181 }
182
183 /*
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
186 */
187 static void bdi_wait_on_work_clear(struct bdi_work *work)
188 {
189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190 TASK_UNINTERRUPTIBLE);
191 }
192
193 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
194 struct wb_writeback_args *args)
195 {
196 struct bdi_work *work;
197
198 /*
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
201 */
202 work = kmalloc(sizeof(*work), GFP_ATOMIC);
203 if (work) {
204 bdi_work_init(work, args);
205 bdi_queue_work(bdi, work);
206 } else {
207 struct bdi_writeback *wb = &bdi->wb;
208
209 if (wb->task)
210 wake_up_process(wb->task);
211 }
212 }
213
214 /**
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
218 *
219 * Description:
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
223 */
224 static void bdi_sync_writeback(struct backing_dev_info *bdi,
225 struct super_block *sb)
226 {
227 struct wb_writeback_args args = {
228 .sb = sb,
229 .sync_mode = WB_SYNC_ALL,
230 .nr_pages = LONG_MAX,
231 .range_cyclic = 0,
232 };
233 struct bdi_work work;
234
235 bdi_work_init(&work, &args);
236 work.state |= WS_ONSTACK;
237
238 bdi_queue_work(bdi, &work);
239 bdi_wait_on_work_clear(&work);
240 }
241
242 /**
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @sb: write inodes from this super_block
246 * @nr_pages: the number of pages to write
247 *
248 * Description:
249 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
250 * started when this function returns, we make no guarentees on
251 * completion. Caller need not hold sb s_umount semaphore.
252 *
253 */
254 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
255 long nr_pages)
256 {
257 struct wb_writeback_args args = {
258 .sb = sb,
259 .sync_mode = WB_SYNC_NONE,
260 .nr_pages = nr_pages,
261 .range_cyclic = 1,
262 };
263
264 /*
265 * We treat @nr_pages=0 as the special case to do background writeback,
266 * ie. to sync pages until the background dirty threshold is reached.
267 */
268 if (!nr_pages) {
269 args.nr_pages = LONG_MAX;
270 args.for_background = 1;
271 }
272
273 bdi_alloc_queue_work(bdi, &args);
274 }
275
276 /*
277 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
278 * furthest end of its superblock's dirty-inode list.
279 *
280 * Before stamping the inode's ->dirtied_when, we check to see whether it is
281 * already the most-recently-dirtied inode on the b_dirty list. If that is
282 * the case then the inode must have been redirtied while it was being written
283 * out and we don't reset its dirtied_when.
284 */
285 static void redirty_tail(struct inode *inode)
286 {
287 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
288
289 if (!list_empty(&wb->b_dirty)) {
290 struct inode *tail;
291
292 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
293 if (time_before(inode->dirtied_when, tail->dirtied_when))
294 inode->dirtied_when = jiffies;
295 }
296 list_move(&inode->i_list, &wb->b_dirty);
297 }
298
299 /*
300 * requeue inode for re-scanning after bdi->b_io list is exhausted.
301 */
302 static void requeue_io(struct inode *inode)
303 {
304 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
305
306 list_move(&inode->i_list, &wb->b_more_io);
307 }
308
309 static void inode_sync_complete(struct inode *inode)
310 {
311 /*
312 * Prevent speculative execution through spin_unlock(&inode_lock);
313 */
314 smp_mb();
315 wake_up_bit(&inode->i_state, __I_SYNC);
316 }
317
318 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
319 {
320 bool ret = time_after(inode->dirtied_when, t);
321 #ifndef CONFIG_64BIT
322 /*
323 * For inodes being constantly redirtied, dirtied_when can get stuck.
324 * It _appears_ to be in the future, but is actually in distant past.
325 * This test is necessary to prevent such wrapped-around relative times
326 * from permanently stopping the whole bdi writeback.
327 */
328 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
329 #endif
330 return ret;
331 }
332
333 /*
334 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
335 */
336 static void move_expired_inodes(struct list_head *delaying_queue,
337 struct list_head *dispatch_queue,
338 unsigned long *older_than_this)
339 {
340 LIST_HEAD(tmp);
341 struct list_head *pos, *node;
342 struct super_block *sb = NULL;
343 struct inode *inode;
344 int do_sb_sort = 0;
345
346 while (!list_empty(delaying_queue)) {
347 inode = list_entry(delaying_queue->prev, struct inode, i_list);
348 if (older_than_this &&
349 inode_dirtied_after(inode, *older_than_this))
350 break;
351 if (sb && sb != inode->i_sb)
352 do_sb_sort = 1;
353 sb = inode->i_sb;
354 list_move(&inode->i_list, &tmp);
355 }
356
357 /* just one sb in list, splice to dispatch_queue and we're done */
358 if (!do_sb_sort) {
359 list_splice(&tmp, dispatch_queue);
360 return;
361 }
362
363 /* Move inodes from one superblock together */
364 while (!list_empty(&tmp)) {
365 inode = list_entry(tmp.prev, struct inode, i_list);
366 sb = inode->i_sb;
367 list_for_each_prev_safe(pos, node, &tmp) {
368 inode = list_entry(pos, struct inode, i_list);
369 if (inode->i_sb == sb)
370 list_move(&inode->i_list, dispatch_queue);
371 }
372 }
373 }
374
375 /*
376 * Queue all expired dirty inodes for io, eldest first.
377 */
378 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
379 {
380 list_splice_init(&wb->b_more_io, wb->b_io.prev);
381 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
382 }
383
384 static int write_inode(struct inode *inode, struct writeback_control *wbc)
385 {
386 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
387 return inode->i_sb->s_op->write_inode(inode, wbc);
388 return 0;
389 }
390
391 /*
392 * Wait for writeback on an inode to complete.
393 */
394 static void inode_wait_for_writeback(struct inode *inode)
395 {
396 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
397 wait_queue_head_t *wqh;
398
399 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
400 do {
401 spin_unlock(&inode_lock);
402 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
403 spin_lock(&inode_lock);
404 } while (inode->i_state & I_SYNC);
405 }
406
407 /*
408 * Write out an inode's dirty pages. Called under inode_lock. Either the
409 * caller has ref on the inode (either via __iget or via syscall against an fd)
410 * or the inode has I_WILL_FREE set (via generic_forget_inode)
411 *
412 * If `wait' is set, wait on the writeout.
413 *
414 * The whole writeout design is quite complex and fragile. We want to avoid
415 * starvation of particular inodes when others are being redirtied, prevent
416 * livelocks, etc.
417 *
418 * Called under inode_lock.
419 */
420 static int
421 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
422 {
423 struct address_space *mapping = inode->i_mapping;
424 unsigned dirty;
425 int ret;
426
427 if (!atomic_read(&inode->i_count))
428 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
429 else
430 WARN_ON(inode->i_state & I_WILL_FREE);
431
432 if (inode->i_state & I_SYNC) {
433 /*
434 * If this inode is locked for writeback and we are not doing
435 * writeback-for-data-integrity, move it to b_more_io so that
436 * writeback can proceed with the other inodes on s_io.
437 *
438 * We'll have another go at writing back this inode when we
439 * completed a full scan of b_io.
440 */
441 if (wbc->sync_mode != WB_SYNC_ALL) {
442 requeue_io(inode);
443 return 0;
444 }
445
446 /*
447 * It's a data-integrity sync. We must wait.
448 */
449 inode_wait_for_writeback(inode);
450 }
451
452 BUG_ON(inode->i_state & I_SYNC);
453
454 /* Set I_SYNC, reset I_DIRTY */
455 dirty = inode->i_state & I_DIRTY;
456 inode->i_state |= I_SYNC;
457 inode->i_state &= ~I_DIRTY;
458
459 spin_unlock(&inode_lock);
460
461 ret = do_writepages(mapping, wbc);
462
463 /*
464 * Make sure to wait on the data before writing out the metadata.
465 * This is important for filesystems that modify metadata on data
466 * I/O completion.
467 */
468 if (wbc->sync_mode == WB_SYNC_ALL) {
469 int err = filemap_fdatawait(mapping);
470 if (ret == 0)
471 ret = err;
472 }
473
474 /* Don't write the inode if only I_DIRTY_PAGES was set */
475 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
476 int err = write_inode(inode, wbc);
477 if (ret == 0)
478 ret = err;
479 }
480
481 spin_lock(&inode_lock);
482 inode->i_state &= ~I_SYNC;
483 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
484 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
485 /*
486 * More pages get dirtied by a fast dirtier.
487 */
488 goto select_queue;
489 } else if (inode->i_state & I_DIRTY) {
490 /*
491 * At least XFS will redirty the inode during the
492 * writeback (delalloc) and on io completion (isize).
493 */
494 redirty_tail(inode);
495 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
496 /*
497 * We didn't write back all the pages. nfs_writepages()
498 * sometimes bales out without doing anything. Redirty
499 * the inode; Move it from b_io onto b_more_io/b_dirty.
500 */
501 /*
502 * akpm: if the caller was the kupdate function we put
503 * this inode at the head of b_dirty so it gets first
504 * consideration. Otherwise, move it to the tail, for
505 * the reasons described there. I'm not really sure
506 * how much sense this makes. Presumably I had a good
507 * reasons for doing it this way, and I'd rather not
508 * muck with it at present.
509 */
510 if (wbc->for_kupdate) {
511 /*
512 * For the kupdate function we move the inode
513 * to b_more_io so it will get more writeout as
514 * soon as the queue becomes uncongested.
515 */
516 inode->i_state |= I_DIRTY_PAGES;
517 select_queue:
518 if (wbc->nr_to_write <= 0) {
519 /*
520 * slice used up: queue for next turn
521 */
522 requeue_io(inode);
523 } else {
524 /*
525 * somehow blocked: retry later
526 */
527 redirty_tail(inode);
528 }
529 } else {
530 /*
531 * Otherwise fully redirty the inode so that
532 * other inodes on this superblock will get some
533 * writeout. Otherwise heavy writing to one
534 * file would indefinitely suspend writeout of
535 * all the other files.
536 */
537 inode->i_state |= I_DIRTY_PAGES;
538 redirty_tail(inode);
539 }
540 } else if (atomic_read(&inode->i_count)) {
541 /*
542 * The inode is clean, inuse
543 */
544 list_move(&inode->i_list, &inode_in_use);
545 } else {
546 /*
547 * The inode is clean, unused
548 */
549 list_move(&inode->i_list, &inode_unused);
550 }
551 }
552 inode_sync_complete(inode);
553 return ret;
554 }
555
556 static void unpin_sb_for_writeback(struct super_block **psb)
557 {
558 struct super_block *sb = *psb;
559
560 if (sb) {
561 up_read(&sb->s_umount);
562 put_super(sb);
563 *psb = NULL;
564 }
565 }
566
567 /*
568 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
569 * before calling writeback. So make sure that we do pin it, so it doesn't
570 * go away while we are writing inodes from it.
571 *
572 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
573 * 1 if we failed.
574 */
575 static int pin_sb_for_writeback(struct writeback_control *wbc,
576 struct inode *inode, struct super_block **psb)
577 {
578 struct super_block *sb = inode->i_sb;
579
580 /*
581 * If this sb is already pinned, nothing more to do. If not and
582 * *psb is non-NULL, unpin the old one first
583 */
584 if (sb == *psb)
585 return 0;
586 else if (*psb)
587 unpin_sb_for_writeback(psb);
588
589 /*
590 * Caller must already hold the ref for this
591 */
592 if (wbc->sync_mode == WB_SYNC_ALL) {
593 WARN_ON(!rwsem_is_locked(&sb->s_umount));
594 return 0;
595 }
596
597 spin_lock(&sb_lock);
598 sb->s_count++;
599 if (down_read_trylock(&sb->s_umount)) {
600 if (sb->s_root) {
601 spin_unlock(&sb_lock);
602 goto pinned;
603 }
604 /*
605 * umounted, drop rwsem again and fall through to failure
606 */
607 up_read(&sb->s_umount);
608 }
609
610 sb->s_count--;
611 spin_unlock(&sb_lock);
612 return 1;
613 pinned:
614 *psb = sb;
615 return 0;
616 }
617
618 static void writeback_inodes_wb(struct bdi_writeback *wb,
619 struct writeback_control *wbc)
620 {
621 struct super_block *sb = wbc->sb, *pin_sb = NULL;
622 const unsigned long start = jiffies; /* livelock avoidance */
623
624 spin_lock(&inode_lock);
625
626 if (!wbc->for_kupdate || list_empty(&wb->b_io))
627 queue_io(wb, wbc->older_than_this);
628
629 while (!list_empty(&wb->b_io)) {
630 struct inode *inode = list_entry(wb->b_io.prev,
631 struct inode, i_list);
632 long pages_skipped;
633
634 /*
635 * super block given and doesn't match, skip this inode
636 */
637 if (sb && sb != inode->i_sb) {
638 redirty_tail(inode);
639 continue;
640 }
641
642 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
643 requeue_io(inode);
644 continue;
645 }
646
647 /*
648 * Was this inode dirtied after sync_sb_inodes was called?
649 * This keeps sync from extra jobs and livelock.
650 */
651 if (inode_dirtied_after(inode, start))
652 break;
653
654 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
655 requeue_io(inode);
656 continue;
657 }
658
659 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
660 __iget(inode);
661 pages_skipped = wbc->pages_skipped;
662 writeback_single_inode(inode, wbc);
663 if (wbc->pages_skipped != pages_skipped) {
664 /*
665 * writeback is not making progress due to locked
666 * buffers. Skip this inode for now.
667 */
668 redirty_tail(inode);
669 }
670 spin_unlock(&inode_lock);
671 iput(inode);
672 cond_resched();
673 spin_lock(&inode_lock);
674 if (wbc->nr_to_write <= 0) {
675 wbc->more_io = 1;
676 break;
677 }
678 if (!list_empty(&wb->b_more_io))
679 wbc->more_io = 1;
680 }
681
682 unpin_sb_for_writeback(&pin_sb);
683
684 spin_unlock(&inode_lock);
685 /* Leave any unwritten inodes on b_io */
686 }
687
688 void writeback_inodes_wbc(struct writeback_control *wbc)
689 {
690 struct backing_dev_info *bdi = wbc->bdi;
691
692 writeback_inodes_wb(&bdi->wb, wbc);
693 }
694
695 /*
696 * The maximum number of pages to writeout in a single bdi flush/kupdate
697 * operation. We do this so we don't hold I_SYNC against an inode for
698 * enormous amounts of time, which would block a userspace task which has
699 * been forced to throttle against that inode. Also, the code reevaluates
700 * the dirty each time it has written this many pages.
701 */
702 #define MAX_WRITEBACK_PAGES 1024
703
704 static inline bool over_bground_thresh(void)
705 {
706 unsigned long background_thresh, dirty_thresh;
707
708 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
709
710 return (global_page_state(NR_FILE_DIRTY) +
711 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
712 }
713
714 /*
715 * Explicit flushing or periodic writeback of "old" data.
716 *
717 * Define "old": the first time one of an inode's pages is dirtied, we mark the
718 * dirtying-time in the inode's address_space. So this periodic writeback code
719 * just walks the superblock inode list, writing back any inodes which are
720 * older than a specific point in time.
721 *
722 * Try to run once per dirty_writeback_interval. But if a writeback event
723 * takes longer than a dirty_writeback_interval interval, then leave a
724 * one-second gap.
725 *
726 * older_than_this takes precedence over nr_to_write. So we'll only write back
727 * all dirty pages if they are all attached to "old" mappings.
728 */
729 static long wb_writeback(struct bdi_writeback *wb,
730 struct wb_writeback_args *args)
731 {
732 struct writeback_control wbc = {
733 .bdi = wb->bdi,
734 .sb = args->sb,
735 .sync_mode = args->sync_mode,
736 .older_than_this = NULL,
737 .for_kupdate = args->for_kupdate,
738 .for_background = args->for_background,
739 .range_cyclic = args->range_cyclic,
740 };
741 unsigned long oldest_jif;
742 long wrote = 0;
743 struct inode *inode;
744
745 if (wbc.for_kupdate) {
746 wbc.older_than_this = &oldest_jif;
747 oldest_jif = jiffies -
748 msecs_to_jiffies(dirty_expire_interval * 10);
749 }
750 if (!wbc.range_cyclic) {
751 wbc.range_start = 0;
752 wbc.range_end = LLONG_MAX;
753 }
754
755 for (;;) {
756 /*
757 * Stop writeback when nr_pages has been consumed
758 */
759 if (args->nr_pages <= 0)
760 break;
761
762 /*
763 * For background writeout, stop when we are below the
764 * background dirty threshold
765 */
766 if (args->for_background && !over_bground_thresh())
767 break;
768
769 wbc.more_io = 0;
770 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
771 wbc.pages_skipped = 0;
772 writeback_inodes_wb(wb, &wbc);
773 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
774 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
775
776 /*
777 * If we consumed everything, see if we have more
778 */
779 if (wbc.nr_to_write <= 0)
780 continue;
781 /*
782 * Didn't write everything and we don't have more IO, bail
783 */
784 if (!wbc.more_io)
785 break;
786 /*
787 * Did we write something? Try for more
788 */
789 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
790 continue;
791 /*
792 * Nothing written. Wait for some inode to
793 * become available for writeback. Otherwise
794 * we'll just busyloop.
795 */
796 spin_lock(&inode_lock);
797 if (!list_empty(&wb->b_more_io)) {
798 inode = list_entry(wb->b_more_io.prev,
799 struct inode, i_list);
800 inode_wait_for_writeback(inode);
801 }
802 spin_unlock(&inode_lock);
803 }
804
805 return wrote;
806 }
807
808 /*
809 * Return the next bdi_work struct that hasn't been processed by this
810 * wb thread yet. ->seen is initially set for each thread that exists
811 * for this device, when a thread first notices a piece of work it
812 * clears its bit. Depending on writeback type, the thread will notify
813 * completion on either receiving the work (WB_SYNC_NONE) or after
814 * it is done (WB_SYNC_ALL).
815 */
816 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
817 struct bdi_writeback *wb)
818 {
819 struct bdi_work *work, *ret = NULL;
820
821 rcu_read_lock();
822
823 list_for_each_entry_rcu(work, &bdi->work_list, list) {
824 if (!test_bit(wb->nr, &work->seen))
825 continue;
826 clear_bit(wb->nr, &work->seen);
827
828 ret = work;
829 break;
830 }
831
832 rcu_read_unlock();
833 return ret;
834 }
835
836 static long wb_check_old_data_flush(struct bdi_writeback *wb)
837 {
838 unsigned long expired;
839 long nr_pages;
840
841 expired = wb->last_old_flush +
842 msecs_to_jiffies(dirty_writeback_interval * 10);
843 if (time_before(jiffies, expired))
844 return 0;
845
846 wb->last_old_flush = jiffies;
847 nr_pages = global_page_state(NR_FILE_DIRTY) +
848 global_page_state(NR_UNSTABLE_NFS) +
849 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
850
851 if (nr_pages) {
852 struct wb_writeback_args args = {
853 .nr_pages = nr_pages,
854 .sync_mode = WB_SYNC_NONE,
855 .for_kupdate = 1,
856 .range_cyclic = 1,
857 };
858
859 return wb_writeback(wb, &args);
860 }
861
862 return 0;
863 }
864
865 /*
866 * Retrieve work items and do the writeback they describe
867 */
868 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
869 {
870 struct backing_dev_info *bdi = wb->bdi;
871 struct bdi_work *work;
872 long wrote = 0;
873
874 while ((work = get_next_work_item(bdi, wb)) != NULL) {
875 struct wb_writeback_args args = work->args;
876
877 /*
878 * Override sync mode, in case we must wait for completion
879 */
880 if (force_wait)
881 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
882
883 /*
884 * If this isn't a data integrity operation, just notify
885 * that we have seen this work and we are now starting it.
886 */
887 if (args.sync_mode == WB_SYNC_NONE)
888 wb_clear_pending(wb, work);
889
890 wrote += wb_writeback(wb, &args);
891
892 /*
893 * This is a data integrity writeback, so only do the
894 * notification when we have completed the work.
895 */
896 if (args.sync_mode == WB_SYNC_ALL)
897 wb_clear_pending(wb, work);
898 }
899
900 /*
901 * Check for periodic writeback, kupdated() style
902 */
903 wrote += wb_check_old_data_flush(wb);
904
905 return wrote;
906 }
907
908 /*
909 * Handle writeback of dirty data for the device backed by this bdi. Also
910 * wakes up periodically and does kupdated style flushing.
911 */
912 int bdi_writeback_task(struct bdi_writeback *wb)
913 {
914 unsigned long last_active = jiffies;
915 unsigned long wait_jiffies = -1UL;
916 long pages_written;
917
918 while (!kthread_should_stop()) {
919 pages_written = wb_do_writeback(wb, 0);
920
921 if (pages_written)
922 last_active = jiffies;
923 else if (wait_jiffies != -1UL) {
924 unsigned long max_idle;
925
926 /*
927 * Longest period of inactivity that we tolerate. If we
928 * see dirty data again later, the task will get
929 * recreated automatically.
930 */
931 max_idle = max(5UL * 60 * HZ, wait_jiffies);
932 if (time_after(jiffies, max_idle + last_active))
933 break;
934 }
935
936 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
937 schedule_timeout_interruptible(wait_jiffies);
938 try_to_freeze();
939 }
940
941 return 0;
942 }
943
944 /*
945 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
946 * writeback, for integrity writeback see bdi_sync_writeback().
947 */
948 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
949 {
950 struct wb_writeback_args args = {
951 .sb = sb,
952 .nr_pages = nr_pages,
953 .sync_mode = WB_SYNC_NONE,
954 };
955 struct backing_dev_info *bdi;
956
957 rcu_read_lock();
958
959 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
960 if (!bdi_has_dirty_io(bdi))
961 continue;
962
963 bdi_alloc_queue_work(bdi, &args);
964 }
965
966 rcu_read_unlock();
967 }
968
969 /*
970 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
971 * the whole world.
972 */
973 void wakeup_flusher_threads(long nr_pages)
974 {
975 if (nr_pages == 0)
976 nr_pages = global_page_state(NR_FILE_DIRTY) +
977 global_page_state(NR_UNSTABLE_NFS);
978 bdi_writeback_all(NULL, nr_pages);
979 }
980
981 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
982 {
983 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
984 struct dentry *dentry;
985 const char *name = "?";
986
987 dentry = d_find_alias(inode);
988 if (dentry) {
989 spin_lock(&dentry->d_lock);
990 name = (const char *) dentry->d_name.name;
991 }
992 printk(KERN_DEBUG
993 "%s(%d): dirtied inode %lu (%s) on %s\n",
994 current->comm, task_pid_nr(current), inode->i_ino,
995 name, inode->i_sb->s_id);
996 if (dentry) {
997 spin_unlock(&dentry->d_lock);
998 dput(dentry);
999 }
1000 }
1001 }
1002
1003 /**
1004 * __mark_inode_dirty - internal function
1005 * @inode: inode to mark
1006 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1007 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1008 * mark_inode_dirty_sync.
1009 *
1010 * Put the inode on the super block's dirty list.
1011 *
1012 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1013 * dirty list only if it is hashed or if it refers to a blockdev.
1014 * If it was not hashed, it will never be added to the dirty list
1015 * even if it is later hashed, as it will have been marked dirty already.
1016 *
1017 * In short, make sure you hash any inodes _before_ you start marking
1018 * them dirty.
1019 *
1020 * This function *must* be atomic for the I_DIRTY_PAGES case -
1021 * set_page_dirty() is called under spinlock in several places.
1022 *
1023 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1024 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1025 * the kernel-internal blockdev inode represents the dirtying time of the
1026 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1027 * page->mapping->host, so the page-dirtying time is recorded in the internal
1028 * blockdev inode.
1029 */
1030 void __mark_inode_dirty(struct inode *inode, int flags)
1031 {
1032 struct super_block *sb = inode->i_sb;
1033
1034 /*
1035 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1036 * dirty the inode itself
1037 */
1038 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1039 if (sb->s_op->dirty_inode)
1040 sb->s_op->dirty_inode(inode);
1041 }
1042
1043 /*
1044 * make sure that changes are seen by all cpus before we test i_state
1045 * -- mikulas
1046 */
1047 smp_mb();
1048
1049 /* avoid the locking if we can */
1050 if ((inode->i_state & flags) == flags)
1051 return;
1052
1053 if (unlikely(block_dump))
1054 block_dump___mark_inode_dirty(inode);
1055
1056 spin_lock(&inode_lock);
1057 if ((inode->i_state & flags) != flags) {
1058 const int was_dirty = inode->i_state & I_DIRTY;
1059
1060 inode->i_state |= flags;
1061
1062 /*
1063 * If the inode is being synced, just update its dirty state.
1064 * The unlocker will place the inode on the appropriate
1065 * superblock list, based upon its state.
1066 */
1067 if (inode->i_state & I_SYNC)
1068 goto out;
1069
1070 /*
1071 * Only add valid (hashed) inodes to the superblock's
1072 * dirty list. Add blockdev inodes as well.
1073 */
1074 if (!S_ISBLK(inode->i_mode)) {
1075 if (hlist_unhashed(&inode->i_hash))
1076 goto out;
1077 }
1078 if (inode->i_state & (I_FREEING|I_CLEAR))
1079 goto out;
1080
1081 /*
1082 * If the inode was already on b_dirty/b_io/b_more_io, don't
1083 * reposition it (that would break b_dirty time-ordering).
1084 */
1085 if (!was_dirty) {
1086 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1087 struct backing_dev_info *bdi = wb->bdi;
1088
1089 if (bdi_cap_writeback_dirty(bdi) &&
1090 !test_bit(BDI_registered, &bdi->state)) {
1091 WARN_ON(1);
1092 printk(KERN_ERR "bdi-%s not registered\n",
1093 bdi->name);
1094 }
1095
1096 inode->dirtied_when = jiffies;
1097 list_move(&inode->i_list, &wb->b_dirty);
1098 }
1099 }
1100 out:
1101 spin_unlock(&inode_lock);
1102 }
1103 EXPORT_SYMBOL(__mark_inode_dirty);
1104
1105 /*
1106 * Write out a superblock's list of dirty inodes. A wait will be performed
1107 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1108 *
1109 * If older_than_this is non-NULL, then only write out inodes which
1110 * had their first dirtying at a time earlier than *older_than_this.
1111 *
1112 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1113 * This function assumes that the blockdev superblock's inodes are backed by
1114 * a variety of queues, so all inodes are searched. For other superblocks,
1115 * assume that all inodes are backed by the same queue.
1116 *
1117 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1118 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1119 * on the writer throttling path, and we get decent balancing between many
1120 * throttled threads: we don't want them all piling up on inode_sync_wait.
1121 */
1122 static void wait_sb_inodes(struct super_block *sb)
1123 {
1124 struct inode *inode, *old_inode = NULL;
1125
1126 /*
1127 * We need to be protected against the filesystem going from
1128 * r/o to r/w or vice versa.
1129 */
1130 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1131
1132 spin_lock(&inode_lock);
1133
1134 /*
1135 * Data integrity sync. Must wait for all pages under writeback,
1136 * because there may have been pages dirtied before our sync
1137 * call, but which had writeout started before we write it out.
1138 * In which case, the inode may not be on the dirty list, but
1139 * we still have to wait for that writeout.
1140 */
1141 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1142 struct address_space *mapping;
1143
1144 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1145 continue;
1146 mapping = inode->i_mapping;
1147 if (mapping->nrpages == 0)
1148 continue;
1149 __iget(inode);
1150 spin_unlock(&inode_lock);
1151 /*
1152 * We hold a reference to 'inode' so it couldn't have
1153 * been removed from s_inodes list while we dropped the
1154 * inode_lock. We cannot iput the inode now as we can
1155 * be holding the last reference and we cannot iput it
1156 * under inode_lock. So we keep the reference and iput
1157 * it later.
1158 */
1159 iput(old_inode);
1160 old_inode = inode;
1161
1162 filemap_fdatawait(mapping);
1163
1164 cond_resched();
1165
1166 spin_lock(&inode_lock);
1167 }
1168 spin_unlock(&inode_lock);
1169 iput(old_inode);
1170 }
1171
1172 /**
1173 * writeback_inodes_sb - writeback dirty inodes from given super_block
1174 * @sb: the superblock
1175 *
1176 * Start writeback on some inodes on this super_block. No guarantees are made
1177 * on how many (if any) will be written, and this function does not wait
1178 * for IO completion of submitted IO. The number of pages submitted is
1179 * returned.
1180 */
1181 void writeback_inodes_sb(struct super_block *sb)
1182 {
1183 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1184 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1185 long nr_to_write;
1186
1187 nr_to_write = nr_dirty + nr_unstable +
1188 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1189
1190 bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1191 }
1192 EXPORT_SYMBOL(writeback_inodes_sb);
1193
1194 /**
1195 * writeback_inodes_sb_if_idle - start writeback if none underway
1196 * @sb: the superblock
1197 *
1198 * Invoke writeback_inodes_sb if no writeback is currently underway.
1199 * Returns 1 if writeback was started, 0 if not.
1200 */
1201 int writeback_inodes_sb_if_idle(struct super_block *sb)
1202 {
1203 if (!writeback_in_progress(sb->s_bdi)) {
1204 writeback_inodes_sb(sb);
1205 return 1;
1206 } else
1207 return 0;
1208 }
1209 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1210
1211 /**
1212 * sync_inodes_sb - sync sb inode pages
1213 * @sb: the superblock
1214 *
1215 * This function writes and waits on any dirty inode belonging to this
1216 * super_block. The number of pages synced is returned.
1217 */
1218 void sync_inodes_sb(struct super_block *sb)
1219 {
1220 bdi_sync_writeback(sb->s_bdi, sb);
1221 wait_sb_inodes(sb);
1222 }
1223 EXPORT_SYMBOL(sync_inodes_sb);
1224
1225 /**
1226 * write_inode_now - write an inode to disk
1227 * @inode: inode to write to disk
1228 * @sync: whether the write should be synchronous or not
1229 *
1230 * This function commits an inode to disk immediately if it is dirty. This is
1231 * primarily needed by knfsd.
1232 *
1233 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1234 */
1235 int write_inode_now(struct inode *inode, int sync)
1236 {
1237 int ret;
1238 struct writeback_control wbc = {
1239 .nr_to_write = LONG_MAX,
1240 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1241 .range_start = 0,
1242 .range_end = LLONG_MAX,
1243 };
1244
1245 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1246 wbc.nr_to_write = 0;
1247
1248 might_sleep();
1249 spin_lock(&inode_lock);
1250 ret = writeback_single_inode(inode, &wbc);
1251 spin_unlock(&inode_lock);
1252 if (sync)
1253 inode_sync_wait(inode);
1254 return ret;
1255 }
1256 EXPORT_SYMBOL(write_inode_now);
1257
1258 /**
1259 * sync_inode - write an inode and its pages to disk.
1260 * @inode: the inode to sync
1261 * @wbc: controls the writeback mode
1262 *
1263 * sync_inode() will write an inode and its pages to disk. It will also
1264 * correctly update the inode on its superblock's dirty inode lists and will
1265 * update inode->i_state.
1266 *
1267 * The caller must have a ref on the inode.
1268 */
1269 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1270 {
1271 int ret;
1272
1273 spin_lock(&inode_lock);
1274 ret = writeback_single_inode(inode, wbc);
1275 spin_unlock(&inode_lock);
1276 return ret;
1277 }
1278 EXPORT_SYMBOL(sync_inode);