ocfs2: fix quota file corruption
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32 * 4MB minimal write chunk size
33 */
34 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
35
36 /*
37 * Passed into wb_writeback(), essentially a subset of writeback_control
38 */
39 struct wb_writeback_work {
40 long nr_pages;
41 struct super_block *sb;
42 unsigned long *older_than_this;
43 enum writeback_sync_modes sync_mode;
44 unsigned int tagged_writepages:1;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
48 enum wb_reason reason; /* why was writeback initiated? */
49
50 struct list_head list; /* pending work list */
51 struct completion *done; /* set if the caller waits */
52 };
53
54 /**
55 * writeback_in_progress - determine whether there is writeback in progress
56 * @bdi: the device's backing_dev_info structure.
57 *
58 * Determine whether there is writeback waiting to be handled against a
59 * backing device.
60 */
61 int writeback_in_progress(struct backing_dev_info *bdi)
62 {
63 return test_bit(BDI_writeback_running, &bdi->state);
64 }
65 EXPORT_SYMBOL(writeback_in_progress);
66
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69 struct super_block *sb = inode->i_sb;
70
71 if (strcmp(sb->s_type->name, "bdev") == 0)
72 return inode->i_mapping->backing_dev_info;
73
74 return sb->s_bdi;
75 }
76
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79 return list_entry(head, struct inode, i_wb_list);
80 }
81
82 /*
83 * Include the creation of the trace points after defining the
84 * wb_writeback_work structure and inline functions so that the definition
85 * remains local to this file.
86 */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89
90 static void bdi_queue_work(struct backing_dev_info *bdi,
91 struct wb_writeback_work *work)
92 {
93 trace_writeback_queue(bdi, work);
94
95 spin_lock_bh(&bdi->wb_lock);
96 list_add_tail(&work->list, &bdi->work_list);
97 spin_unlock_bh(&bdi->wb_lock);
98
99 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
100 }
101
102 static void
103 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
104 bool range_cyclic, enum wb_reason reason)
105 {
106 struct wb_writeback_work *work;
107
108 /*
109 * This is WB_SYNC_NONE writeback, so if allocation fails just
110 * wakeup the thread for old dirty data writeback
111 */
112 work = kzalloc(sizeof(*work), GFP_ATOMIC);
113 if (!work) {
114 trace_writeback_nowork(bdi);
115 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
116 return;
117 }
118
119 work->sync_mode = WB_SYNC_NONE;
120 work->nr_pages = nr_pages;
121 work->range_cyclic = range_cyclic;
122 work->reason = reason;
123
124 bdi_queue_work(bdi, work);
125 }
126
127 /**
128 * bdi_start_writeback - start writeback
129 * @bdi: the backing device to write from
130 * @nr_pages: the number of pages to write
131 * @reason: reason why some writeback work was initiated
132 *
133 * Description:
134 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
135 * started when this function returns, we make no guarantees on
136 * completion. Caller need not hold sb s_umount semaphore.
137 *
138 */
139 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
140 enum wb_reason reason)
141 {
142 __bdi_start_writeback(bdi, nr_pages, true, reason);
143 }
144
145 /**
146 * bdi_start_background_writeback - start background writeback
147 * @bdi: the backing device to write from
148 *
149 * Description:
150 * This makes sure WB_SYNC_NONE background writeback happens. When
151 * this function returns, it is only guaranteed that for given BDI
152 * some IO is happening if we are over background dirty threshold.
153 * Caller need not hold sb s_umount semaphore.
154 */
155 void bdi_start_background_writeback(struct backing_dev_info *bdi)
156 {
157 /*
158 * We just wake up the flusher thread. It will perform background
159 * writeback as soon as there is no other work to do.
160 */
161 trace_writeback_wake_background(bdi);
162 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
163 }
164
165 /*
166 * Remove the inode from the writeback list it is on.
167 */
168 void inode_wb_list_del(struct inode *inode)
169 {
170 struct backing_dev_info *bdi = inode_to_bdi(inode);
171
172 spin_lock(&bdi->wb.list_lock);
173 list_del_init(&inode->i_wb_list);
174 spin_unlock(&bdi->wb.list_lock);
175 }
176
177 /*
178 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
179 * furthest end of its superblock's dirty-inode list.
180 *
181 * Before stamping the inode's ->dirtied_when, we check to see whether it is
182 * already the most-recently-dirtied inode on the b_dirty list. If that is
183 * the case then the inode must have been redirtied while it was being written
184 * out and we don't reset its dirtied_when.
185 */
186 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
187 {
188 assert_spin_locked(&wb->list_lock);
189 if (!list_empty(&wb->b_dirty)) {
190 struct inode *tail;
191
192 tail = wb_inode(wb->b_dirty.next);
193 if (time_before(inode->dirtied_when, tail->dirtied_when))
194 inode->dirtied_when = jiffies;
195 }
196 list_move(&inode->i_wb_list, &wb->b_dirty);
197 }
198
199 /*
200 * requeue inode for re-scanning after bdi->b_io list is exhausted.
201 */
202 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
203 {
204 assert_spin_locked(&wb->list_lock);
205 list_move(&inode->i_wb_list, &wb->b_more_io);
206 }
207
208 static void inode_sync_complete(struct inode *inode)
209 {
210 inode->i_state &= ~I_SYNC;
211 /* If inode is clean an unused, put it into LRU now... */
212 inode_add_lru(inode);
213 /* Waiters must see I_SYNC cleared before being woken up */
214 smp_mb();
215 wake_up_bit(&inode->i_state, __I_SYNC);
216 }
217
218 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
219 {
220 bool ret = time_after(inode->dirtied_when, t);
221 #ifndef CONFIG_64BIT
222 /*
223 * For inodes being constantly redirtied, dirtied_when can get stuck.
224 * It _appears_ to be in the future, but is actually in distant past.
225 * This test is necessary to prevent such wrapped-around relative times
226 * from permanently stopping the whole bdi writeback.
227 */
228 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
229 #endif
230 return ret;
231 }
232
233 /*
234 * Move expired (dirtied before work->older_than_this) dirty inodes from
235 * @delaying_queue to @dispatch_queue.
236 */
237 static int move_expired_inodes(struct list_head *delaying_queue,
238 struct list_head *dispatch_queue,
239 struct wb_writeback_work *work)
240 {
241 LIST_HEAD(tmp);
242 struct list_head *pos, *node;
243 struct super_block *sb = NULL;
244 struct inode *inode;
245 int do_sb_sort = 0;
246 int moved = 0;
247
248 while (!list_empty(delaying_queue)) {
249 inode = wb_inode(delaying_queue->prev);
250 if (work->older_than_this &&
251 inode_dirtied_after(inode, *work->older_than_this))
252 break;
253 if (sb && sb != inode->i_sb)
254 do_sb_sort = 1;
255 sb = inode->i_sb;
256 list_move(&inode->i_wb_list, &tmp);
257 moved++;
258 }
259
260 /* just one sb in list, splice to dispatch_queue and we're done */
261 if (!do_sb_sort) {
262 list_splice(&tmp, dispatch_queue);
263 goto out;
264 }
265
266 /* Move inodes from one superblock together */
267 while (!list_empty(&tmp)) {
268 sb = wb_inode(tmp.prev)->i_sb;
269 list_for_each_prev_safe(pos, node, &tmp) {
270 inode = wb_inode(pos);
271 if (inode->i_sb == sb)
272 list_move(&inode->i_wb_list, dispatch_queue);
273 }
274 }
275 out:
276 return moved;
277 }
278
279 /*
280 * Queue all expired dirty inodes for io, eldest first.
281 * Before
282 * newly dirtied b_dirty b_io b_more_io
283 * =============> gf edc BA
284 * After
285 * newly dirtied b_dirty b_io b_more_io
286 * =============> g fBAedc
287 * |
288 * +--> dequeue for IO
289 */
290 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
291 {
292 int moved;
293 assert_spin_locked(&wb->list_lock);
294 list_splice_init(&wb->b_more_io, &wb->b_io);
295 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
296 trace_writeback_queue_io(wb, work, moved);
297 }
298
299 static int write_inode(struct inode *inode, struct writeback_control *wbc)
300 {
301 int ret;
302
303 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
304 trace_writeback_write_inode_start(inode, wbc);
305 ret = inode->i_sb->s_op->write_inode(inode, wbc);
306 trace_writeback_write_inode(inode, wbc);
307 return ret;
308 }
309 return 0;
310 }
311
312 /*
313 * Wait for writeback on an inode to complete. Called with i_lock held.
314 * Caller must make sure inode cannot go away when we drop i_lock.
315 */
316 static void __inode_wait_for_writeback(struct inode *inode)
317 __releases(inode->i_lock)
318 __acquires(inode->i_lock)
319 {
320 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
321 wait_queue_head_t *wqh;
322
323 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
324 while (inode->i_state & I_SYNC) {
325 spin_unlock(&inode->i_lock);
326 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
327 spin_lock(&inode->i_lock);
328 }
329 }
330
331 /*
332 * Wait for writeback on an inode to complete. Caller must have inode pinned.
333 */
334 void inode_wait_for_writeback(struct inode *inode)
335 {
336 spin_lock(&inode->i_lock);
337 __inode_wait_for_writeback(inode);
338 spin_unlock(&inode->i_lock);
339 }
340
341 /*
342 * Sleep until I_SYNC is cleared. This function must be called with i_lock
343 * held and drops it. It is aimed for callers not holding any inode reference
344 * so once i_lock is dropped, inode can go away.
345 */
346 static void inode_sleep_on_writeback(struct inode *inode)
347 __releases(inode->i_lock)
348 {
349 DEFINE_WAIT(wait);
350 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
351 int sleep;
352
353 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
354 sleep = inode->i_state & I_SYNC;
355 spin_unlock(&inode->i_lock);
356 if (sleep)
357 schedule();
358 finish_wait(wqh, &wait);
359 }
360
361 /*
362 * Find proper writeback list for the inode depending on its current state and
363 * possibly also change of its state while we were doing writeback. Here we
364 * handle things such as livelock prevention or fairness of writeback among
365 * inodes. This function can be called only by flusher thread - noone else
366 * processes all inodes in writeback lists and requeueing inodes behind flusher
367 * thread's back can have unexpected consequences.
368 */
369 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
370 struct writeback_control *wbc)
371 {
372 if (inode->i_state & I_FREEING)
373 return;
374
375 /*
376 * Sync livelock prevention. Each inode is tagged and synced in one
377 * shot. If still dirty, it will be redirty_tail()'ed below. Update
378 * the dirty time to prevent enqueue and sync it again.
379 */
380 if ((inode->i_state & I_DIRTY) &&
381 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
382 inode->dirtied_when = jiffies;
383
384 if (wbc->pages_skipped) {
385 /*
386 * writeback is not making progress due to locked
387 * buffers. Skip this inode for now.
388 */
389 redirty_tail(inode, wb);
390 return;
391 }
392
393 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
394 /*
395 * We didn't write back all the pages. nfs_writepages()
396 * sometimes bales out without doing anything.
397 */
398 if (wbc->nr_to_write <= 0) {
399 /* Slice used up. Queue for next turn. */
400 requeue_io(inode, wb);
401 } else {
402 /*
403 * Writeback blocked by something other than
404 * congestion. Delay the inode for some time to
405 * avoid spinning on the CPU (100% iowait)
406 * retrying writeback of the dirty page/inode
407 * that cannot be performed immediately.
408 */
409 redirty_tail(inode, wb);
410 }
411 } else if (inode->i_state & I_DIRTY) {
412 /*
413 * Filesystems can dirty the inode during writeback operations,
414 * such as delayed allocation during submission or metadata
415 * updates after data IO completion.
416 */
417 redirty_tail(inode, wb);
418 } else {
419 /* The inode is clean. Remove from writeback lists. */
420 list_del_init(&inode->i_wb_list);
421 }
422 }
423
424 /*
425 * Write out an inode and its dirty pages. Do not update the writeback list
426 * linkage. That is left to the caller. The caller is also responsible for
427 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
428 */
429 static int
430 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
431 {
432 struct address_space *mapping = inode->i_mapping;
433 long nr_to_write = wbc->nr_to_write;
434 unsigned dirty;
435 int ret;
436
437 WARN_ON(!(inode->i_state & I_SYNC));
438
439 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
440
441 ret = do_writepages(mapping, wbc);
442
443 /*
444 * Make sure to wait on the data before writing out the metadata.
445 * This is important for filesystems that modify metadata on data
446 * I/O completion.
447 */
448 if (wbc->sync_mode == WB_SYNC_ALL) {
449 int err = filemap_fdatawait(mapping);
450 if (ret == 0)
451 ret = err;
452 }
453
454 /*
455 * Some filesystems may redirty the inode during the writeback
456 * due to delalloc, clear dirty metadata flags right before
457 * write_inode()
458 */
459 spin_lock(&inode->i_lock);
460 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
461 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
462 inode->i_state &= ~I_DIRTY_PAGES;
463 dirty = inode->i_state & I_DIRTY;
464 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
465 spin_unlock(&inode->i_lock);
466 /* Don't write the inode if only I_DIRTY_PAGES was set */
467 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
468 int err = write_inode(inode, wbc);
469 if (ret == 0)
470 ret = err;
471 }
472 trace_writeback_single_inode(inode, wbc, nr_to_write);
473 return ret;
474 }
475
476 /*
477 * Write out an inode's dirty pages. Either the caller has an active reference
478 * on the inode or the inode has I_WILL_FREE set.
479 *
480 * This function is designed to be called for writing back one inode which
481 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
482 * and does more profound writeback list handling in writeback_sb_inodes().
483 */
484 static int
485 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
486 struct writeback_control *wbc)
487 {
488 int ret = 0;
489
490 spin_lock(&inode->i_lock);
491 if (!atomic_read(&inode->i_count))
492 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
493 else
494 WARN_ON(inode->i_state & I_WILL_FREE);
495
496 if (inode->i_state & I_SYNC) {
497 if (wbc->sync_mode != WB_SYNC_ALL)
498 goto out;
499 /*
500 * It's a data-integrity sync. We must wait. Since callers hold
501 * inode reference or inode has I_WILL_FREE set, it cannot go
502 * away under us.
503 */
504 __inode_wait_for_writeback(inode);
505 }
506 WARN_ON(inode->i_state & I_SYNC);
507 /*
508 * Skip inode if it is clean and we have no outstanding writeback in
509 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
510 * function since flusher thread may be doing for example sync in
511 * parallel and if we move the inode, it could get skipped. So here we
512 * make sure inode is on some writeback list and leave it there unless
513 * we have completely cleaned the inode.
514 */
515 if (!(inode->i_state & I_DIRTY) &&
516 (wbc->sync_mode != WB_SYNC_ALL ||
517 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
518 goto out;
519 inode->i_state |= I_SYNC;
520 spin_unlock(&inode->i_lock);
521
522 ret = __writeback_single_inode(inode, wbc);
523
524 spin_lock(&wb->list_lock);
525 spin_lock(&inode->i_lock);
526 /*
527 * If inode is clean, remove it from writeback lists. Otherwise don't
528 * touch it. See comment above for explanation.
529 */
530 if (!(inode->i_state & I_DIRTY))
531 list_del_init(&inode->i_wb_list);
532 spin_unlock(&wb->list_lock);
533 inode_sync_complete(inode);
534 out:
535 spin_unlock(&inode->i_lock);
536 return ret;
537 }
538
539 static long writeback_chunk_size(struct backing_dev_info *bdi,
540 struct wb_writeback_work *work)
541 {
542 long pages;
543
544 /*
545 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
546 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
547 * here avoids calling into writeback_inodes_wb() more than once.
548 *
549 * The intended call sequence for WB_SYNC_ALL writeback is:
550 *
551 * wb_writeback()
552 * writeback_sb_inodes() <== called only once
553 * write_cache_pages() <== called once for each inode
554 * (quickly) tag currently dirty pages
555 * (maybe slowly) sync all tagged pages
556 */
557 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
558 pages = LONG_MAX;
559 else {
560 pages = min(bdi->avg_write_bandwidth / 2,
561 global_dirty_limit / DIRTY_SCOPE);
562 pages = min(pages, work->nr_pages);
563 pages = round_down(pages + MIN_WRITEBACK_PAGES,
564 MIN_WRITEBACK_PAGES);
565 }
566
567 return pages;
568 }
569
570 /*
571 * Write a portion of b_io inodes which belong to @sb.
572 *
573 * Return the number of pages and/or inodes written.
574 */
575 static long writeback_sb_inodes(struct super_block *sb,
576 struct bdi_writeback *wb,
577 struct wb_writeback_work *work)
578 {
579 struct writeback_control wbc = {
580 .sync_mode = work->sync_mode,
581 .tagged_writepages = work->tagged_writepages,
582 .for_kupdate = work->for_kupdate,
583 .for_background = work->for_background,
584 .range_cyclic = work->range_cyclic,
585 .range_start = 0,
586 .range_end = LLONG_MAX,
587 };
588 unsigned long start_time = jiffies;
589 long write_chunk;
590 long wrote = 0; /* count both pages and inodes */
591
592 while (!list_empty(&wb->b_io)) {
593 struct inode *inode = wb_inode(wb->b_io.prev);
594
595 if (inode->i_sb != sb) {
596 if (work->sb) {
597 /*
598 * We only want to write back data for this
599 * superblock, move all inodes not belonging
600 * to it back onto the dirty list.
601 */
602 redirty_tail(inode, wb);
603 continue;
604 }
605
606 /*
607 * The inode belongs to a different superblock.
608 * Bounce back to the caller to unpin this and
609 * pin the next superblock.
610 */
611 break;
612 }
613
614 /*
615 * Don't bother with new inodes or inodes being freed, first
616 * kind does not need periodic writeout yet, and for the latter
617 * kind writeout is handled by the freer.
618 */
619 spin_lock(&inode->i_lock);
620 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
621 spin_unlock(&inode->i_lock);
622 redirty_tail(inode, wb);
623 continue;
624 }
625 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
626 /*
627 * If this inode is locked for writeback and we are not
628 * doing writeback-for-data-integrity, move it to
629 * b_more_io so that writeback can proceed with the
630 * other inodes on s_io.
631 *
632 * We'll have another go at writing back this inode
633 * when we completed a full scan of b_io.
634 */
635 spin_unlock(&inode->i_lock);
636 requeue_io(inode, wb);
637 trace_writeback_sb_inodes_requeue(inode);
638 continue;
639 }
640 spin_unlock(&wb->list_lock);
641
642 /*
643 * We already requeued the inode if it had I_SYNC set and we
644 * are doing WB_SYNC_NONE writeback. So this catches only the
645 * WB_SYNC_ALL case.
646 */
647 if (inode->i_state & I_SYNC) {
648 /* Wait for I_SYNC. This function drops i_lock... */
649 inode_sleep_on_writeback(inode);
650 /* Inode may be gone, start again */
651 spin_lock(&wb->list_lock);
652 continue;
653 }
654 inode->i_state |= I_SYNC;
655 spin_unlock(&inode->i_lock);
656
657 write_chunk = writeback_chunk_size(wb->bdi, work);
658 wbc.nr_to_write = write_chunk;
659 wbc.pages_skipped = 0;
660
661 /*
662 * We use I_SYNC to pin the inode in memory. While it is set
663 * evict_inode() will wait so the inode cannot be freed.
664 */
665 __writeback_single_inode(inode, &wbc);
666
667 work->nr_pages -= write_chunk - wbc.nr_to_write;
668 wrote += write_chunk - wbc.nr_to_write;
669 spin_lock(&wb->list_lock);
670 spin_lock(&inode->i_lock);
671 if (!(inode->i_state & I_DIRTY))
672 wrote++;
673 requeue_inode(inode, wb, &wbc);
674 inode_sync_complete(inode);
675 spin_unlock(&inode->i_lock);
676 cond_resched_lock(&wb->list_lock);
677 /*
678 * bail out to wb_writeback() often enough to check
679 * background threshold and other termination conditions.
680 */
681 if (wrote) {
682 if (time_is_before_jiffies(start_time + HZ / 10UL))
683 break;
684 if (work->nr_pages <= 0)
685 break;
686 }
687 }
688 return wrote;
689 }
690
691 static long __writeback_inodes_wb(struct bdi_writeback *wb,
692 struct wb_writeback_work *work)
693 {
694 unsigned long start_time = jiffies;
695 long wrote = 0;
696
697 while (!list_empty(&wb->b_io)) {
698 struct inode *inode = wb_inode(wb->b_io.prev);
699 struct super_block *sb = inode->i_sb;
700
701 if (!grab_super_passive(sb)) {
702 /*
703 * grab_super_passive() may fail consistently due to
704 * s_umount being grabbed by someone else. Don't use
705 * requeue_io() to avoid busy retrying the inode/sb.
706 */
707 redirty_tail(inode, wb);
708 continue;
709 }
710 wrote += writeback_sb_inodes(sb, wb, work);
711 drop_super(sb);
712
713 /* refer to the same tests at the end of writeback_sb_inodes */
714 if (wrote) {
715 if (time_is_before_jiffies(start_time + HZ / 10UL))
716 break;
717 if (work->nr_pages <= 0)
718 break;
719 }
720 }
721 /* Leave any unwritten inodes on b_io */
722 return wrote;
723 }
724
725 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
726 enum wb_reason reason)
727 {
728 struct wb_writeback_work work = {
729 .nr_pages = nr_pages,
730 .sync_mode = WB_SYNC_NONE,
731 .range_cyclic = 1,
732 .reason = reason,
733 };
734
735 spin_lock(&wb->list_lock);
736 if (list_empty(&wb->b_io))
737 queue_io(wb, &work);
738 __writeback_inodes_wb(wb, &work);
739 spin_unlock(&wb->list_lock);
740
741 return nr_pages - work.nr_pages;
742 }
743
744 static bool over_bground_thresh(struct backing_dev_info *bdi)
745 {
746 unsigned long background_thresh, dirty_thresh;
747
748 global_dirty_limits(&background_thresh, &dirty_thresh);
749
750 if (global_page_state(NR_FILE_DIRTY) +
751 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
752 return true;
753
754 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
755 bdi_dirty_limit(bdi, background_thresh))
756 return true;
757
758 return false;
759 }
760
761 /*
762 * Called under wb->list_lock. If there are multiple wb per bdi,
763 * only the flusher working on the first wb should do it.
764 */
765 static void wb_update_bandwidth(struct bdi_writeback *wb,
766 unsigned long start_time)
767 {
768 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
769 }
770
771 /*
772 * Explicit flushing or periodic writeback of "old" data.
773 *
774 * Define "old": the first time one of an inode's pages is dirtied, we mark the
775 * dirtying-time in the inode's address_space. So this periodic writeback code
776 * just walks the superblock inode list, writing back any inodes which are
777 * older than a specific point in time.
778 *
779 * Try to run once per dirty_writeback_interval. But if a writeback event
780 * takes longer than a dirty_writeback_interval interval, then leave a
781 * one-second gap.
782 *
783 * older_than_this takes precedence over nr_to_write. So we'll only write back
784 * all dirty pages if they are all attached to "old" mappings.
785 */
786 static long wb_writeback(struct bdi_writeback *wb,
787 struct wb_writeback_work *work)
788 {
789 unsigned long wb_start = jiffies;
790 long nr_pages = work->nr_pages;
791 unsigned long oldest_jif;
792 struct inode *inode;
793 long progress;
794
795 oldest_jif = jiffies;
796 work->older_than_this = &oldest_jif;
797
798 spin_lock(&wb->list_lock);
799 for (;;) {
800 /*
801 * Stop writeback when nr_pages has been consumed
802 */
803 if (work->nr_pages <= 0)
804 break;
805
806 /*
807 * Background writeout and kupdate-style writeback may
808 * run forever. Stop them if there is other work to do
809 * so that e.g. sync can proceed. They'll be restarted
810 * after the other works are all done.
811 */
812 if ((work->for_background || work->for_kupdate) &&
813 !list_empty(&wb->bdi->work_list))
814 break;
815
816 /*
817 * For background writeout, stop when we are below the
818 * background dirty threshold
819 */
820 if (work->for_background && !over_bground_thresh(wb->bdi))
821 break;
822
823 /*
824 * Kupdate and background works are special and we want to
825 * include all inodes that need writing. Livelock avoidance is
826 * handled by these works yielding to any other work so we are
827 * safe.
828 */
829 if (work->for_kupdate) {
830 oldest_jif = jiffies -
831 msecs_to_jiffies(dirty_expire_interval * 10);
832 } else if (work->for_background)
833 oldest_jif = jiffies;
834
835 trace_writeback_start(wb->bdi, work);
836 if (list_empty(&wb->b_io))
837 queue_io(wb, work);
838 if (work->sb)
839 progress = writeback_sb_inodes(work->sb, wb, work);
840 else
841 progress = __writeback_inodes_wb(wb, work);
842 trace_writeback_written(wb->bdi, work);
843
844 wb_update_bandwidth(wb, wb_start);
845
846 /*
847 * Did we write something? Try for more
848 *
849 * Dirty inodes are moved to b_io for writeback in batches.
850 * The completion of the current batch does not necessarily
851 * mean the overall work is done. So we keep looping as long
852 * as made some progress on cleaning pages or inodes.
853 */
854 if (progress)
855 continue;
856 /*
857 * No more inodes for IO, bail
858 */
859 if (list_empty(&wb->b_more_io))
860 break;
861 /*
862 * Nothing written. Wait for some inode to
863 * become available for writeback. Otherwise
864 * we'll just busyloop.
865 */
866 if (!list_empty(&wb->b_more_io)) {
867 trace_writeback_wait(wb->bdi, work);
868 inode = wb_inode(wb->b_more_io.prev);
869 spin_lock(&inode->i_lock);
870 spin_unlock(&wb->list_lock);
871 /* This function drops i_lock... */
872 inode_sleep_on_writeback(inode);
873 spin_lock(&wb->list_lock);
874 }
875 }
876 spin_unlock(&wb->list_lock);
877
878 return nr_pages - work->nr_pages;
879 }
880
881 /*
882 * Return the next wb_writeback_work struct that hasn't been processed yet.
883 */
884 static struct wb_writeback_work *
885 get_next_work_item(struct backing_dev_info *bdi)
886 {
887 struct wb_writeback_work *work = NULL;
888
889 spin_lock_bh(&bdi->wb_lock);
890 if (!list_empty(&bdi->work_list)) {
891 work = list_entry(bdi->work_list.next,
892 struct wb_writeback_work, list);
893 list_del_init(&work->list);
894 }
895 spin_unlock_bh(&bdi->wb_lock);
896 return work;
897 }
898
899 /*
900 * Add in the number of potentially dirty inodes, because each inode
901 * write can dirty pagecache in the underlying blockdev.
902 */
903 static unsigned long get_nr_dirty_pages(void)
904 {
905 return global_page_state(NR_FILE_DIRTY) +
906 global_page_state(NR_UNSTABLE_NFS) +
907 get_nr_dirty_inodes();
908 }
909
910 static long wb_check_background_flush(struct bdi_writeback *wb)
911 {
912 if (over_bground_thresh(wb->bdi)) {
913
914 struct wb_writeback_work work = {
915 .nr_pages = LONG_MAX,
916 .sync_mode = WB_SYNC_NONE,
917 .for_background = 1,
918 .range_cyclic = 1,
919 .reason = WB_REASON_BACKGROUND,
920 };
921
922 return wb_writeback(wb, &work);
923 }
924
925 return 0;
926 }
927
928 static long wb_check_old_data_flush(struct bdi_writeback *wb)
929 {
930 unsigned long expired;
931 long nr_pages;
932
933 /*
934 * When set to zero, disable periodic writeback
935 */
936 if (!dirty_writeback_interval)
937 return 0;
938
939 expired = wb->last_old_flush +
940 msecs_to_jiffies(dirty_writeback_interval * 10);
941 if (time_before(jiffies, expired))
942 return 0;
943
944 wb->last_old_flush = jiffies;
945 nr_pages = get_nr_dirty_pages();
946
947 if (nr_pages) {
948 struct wb_writeback_work work = {
949 .nr_pages = nr_pages,
950 .sync_mode = WB_SYNC_NONE,
951 .for_kupdate = 1,
952 .range_cyclic = 1,
953 .reason = WB_REASON_PERIODIC,
954 };
955
956 return wb_writeback(wb, &work);
957 }
958
959 return 0;
960 }
961
962 /*
963 * Retrieve work items and do the writeback they describe
964 */
965 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
966 {
967 struct backing_dev_info *bdi = wb->bdi;
968 struct wb_writeback_work *work;
969 long wrote = 0;
970
971 set_bit(BDI_writeback_running, &wb->bdi->state);
972 while ((work = get_next_work_item(bdi)) != NULL) {
973 /*
974 * Override sync mode, in case we must wait for completion
975 * because this thread is exiting now.
976 */
977 if (force_wait)
978 work->sync_mode = WB_SYNC_ALL;
979
980 trace_writeback_exec(bdi, work);
981
982 wrote += wb_writeback(wb, work);
983
984 /*
985 * Notify the caller of completion if this is a synchronous
986 * work item, otherwise just free it.
987 */
988 if (work->done)
989 complete(work->done);
990 else
991 kfree(work);
992 }
993
994 /*
995 * Check for periodic writeback, kupdated() style
996 */
997 wrote += wb_check_old_data_flush(wb);
998 wrote += wb_check_background_flush(wb);
999 clear_bit(BDI_writeback_running, &wb->bdi->state);
1000
1001 return wrote;
1002 }
1003
1004 /*
1005 * Handle writeback of dirty data for the device backed by this bdi. Also
1006 * reschedules periodically and does kupdated style flushing.
1007 */
1008 void bdi_writeback_workfn(struct work_struct *work)
1009 {
1010 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1011 struct bdi_writeback, dwork);
1012 struct backing_dev_info *bdi = wb->bdi;
1013 long pages_written;
1014
1015 set_worker_desc("flush-%s", dev_name(bdi->dev));
1016 current->flags |= PF_SWAPWRITE;
1017
1018 if (likely(!current_is_workqueue_rescuer() ||
1019 list_empty(&bdi->bdi_list))) {
1020 /*
1021 * The normal path. Keep writing back @bdi until its
1022 * work_list is empty. Note that this path is also taken
1023 * if @bdi is shutting down even when we're running off the
1024 * rescuer as work_list needs to be drained.
1025 */
1026 do {
1027 pages_written = wb_do_writeback(wb, 0);
1028 trace_writeback_pages_written(pages_written);
1029 } while (!list_empty(&bdi->work_list));
1030 } else {
1031 /*
1032 * bdi_wq can't get enough workers and we're running off
1033 * the emergency worker. Don't hog it. Hopefully, 1024 is
1034 * enough for efficient IO.
1035 */
1036 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1037 WB_REASON_FORKER_THREAD);
1038 trace_writeback_pages_written(pages_written);
1039 }
1040
1041 if (!list_empty(&bdi->work_list) ||
1042 (wb_has_dirty_io(wb) && dirty_writeback_interval))
1043 queue_delayed_work(bdi_wq, &wb->dwork,
1044 msecs_to_jiffies(dirty_writeback_interval * 10));
1045
1046 current->flags &= ~PF_SWAPWRITE;
1047 }
1048
1049 /*
1050 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1051 * the whole world.
1052 */
1053 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1054 {
1055 struct backing_dev_info *bdi;
1056
1057 if (!nr_pages) {
1058 nr_pages = global_page_state(NR_FILE_DIRTY) +
1059 global_page_state(NR_UNSTABLE_NFS);
1060 }
1061
1062 rcu_read_lock();
1063 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1064 if (!bdi_has_dirty_io(bdi))
1065 continue;
1066 __bdi_start_writeback(bdi, nr_pages, false, reason);
1067 }
1068 rcu_read_unlock();
1069 }
1070
1071 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1072 {
1073 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1074 struct dentry *dentry;
1075 const char *name = "?";
1076
1077 dentry = d_find_alias(inode);
1078 if (dentry) {
1079 spin_lock(&dentry->d_lock);
1080 name = (const char *) dentry->d_name.name;
1081 }
1082 printk(KERN_DEBUG
1083 "%s(%d): dirtied inode %lu (%s) on %s\n",
1084 current->comm, task_pid_nr(current), inode->i_ino,
1085 name, inode->i_sb->s_id);
1086 if (dentry) {
1087 spin_unlock(&dentry->d_lock);
1088 dput(dentry);
1089 }
1090 }
1091 }
1092
1093 /**
1094 * __mark_inode_dirty - internal function
1095 * @inode: inode to mark
1096 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1097 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1098 * mark_inode_dirty_sync.
1099 *
1100 * Put the inode on the super block's dirty list.
1101 *
1102 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1103 * dirty list only if it is hashed or if it refers to a blockdev.
1104 * If it was not hashed, it will never be added to the dirty list
1105 * even if it is later hashed, as it will have been marked dirty already.
1106 *
1107 * In short, make sure you hash any inodes _before_ you start marking
1108 * them dirty.
1109 *
1110 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1111 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1112 * the kernel-internal blockdev inode represents the dirtying time of the
1113 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1114 * page->mapping->host, so the page-dirtying time is recorded in the internal
1115 * blockdev inode.
1116 */
1117 void __mark_inode_dirty(struct inode *inode, int flags)
1118 {
1119 struct super_block *sb = inode->i_sb;
1120 struct backing_dev_info *bdi = NULL;
1121
1122 /*
1123 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1124 * dirty the inode itself
1125 */
1126 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1127 trace_writeback_dirty_inode_start(inode, flags);
1128
1129 if (sb->s_op->dirty_inode)
1130 sb->s_op->dirty_inode(inode, flags);
1131
1132 trace_writeback_dirty_inode(inode, flags);
1133 }
1134
1135 /*
1136 * make sure that changes are seen by all cpus before we test i_state
1137 * -- mikulas
1138 */
1139 smp_mb();
1140
1141 /* avoid the locking if we can */
1142 if ((inode->i_state & flags) == flags)
1143 return;
1144
1145 if (unlikely(block_dump))
1146 block_dump___mark_inode_dirty(inode);
1147
1148 spin_lock(&inode->i_lock);
1149 if ((inode->i_state & flags) != flags) {
1150 const int was_dirty = inode->i_state & I_DIRTY;
1151
1152 inode->i_state |= flags;
1153
1154 /*
1155 * If the inode is being synced, just update its dirty state.
1156 * The unlocker will place the inode on the appropriate
1157 * superblock list, based upon its state.
1158 */
1159 if (inode->i_state & I_SYNC)
1160 goto out_unlock_inode;
1161
1162 /*
1163 * Only add valid (hashed) inodes to the superblock's
1164 * dirty list. Add blockdev inodes as well.
1165 */
1166 if (!S_ISBLK(inode->i_mode)) {
1167 if (inode_unhashed(inode))
1168 goto out_unlock_inode;
1169 }
1170 if (inode->i_state & I_FREEING)
1171 goto out_unlock_inode;
1172
1173 /*
1174 * If the inode was already on b_dirty/b_io/b_more_io, don't
1175 * reposition it (that would break b_dirty time-ordering).
1176 */
1177 if (!was_dirty) {
1178 bool wakeup_bdi = false;
1179 bdi = inode_to_bdi(inode);
1180
1181 if (bdi_cap_writeback_dirty(bdi)) {
1182 WARN(!test_bit(BDI_registered, &bdi->state),
1183 "bdi-%s not registered\n", bdi->name);
1184
1185 /*
1186 * If this is the first dirty inode for this
1187 * bdi, we have to wake-up the corresponding
1188 * bdi thread to make sure background
1189 * write-back happens later.
1190 */
1191 if (!wb_has_dirty_io(&bdi->wb))
1192 wakeup_bdi = true;
1193 }
1194
1195 spin_unlock(&inode->i_lock);
1196 spin_lock(&bdi->wb.list_lock);
1197 inode->dirtied_when = jiffies;
1198 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1199 spin_unlock(&bdi->wb.list_lock);
1200
1201 if (wakeup_bdi)
1202 bdi_wakeup_thread_delayed(bdi);
1203 return;
1204 }
1205 }
1206 out_unlock_inode:
1207 spin_unlock(&inode->i_lock);
1208
1209 }
1210 EXPORT_SYMBOL(__mark_inode_dirty);
1211
1212 static void wait_sb_inodes(struct super_block *sb)
1213 {
1214 struct inode *inode, *old_inode = NULL;
1215
1216 /*
1217 * We need to be protected against the filesystem going from
1218 * r/o to r/w or vice versa.
1219 */
1220 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1221
1222 spin_lock(&inode_sb_list_lock);
1223
1224 /*
1225 * Data integrity sync. Must wait for all pages under writeback,
1226 * because there may have been pages dirtied before our sync
1227 * call, but which had writeout started before we write it out.
1228 * In which case, the inode may not be on the dirty list, but
1229 * we still have to wait for that writeout.
1230 */
1231 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1232 struct address_space *mapping = inode->i_mapping;
1233
1234 spin_lock(&inode->i_lock);
1235 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1236 (mapping->nrpages == 0)) {
1237 spin_unlock(&inode->i_lock);
1238 continue;
1239 }
1240 __iget(inode);
1241 spin_unlock(&inode->i_lock);
1242 spin_unlock(&inode_sb_list_lock);
1243
1244 /*
1245 * We hold a reference to 'inode' so it couldn't have been
1246 * removed from s_inodes list while we dropped the
1247 * inode_sb_list_lock. We cannot iput the inode now as we can
1248 * be holding the last reference and we cannot iput it under
1249 * inode_sb_list_lock. So we keep the reference and iput it
1250 * later.
1251 */
1252 iput(old_inode);
1253 old_inode = inode;
1254
1255 filemap_fdatawait(mapping);
1256
1257 cond_resched();
1258
1259 spin_lock(&inode_sb_list_lock);
1260 }
1261 spin_unlock(&inode_sb_list_lock);
1262 iput(old_inode);
1263 }
1264
1265 /**
1266 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1267 * @sb: the superblock
1268 * @nr: the number of pages to write
1269 * @reason: reason why some writeback work initiated
1270 *
1271 * Start writeback on some inodes on this super_block. No guarantees are made
1272 * on how many (if any) will be written, and this function does not wait
1273 * for IO completion of submitted IO.
1274 */
1275 void writeback_inodes_sb_nr(struct super_block *sb,
1276 unsigned long nr,
1277 enum wb_reason reason)
1278 {
1279 DECLARE_COMPLETION_ONSTACK(done);
1280 struct wb_writeback_work work = {
1281 .sb = sb,
1282 .sync_mode = WB_SYNC_NONE,
1283 .tagged_writepages = 1,
1284 .done = &done,
1285 .nr_pages = nr,
1286 .reason = reason,
1287 };
1288
1289 if (sb->s_bdi == &noop_backing_dev_info)
1290 return;
1291 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1292 bdi_queue_work(sb->s_bdi, &work);
1293 wait_for_completion(&done);
1294 }
1295 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1296
1297 /**
1298 * writeback_inodes_sb - writeback dirty inodes from given super_block
1299 * @sb: the superblock
1300 * @reason: reason why some writeback work was initiated
1301 *
1302 * Start writeback on some inodes on this super_block. No guarantees are made
1303 * on how many (if any) will be written, and this function does not wait
1304 * for IO completion of submitted IO.
1305 */
1306 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1307 {
1308 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1309 }
1310 EXPORT_SYMBOL(writeback_inodes_sb);
1311
1312 /**
1313 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1314 * @sb: the superblock
1315 * @nr: the number of pages to write
1316 * @reason: the reason of writeback
1317 *
1318 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1319 * Returns 1 if writeback was started, 0 if not.
1320 */
1321 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1322 unsigned long nr,
1323 enum wb_reason reason)
1324 {
1325 if (writeback_in_progress(sb->s_bdi))
1326 return 1;
1327
1328 if (!down_read_trylock(&sb->s_umount))
1329 return 0;
1330
1331 writeback_inodes_sb_nr(sb, nr, reason);
1332 up_read(&sb->s_umount);
1333 return 1;
1334 }
1335 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1336
1337 /**
1338 * try_to_writeback_inodes_sb - try to start writeback if none underway
1339 * @sb: the superblock
1340 * @reason: reason why some writeback work was initiated
1341 *
1342 * Implement by try_to_writeback_inodes_sb_nr()
1343 * Returns 1 if writeback was started, 0 if not.
1344 */
1345 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1346 {
1347 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1348 }
1349 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1350
1351 /**
1352 * sync_inodes_sb - sync sb inode pages
1353 * @sb: the superblock
1354 *
1355 * This function writes and waits on any dirty inode belonging to this
1356 * super_block.
1357 */
1358 void sync_inodes_sb(struct super_block *sb)
1359 {
1360 DECLARE_COMPLETION_ONSTACK(done);
1361 struct wb_writeback_work work = {
1362 .sb = sb,
1363 .sync_mode = WB_SYNC_ALL,
1364 .nr_pages = LONG_MAX,
1365 .range_cyclic = 0,
1366 .done = &done,
1367 .reason = WB_REASON_SYNC,
1368 };
1369
1370 /* Nothing to do? */
1371 if (sb->s_bdi == &noop_backing_dev_info)
1372 return;
1373 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1374
1375 bdi_queue_work(sb->s_bdi, &work);
1376 wait_for_completion(&done);
1377
1378 wait_sb_inodes(sb);
1379 }
1380 EXPORT_SYMBOL(sync_inodes_sb);
1381
1382 /**
1383 * write_inode_now - write an inode to disk
1384 * @inode: inode to write to disk
1385 * @sync: whether the write should be synchronous or not
1386 *
1387 * This function commits an inode to disk immediately if it is dirty. This is
1388 * primarily needed by knfsd.
1389 *
1390 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1391 */
1392 int write_inode_now(struct inode *inode, int sync)
1393 {
1394 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1395 struct writeback_control wbc = {
1396 .nr_to_write = LONG_MAX,
1397 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1398 .range_start = 0,
1399 .range_end = LLONG_MAX,
1400 };
1401
1402 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1403 wbc.nr_to_write = 0;
1404
1405 might_sleep();
1406 return writeback_single_inode(inode, wb, &wbc);
1407 }
1408 EXPORT_SYMBOL(write_inode_now);
1409
1410 /**
1411 * sync_inode - write an inode and its pages to disk.
1412 * @inode: the inode to sync
1413 * @wbc: controls the writeback mode
1414 *
1415 * sync_inode() will write an inode and its pages to disk. It will also
1416 * correctly update the inode on its superblock's dirty inode lists and will
1417 * update inode->i_state.
1418 *
1419 * The caller must have a ref on the inode.
1420 */
1421 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1422 {
1423 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1424 }
1425 EXPORT_SYMBOL(sync_inode);
1426
1427 /**
1428 * sync_inode_metadata - write an inode to disk
1429 * @inode: the inode to sync
1430 * @wait: wait for I/O to complete.
1431 *
1432 * Write an inode to disk and adjust its dirty state after completion.
1433 *
1434 * Note: only writes the actual inode, no associated data or other metadata.
1435 */
1436 int sync_inode_metadata(struct inode *inode, int wait)
1437 {
1438 struct writeback_control wbc = {
1439 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1440 .nr_to_write = 0, /* metadata-only */
1441 };
1442
1443 return sync_inode(inode, &wbc);
1444 }
1445 EXPORT_SYMBOL(sync_inode_metadata);